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In relational mechanics, a new theory is presented, which is invariant under
transformations between inertial and non-inertial reference frames and which
can be applied in any reference frame without introducing fictitious forces.
In addition to the above, in this paper, we assume that all forces always obey
Newton’s third law.

Introduction

The new theory in relational mechanics presented in this paper is obtained starting from an
auxiliary system of particles (called Universe) that is used to obtain kinematic magnitudes
(such as universal position, universal velocity, etc.) that are invariant under transformations
between inertial and non-inertial reference frames.

The universal position ri, the universal velocity vi and the universal acceleration ai of a
particle i are given by:

ri
.= (~ri − ~R)

vi
.= (~vi − ~V )− ~ω × (~ri − ~R)

ai
.= (~ai − ~A)− 2 ~ω × (~vi − ~V ) + ~ω × [ ~ω × (~ri − ~R) ]− ~α× (~ri − ~R)

(vi
.= d(ri )/dt ) and (ai

.= d2(ri )/dt2 ) where ~ri is the position vector of particle i, ~R is the
position vector of the center of mass of the Universe, and ~ω is the angular velocity vector of
the Universe (see Appendix I)

A reference frame S is non-rotating if the angular velocity ~ω of the Universe relative to S is
equal to zero, and the reference frame S is also inertial if the acceleration ~A of the center of
mass of the Universe relative to S is equal to zero.

The New Dynamics

[ 1 ] A force is always caused by the interaction between two or more particles.

[ 2 ] The net force Fi acting on a particle i of mass mi produces a universal acceleration ai

according to the following equation: [Fi = mi ai ]

[ 3 ] In this paper, we assume that all forces always obey Newton’s third law in its weak form
and in its strong form.
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The Definitions

For a system of N particles, the following definitions are applicable:

Mass M .=
∑N

i mi

Position CM 1 ~Rcm
.= M−1

∑N

i mi ~ri

Velocity CM 1 ~Vcm
.= M−1

∑N

i mi ~vi

Acceleration CM 1 ~Acm
.= M−1

∑N

i mi ~ai

Position CM 2 Rcm
.= M−1

∑N

i mi ri

Velocity CM 2 Vcm
.= M−1

∑N

i mi vi

Acceleration CM 2 Acm
.= M−1

∑N

i mi ai

Linear Momentum 1 P1
.=

∑N

i mi vi

Angular Momentum 1 L1
.=

∑N

i mi

[
ri × vi

]
Angular Momentum 2 L2

.=
∑N

i mi

[
(ri −Rcm)× (vi −Vcm)

]
Work 1 W1

.=
∑N

i

∫ 2

1
Fi · dri = ∆ K1

Kinetic Energy 1 ∆ K1
.=

∑N

i ∆ 1/2 mi (vi)2

Potential Energy 1 ∆ U1
.= −

∑N

i

∫ 2

1
Fi · dri

Mechanical Energy 1 E1
.= K1 + U1

Lagrangian 1 L1
.= K1 −U1

Work 2 W2
.=

∑N

i

∫ 2

1
Fi · d(ri −Rcm) = ∆ K2

Kinetic Energy 2 ∆ K2
.=

∑N

i ∆ 1/2 mi (vi −Vcm)2

Potential Energy 2 ∆ U2
.= −

∑N

i

∫ 2

1
Fi · d(ri −Rcm)

Mechanical Energy 2 E2
.= K2 + U2

Lagrangian 2 L2
.= K2 −U2
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Work 3 W3
.=

∑N

i ∆ 1/2 Fi · ri = ∆ K3

Kinetic Energy 3 ∆ K3
.=

∑N

i ∆ 1/2 mi ai · ri

Potential Energy 3 ∆ U3
.= −

∑N

i ∆ 1/2 Fi · ri

Mechanical Energy 3 E3
.= K3 + U3

Work 4 W4
.=

∑N

i ∆ 1/2 Fi · (ri −Rcm) = ∆ K4

Kinetic Energy 4 ∆ K4
.=

∑N

i ∆ 1/2 mi

[
(ai −Acm) · (ri −Rcm)

]
Potential Energy 4 ∆ U4

.= −
∑N

i ∆ 1/2 Fi · (ri −Rcm)

Mechanical Energy 4 E4
.= K4 + U4

Work 5 W5
.=

∑N

i

[ ∫ 2

1
Fi · d(~ri − ~R) + ∆ 1/2 Fi · (~ri − ~R)

]
= ∆ K5

Kinetic Energy 5 ∆ K5
.=

∑N

i ∆ 1/2 mi

[
(~vi − ~V )2 + (~ai − ~A) · (~ri − ~R)

]
Potential Energy 5 ∆ U5

.= −
∑N

i

[ ∫ 2

1
Fi · d(~ri − ~R) + ∆ 1/2 Fi · (~ri − ~R)

]
Mechanical Energy 5 E5

.= K5 + U5

Work 6 W6
.=

∑N

i

[ ∫ 2

1
Fi · d(~ri − ~Rcm) + ∆ 1/2 Fi · (~ri − ~Rcm)

]
= ∆ K6

Kinetic Energy 6 ∆ K6
.=

∑N

i ∆ 1/2 mi

[
(~vi − ~Vcm)2 + (~ai − ~Acm) · (~ri − ~Rcm)

]
Potential Energy 6 ∆ U6

.= −
∑N

i

[ ∫ 2

1
Fi · d(~ri − ~Rcm) + ∆ 1/2 Fi · (~ri − ~Rcm)

]
Mechanical Energy 6 E6

.= K6 + U6

The Relations

From the above definitions, the following relations can be obtained (see Appendix II )

K1 = K2 + 1/2 M V2
cm

K3 = K4 + 1/2 M Acm ·Rcm

K5 = K6 + 1/2 M
[
(~Vcm − ~V )2 + (~Acm − ~A) · (~Rcm − ~R)

]
K5 = K1 + K3 & U5 = U1 + U3 & E5 = E1 + E3

K6 = K2 + K4 & U6 = U2 + U4 & E6 = E2 + E4
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The Principles

The linear momentum [P1 ] of an isolated system of N particles remains constant if the
internal forces obey Newton’s third law in its weak form.

