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Abstract:

The Einstein-Podolsky-Rosen experiment and certain predictions of quantum mechanics in 
theoretical and experimental forms are sometimes described as exhibiting non-local action.  We 
describe here an interpretation of one oft-discussed EPR experiment with a locally realistic model.  
We demonstrate a consistent description based on probabilistic measurement for Mermin and Aspect 
EPR setups, and show how Bell's theorem applies.  Quantum non-locality is shown to be an 
interpretation dependent on deterministic measurement and vanishes when a treatment of 
probabilistic measurement and relevant information theory is included.  

Résumé:
L'expérience d'Einstein-Podolsky-Rosen et certaines prédictions de la mécanique quantique sont 
parfois décrites comme présentant une action “non locale”.. Nous décrivons ici une interprétation 
localement réaliste d'une expérience EPR souvent discutée. Nous démontrons une description 
cohérente, basée sur la mesure probabiliste pour configurations EPR de Mermin et de Aspect, et nous
montrons exactement comment le théorème de Bell s'applique.  La non-localité quantique disparaît 
quand un traitement de mesure probabiliste et de la théorie de l'information pertinente sont entendu.
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1) Probabilistic Measurement

This term attempts to capture the essence of what is evident from experimental measurements: the 

outcome of a single external measurement of some physical system is not completely determined by 

internal variables of the object being measured.  Rather, the outcome of a measurement of a system is 

determined by the physical interaction of internal variables in that system with external variables of the 

measurement device.    

This is evident in the language and practical use of measurements.  We are used to hearing 

measurements reported with error bars and standard deviations implying that measurements have at 



some level a probabilistic nature.  When error bars are not given they are often assumed to exist at the 

level of the least significant digit of the reported measurement.  Measuring instruments are calibrated 

(when they are calibrated properly) to some specified probable error, again implying our understanding 

of the probabilistic nature of the relevant measurement.  The statistics of probabilistic measurement and

the proper interpretation of measurement results form a vital area of study often lumped under the 

umbrella of statistics.  

We can in one way see that this probabilistic nature of measurement is always present is by 

demonstrating equivalence with a communications channel in general.  A measurement must be 

reported or communicated in some way as information.  Information theory tells us quite clearly that a 

communications channel is a probability distribution function which maps some inputs to some outputs

[for a good review see e.g. Cover & Thomas, 2006].  We can conclude without hesitation then that 

measurement, being communicative in nature, is probabilistic.  It turns out that this behavior does not 

necessarily imply that anyone is “playing dice”, as Einstein famously quipped.  Rather, the probabilistic

nature of measurement exists because an observer does not have an infinite amount of information 

available when making a measurement. 

Consider for example a particle detector consisting of a photomultiplier tube and suitable pulse 

detection electronics (see Figure 1).  The detector is active, and open to a certain direction.  In that 

direction we consider a sphere of volume V just outside the detector but just adjacent to the active area. 

A simple model of this measuring device and detection volume would suggest that the reading of the 

device is determined exactly by the flux of particles at a time t entering the device in this volume V.    

In fact, the behavior of a real particle detector in this scenario and its reading at a time t+  is 

quantified with a response function which is not perfectly determined by what is specified in the 



volume V  at the time t.  There is a probability that any incoming particle in V will reach a dead area on 

the detector and will not register, as the detector is not perfectly efficient nor perfectly uniform.  The 

reading on the detector could depend on factors not entirely contained in V, at a time t, including for 

example any background cosmic rays which might produce counts by entering detection areas from 

another direction.  Electronic fluctuations, other noise, and positions and motions of individual atoms 

of detector components could all have some effect on the measurement.  None of these effects were 

predictable by considering solely what went on in the volume V at the time t.

Figure 1.  A detector is pictured as sampling particle flux from a volume V at a time t.  The reading on the detector is the 

output of a probabilistic mapping of variables  internal to the volume V.  Adapted from [Mermin, 1985].

The detector efficiency can also have coupling of external variables with variables which are local to V.

For example the probability of detection could vary with the incoming energy, spin, or other property 

of incoming particles in V.



2) The Mermin Gedanken

In the 1985 edition of Physics Today a remarkable article is found [Mermin, 1985].  In it is described 

the ethos and impact of the Einstein, Podolsky and Rosen's gedanken experiment and Bell's seminal 

1964 paper, outlining debates among many well renowned physicists.  Mermin describes a gedanken 

experiment as an example in which the contradiction laid out in the Bell paper is immediately 

accessible.  Mermin's paper inspired many people struggling with understanding these phenomena and 

was further popularized in Roger Penrose's book The Emperor's New Mind [Penrose, 1989].  Although 

the setup described is not a perfect analogy with real measurements of spin ½ particles, it behooves us 

to consider it again here.  Indeed it is answering Mermin's challenge here that forms the heart of this 

paper and our argument that non-local action is in no way required to explain these phenomena.            

