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ABSTRACT

A basic insight into the atomic structures of elaiseof the Periodic Table are
presented in terms of their covalent radii, Boldhiranuclear and electron radii and
their relation to the Golden ratio. The detailedictures of the quasi crystal forming
elements, aluminium and manganese have been cheseas special examples. At
the atomic level, their crystal parameters and dendths are shown in detail for the
first time and related to the Bohr radii obtaineahi the first ionization potentials. It
is hoped that this work will provide deeper insgjhitto the understanding of the
bonding and alloy formation of different materialsd help in designing materials

for their intended purpose.
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INTRODUCTION

Over a decade ago, the authamived at the conclusion that the ground staterBo
radius, @ of a hydrogen (H) atom obtained from its ionizatpmtential (l) is
divided at the Golden point into two Golden seddica and @. pertaining to the

electron (8 and proton (), respectively. These are expressed by the eaqsatio

a8 = elXly = &+ 8 ; 8+ = (@/¢F) and @ = (a&/Q) = ap+ (1a-c)

where e is the charge,is the electrical permittivity of vacuum, &/2 7.1998 A/eV
and@= (1+5'%/2) = 1.618 is the Golden ratio, also called The Ratio.

The bond length d(HH) in the hydrogen moleauss shown to be the diagonal of
a square with the Bohr radius as a side. Sinctattex has two Golden sections,
d(HH) is also divided into two Golden sections whform the anionic and cationic
radii of H. The cationic radius, d{j= d(HH)/g = 0.28 A is exactly the value
suggested empirically by Paulfip explain the bond lengths in hydrogen halides
(HX) and it also explained the bond lengths in klikeetal hydrides (MH). This
cascaded into the findingthat the bond length d(AA) between two atoms (Rhe
same kind is divided at the Golden point into twalden sections, d(Aand d(&),

which form the anionic (A and cationic (A) radii of atoms as shown below,

d(AA) = 2d(A) = d(A) + d(A") (2a)

d(A") = d(AA)/¢? and d(A) = d(AA)/@ (2b,c)



where d(A) = d(AA)/2 is the covalent radius. Thdirancrease in the order, d{p>
d(A) > d(A) = (2/¢f) > 1 > (24p) = 0.764 > 1 > 1.23Mote: the symbol d is used
here for covalent radii since they are apportiotisthnces.

In the case of the ionic crystals of alkaliitie$ (MX), it was showhthat the
Golden ratio based cationic {IMand anionic (X radii, d(M") = d(MM)/¢’ andd(X)
= d(XX)/@respectively, add up to give the exact crystalaahstances d(MX),
where the inter-atomic bond length, d(MM) = a, ldiéice parameter for the bcc
lattice of the alkali metals (M) and d(XX) is therid length in the diatomic halogen
(X) molecules. It was gradually found that bondgirs between any two atoms,
d(AB), in many inorganic, organic and biological lemules can be expressed as the
sum of the radii of A and B, whether they be comtw ionic. A whole series of
over 20 contributions/publicatiofi’ followed the above findings.

Amongst these, it was also shdwh'’that the covalent atomic radii, d(A) and
various other radii of atoms (A) of many Group &raknts vary linearly with their
Bohr radii, & o obtained from their first ionization potentialg)(las in the case of

hydrogen,

aga = elXly (3)

In*’ the covalent atomic radii obtained from latticegmaeters and the Bohr radii

(as a) for all the elements of the Periodic Table wdreven to be related by a simple

function of @

d(A)/ag a = Ky =tano (4a,b)



PRESENT WORK AND RESULTS

In this article, data froid have been used. It can be seen in the d&tshiat in each
Group, the ratio igincreases with increasing d(A). Hydrogen has theekt value
while the inert gases and mercury have high vadwesnd 2.

Fig. 1 shows the sizes of the covalent atomii 0of atoms relative to their Bohr

radii for some arbitrary values of,K
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Fig. 1. Covalent radii, d(A) = d(AA)/2 of atoms aéilve to their Bohr radii () for

some chosen values ofy K d(A)/az o = tand.

The case of great interest for the author wdmt out the atomic structures of Al
and Mn, which form alloys and quasi crystals with Golden ratio in their lattice
structures.

The detailed structure of Aluminium is showrFig 2. The valués of the fcc cell

parameters, covalent radius d(A) = 1.43 A and Batlius’ are given in Fig.2. The



ratio, Ky = d(A)/as a = (1+1/2¢°) = 1.19. The cell parameter,a=b=c=4.05A =
2Y%d(AA) = 224 g at+a:/2¢). Note that two adjacent atoms of the same radkeran

angle sift(2/5"%) = 63.48 a shown in Fig. 2, wherd’&2 =¢- 1/2.

Al (ccp): data: R
a=b=c=4.050A - %
d(AA) =a/2¥?=2.863 A

aga = 8n+t e

.

sin(2/5Y?) = 63.43°

et

d(A) ar A

Al Bohr radius, a g =1.20 A; @y, = ag a/¢P = 0.46 A; a.. = ag o/ =0.74 A.
Covalent radius, d(A) = d(AA)/2=1.43 A=a ga+ta./2Q= (1+112¢)ap A
d(A)/aga = (1+1/2¢P) = 1.19 = tan®; 6 = 50°. (1+5"%)/2 = .

Cell parameter,a=b=c=4.05A=2 l/zd(AA) = 23’2(aB,A+ae_/2cp).

Fig. 2. Structure at the atomic level of Aluminiuithe cell parameter,a=b =cis
the diagonal of a right angled triangle with siégsial to the bond length, d(Al-Al).

ag a Is the Bohr radius of Al and,.aand @ are the radii of its nucleus and electron.

In the case of manganese, the cell paranfétatd the bond length d(Mn-Mn) =

2.73 A are as given in the Fig. 3. It is strikingsee that the diagonal%2/(Mn-Mn)



of a square with d(Mn-Mn) as the sides is exactly4= 3.87 A, the diameter of two

Bohr circles. The central circle is a hole with Boadius.

Mn (cubic): data:
a=b=c=89125A

d(AA) =2.731 A
aga = An+T Ae.
sin(2/5"2) = 63.43° v o4
A
A
CdAA) a2
v

Mn: Bohr radius, a ga = 0.97A; an, = aga/¢? = 0.37A; a.. = ag 4/ =0.60 A.
Covalent radius, d(A) = d(AA)/2 = 1 37A=2 1’ZaBA (=1.37)

d(A)aga = 1.414 = tan®; 6 = 54.73°. (1+5™%)/2 =
Cell parameter, a = 8.9125 A; a/2 = 4.46 A = (2/3 1/2)[21/2d(AA)  bec edge

length; (a/2: line with dashes: out of plane).

Fig. 3. Structure at the atomic level of Mangan@$e cell parameter,a=b=c=
8.9125A. The distance a/2 is of a body center euiliethe center to edge distance
equal to 2°d(Mn-Mn), which is the diagonal of the square vtties equal to d(Mn-

Mn). a4 is the Bohr radius ang.eaand @ are the radii of its nucleus and electron.

Half the cell parameter, a/2 is the edge lefth bcc structure, with the center to

edge distance equal to the diagonal of the sq@¥fé(Mn-Mn) = 4a a.



It is hoped that the above structures of Al Btrdcan be put together to construct
the 3D structures of Al-Mn alloys and explore threiation to the Golden ratio.
Similarly, the structures at the atomic leviebther materials can be elucidated

and materials can be chosen for their desired g0
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