
 1 

STRUCTURAL INSIGHTS AT THE ATOMIC LEVEL OF IMPORTANT 

MATERIALS: Al and Mn as special examples in honor of D. 

Shechtman 

 

Raji Heyrovska 

Private Research Scientist (present), Academy of Sci., Czech Republic (former) 

Email: rheyrovs@hotmail.com 

 

ABSTRACT 

A basic insight into the atomic structures of elements of the Periodic Table are 

presented in terms of their covalent radii, Bohr radii, nuclear and electron radii and 

their relation to the Golden ratio. The detailed structures of the quasi crystal forming 

elements, aluminium and manganese have been chosen here as special examples. At 

the atomic level, their crystal parameters and bond lengths are shown in detail for the 

first time and related to the Bohr radii obtained from the first ionization potentials. It 

is hoped that this work will provide deeper insights into the understanding of the 

bonding and alloy formation of different materials and help in designing materials 

for their intended purpose. 
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INTRODUCTION 

Over a decade ago, the author1 arrived at the conclusion that the ground state Bohr 

radius, aB of a hydrogen (H) atom obtained from its ionization potential (IH) is 

divided at the Golden point into two Golden sections, ae- and ap+ pertaining to the 

electron (e-) and proton (p+), respectively. These are expressed by the equations, 

 

aB = e/2κIH = ae- + ap+ ; ap+ = (aB/φ2) and ae- = (aB/φ) = φap+                         (1a-c)                                                   

  

where e is the charge, κ is the electrical permittivity of vacuum, e/2κ = 7.1998 Å/eV 

and φ = (1+51/2)/2) = 1.618 is the Golden ratio, also called The Divine Ratio.  

    The bond length d(HH) in the hydrogen molecule was shown to be the diagonal of 

a square with the Bohr radius as a side. Since the latter has two Golden sections, 

d(HH) is also divided into two Golden sections which form the anionic and cationic 

radii of H. The cationic radius, d(H+) = d(HH)/φ2 = 0.28 Å is exactly the value 

suggested empirically by Pauling2 to explain the bond lengths in hydrogen halides 

(HX) and it also explained the bond lengths in alkali metal hydrides (MH). This 

cascaded into the findings1 that the bond length d(AA) between two atoms (A) of the 

same kind is divided at the Golden point into two Golden sections, d(A-) and d(A+), 

which form the anionic (A-) and cationic (A+) radii of atoms as shown below,  

 

d(AA) = 2d(A) = d(A-) + d(A+)                                                                       (2a)  

d(A+) = d(AA)/φ2 and d(A-) = d(AA)/φ                                                        (2b,c) 

 



 3 

where d(A) = d(AA)/2 is the covalent radius. The radii increase in the order, d(A+) > 

d(A) > d(A-) = (2/φ2) > 1 > (2/φ) = 0.764 > 1 > 1.236. Note: the symbol d is used 

here for covalent radii since they are apportioned distances.    

    In the case of the ionic crystals of alkali halides (MX), it was shown1 that the 

Golden ratio based cationic (M+) and anionic (X-) radii, d(M+) = d(MM)/φ2 and d(X-) 

= d(XX)/φ respectively, add up to give the exact crystal ionic distances d(MX), 

where the inter-atomic bond length, d(MM) = a, the lattice parameter for the bcc 

lattice of the alkali metals (M) and d(XX) is the bond length in the diatomic halogen 

(X) molecules. It was gradually found that bond lengths between any two atoms, 

d(AB), in many inorganic, organic and biological molecules can be expressed as the 

sum of the radii of A and B, whether they be covalent or ionic. A whole series of 

over 20 contributions/publications3-24 followed the above findings. 

    Amongst these, it was also shown8,15,17 that the covalent atomic radii, d(A) and 

various other radii of atoms (A) of many Group A elements vary linearly with their 

Bohr radii, aB,A obtained from their first ionization potentials (I1), as in the case of 

hydrogen, 

 

aB,A = e/2κI1                                                                                                       (3) 

 

    In17 the covalent atomic radii obtained from lattice parameters and the Bohr radii 

(aB,A) for all the elements of the Periodic Table were shown to be related by a simple 

function of φ: 

 

d(A)/aB,A = Kφ = tan θ                                                                                      (4a,b) 
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PRESENT WORK AND RESULTS    

In this article, data from17 have been used. It can be seen in the data in16 that in each 

Group, the ratio Kφ increases with increasing d(A). Hydrogen has the lowest value 

while the inert gases and mercury have high values around 2.  

    Fig. 1 shows the sizes of the covalent atomic radii of atoms relative to their Bohr 

radii for some arbitrary values of Kφ. 

