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ABSTRACT 
In its original form the Dirac equation for the free electron and the free positron is 
formulated by using complex number based spinors and matrices. That equation can be split 
into two equations, one for the electron and one for the positron. These equations appear to 
apply different parameter spaces. The equation for the electron and the equation for the 
positron differ in the symmetry flavor of their parameter spaces. This results in special 
considerations for the corresponding quaternionic second order partial differential equation. 
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1 The Dirac equation in original format 
In its original form the Dirac equation is a complex equation that uses spinors, matrices and 
partial derivatives.  

Instead of the usual {
𝜕𝑓

𝜕𝑡
 , 𝒊

𝜕𝑓

𝜕𝑥
, 𝒋

𝜕𝑓

𝜕𝑦
, 𝒌

𝜕𝑓

𝜕𝑧
} we want to use operators 𝛻 = {∇0, 𝛁} 

The subscript 0 indicates the scalar part. Bold face indicates the vector part. 
The operator 𝛻 relates to the applied parameter space. This means that the parameter space 
is also configured of combinations 𝑥 = {𝑥0, 𝒙 } of a scalar 𝑥0 and a vector 𝒙. Also the 
functions 𝑓 = {𝑓0, 𝒇 } can be split in scalar functions 𝑓0 and vector functions 𝒇.  
The local parameter 𝑡 = 𝑥0 represents the scalar part of the applied parameter space. 
 
Dirac was searching for a split of the Klein-Gordon equation into two first order differential 
equations.  
 

𝜕2𝑓

𝜕𝑡2
−

𝜕2𝑓

𝜕𝑥2
−

𝜕2𝑓

𝜕𝑦2
−

𝜕2𝑓

𝜕𝑧2
= −𝑚2𝑓 

 
(∇0∇0 − 〈𝛁, 𝛁〉)𝑓 = 𝔒𝑓 = −𝑚2𝑓 

 
Here 𝔒 = ∇0∇0 − 〈𝛁, 𝛁〉 is the d’Alembert operator. 
 
Dirac used a combination of matrices and spinors in order to reach this result. He applied the 
Pauli matrices in order to simulate the behavior of vector functions under differentiation. 
The unity matrix 𝐼 and the Pauli matrices  𝜎1, 𝜎2, 𝜎3 are given by [3]: 
 

𝐼 = [
1  0
0 1

] , 𝜎1 = [
0  1
1 0

] , 𝜎2 = [ 
0 −𝑖
𝑖 0

] , 𝜎3 = [
1 0
0 −1

] 

 
For one of the potential orderings of the quaternionic number system, the Pauli matrices 
together with the unity matrix 𝐼 relate to the quaternionic base vectors 1, 𝒊, 𝒋 and 𝒌 
 

1 ⟼ 𝐼, 𝒊 ⟼  𝑖0 𝜎1, 𝒋 ⟼  𝑖0 𝜎2, 𝒌 ⟼  𝑖0 𝜎3 
 

𝜎1𝜎2 − 𝜎2𝜎1 = 2 𝑖 𝜎3;  𝜎2𝜎3 − 𝜎3𝜎2 = 2 𝑖 𝜎1;  𝜎3𝜎1 − 𝜎1𝜎3 = 2 𝑖 𝜎2 
 

𝜎1𝜎1 = 𝜎2𝜎2 = 𝜎3𝜎3 = 𝐼 
 
The different ordering possibilities of the quaternionic number system correspond to 
different symmetry flavors. Half of these possibilities offer a right handed external vector 
product. The other half offer a left handed external vector product. 
 
We will regularly use: 
 

〈𝑖0𝝈, 𝜵〉 = 𝜵 ; 𝑖0 = √−1 
 
With 
 

𝑝𝜇 = −𝑖0𝛻𝜇  

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 



 
follow 
 

𝑝𝜇𝜎𝜇 = −𝑖0𝑒𝜇𝛻
𝜇

 

 
〈𝝈, 𝒑〉 ↔ −𝑖0𝜵 

 

1.1 Dirac’s formulation 
The original Dirac equation uses 4x4 matrices 𝜶 and β. [1]: 
𝜶 and 𝛽 are matrices that implement the quaternion arithmetic behavior including the 
possible symmetry flavors of quaternionic number systems and continuums.  
 