P1 = constant
[

d(P1)/dt =
∑N

i mi ai =
∑N

i Fi = 0
]

The angular momentum [L1 ] of an isolated system of N particles remains constant if the
internal forces obey Newton’s third law in its strong form.

L1 = constant
[

d(L1)/dt =
∑N

i mi

[
ri × ai

]
=

∑N

i ri × Fi = 0
]

The angular momentum [L2 ] of an isolated system of N particles remains constant if the
internal forces obey Newton’s third law in its strong form.

L2 = constant
[

d(L2)/dt =
∑N

i mi

[
(ri −Rcm)× (ai −Acm)

]
=∑N

i mi

[
(ri −Rcm)× ai

]
=

∑N

i (ri −Rcm)× Fi = 0
]

The mechanical energy [ E1 ] and the mechanical energy [ E2 ] of a system of N particles
remain constant if the system is only subject to conservative forces.

E1 = constant
[

∆ E1 = ∆ K1 + ∆ U1 = 0
]

E2 = constant
[

∆ E2 = ∆ K2 + ∆ U2 = 0
]

The mechanical energy [ E3 ] and the mechanical energy [ E4 ] of a system of N particles
are always zero ( and therefore they always remain constant )

E3 = constant
[

E3 =
∑N

i
1/2

[
mi ai · ri − Fi · ri

]
= 0

]
E4 = constant

[
E4 =

∑N

i
1/2

[
mi ai · (ri −Rcm)− Fi · (ri −Rcm)

]
= 0

]
∑N

i
1/2 mi

[
(ai−Acm) · (ri−Rcm)

]
=

∑N

i
1/2 mi ai · (ri−Rcm)

The mechanical energy [ E5 ] and the mechanical energy [ E6 ] of a system of N particles
remain constant if the system is only subject to conservative forces.

E5 = constant
[

∆ E5 = ∆ K5 + ∆ U5 = 0
]

E6 = constant
[

∆ E6 = ∆ K6 + ∆ U6 = 0
]
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Observations

All equations of this paper can be applied in any inertial reference frame and also in any
non-inertial reference frame.

Additionally, inertial reference frames and non-inertial reference frames must not introduce
fictitious forces into Fi.

In this paper, the magnitudes [m, r, v, a, M, R, V, A, F, P1, L1, L2, W1, K1, U1, E1, L1,
W2, K2, U2, E2, L2, W3, K3, U3, E3, W4, K4, U4, E4, W5, K5, U5, E5, W6, K6, U6 and E6 ]
are invariant under transformations between inertial and non-inertial reference frames.

The mechanical energy E3 of a system of particles is always zero [ E3 = K3 + U3 = 0 ]

Therefore, the mechanical energy E5 of a system of particles is always equal to the mechanical
energy E1 of the system of particles [ E5 = E1 ]

The mechanical energy E4 of a system of particles is always zero [ E4 = K4 + U4 = 0 ]

Therefore, the mechanical energy E6 of a system of particles is always equal to the mechanical
energy E2 of the system of particles [ E6 = E2 ]

If the potential energy U1 of a system of particles is a homogeneous function of degree k
then the potential energy U3 and the potential energy U5 of the system of particles are
given by: [ U3 = ( k

2 ) U1 ] and [ U5 = (1+ k
2 ) U1 ]

If the potential energy U2 of a system of particles is a homogeneous function of degree k
then the potential energy U4 and the potential energy U6 of the system of particles are
given by: [ U4 = ( k

2 ) U2 ] and [ U6 = (1+ k
2 ) U2 ]

If the potential energy U1 of a system of particles is a homogeneous function of degree k
and if the kinetic energy K5 of the system of particles is equal to zero, then we obtain:
[ K1 = −K3 = U3 = ( k

2 )U1 = ( k
2+k ) E1 ]

If the potential energy U2 of a system of particles is a homogeneous function of degree k
and if the kinetic energy K6 of the system of particles is equal to zero, then we obtain:
[ K2 = −K4 = U4 = ( k

2 )U2 = ( k
2+k ) E2 ]

If the potential energy U1 of a system of particles is a homogeneous function of degree k
and if the average kinetic energy 〈K5〉 of the system of particles is equal to zero, then we
obtain: [ 〈K1〉 = −〈K3〉 = 〈U3〉 = ( k

2 ) 〈U1〉 = ( k
2+k ) 〈E1〉 ]

If the potential energy U2 of a system of particles is a homogeneous function of degree k
and if the average kinetic energy 〈K6〉 of the system of particles is equal to zero, then we
obtain: [ 〈K2〉 = −〈K4〉 = 〈U4〉 = ( k

2 ) 〈U2〉 = ( k
2+k ) 〈E2〉 ]
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The average kinetic energy 〈K5〉 and the average kinetic energy 〈K6〉 of a system of particles
with bounded motion ( in 〈K5〉 relative to ~R and in 〈K6〉 relative to ~Rcm ) are always zero.

