
A derivation of the Etherington’s distance-duality
equation

Yuri Heymann1

Abstract The Etherington’s distance-duality equa-
tion is the relationship between the luminosity distance
of standard candles and the angular-diameter distance.
This relationship has been validated from astronomi-
cal observations based on the X-ray surface brightness
and the Sunyaev-Zel’dovich effect of galaxy clusters.
In the present study, we propose a derivation of the
Etherington’s reciprocity relation in the dichotomous
cosmology.
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1 Introduction

The Etherington’s distance-duality equation was intro-
duced in 1933 (Etherington 1933). Etherington men-
tioned this equation was proposed by Tolman as a way
to test a cosmological model. Ellis proposed a proof of
this equation in the context of Riemannian geometry
(Ellis 1971, 2007). A quote from Ellis (Ellis 2007):“The
core of the reciprocity theorem is the fact that many
geometric properties are invariant when the roles of
the source and observer in astronomical observations
are transposed”. This statement is fundamental in the
reciprocity theorem as shown here in the derivation
of the theorem in the dichotomous cosmology. While
the proof of the Etherington’s distance duality in the
context of Riemannian geometry is tedious, the deriva-
tion in the dichotomous cosmology is straightforward.
As a reminder, the dichotomous cosmology (Heymann
2014a,b) consists of a static matter universe with an ex-
panding luminous world. One needs to imagine a cube
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of light expanding, in a space where galaxies do not
recede from each other.

Fortunately, the Etherington’s distance-duality equ-
ation, which is a crucial relationship in cosmology, can
be verified from astronomical observations. While the
luminosity distance is measured from supernova obser-
vations, the angular-diameter distance is determined
from the X-ray surface brightness and the Sunyaev-
Zel’dovich effect (Sunyaev & Zel’dovich 1972) of galaxy
clusters (Silk & White 1978). In (Bernardis et al. 2006),
the authors found that the ratio between the two dis-
tances DL for the luminosity distance and DA for the
angular-diameter distance, defined as η = DL

DA(1+z)2 is

bound to be η = 1.01 ± 0.07 at 68% c.l. Similar results
were obtained in (Uzan et al. 2004; Nair et al. 2012),
where no significant violation of the distance-duality re-
lationship was found. In (Gonçalves et al. 2012), the
authors tested the cosmic distance duality for different
galaxy cluster samples. The study (Lima et al. 2011)
is focused on analytical expressions for the deformation
of the distance duality in terms of the cosmic absorp-
tion parameter. The reciprocity theorem is considered
to be true when photon number is conserved, gravity
is described by a metric theory with photons traveling
on unique null geodesics (Bassett & Kunz 2004). Any
violation of the distance duality would be attributed to
exotic physics.

Following the introduction in section 1, the distance
measurements are derived in section 2. To derive the
Etherington’s reciprocity theorem in the dichotomous
cosmology, we first need the distance measurements,
which may be derived from the tired-light paradigm
(section 2.1) or from expanding metrics (section 2.2).
Both derivations lead to the same equations. In section
2.3, we derive the Etherington’s distance duality using
our distance measurements. In section 3, we provide a
brief explanation of the method used to estimate the
angular-diameter distance from X-ray surface bright-
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ness measurements and the Sunyaev-Zel’dovich effect.
In section 4, we present the line of thought of the di-
chotomous cosmology. Finally, we offer our conclusion
in section 5.

2 Derivation of the distance measurements

2.1 Derivation from tired-light paradigm

When a photon loses energy during its travel in space,
the wavelength of light is stretched, and because the
number of cycles of the light wave is conserved, an ex-
pansion of the luminous world is produced. As a con-
sequence of this stretching of light, the velocity of the
light wavefront increases during its travel (Fig. 1). Ac-
cording to special relativity, the speed of light is invari-
able. Hence, in order to maintain the light wavefront
at the speed of light, the model introduces a time con-
traction between the emission point and the observer.
The study (Heymann 2014a) mentions a time dilation;
in order to rectify this, the model is based on a time
contraction in the arrow of time.

Fig. 1 Where (a) is the light wavefront without stretching,
and (b) with stretching. We can see that in (b) the light
wavefront is going faster than in (a).

Considering that photons lose energy as light gets
stretched, the following equation is obtained:

1 + z =
E(z)

E0
, (1)

where E(z) is the photon energy when emitted, E0 is
the photon energy at time of observation, and z is the
redshift.