𝛼1 = [
0 𝜎1

𝜎1 0
] ↔ −𝑖0 [

0 𝒊
𝒊 0

] 

 

𝛼2 = [
0 𝜎2

𝜎2 0
] ↔ −𝑖0 [

0 𝒋
𝒋 0

] 

 

𝛼3 = [
0 𝜎3

𝜎3 0
] ↔ −𝑖0 [

0 𝒌
𝒌 0

] 

 

𝛽 = [
1 0
0 −1

] 

 
𝛽𝛽 = 𝐼 

 
The interpretation of the Pauli matrices as representation of a special kind of angular 
momentum has led to the half integer eigenvalue of the corresponding spin operator. 
Dirac’s selection leads to 
 

(𝑝0 − 〈𝜶,𝒑〉 − 𝛽𝑚𝑐){𝜑} = 0 

 
{𝜑} is a four component spinor. 
Which splits into 
 

(𝑝0 − 〈𝝈, 𝒑〉 − 𝑚𝑐)𝜑𝐴 = 0 

 
and 
 

(𝑝0 − 〈𝝈, 𝒑〉 + 𝑚𝑐)𝜑𝐵 = 0 

 
𝜑𝐴 and 𝜑𝐵  are two component spinors. Thus the original Dirac equation splits into: 
 

(𝛻0 − 𝜵 − 𝑖0𝑚𝑐)𝜑𝐴 = 0 

 
(𝛻0 − 𝜵 + 𝑖0𝑚𝑐)𝜑𝐵 = 0 

 

(9) 

(10) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(12) 

(13) 



This split does not lead easily to a second order partial differential equation that looks like 
the Klein Gordon equation. 

1.2 Relativistic formulation 
Instead of Dirac’s original formulation, usually the relativistic formulation is used [2]. 
That formulation applies gamma matrices, instead of the alpha and beta matrices. This 
different choice influences the form of the equations that result for the two component 
spinors. 
 

𝛾1 = [
0 𝜎1

−𝜎1 0
] ↔ −𝑖0 [

0 𝒊
−𝒊 0

] 

 

𝛾2 = [
0 𝜎2

−𝜎2 0
] ↔ −𝑖0 [

0 𝒋
−𝒋 0

] 

 

𝛾3 = [
0 𝜎3

−𝜎3 0
] ↔ −𝑖0 [

0 𝒌
−𝒌 0

] 

 

𝛾0 = [
1 0
0 −1

] 

 
Thus 
 

𝛾𝜇 = 𝛾0𝛼𝜇;  𝜇 = 1,2,3; 𝛾0 = 𝛽 

 
 
Further 
 

𝛾5 = 𝑖0𝛾0𝛾1𝛾2𝛾3 
 

𝛾5 = [
0 1
1 0

] 

 
The matrix 𝛾5 anti-commutes with all other gamma matrices. 
Several different sets of gamma matrices are possible. The choice above leads to a “Dirac 
equation” of the form  
 

(𝑖0𝛾𝜇𝛻𝜇 − 𝑚𝑐)𝜑 = 0 

 
More extended: 
 

(𝛾0

𝜕

𝜕𝑡
+ 𝛾1

𝜕

𝜕𝑥
+ 𝛾2

𝜕

𝜕𝑦
+ 𝛾3

𝜕

𝜕𝑧
−

 𝑚

𝑖0ℏ
) {𝜓} = 0 

 

(𝛾0

𝜕

𝜕𝑡
+ 〈𝜸, 𝜵〉 −

 𝑚

𝑖0ℏ
) {𝜓} = 0 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 



([
1 0
0 −1

]
𝜕

𝜕𝑡
+ [

0 〈𝝈, 𝜵〉

−〈𝝈, 𝜵〉 0
] −

 𝑚

𝑖0ℏ
[
1 0
0 1

]) [
𝜑𝐴

𝜑𝐵
] = 0 

 

([
1 0
0 −1

]
𝜕

𝜕𝑡
− 𝑖0 [

0 𝜵
−𝜵 0

] −
 𝑚

𝑖0ℏ
[
1 0
0 1

]) [
𝜑𝐴

𝜑𝐵
] = 0 

 

(𝑖0 [
1 0
0 −1

]
𝜕

𝜕𝑡
+ [

0 𝜵
−𝜵 0

] −
 𝑚

ℏ
[
1 0
0 1

]) [
𝜑𝐴

𝜑𝐵
] = 0 

 

𝑖0

𝜕

𝜕𝑡
𝜑𝐴 + 𝛁𝜑𝐵 −

 𝑚

𝑖0ℏ
𝜑𝐴 = 0 

 

−𝑖0

𝜕

𝜕𝑡
𝜑𝐵 − 𝛁𝜑𝐴 −

 𝑚

𝑖0ℏ
𝜑𝐵 = 0 

 
Also this split does not easily lead to a second order partial differential equation that looks 
like the Klein Gordon equation. 