The kinetic energy K5 and the kinetic energy K6 of a system of N particles can also
be expressed as follows : [ K5 =

∑N

i
1/2 mi ( ṙi ṙi + r̈i ri ) ] where ri

.= |~ri − ~R | and
[ K6 =

∑N

j>i
1/2 mi mj M−1( ṙij ṙij + r̈ij rij ) ] where rij

.= | ~ri − ~rj |

The kinetic energy K5 and the kinetic energy K6 of a system of N particles can also
be expressed as follows : [ K5 =

∑N

i
1/2 mi ( τ̈i ) ] where τi

.= 1/2 (~ri − ~R) · (~ri − ~R) and
[ K6 =

∑N

j>i
1/2 mi mj M−1( τ̈ij ) ] where τij

.= 1/2 (~ri − ~rj) · (~ri − ~rj)

The kinetic energy K6 is the only kinetic energy that can be expressed without the necessity
of introducing any magnitude that is related to the Universe [ such as: r, v, a, ~ω, ~R, etc. ]

In an isolated system of particles, the potential energy U2 is equal to the potential energy
U1 if the internal forces obey Newton’s third law in its weak form [U2 = U1 ]

In an isolated system of particles, the potential energy U4 is equal to the potential energy
U3 if the internal forces obey Newton’s third law in its weak form [U4 = U3 ]

In an isolated system of particles, the potential energy U6 is equal to the potential energy
U5 if the internal forces obey Newton’s third law in its weak form [U6 = U5 ]

A reference frame S is non-rotating if the angular velocity ~ω of the Universe relative to S is
equal to zero, and the reference frame S is also inertial if the acceleration ~A of the center of
mass of the Universe relative to S is equal to zero.

If the origin of a non-rotating reference frame S [ ~ω = 0 ] always coincides with the center of
mass of the Universe [ ~R = ~V = ~A = 0 ] then relative to S: [ ri = ~ri, vi = ~vi and ai = ~ai ]
Therefore, it is easy to see that always: [vi = d(ri )/dt and ai = d2(ri )/dt2 ]

This paper does not contradict Newton’s first and second laws since these two laws are valid
in all inertial reference frames. The equation [ Fi = mi ai ] is a simple reformulation of
Newton’s second law.

In this paper, the equation [ Fi = mi ai ] would be false in all reference frames ( inertial
or non-inertial ) if a new force were always disobeyed Newton’s third law in its strong form
or in its weak form.
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Appendix I

The Universe

The Universe is a system that contains all particles, that is always free of external forces,
and that all internal forces always obey Newton’s third law in its weak form and in its
strong form.

The position ~R, the velocity ~V and the acceleration ~A of the center of mass of the Universe
relative to a reference frame S (and the angular velocity ~ω and the angular acceleration ~α
of the Universe relative to the reference frame S) are given by:

M .=
∑All

i mi

~R .= M−1
∑All

i mi ~ri

~V .= M−1
∑All

i mi ~vi

~A .= M−1
∑All

i mi ~ai

~ω
.= I−1

↔
· ~L

~α
.= d(~ω)/dt

I
↔ .=

∑All

i mi [ |~ri − ~R |2 1
↔
− (~ri − ~R)⊗ (~ri − ~R) ]

~L .=
∑All

i mi (~ri − ~R)× (~vi − ~V )

where M is the mass of the Universe, I
↔

is the inertia tensor of the Universe (relative to ~R)
and ~L is the angular momentum of the Universe relative to the reference frame S.

The Transformations

(~ri − ~R) .= ri = ri
′

(~ri
′ − ~R′) .= ri

′ = ri

(~vi − ~V )− ~ω × (~ri − ~R) .= vi = vi
′

(~vi
′ − ~V ′)− ~ω ′ × (~ri

′ − ~R′) .= vi
′ = vi

(~ai − ~A)− 2 ~ω × (~vi − ~V ) + ~ω × [ ~ω × (~ri − ~R) ]− ~α× (~ri − ~R) .= ai = ai
′

(~ai
′ − ~A′)− 2 ~ω ′ × (~vi

′ − ~V ′) + ~ω ′ × [ ~ω ′ × (~ri
′ − ~R′) ]− ~α′ × (~ri

′ − ~R′) .= ai
′ = ai
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Appendix II

The Relations

In a system of particles, these relations can be obtained ( The magnitudes Rcm, Vcm, Acm,
~Rcm, ~Vcm and ~Acm can be replaced by the magnitudes R, V, A, ~R, ~V and ~A, or by the
magnitudes rj , vj , aj , ~rj , ~vj and ~aj , respectively. On the other hand, R = V = A = 0 )

ri
.= (~ri − ~R)

Rcm
.= (~Rcm − ~R)

−→ (ri −Rcm) = (~ri − ~Rcm)

vi
.= (~vi − ~V )− ~ω × (~ri − ~R)

Vcm
.= (~Vcm − ~V )− ~ω × (~Rcm − ~R)

−→ (vi −Vcm) = (~vi − ~Vcm)− ~ω × (~ri − ~Rcm)

(vi −Vcm) · (vi −Vcm) =
[
(~vi − ~Vcm)− ~ω× (~ri − ~Rcm)

]
·
[
(~vi − ~Vcm)− ~ω× (~ri − ~Rcm)

]
=

(~vi−~Vcm) · (~vi−~Vcm)−2 (~vi−~Vcm) ·
[
~ω× (~ri− ~Rcm)

]
+

[
~ω× (~ri− ~Rcm)

]
·
[
~ω× (~ri− ~Rcm)

]
=

(~vi−~Vcm) · (~vi−~Vcm)+2 (~ri− ~Rcm) ·
[
~ω× (~vi−~Vcm)