The Mermin EPR experiment consists of two detectors separated by some distance and a source 

directly between them which emits some objects towards the detectors.  The detectors can each be set 

to any one of three settings.  Each detector gives a binary measurement.  In Mermin's paper, he 

describes this measurement as turning on either a red or a green light.  In some runs of this experiment, 

two results are observed:

1) When the settings on the two detectors were identical (so that they were set in the same 

direction) the readings were identical (the colors of the lights matched).

2) When the directional settings of the detectors were randomized, the readings over time gave 

random results, such that one half the times the colors agreed.  



These results model the behavior of certain objects in quantum mechanics.  The objects created by the 

source and measured could be for example spin ½ particles, while the settings of the detectors are equi-

angular co-planar orientations, with 120 degrees separation from one orientation to another.  The 

remarkable conclusion often drawn from observations 1) and 2) is that “there is no local realistic model

that can explain both these results simultaneously”.  To show this, the author claims that to be a locally 

realistic model, an object emitted by the source must have the information to predict the color that 

would appear on the detector for any orientation.  He exhaustively lists all possible combinations of 

predicted colors that would yield result 1) and shows that these predicted colors cannot produce result 

2).  He urges us in the paper to “try to invent some other explanation” for these predicted readings of 

the detectors.  

The Other Explanation

To accept this challenge in the spirit of the gedanken experiment, consider that the objects emitted

by the source are paper envelopes containing inside a number, that is an angle which defines a 

unit vector σ⃗  (perpendicular to the line connecting source and detector).  This vector is chosen 

by a pseudo-random number generator at the source and written down twice, sealed in two 

envelopes which are emitted simultaneously in opposite directions towards the detectors.  

When an envelope arrives at a detector set to one of the three orientations λ⃗ , the following 

procedure is used to set the color of the detector's light.  First the envelope is is opened and the 

dot product λ⃗ ⋅ σ⃗ is determined.  Because both λ⃗ and σ⃗ are unit vectors, this dot product is

simply equal the cosine of θ , the angle between them.  If this dot product is positive, we then 

have a chance to turn the green light on proportional to cosθ . If the dot product is negative, 



there is a chance to turn the red light on proportional to cosθ .  A pseudorandom number 

generator is used at the detector to decide with these probabilities whether to turn on the 

appropriate light.  

We consider as one 'run' of our experiment any time that the envelopes are emitted from the 

source, and a light is turned on at both observing platforms A and B.  If either one or the other is 

not activated, we do not tally the state.  

It should be evident that from construction above that the experimental apparatus will produce both our

results 1) and 2) exactly!  If the detectors are in the same orientation as each other,  they will always 

share the same sign of the dot product to whichever vector is emitted from the source.  This means that 

there are only three possible results:  a) both lights remain off, b) one light on one light off, and c) both 

lights on and agreeing.   For the purposes of our experiment, with coincidence detection, only those 

results of type c will contribute to our experiment as a run and we immediately see that all runs with the

two observers choosing the same orientation will show equality of light choice.  Result 1) will be 

satisfied.   

If several runs of the experiment are carried out and the orientations are set at random, the resulting 

probability of matching lights will be ½.  A computer program simulating this arrangement is included 

in the appendix.  With our system of envelopes and random number generators at the detectors, we 

have exactly duplicated the so called quantum calculation which predicts result 2) above.  The behavior

of EPR systems can be explained with ordinary local measurement.               

Real Spin Coupled Systems



While Mermin's gedanken experiment is useful to illustrate the supposed paradox of non-locality in 

quantum mechanics, it is important to realize we are not capturing all the physics of the interaction of 

spin ½ particles with specific detector constructions and geometries.  In particular, the result 1) will not

hold precisely in any real experiment.  If two spin ½ particles are generated by source with zero net 

angular momentum initially, they will be oppositely oriented and so a better analogy would be to have 

considered lights of opposite colors to be lit when the detectors have the same orientation.  No matter, 

the numbers emitted by the source could sum to zero rather than being equal (conservation of angular 

momentum).  

No detector is either 100% efficient nor devoid of noise or background counts so the result 1) could not

hold even if appropriate spin coupled particles could be generated.  In practice, coincidence electronics 

are used in real EPR type experiments such as [Aspect et al., 1984] and [MODERN XP] to minimize 

single detections, very much like our simulation does.  Our solution to Mermin's challenge is also 

clearly not capturing all the real physics of spin ½ particle detection, but is an ad-hoc construction 

which satisfies Mermin's criteria.  In reality, a quantized binary measurement of a spin in some 

direction will have a probability proportional in some way to the angle between the detector orientation

and the particle spin.        

3) Bell's Inequality Revisited 

In [Bell, 1964], something like a proof by contradiction is given.  An initial assumption is made and 

labeled as “an assumption of local realism”, and then it is shown that a contradiction is arrived at.  The 

assumption begins in his equation 1:



A ( a⃗ , λ⃗ )=±1, B ( b⃗ , λ⃗ )=± 1

Here A and B are the results of measurements of particle spin components in directions a and b, and 

lambda represents any set of hidden variables which are physical and local to the particles in question 

after they are created at the source.  