1.3 A better choice 
Another interpretation of the Dirac approach replaces 𝛾0 with 𝛾5 [4]: 
 

(𝛾5

𝜕

𝜕𝑡
− 𝛾1

𝜕

𝜕𝑥
− 𝛾2

𝜕

𝜕𝑦
− 𝛾3

𝜕

𝜕𝑧
−

 𝑚

𝑖0ℏ
) {𝜓} = 0 

 

(𝛾5

𝜕

𝜕𝑡
− 〈𝜸, 𝜵〉 −

 𝑚

𝑖0ℏ
) {𝜓} = 0 

 

([
0 1
1 0

]
𝜕

𝜕𝑡
− [

0 〈𝝈, 𝜵〉

−〈𝝈, 𝜵〉 0
] −

 𝑚

𝑖0ℏ
[
1 0
0 1

]) [
𝜓𝐴

𝜓𝐵
] = 0 

 
This invites splitting of the four component spinor equation into two equations for two 
component spinors: 
 

𝑖0∇0𝜓𝐴 + 𝑖0〈𝝈, 𝜵〉𝜓𝐴 =
 𝑚

ℏ
 𝜓𝐵 

 

𝑖0∇0𝜑𝐵 − 𝑖0〈𝝈, 𝜵〉𝜓𝐵 =
 𝑚

ℏ
 𝜓𝐴 

 

(𝑖0𝛻0 + 𝜵)𝜓𝐴 =
 𝑚

ℏ
 𝜓𝐵 

 

(𝑖0𝛻0 − 𝜵)𝜓𝐵 =
 𝑚

ℏ
 𝜓𝐴 

 
This looks far more promising. We can insert the right part of the first equation into the left 
part of the second equation. 
 

(𝑖0𝛻0 − 𝜵)(𝑖0𝛻0 + 𝜵)𝜓𝐴 = (−𝛻0𝛻0 − 𝜵𝜵)𝜓𝐴 = (〈𝜵, 𝜵〉−𝛻0𝛻0)𝜓𝐴 

(11) 

(12) 

(13) 

(14) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 



 

=
 𝑚

ℏ
(𝑖0𝛻0 − 𝜵) 𝜓𝐵 =

 𝑚2

ℏ2
 𝜓𝐴 

 

(〈𝜵, 𝜵〉−𝛻0𝛻0)𝜓𝐴 =
 𝑚2

ℏ2
 𝜓𝐴 

 
(𝑖0𝛻0 + 𝜵)(𝑖0𝛻0 − 𝜵)𝜓𝐵 = (−𝛻0𝛻0 − 𝜵𝜵)𝜓𝐵 = (〈𝜵, 𝜵〉−𝛻0𝛻0)𝜓𝐵 

=
 𝑚

ℏ
(𝑖0𝛻0 + 𝜵) 𝜓𝐴 =

 𝑚2

ℏ2
 𝜓𝐵  

 

(〈𝜵, 𝜵〉−𝛻0𝛻0)𝜓𝐵 =
 𝑚2

ℏ2
 𝜓𝐵 

 
This is what Dirac wanted to achieve. The two first order differential equations couple into a 
second order differential equation that is equivalent to a Klein Gordon equation. The 
homogeneous version of this second order partial differential equation is a wave equation 
and offers solutions that are waves. 
The nabla operator acts differently onto the two component spinors  𝜓𝐴 and  𝜓𝐵.  

2 Wave equations 
A wave equation is a second order partial differential equation that has waves as part of its 
solutions. For example, the following equation is a wave equation: 
 

𝔒𝑓 = (𝛻0𝛻0 − 〈𝜵, 𝜵〉) 𝑓 = 𝑔 
 
The operator 𝔒 ≡ 𝛻0𝛻0 − 〈𝜵, 𝜵〉  is the d’Alembert operator. 
A similar equation exists for spherical coordinates. 