]
+

[
~ω× (~ri− ~Rcm)

]
·
[
~ω× (~ri− ~Rcm)

]
=

(~vi−~Vcm) ·(~vi−~Vcm)+
[
2 ~ω×(~vi−~Vcm)

]
·(~ri− ~Rcm)+

[
~ω×(~ri− ~Rcm)

]
·
[
~ω×(~ri− ~Rcm)

]
=

(~vi − ~Vcm)2 +
[
2 ~ω × (~vi − ~Vcm)

]
· (~ri − ~Rcm) +

[
~ω × (~ri − ~Rcm)

]2
(ai − Acm) · (ri − Rcm) =

{
(~ai − ~Acm) − 2 ~ω × (~vi − ~Vcm) + ~ω × [ ~ω × (~ri − ~Rcm) ] −

~α× (~ri − ~Rcm)
}
· (~ri − ~Rcm) = (~ai − ~Acm) · (~ri − ~Rcm)−

[
2 ~ω × (~vi − ~Vcm)

]
· (~ri − ~Rcm) +

{
~ω× [ ~ω×(~ri− ~Rcm) ]

}
·(~ri− ~Rcm)−

[
~α×(~ri− ~Rcm)

]
·(~ri− ~Rcm) = (~ai−~Acm) ·(~ri− ~Rcm) −

[
2 ~ω × (~vi − ~Vcm)

]
· (~ri − ~Rcm) +

{ [
~ω · (~ri − ~Rcm)

]
~ω − ( ~ω · ~ω ) (~ri − ~Rcm)

}
· (~ri − ~Rcm) =

(~ai− ~Acm) · (~ri− ~Rcm)−
[
2 ~ω× (~vi−~Vcm)

]
· (~ri− ~Rcm)+

[
~ω · (~ri− ~Rcm)

]2− ( ~ω )2 (~ri− ~Rcm)2

−→ (vi −Vcm)2 + (ai −Acm) · (ri −Rcm) = (~vi − ~Vcm)2 + (~ai − ~Acm) · (~ri − ~Rcm)
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Appendix III

The Magnitudes

The magnitudes L2, W2, K2, U2, W4, K4, U4, W6, K6 and U6 of a system of N particles can
also be expressed as follows:

L2 =
∑N

j>i mi mj M−1
[
(ri − rj)× (vi − vj)

]
W2 =

∑N

j>i mi mj M−1
[ ∫ 2

1
(Fi/mi − Fj/mj) · d(ri − rj)

]
∆ K2 =

∑N

j>i ∆ 1/2 mi mj M−1 (vi − vj)2 = W2

∆ U2 = −
∑N

j>i mi mj M−1
[ ∫ 2

1
(Fi/mi − Fj/mj) · d(ri − rj)

]
W4 =

∑N

j>i ∆ 1/2 mi mj M−1
[
(Fi/mi − Fj/mj) · (ri − rj)

]
∆ K4 =

∑N

j>i ∆ 1/2 mi mj M−1
[
(ai − aj) · (ri − rj)

]
= W4

∆ U4 = −
∑N

j>i ∆ 1/2 mi mj M−1
[
(Fi/mi − Fj/mj) · (ri − rj)

]
W6 =

∑N

j>i mi mj M−1
[ ∫ 2

1
(Fi/mi−Fj/mj) ·d(~ri−~rj)+∆ 1/2 (Fi/mi−Fj/mj) · (~ri−~rj)

]
∆ K6 =

∑N

j>i ∆ 1/2 mi mj M−1
[
(~vi − ~vj)2 + (~ai − ~aj) · (~ri − ~rj)

]
= W6

∆ U6 = −
∑N

j>i mi mj M−1
[ ∫ 2

1
(Fi/mi−Fj/mj)·d(~ri−~rj)+∆ 1/2 (Fi/mi−Fj/mj)·(~ri−~rj)

]
The magnitudes W(1 to 6) and U(1 to 6) of an isolated system of N particles, whose internal
forces obey Newton’s third law in its weak form, can be reduced to:

W1 = W2 =
∑N

i

∫ 2

1
Fi · d~ri

∆ U1 = ∆ U2 = −
∑N

i

∫ 2

1
Fi · d~ri

W3 = W4 =
∑N

i ∆ 1/2 Fi · ~ri

∆ U3 = ∆ U4 = −
∑N

i ∆ 1/2 Fi · ~ri

W5 = W6 =
∑N

i

[ ∫ 2

1
Fi · d~ri + ∆ 1/2 Fi · ~ri

]
∆ U5 = ∆ U6 = −

∑N

i

[ ∫ 2

1
Fi · d~ri + ∆ 1/2 Fi · ~ri

]
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In relational mechanics, a new theory is presented, which is invariant under
transformations between inertial and non-inertial reference frames, which
can be applied in any reference frame without introducing fictitious forces
and which establishes the existence of a new universal force of interaction,
called kinetic force.

Introduction

The new theory in relational mechanics presented in this paper is obtained starting from an
auxiliary system of particles (called Universe) that is used to obtain kinematic magnitudes
(such as universal position, universal velocity, etc.) that are invariant under transformations
between inertial and non-inertial reference frames.