   

 

Fig. 1. Covalent radii, d(A) = d(AA)/2 of atoms relative to their Bohr radii (aB,A) for 

some chosen values of  Kφ = d(A)/aB,A = tan θ. 

 

    The case of great interest for the author was to find out the atomic structures of Al 

and Mn, which form alloys and quasi crystals with the Golden ratio in their lattice 

structures. 

    The detailed structure of Aluminium is shown in Fig 2. The values25 of the fcc cell 

parameters, covalent radius d(A) = 1.43 Å and Bohr radius17 are given in Fig.2. The 

Radii of 
circles, d(A) 

= Kφφφφ aB,A             
Kφφφφ = 2.24 

= 2   
= φφφφ 

= 1 

d(A)/aB,A  = 
Kφφφφ = tan θ 
 
θ = 65.9o 
θ = 63.43o 
θ = 58.28o 
θ = 45o 

θ 
aB,A = 
an+ + 
ae-  
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ratio, Kφ = d(A)/aB,A = (1+1/2φ2) = 1.19. The cell parameter, a = b = c = 4.05 Å = 

21/2d(AA) = 23/2(aB,A+ae-/2φ). Note that two adjacent atoms of the same radii make an 

angle sin-1(2/51/2) = 63.430 a shown in Fig. 2, where 51/2/2 = φ - 1/2. 

                                        

 

Fig. 2. Structure at the atomic level of Aluminium. The cell parameter, a = b = c is 

the diagonal of a right angled triangle with sides equal to the bond length, d(Al-Al). 

aB,A is the Bohr radius of Al and an+ and ae- are the radii of its nucleus and electron. 

 

    In the case of manganese, the cell parameters25 and the bond length d(Mn-Mn) = 

2.73 Å are as given in the Fig. 3. It is striking to see that the diagonal, 21/2d(Mn-Mn)  

Al : Bohr radius, a B,A = 1.20 Å; a n+ = aB,A/φφφφ2222 = = = = 0.46 Å; a e- = aB,A/φ =φ =φ =φ = 0.74 Å.  
Covalent radius, d(A) = d(AA)/2 = 1.43 Å = a B,A+ae-/2φφφφ = (1+1/2φφφφ2222))))aB,A 
d(A)/aB,A = (1+1/2φφφφ2222)))) = 1.19 = tanθ; θ = 500. (1+51/2)/2 = φφφφ. 
Cell parameter, a = b = c = 4.05 Å = 2 1/2d(AA) = 2 3/2(aB,A+ae-/2φφφφ). 
 

a  

d(A)           aB,Aφφφφ 

aB,A = an++ ae-  

Al  (ccp): data: 
a = b = c = 4.050 Å 
d(AA) = a/2 1/2 = 2.863 Å 

θ 

sin-1(2/51/2) = 63.430 
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of a square with d(Mn-Mn) as the sides is exactly 4aB,A = 3.87 Å, the diameter of two 

Bohr circles. The central circle is a hole with Bohr radius. 

 

 

Fig. 3. Structure at the atomic level of Manganese. The cell parameter, a = b = c = 

8.9125Å. The distance a/2 is of a body center cube with the center to edge distance 

equal to 21/2d(Mn-Mn), which is the diagonal of the square with sides equal to d(Mn-

Mn). aB,A is the Bohr radius and an+ and ae- are the radii of its nucleus and electron.   

 

    Half the cell parameter, a/2 is the edge length of a bcc structure, with the center to 

edge distance equal to the diagonal of the square, 21/2d(Mn-Mn) = 4aB,A. 

Mn: Bohr radius, a B,A = 0.97Å; a n+ = aB,A/φφφφ2222 = = = = 0.37Å; a e- = aB,A/φ =φ =φ =φ = 0.60 Å.  
Covalent radius, d(A) = d(AA)/2 = 1.37 Å = 2 1/2aB,A (= 1.37) 
d(A)/aB,A = 1.414 = tanθ; θ = 54.730. (1+51/2)/2 = φφφφ. 
Cell parameter, a = 8.9125 Å; a/2 = 4.46 Å = (2/3 1/2)[21/2d(AA) = bcc edge 
length; (a/2: line with dashes: out of plane). 

  21/2d(AA)  
= 4aB,A 

d(AA)          

aB,A = an++ ae-  

Mn (cubic): data: 
a = b = c = 8.9125 Å 
d(AA) = 2.731 Å 

θ 

a/2 

sin-1(2/51/2) = 63.430 
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    It is hoped that the above structures of Al and Mn can be put together to construct 

the 3D structures of Al-Mn alloys and explore their relation to the Golden ratio. 

    Similarly, the structures at the atomic level of other materials can be elucidated 

and materials can be chosen for their desired purposes. 
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