A simple decay law of the photon energy is consid-
ered:

Ė

E
= −H0 , (2)

where H0 is the Hubble constant.
Therefore

E(t) = E0 exp(−H0t) , (3)

and

E(T ) = E0 exp(H0T ) , (4)

where t is the time which is equal to zero at the time
of observation, and T the light travel time of the source
from the observer.

A set of two transformations is considered: first a
time-variable light wavefront to accommodate the ex-
pansion of the luminous world, and second a time con-
traction to maintain the light wavefront at the speed of
light.

2.1.1 Light wavefront with respect to the source

The light wavefront velocity before time contraction is
expressed as follows:

v(t) = c
Eemit

E(t)
. (5)

where Eemit is the photon energy when emitted, and
E(t) the photon energy at time t.

To maintain the light wavefront at the speed of light,
the following time contraction is applied:

δt′

δt
=
Eemit

E(t)
. (6)

Hence, the light travel time with respect to the
source is:

T ′ =

∫ 0

−T

δt′

δt
dt =

∫ 0

−T

Eemit

E(t)
dt . (7)

Introducing (3) in the previous equation and inte-
grating, we get:

T ′ =
Eemit

E0

1

H0

(
1 − E0

Eemit

)
. (8)

Introducing (1) in the previous equation, we get:

T ′ =
z

H0
, (9)

which is the light travel time measurement for the
luminosity distance.
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2.1.2 Light wavefront with respect to the observer

The light wavefront velocity before time contraction is

expressed as follows:

v(t) = c
E0

E(t)
. (10)

To maintain the light wavefront at the speed of light,

the following time contraction is applied:

δt0
δt

=
E0

E(t)
. (11)

Hence, the light travel time with respect to the ob-

server is:

T0 =

∫ 0

−T

δt0
δt
dt =

∫ 0

−T

E0

E(t)
dt . (12)

Introducing (3) in the previous equation and inte-

grating, we get:

T0 =
1

H0
(1 − exp(−H0T )) . (13)

Introducing (4) in the previous equation, we get:

T0 =
1

H0

(
1 − E0

Eemit

)
. (14)

Introducing (1) in the previous equation, we get:

T0 =
1

H0

z

(1 + z)
, (15)

which is the light travel time measurement for the

actual distance.

2.2 Derivation from expanding metrics

In the dichotomous cosmology, the luminous world is

expanding; therefore, we can derive the distance mea-

surements using expanding metrics.

2.2.1 Luminosity distance

The luminosity distance is the distance measured from

the luminosity of standard candles. Supernovae Ia are

considered stanard candles, meaning they all have the

same absolute brightness when they explode. From

their apparent brightness, we can deduce the luminosity

distance, because the brightness diminishes proportion-

ally to the inverse of the distance squared. The formula

used to measure the luminosity distance is the distance

modulus equation.

For considering a photon travelling away from the

center of a supernova, the luminosity distance is calcu-

lated as follows:

drL
dt

= c+H0rL , (16)

where rL is the luminosity distance, H0 the Hubble

constant, and c the speed of light.

By integrating this equation between 0 and T , we

get:

rL =
c

H0
(exp(H0T ) − 1) . (17)

Because da
dt = H0a, we get dt = da

H0a
, where a is the

scale factor. In addition, the relationship between the

scale factor and the redshift is given by the cosmological

redshift equation (1 + z) = 1
a , where the scale factor is

equal to one at present time.

Hence, the light travel time versus redshift is as fol-

lows:

T =

∫ 1

1/(1+z)

da

H0a
=

1

H0
ln(1 + z) . (18)

Equations (17) and (18) yield:

rL =
c

H0
z . (19)

which is identical to (9) with rL = cT ′

2.2.2 Euclidean distance

A measurement of the distance is obtained by calcu-

lating the corresponding distance if there were no ex-

pansion, which we call the Euclidean distance. Let us

introduce y to this distance measurement. By consid-

ering a photon moving towards the observer, we get:

dy

dt
= −c+H0y . (20)

By setting time zero at a reference Tb in the past,

we get: t = Tb − T ; therefore, dt = −dT (where T is

the light travel time when looking at a source into the

past). Hence:
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dy

dT
= c−H0y , (21)

with boundary condition y(T = 0) = 0.