The universal position ri, the universal velocity vi and the universal acceleration ai of a
particle i are given by:

ri
.= (~ri − ~R)

vi
.= (~vi − ~V )− ~ω × (~ri − ~R)

ai
.= (~ai − ~A)− 2 ~ω × (~vi − ~V ) + ~ω × [ ~ω × (~ri − ~R) ]− ~α× (~ri − ~R)

(vi
.= d(ri )/dt ) and (ai

.= d2(ri )/dt2 ) where ~ri is the position vector of particle i, ~R is the
position vector of the center of mass of the Universe, and ~ω is the angular velocity vector of
the Universe (see Appendix I)

A reference frame S is non-rotating if the angular velocity ~ω of the Universe relative to S is
equal to zero, and the reference frame S is also inertial if the acceleration ~A of the center of
mass of the Universe relative to S is equal to zero.

The New Dynamics

[ 1 ] A force is always caused by the interaction between two or more particles.

[ 2 ] The total force Ti acting on a particle i is always zero [Ti = 0 ]

[ 3 ] In this paper, we assume that all non-kinetic forces always obey Newton’s third law in
its weak form and in its strong form.
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The Kinetic Force

The kinetic force Kij exerted on a particle i of mass mi by another particle j of mass mj ,
caused by the interaction between particle i and particle j, is given by:

Kij = − mi mj M−1 (ai − aj)

where ai is the universal acceleration of particle i, aj is the universal acceleration of particle j,
and M is the mass of the Universe.

From the above equation it follows that the net kinetic force Ki ( =
∑All

j Kij ) acting on a
particle i of mass mi is given by:

Ki = − mi (ai −Acm)

where ai is the universal acceleration of particle i and Acm is the universal acceleration of
the center of mass of the Universe.

Since the universal acceleration of the center of mass of the Universe Acm is always zero,
then the net kinetic force Ki acting on a particle i of mass mi is certainly given by:

Ki = − mi ai

where ai is the universal acceleration of particle i.

The kinetic force Kij is considered in the new dynamics, mainly in the [ 2 ] principle, as a
new universal force of interaction.

Finally, the kinetic force Kij always obey Newton’s third law in its weak form.

The [ 2 ] Principle

The second principle of the new dynamics establishes that the total force Ti acting on a
particle i is always zero.

Ti = 0

If the total force Ti is divided into the following two parts: the net kinetic force Ki and the
net non-kinetic force Fi (

∑
of gravitational forces, electrostatic forces, etc. ) then we have:

Ki + Fi = 0

Now, substituting ( Ki = − mi ai ) and rearranging, we finally obtain:

Fi = mi ai

This equation ( similar to Newton’s second law ) will be used throughout this paper.

On the other hand, in this paper a system of particles is isolated when the system is free of
external non-kinetic forces.
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The Definitions

For a system of N particles, the following definitions are applicable:

Mass M .=
∑N

i mi

Position CM 1 ~Rcm
.= M−1

∑N

i mi ~ri

Velocity CM 1 ~Vcm
.= M−1

∑N

i mi ~vi

Acceleration CM 1 ~Acm
.= M−1

∑N

i mi ~ai

Position CM 2 Rcm
.= M−1

∑N

i mi ri

Velocity CM 2 Vcm
.= M−1

∑N

i mi vi

Acceleration CM 2 Acm
.= M−1

∑N

i mi ai

Linear Momentum 1 P1
.=

∑N

i mi vi

Angular Momentum 1 L1
.=

∑N

i mi

[
ri × vi

]
Angular Momentum 2 L2

.=
∑N

i mi

[
(ri −Rcm)× (vi −Vcm)

]
Work 1 W1

.=
∑N

i

∫ 2

1
Fi · dri = ∆ K1

Kinetic Energy 1 ∆ K1
.=

∑N

i ∆ 1/2 mi (vi)2

Potential Energy 1 ∆ U1
.= −

∑N

i

∫ 2

1
Fi · dri

Mechanical Energy 1 E1
.= K1 + U1

Lagrangian 1 L1
.= K1 −U1

Work 2 W2
.=

∑N

i

∫ 2

1
Fi · d(ri −Rcm) = ∆ K2

Kinetic Energy 2 ∆ K2
.=

∑N

i ∆ 1/2 mi (vi −Vcm)2

Potential Energy 2 ∆ U2
.= −

∑N

i

∫ 2

1
Fi · d(ri −Rcm)

Mechanical Energy 2 E2
.= K2 + U2

Lagrangian 2 L2
.= K2 −U2
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Work 3 W3
.=

∑N

i ∆ 1/2 Fi · ri = ∆ K3

Kinetic Energy 3 ∆ K3
.=

∑N

i ∆ 1/2 mi ai · ri

Potential Energy 3 ∆ U3
.= −

∑N

i ∆ 1/2 Fi · ri

Mechanical Energy 3 E3
.= K3 + U3

Work 4 W4
.=

∑N

i ∆ 1/2 Fi · (ri −Rcm) = ∆ K4

Kinetic Energy 4 ∆ K4
.=

∑N

i ∆ 1/2 mi

[
(ai −Acm) · (ri −Rcm)

]
Potential Energy 4 ∆ U4

.= −
∑N

i ∆ 1/2 Fi · (ri −Rcm)

Mechanical Energy 4 E4
.= K4 + U4

Work 5 W5
.=

∑N

i

[ ∫ 2

1
Fi · d(~ri − ~R) + ∆ 1/2 Fi · (~ri − ~R)

]
= ∆ K5

Kinetic Energy 5 ∆ K5
.=

∑N

i ∆ 1/2 mi

[
(~vi − ~V )2 + (~ai − ~A) · (~ri − ~R)