3 The quaternionic nabla and the Dirac nabla 
The modified Pauli matrices together with a 2×2 identity matrix implement the equivalent of 
a quaternionic number system with a selected symmetry flavor.  
 

𝐼 = [
1  0
0 1

] ; 𝑖0𝜎1 = [
0  𝑖0

𝑖0 0
] ; 𝑖0𝜎2 = [ 

0 1
−1 0

] ; 𝑖0𝜎3 = [
𝑖0 0
0 −𝑖0

] 

 
The modified Pauli matrices together with the 𝐼0 matrix implements another structure, 
which is not a version of a quaternionic number system. 
 

𝐼0 = [
𝑖0 0
0 𝑖0

] ;   𝑖0𝜎1 = [
0  𝑖0

𝑖0 0
] ;  𝑖0𝜎2 = [ 

0 1
−1 0

] ;  𝑖0𝜎3 = [
𝑖0 0
0 −𝑖0

] 

 
Both the quaternionic nabla and the Dirac nabla implement a way to let these differential 
operators act as multipliers. 
The quaternionic nabla is defined as 
 

(9) 

(10) 

(11) 

(1) 

(1) 

(2) 



𝛻 = 𝛻0 + 𝜵 = 𝑒𝜇𝛻𝜇 = 𝛻0 + 𝑖0〈𝝈, 𝜵〉 

 
𝛻∗ = 𝛻0 − 𝜵  

 
For scalar functions and for vector functions hold: 
 

𝛻∗𝛻 = 𝛻𝛻∗ = 𝛻0𝛻0 + 〈𝜵, 𝜵〉 
 
The Dirac nabla is defined as 
 

𝒟 = 𝑖0𝛻0 + 𝜵 = 𝑖0𝛻0 + 𝑖0〈𝝈, 𝜵〉 
 

𝒟∗ = 𝑖0𝛻0 − 𝜵 
 

𝒟∗𝒟 = 𝒟 𝒟∗ =  −𝛻0𝛻0 + 〈𝜵, 𝜵〉 
 

3.1.1 Prove 

We use  
 

𝛻0𝜵𝑓0 = 𝜵𝛻0𝑓0 
 

𝛻0𝜵𝒇 = 𝜵𝛻0𝒇 = −𝛻0〈𝜵, 𝒇〉 + 𝛻0𝜵 × 𝒇 
 

𝜵𝜵𝑓0 = −〈𝜵, 𝜵〉𝑓0 + 𝜵 × 𝜵𝑓0 = −〈𝜵, 𝜵〉𝑓0 
 

𝜵(𝜵𝒇) = −𝜵〈𝜵, 𝒇〉 + 𝜵 × 𝜵 × 𝒇 = −〈𝜵, 𝜵〉𝒇 = (𝜵𝜵)𝒇 
 

𝜵 × 𝜵 × 𝒇 = 𝜵〈𝜵, 𝒇〉 − 〈𝜵, 𝜵〉𝒇 
 

〈𝜵, 𝜵 × 𝒇〉 = 0 
 

𝜵 × 𝜵 𝑓0 = 𝟎 
 
This results in 
 

(𝛼𝛻0 + 𝜵)𝑓0 = 𝛼𝛻0𝑓0 + 𝜵𝑓0 
 

(𝛼𝛻0 − 𝜵)(𝛼𝛻0 + 𝜵)𝑓0 
 

= 𝛼2𝛻0𝛻0 + 𝛼𝛻0𝜵𝑓0 − 𝛼𝜵𝛻0𝑓0 + 〈𝜵, 𝜵〉𝑓0 − 𝜵 × 𝜵𝑓0 
 

= 𝛼2𝛻0𝛻0 + 〈𝜵, 𝜵〉𝑓0 
 

(𝛼𝛻0 + 𝜵)𝒇 = 𝛼𝛻0𝒇 − 〈𝜵, 𝒇〉 + 𝜵 × 𝒇 
 

(𝛼𝛻0 − 𝛼𝛻0𝒇 − 〈𝜵, 𝒇〉 + 𝜵 × 𝒇)(𝛼𝛻0 + 𝜵)𝒇 
 

(𝛼𝛻0 − 𝜵)(𝛼𝛻0 + 𝜵)𝑓0 

(3) 

(4) 

(5) 

(6) 

7) 