Integrating this equation between 0 and T , we get:

y =
c

H0
(1 − exp(−H0T )) . (22)

By substitution of (18) into (22), we get:

y =
c

H0

z

(1 + z)
, (23)

which is identical to (15) with y = cT0.

2.3 Etherington’s distance duality

From (19) and (23), we get:

rL = (1 + z)y . (24)

The angular-diameter distance dA of an object is de-

fined in terms of x, the object’s actual size, and θ, the

angular size of the object as viewed from earth. The

equation is as follows:

dA =
x

θ
. (25)

Because of the expansion of the luminous world, the

apparent size of celestial objects is stretched by a factor

(1+z), and the apparent angular size is increased by

the same factor. Hence, the relationship between the

actual distance y and the angular-diameter distance is

as follows:

y = (1 + z)dA . (26)

Equations (24) and (26) yield:

rL = (1 + z)2dA , (27)

which is the Etherington’s distance-duality relation-

ship. We have just derived the Etherington’s reci-

procity theorem.

3 Method

It is worthwhile to provide a brief explanation of the
method used to validate the Etherington’s distance-
duality equation based on astronomical observations.
The luminosity distance is measured from supernova
observations using the distance modulus and is related
to the redshift. The challenge is to measure the angular-
diameter distance because we dont know the actual size
of astronomical objects. This has been done for galaxy
clusters using X-ray surface brightness measurements
and the Sunyaev-Zel’dovich effect. Galaxy clusters con-
tain large quantities of hot and ionized gas at temper-
atures between 10 to 100 megakelvins. This hot gas
radiates in the X-ray domain through bremsstrahlung,
or radiation produced by the deceleration of a charged
particle when deflected by another charged particle.
This intra-cluster gas distorts the cosmic microwave
background radiation (CMBR) through the so-called
Sunyaev-Zel’dovich effect: inverse Compton interaction
of photons which receive an energy boost when collid-
ing with high energy free electrons. This decreases the
CMBR brightness at low frequencies but increases it at
high frequencies. The drop in temperature or bright-
ness of the CMBR spectrum in the Rayleigh-Jeans re-
gion due to the Sunyaev-Zeldovich effect is a function
of electron temperature and density. The X-ray sur-
face brightness is a function of the volume of the cluster
and electron temperature and density. Using both mea-
sures, we can therefore eliminate the electron density
term and estimate the size of the cluster. Finally, we
compute the angular-diameter distance using the size
of the cluster and angular size as shown in (25). The
details of the method and quantitative aspects are de-
scribed in (Birkinshaw et al. 1991; Inagaki et al. 1995).

4 Interpretation

The dichotomous cosmology is in line with the school
of thought of the Greek philosopher Democritus. Born
around 460 B.C., Democritus was a materialist philoso-
pher disciple of Leucippus. Both held that everything
is composed of atoms, the smallest particle of a sub-
stance, which interact with each other and lie in empty
space. In the dichotomous cosmology there is no need
for dark energy or other exotic substances, and the uni-
verse consists of atoms and vacuum.

The dichotomous cosmology is in contradiction with
the big bang theory. In the big bang theory the uni-
verse is expanding, whereas in the dichotomous cosmol-
ogy the universe is static. The three pillars of the big
bang are respectively, the expansion of the universe ac-
cording to Hubbles law, the discovery of the microwave
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background radiation, and the relative abundances of

light elements. The dichotomous cosmology challenges

the first pillar of the big bang. A consequence of our

theory is that the age of the universe is indefinite. In

the big bang theory, the age of the universe, is defined

by the moment when all the universe was confined in

one point - the big bang singularity, which is estimated

to have occurred around 13.7 billion years ago. In the

dichotomous cosmology, we cannot define a beginning

of time. Hubble time, which is the inverse of the Hub-

ble constant, becomes the maximum distance that light

can travel in the universe.

5 Conclusion

The Etherington’s distance-duality equation, which re-

lates the luminosity distance of standard candles to the

angular-diameter distance, is a crucial relationship in

cosmology. Although the Etherington’s reciprocity the-

orem is considered to be peculiar to cosmological mod-

els based on Riemannian geometry, in the present study

we propose a new derivation of this relationship in the

dichotomous cosmology. This derivation is straightfor-

ward and follows naturally from the dichotomous cos-

mology. Today, the Etherington’s reciprocity theorem

is considered established and has been verified using as-

tronomical observations based on X-ray surface bright-

ness and the Sunyaev-Zel’dovich effect of galaxy clus-

ters.
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