]
Potential Energy 5 ∆ U5

.= −
∑N

i

[ ∫ 2

1
Fi · d(~ri − ~R) + ∆ 1/2 Fi · (~ri − ~R)

]
Mechanical Energy 5 E5

.= K5 + U5

Work 6 W6
.=

∑N

i

[ ∫ 2

1
Fi · d(~ri − ~Rcm) + ∆ 1/2 Fi · (~ri − ~Rcm)

]
= ∆ K6

Kinetic Energy 6 ∆ K6
.=

∑N

i ∆ 1/2 mi

[
(~vi − ~Vcm)2 + (~ai − ~Acm) · (~ri − ~Rcm)

]
Potential Energy 6 ∆ U6

.= −
∑N

i

[ ∫ 2

1
Fi · d(~ri − ~Rcm) + ∆ 1/2 Fi · (~ri − ~Rcm)

]
Mechanical Energy 6 E6

.= K6 + U6

The Relations

From the above definitions, the following relations can be obtained (see Appendix II )

K1 = K2 + 1/2 M V2
cm

K3 = K4 + 1/2 M Acm ·Rcm

K5 = K6 + 1/2 M
[
(~Vcm − ~V )2 + (~Acm − ~A) · (~Rcm − ~R)

]
K5 = K1 + K3 & U5 = U1 + U3 & E5 = E1 + E3

K6 = K2 + K4 & U6 = U2 + U4 & E6 = E2 + E4
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The Principles

The linear momentum [P1 ] of an isolated system of N particles remains constant if the
internal non-kinetic forces obey Newton’s third law in its weak form.

P1 = constant
[

d(P1)/dt =
∑N

i mi ai =
∑N

i Fi = 0
]

The angular momentum [L1 ] of an isolated system of N particles remains constant if the
internal non-kinetic forces obey Newton’s third law in its strong form.

L1 = constant
[

d(L1)/dt =
∑N

i mi

[
ri × ai

]
=

∑N

i ri × Fi = 0
]

The angular momentum [L2 ] of an isolated system of N particles remains constant if the
internal non-kinetic forces obey Newton’s third law in its strong form.

L2 = constant
[

d(L2)/dt =
∑N

i mi

[
(ri −Rcm)× (ai −Acm)

]
=∑N

i mi

[
(ri −Rcm)× ai

]
=

∑N

i (ri −Rcm)× Fi = 0
]

The mechanical energy [ E1 ] and the mechanical energy [ E2 ] of a system of N particles remain
constant if the system is only subject to kinetic forces and to conservative non-kinetic forces.

E1 = constant
[

∆ E1 = ∆ K1 + ∆ U1 = 0
]

E2 = constant
[

∆ E2 = ∆ K2 + ∆ U2 = 0
]

The mechanical energy [ E3 ] and the mechanical energy [ E4 ] of a system of N particles are
always zero ( and therefore they always remain constant )

E3 = constant
[

E3 =
∑N

i
1/2

[
mi ai · ri − Fi · ri

]
= 0

]
E4 = constant

[
E4 =

∑N

i
1/2

[
mi ai · (ri −Rcm)− Fi · (ri −Rcm)

]
= 0

]
∑N

i
1/2 mi

[
(ai−Acm) · (ri−Rcm)

]
=

∑N

i
1/2 mi ai · (ri−Rcm)

The mechanical energy [ E5 ] and the mechanical energy [ E6 ] of a system of N particles remain
constant if the system is only subject to kinetic forces and to conservative non-kinetic forces.

E5 = constant
[

∆ E5 = ∆ K5 + ∆ U5 = 0
]

E6 = constant
[

∆ E6 = ∆ K6 + ∆ U6 = 0
]
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Observations

All equations of this paper can be applied in any inertial reference frame and also in any
non-inertial reference frame.

Additionally, inertial reference frames and non-inertial reference frames must not introduce
fictitious forces into Fi.

In this paper, the magnitudes [m, r, v, a, M, R, V, A, T, K, F, P1, L1, L2, W1, K1, U1, E1, L1

W2, K2, U2, E2, L2, W3, K3, U3, E3, W4, K4, U4, E4, W5, K5, U5, E5, W6, K6, U6 and E6 ]
are invariant under transformations between inertial and non-inertial reference frames.

The mechanical energy E3 of a system of particles is always zero [ E3 = K3 + U3 = 0 ]

Therefore, the mechanical energy E5 of a system of particles is always equal to the mechanical
energy E1 of the system of particles [ E5 = E1 ]

The mechanical energy E4 of a system of particles is always zero [ E4 = K4 + U4 = 0 ]

Therefore, the mechanical energy E6 of a system of particles is always equal to the mechanical
energy E2 of the system of particles [ E6 = E2 ]

If the potential energy U1 of a system of particles is a homogeneous function of degree k
then the potential energy U3 and the potential energy U5 of the system of particles are
given by: [ U3 = ( k

2 ) U1 ] and [ U5 = (1+ k
2 ) U1 ]

If the potential energy U2 of a system of particles is a homogeneous function of degree k
then the potential energy U4 and the potential energy U6 of the system of particles are
given by: [ U4 = ( k

2 ) U2 ] and [ U6 = (1+ k
2 ) U2 ]

If the potential energy U1 of a system of particles is a homogeneous function of degree k
and if the kinetic energy K5 of the system of particles is equal to zero, then we obtain:
[ K1 = −K3 = U3 = ( k

2 )U1 = ( k
2+k ) E1 ]

If the potential energy U2 of a system of particles is a homogeneous function of degree k
and if the kinetic energy K6 of the system of particles is equal to zero, then we obtain:
[ K2 = −K4 = U4 = ( k

2 )U2 = ( k
2+k ) E2 ]

If the potential energy U1 of a system of particles is a homogeneous function of degree k
and if the average kinetic energy 〈K5〉 of the system of particles is equal to zero, then we
obtain: [ 〈K1〉 = −〈K3〉 = 〈U3〉 = ( k

2 ) 〈U1〉 = ( k
2+k ) 〈E1〉 ]

If the potential energy U2 of a system of particles is a homogeneous function of degree k
and if the average kinetic energy 〈K6〉 of the system of particles is equal to zero, then we
obtain: [ 〈K2〉 = −〈K4〉 = 〈U4〉 = ( k

2 ) 〈U2〉 = ( k
2+k ) 〈E2〉 ]
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The average kinetic energy 〈K5〉 and the average kinetic energy 〈K6〉 of a system of particles
with bounded motion ( in 〈K5〉 relative to ~R and in 〈K6〉 relative to ~Rcm ) are always zero.