(8) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 



 
= 𝛼2𝛻0𝛻0𝒇 − 𝛼𝛻0〈𝜵, 𝒇〉 + 𝛼𝛻0𝜵 × 𝒇 + 𝛼𝛻0〈𝛁, 𝒇〉 

 
−𝛼𝛻0𝛁 × 𝒇 + 𝛁〈𝜵, 𝒇〉 + 〈𝛁, 𝜵 × 𝒇〉 − 𝛁 × 𝜵 × 𝒇 

 
= 𝛼2𝛻0𝛻0𝒇 + 〈𝜵, 𝜵〉𝒇 

 

3.1.2 Discussion 

For 𝛼 = 1 the equations  
 

(𝛻∗𝛻 𝑓0 = 𝛻𝛻∗ 𝑓0 = 𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝑓0 
 

(𝛻∗𝛻 𝒇 = 𝛻𝛻∗ 𝒇 = 𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝒇 
 
work for both parts of a quaternionic function 𝑓 = 𝑓0 + 𝒇. 
 
For 𝛼 = 𝑖0 the equations  
 

(𝒟∗𝒟 𝑓0 = 𝒟𝒟∗ 𝑓0 = −𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝑓0 
 

(𝒟∗𝒟 𝒇 = 𝒟𝒟∗𝒇 = −𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝒇 
 
work separately for scalar function 𝑓0.and vector function 𝒇. 
 
The nabla operators reflects the structure of the parameter space of the functions on which 
they work. Thus the quaternionic nabla operator reflects a quaternionic number system. The 
Dirac nabla operator reflects the structure of the parameters of the two component spinors 
that figure in the modified Dirac equation. 
Between the two component spinors 𝜓𝐴 and 𝜓𝐵, the scalar part of the parameter space 
appears to change sign with respect to the vector part. 
Applied to a quaternionic function, the quaternionic nabla results again in a quaternionic 
function. 
 

𝜙 = 𝜙0 + 𝝓 = (𝛻0 + 𝜵)(𝑓0 + 𝒇) = 𝛻0𝑓0 − 〈𝜵, 𝒇〉 + 𝜵𝑓0 +  𝛻0𝒇 + 𝜵 × 𝒇 
 
Applied to a quaternionic function, the Dirac nabla results in a biquaternionic function. 
 

(𝑖0 𝛻0 + 𝜵)(𝑓0 + 𝒇) =  𝛻0𝑖0𝑓0 − 〈𝜵, 𝒇〉 + 𝜵𝑓0 + 𝑖0 𝛻0𝒇 + 𝜵 × 𝒇 
 
When applied to a quaternionic function, the 𝛻∗𝛻 operator results again in a quaternionic 
function. 
 

𝛻∗𝛻(𝑓0 + 𝒇) = (𝛻0𝛻0 + 〈𝜵, 𝜵〉)(𝑓0 + 𝒇) 
 
When applied to a quaternionic function, the d’Alembert operator 𝔒 = 𝒟∗𝒟 results again in 
a quaternionic function. 
 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 



𝒟∗𝒟(𝑓0 + 𝒇) = (𝛻0𝛻0 + 〈𝜵, 𝜵〉)(𝑓0 + 𝒇) 
 
Neither the Dirac nabla 𝒟 nor its conjugate 𝒟∗ delivers quaternionic functions from 
quaternionic functions. 
 
Thus the d’Alembert operator cannot be split into two operators that map quaternionic 
functions onto quaternionic functions. 
  

(8) 



4 Quaternionic format of Dirac equation 
The initial goal of Dirac was to split the Klein Gordon equation into two first order 
differential equations. He tried to achieve this via the combination of matrices and spinors. 
This leads to a result that does not lead to an actual second order differential equation, but 
instead it leads to two different first order differential equations for two different spinors 
that can be coupled into a second order partial differential equation that looks like a Klein 
Gordon equation. The homogeneous version of the Klein Gordon equation is a wave 
equation. 
 