The kinetic energy K5 and the kinetic energy K6 of a system of N particles can also
be expressed as follows : [ K5 =

∑N

i
1/2 mi ( ṙi ṙi + r̈i ri ) ] where ri

.= |~ri − ~R | and
[ K6 =

∑N

j>i
1/2 mi mj M−1( ṙij ṙij + r̈ij rij ) ] where rij

.= | ~ri − ~rj |

The kinetic energy K5 and the kinetic energy K6 of a system of N particles can also
be expressed as follows : [ K5 =

∑N

i
1/2 mi ( τ̈i ) ] where τi

.= 1/2 (~ri − ~R) · (~ri − ~R) and
[ K6 =

∑N

j>i
1/2 mi mj M−1( τ̈ij ) ] where τij

.= 1/2 (~ri − ~rj) · (~ri − ~rj)

The kinetic energy K6 is the only kinetic energy that can be expressed without the necessity
of introducing any magnitude that is related to the Universe [ such as: r, v, a, ~ω, ~R, etc. ]

In an isolated system of particles, the potential energy U2 is equal to the potential energy
U1 if the internal non-kinetic forces obey Newton’s third law in its weak form [ U2 = U1 ]

In an isolated system of particles, the potential energy U4 is equal to the potential energy
U3 if the internal non-kinetic forces obey Newton’s third law in its weak form [ U4 = U3 ]

In an isolated system of particles, the potential energy U6 is equal to the potential energy
U5 if the internal non-kinetic forces obey Newton’s third law in its weak form [ U6 = U5 ]

A reference frame S is non-rotating if the angular velocity ~ω of the Universe relative to S is
equal to zero, and the reference frame S is also inertial if the acceleration ~A of the center of
mass of the Universe relative to S is equal to zero.

If the origin of a non-rotating reference frame S [ ~ω = 0 ] always coincides with the center of
mass of the Universe [ ~R = ~V = ~A = 0 ] then relative to S: [ ri = ~ri, vi = ~vi and ai = ~ai ]
Therefore, it is easy to see that always: [vi = d(ri )/dt and ai = d2(ri )/dt2 ]

If kinetic forces are excluded, then this paper does not contradict Newton’s first and second
laws since they are valid in all inertial reference frames. The equation [ Fi = mi ai ] is a
simple reformulation of Newton’s second law.

In this paper, the equation [ Fi = mi ai ] would be false in all reference frames ( inertial
or non-inertial ) if a new non-kinetic force were always disobeyed Newton’s third law in its
strong form or in its weak form.
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Appendix I

The Universe

The Universe is a system that contains all particles, that is always free of external forces,
and that all internal non-kinetic forces always obey Newton’s third law in its weak form and
in its strong form.

The position ~R, the velocity ~V and the acceleration ~A of the center of mass of the Universe
relative to a reference frame S (and the angular velocity ~ω and the angular acceleration ~α
of the Universe relative to the reference frame S) are given by:

M .=
∑All

i mi

~R .= M−1
∑All

i mi ~ri

~V .= M−1
∑All

i mi ~vi

~A .= M−1
∑All

i mi ~ai

~ω
.= I−1

↔
· ~L

~α
.= d(~ω)/dt

I
↔ .=

∑All

i mi [ |~ri − ~R |2 1
↔
− (~ri − ~R)⊗ (~ri − ~R) ]

~L .=
∑All

i mi (~ri − ~R)× (~vi − ~V )

where M is the mass of the Universe, I
↔

is the inertia tensor of the Universe (relative to ~R)
and ~L is the angular momentum of the Universe relative to the reference frame S.

The Transformations

(~ri − ~R) .= ri = ri
′

(~ri
′ − ~R′) .= ri

′ = ri

(~vi − ~V )− ~ω × (~ri − ~R) .= vi = vi
′

(~vi
′ − ~V ′)− ~ω ′ × (~ri

′ − ~R′) .= vi
′ = vi

(~ai − ~A)− 2 ~ω × (~vi − ~V ) + ~ω × [ ~ω × (~ri − ~R) ]− ~α× (~ri − ~R) .= ai = ai
′

(~ai
′ − ~A′)− 2 ~ω ′ × (~vi

′ − ~V ′) + ~ω ′ × [ ~ω ′ × (~ri
′ − ~R′) ]− ~α′ × (~ri

′ − ~R′) .= ai
′ = ai
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Appendix II

The Relations

In a system of particles, these relations can be obtained ( The magnitudes Rcm, Vcm, Acm,
~Rcm, ~Vcm and ~Acm can be replaced by the magnitudes R, V, A, ~R, ~V and ~A, or by the
magnitudes rj , vj , aj , ~rj , ~vj and ~aj , respectively. On the other hand, R = V = A = 0 )

ri
.= (~ri − ~R)

Rcm
.= (~Rcm − ~R)

−→ (ri −Rcm) = (~ri − ~Rcm)

vi
.= (~vi − ~V )− ~ω × (~ri − ~R)