The quaternionic differential calculus supports first order differential equations that in a 
natural way lead to a second order partial differential equation that differs significantly from 
a wave equation. 
The closest quaternionic equivalents of the first order Dirac equations for the electron and 
the positron are: 
 

∇𝑓 = (𝛻0 + 𝜵)(𝑓0 + 𝒇) = 𝑚𝑔 
 

∇∗𝑔 = (𝛻0 − 𝜵)(𝑔0 + 𝒈) = 𝑚𝑓 
 

𝛻∗𝛻𝑓 = (𝛻0 − 𝜵)(𝛻0 + 𝜵)(𝑓0 + 𝒇) = 𝑚2𝑓 
 

𝛻∗𝛻𝑓 = 𝛻∗𝛻𝑓 = (𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝑓 = 𝑚2𝑓 
 

𝛻𝛻∗𝑓 = 𝛻∗𝛻𝑔 = (𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝑔 = 𝑚2𝑔 
 
A similar equation exists for spherical coordinates. 
 
These second order equations are not wave equations. Their set of solutions does not 
include waves. 

5 Interpretation of the Dirac equation 
The original Dirac equation can be split into two equations. One of them describes the 
behavior of the electron. The other equation describes the behavior of the positron.  
The positron is the anti-particle of the electron. These particles feature the same rest mass, 
but other characteristics such as their electric charge differ in sign. The positron can be 
interpreted as an electron that moves back in time. Sometimes the positron is interpreted as 
a hole in a sea of electrons. These interpretations indicate that the functions that describe 
these particles feature different parameter spaces that differ in the sign of the scalar part. 

5.1 Particle fields 
In “On the Origins of Physical Fields” [5]the fields that characterize different types of 
particles can be related to parameter spaces that belong to different versions of 
quaternionic number system. These fields are coupled to an embedding field on which the 
particles and their private parameter spaces float. 
 
The reverse bra-ket method [6] shows how fields can on the one hand be coupled to 
eigenspaces and eigenvectors of operators which reside in quaternionic non-separable 

(1) 

(2) 

(3) 

(4) 

(5) 



Hilbert spaces and on the other hand can be coupled to pairs of parameter spaces and 
quaternionic functions. Quaternionic functions can be split into scalar functions and vector 
functions. In a quaternionic Hilbert space several different natural parameter spaces can 
coexist. Natural parameter spaces are formed by versions of the quaternionic number 
system. These versions differ in the way that these number systems are ordered. 
The original Dirac equations might represent this coupling between the particle field and the 
embedding field. 

6 Alternatives 

6.1 Minkowski parameter space 
In quaternionic differential calculus the local quaternionic distance can represent a scalar 
that is independent of the direction of progression. It corresponds to the notion of 
coordinate time 𝑡. This means that a small coordinate time step ∆𝑡 equals the sum of a small 
proper time step ∆𝜏 and a small pure space step ∆𝒙. In quaternionic format the step ∆𝜏 is a 
real number. The space step ∆𝒙 is an imaginary quaternionic number. The original Dirac 
equation does not pay attention to the difference between coordinate time and proper 
time, but the quaternionic presentation of these equations show that a progression 
independent scalar can be useful as the scalar part of the parameter space. This holds 
especially for solutions of the homogeneous wave equation. 
In this way coordinate time is a function of proper time 𝜏 and distance in pure space |∆𝒙|. 
 

|∆𝑡|2 = |∆𝜏|2 + |∆𝒙|2 
 
Together 𝑡 and 𝒙 deliver a spacetime model that has a Minkowski signature. 
 

|∆𝜏|2 = |∆𝑡|2 − |∆𝒙|2 

6.2 Other natural parameter spaces 
The Dirac equation in quaternionic format treats a coupling of parameter spaces that are 
each other’s quaternionic conjugate. This can also be applied when anisotropic conjugation 
is applied. This concerns conjugations in which only one or two dimensions get a reverse 
ordering. In that case the equations handle the dynamic behavior of anisotropic particles 
such as quarks. 

7 The coupling equation 
The Dirac equation is a more specific form of the coupling equation [7]. The coupling equation 
holds for quaternionic functions for which the nabla based differential can be normalized: 
 

𝜙 = ∇𝜒 = 𝑚 𝜑; ‖𝜒‖ = ‖𝜑‖ = 1  
 
By adapting 𝜑, the coupling factor 𝑚 can become a real positive number. 
 
The quaternionic second order partial differential equation corresponds to two coupling 
equations: 
 

(1) 



𝜙 = ∇𝜒 = 𝑚1 𝜑 
and 

∇∗𝜑 = 𝑚2𝜓 
 

∇∗∇𝜒 = (∇0∇0 + 〈𝛁, 𝛁〉)𝜒 = 𝑚1𝑚2𝜓 
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