Vcm
.= (~Vcm − ~V )− ~ω × (~Rcm − ~R)

−→ (vi −Vcm) = (~vi − ~Vcm)− ~ω × (~ri − ~Rcm)

(vi −Vcm) · (vi −Vcm) =
[
(~vi − ~Vcm)− ~ω× (~ri − ~Rcm)

]
·
[
(~vi − ~Vcm)− ~ω× (~ri − ~Rcm)

]
=

(~vi−~Vcm) · (~vi−~Vcm)−2 (~vi−~Vcm) ·
[
~ω× (~ri− ~Rcm)

]
+

[
~ω× (~ri− ~Rcm)

]
·
[
~ω× (~ri− ~Rcm)

]
=

(~vi−~Vcm) · (~vi−~Vcm)+2 (~ri− ~Rcm) ·
[
~ω× (~vi−~Vcm)

]
+

[
~ω× (~ri− ~Rcm)

]
·
[
~ω× (~ri− ~Rcm)

]
=

(~vi−~Vcm) ·(~vi−~Vcm)+
[
2 ~ω×(~vi−~Vcm)

]
·(~ri− ~Rcm)+

[
~ω×(~ri− ~Rcm)

]
·
[
~ω×(~ri− ~Rcm)

]
=

(~vi − ~Vcm)2 +
[
2 ~ω × (~vi − ~Vcm)

]
· (~ri − ~Rcm) +

[
~ω × (~ri − ~Rcm)

]2
(ai − Acm) · (ri − Rcm) =

{
(~ai − ~Acm) − 2 ~ω × (~vi − ~Vcm) + ~ω × [ ~ω × (~ri − ~Rcm) ] −

~α× (~ri − ~Rcm)
}
· (~ri − ~Rcm) = (~ai − ~Acm) · (~ri − ~Rcm)−

[
2 ~ω × (~vi − ~Vcm)

]
· (~ri − ~Rcm) +

{
~ω× [ ~ω×(~ri− ~Rcm) ]

}
·(~ri− ~Rcm)−

[
~α×(~ri− ~Rcm)

]
·(~ri− ~Rcm) = (~ai−~Acm) ·(~ri− ~Rcm) −

[
2 ~ω × (~vi − ~Vcm)

]
· (~ri − ~Rcm) +

{ [
~ω · (~ri − ~Rcm)

]
~ω − ( ~ω · ~ω ) (~ri − ~Rcm)

}
· (~ri − ~Rcm) =

(~ai− ~Acm) · (~ri− ~Rcm)−
[
2 ~ω× (~vi−~Vcm)

]
· (~ri− ~Rcm)+

[
~ω · (~ri− ~Rcm)

]2− ( ~ω )2 (~ri− ~Rcm)2

−→ (vi −Vcm)2 + (ai −Acm) · (ri −Rcm) = (~vi − ~Vcm)2 + (~ai − ~Acm) · (~ri − ~Rcm)
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Appendix III

The Magnitudes

The magnitudes L2, W2, K2, U2, W4, K4, U4, W6, K6 and U6 of a system of N particles can
also be expressed as follows:

L2 =
∑N

j>i mi mj M−1
[
(ri − rj)× (vi − vj)

]
W2 =

∑N

j>i mi mj M−1
[ ∫ 2

1
(Fi/mi − Fj/mj) · d(ri − rj)

]
∆ K2 =

∑N

j>i ∆ 1/2 mi mj M−1 (vi − vj)2 = W2

∆ U2 = −
∑N

j>i mi mj M−1
[ ∫ 2

1
(Fi/mi − Fj/mj) · d(ri − rj)

]
W4 =

∑N

j>i ∆ 1/2 mi mj M−1
[
(Fi/mi − Fj/mj) · (ri − rj)

]
∆ K4 =

∑N

j>i ∆ 1/2 mi mj M−1
[
(ai − aj) · (ri − rj)

]
= W4

∆ U4 = −
∑N

j>i ∆ 1/2 mi mj M−1
[
(Fi/mi − Fj/mj) · (ri − rj)

]
W6 =

∑N

j>i mi mj M−1
[ ∫ 2

1
(Fi/mi−Fj/mj) ·d(~ri−~rj)+∆ 1/2 (Fi/mi−Fj/mj) · (~ri−~rj)

]
∆ K6 =

∑N

j>i ∆ 1/2 mi mj M−1
[
(~vi − ~vj)2 + (~ai − ~aj) · (~ri − ~rj)

]
= W6

∆ U6 = −
∑N

j>i mi mj M−1
[ ∫ 2

1
(Fi/mi−Fj/mj)·d(~ri−~rj)+∆ 1/2 (Fi/mi−Fj/mj)·(~ri−~rj)

]
The magnitudes W(1 to 6) and U(1 to 6) of an isolated system of N particles, whose internal
non-kinetic forces obey Newton’s third law in its weak form, can be reduced to:

W1 = W2 =
∑N

i

∫ 2

1
Fi · d~ri

∆ U1 = ∆ U2 = −
∑N

i

∫ 2

1
Fi · d~ri

W3 = W4 =
∑N

i ∆ 1/2 Fi · ~ri

∆ U3 = ∆ U4 = −
∑N

i ∆ 1/2 Fi · ~ri

W5 = W6 =
∑N

i

[ ∫ 2

1
Fi · d~ri + ∆ 1/2 Fi · ~ri

]
∆ U5 = ∆ U6 = −

∑N

i

[ ∫ 2

1
Fi · d~ri + ∆ 1/2 Fi · ~ri

]
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