Rather than being an assumption of local realism, this is an assumption of deterministic measurement, 

for it suggests that later measurements A,B at arbitrary accuracy in a distant location are completely 

determined by the finite final local variables lambda.  Finite local variables in an emitted particle will 

not always be able to predict a later measurement at arbitrary accuracy, rather they can only affect the 

measurements probabilistically.  In chaotic systems the uncertainty of a later measurement can even 

increase exponentially in the uncertainty of earlier hidden variables.  Bell's conclusions which derive 

from this formalism are therefore mistaken, in that the settings on one measurement device must not in 

any way influence another far off device to explain these statistics.  

However, Bell's inequality is still applicable.  The situation is well described in a publication from 

Arnold Reinhold [1987], in which he shows how Bell's inequality applies equally to macroscopic 

phenomena (modified from a version by Jay Sulzberger).  This short article is strongly recommended 

for those interested in interpreting Bell's inequality.  His conclusion:

“Notice there is nothing in this story about quantum mechanics, determinism, action at a 

distance or any of that stuff. Bell's inequalities are a simple theorem in Probability 101, which 

gives conditions on when a set of marginal probability distributions could have been derived 

from a single joint distribution.”



     The nonintuitive results of some quantum physics experiments exist because some probabilities are 

not always intuitive.  The “birthday problem” and the “Monty Hall problem” are two examples of 

macroscopic systems that obey surprising probabilities.  In this spirit of the macroscopic example, I 

offer my own EPR paradox, aka Schrödinger's Mother:

      Erwin arrives home and hears that there is a person in the room on his right, and another 

person in the room on his left.  He knows one is his mother and the other is his brother.  

However, there is not enough information to determine which is which.  Each person has a 50% 

probability of being the mother or the brother.  Erwin decides to look to the room on the right.  

He sees: his brother.  He immediately knows where his mother is.  At that instant, a non-local 

phenomenon occurred.  The information that he observed his brother traveled superluminally 

and arrived in the opposite room.  The superposed wavefunction there instantly collapsed and 

became Schrodinger's mother.

4) Further Considerations 

     We support the conclusions of authors such as Emilio Santos [2012] that the behavior of quantum 

systems is well described by local realistic models.  Although we describe here only the Mermin setup, 

this discussion might be traced back to the projection postulate of Von Neumann.  We have explicitly 

shown that a local realistic model does exist that explains the predictions of EPR experiments, in 

particular for the Mermin setup.  In contrast to this conclusion, the Mermin analysis of the EPR 

experiment and also some of the Bell formalism enumerates the possible outcomes of a measurement 

by assuming that we can tag an emitted particle with the value of a later measurement.  After thus 



enumerating the possibilities, we are then left with no local model to describe the observed 

probabilities. 

     Such enumeration before the fact of measurement is inherently flawed, because measurement is 

inherently probabilistic.  Instead, each measurement apparatus is a consistent local physical device, 

with a probabilistic map to the states of the system to be measured.  Any emergence of statistics 

showing apparatus to be correlated will be solely due to the fact that the devices are indeed physically 

correlated.  For example, if they are measuring particles from the same source that obey certain 

conservation relations and therefore have related or entangled probabilities.  Such correlation does not 

require nonlocality nor action at a distance to be explained.

   Our solution is devilishly simple.  By allowing a random process to occur at measurement, as it does 

in real life, one can thus explain the predictions of quantum mechanics – using quantum mechanics.   A 

physical theory of local hidden variables coupled with a probabilistic measurement apparatus can 

reproduce the predictions of quantum mechanics.   

     There is certain similarity between this interpretation of the Mermin EPR and the so-called 

“detection loophole” described by Pearle [1970].  However the detection loophole as usually described 

is a way in which an experimental system could still have a deterministic future embedded in local 

hidden variables as is done in Bell's equation 1 above.  Such a loophole also takes the route of 

coincidence selection that we take in describing the Mermin system.  However, what is presented here 

is not a “loophole” at all.  We are not finding a way that hidden variables alone can still determine 

future measurements in a way consistent with quantum mechanics.  Rather, we are pointing out that 

hidden variables coupled with a probabilistic measurement apparatus can always reproduce the 

predictions of quantum mechanics.  There is no need for, nor evidence of nonlocality.                 
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Appendix:  Simulation of Mermin EPR

(code also archived at: http://github.com/lukassaul/mermin-sim)

import java.util.Random; 
import java.util.Date; // for seeding prng 

/** 
*  Demonstrate local behavior with Mermin­EPR characteristics 
*  by simulation of D. Mermin's Gedanken
* 
*  Dr. Lukas Saul, Oxford, April. 2015
*/ 
public class Mermin { 

Random r; 
int n = 10000;  // number of tests to perform 

 
public final static void main(String[] args) { 

Mermin m = new Mermin(); 
} 

/** 
*  Construct a simulation 
*/ 
public Mermin() { 

int answers1[] = new int[n]; // for case where settings agree 
int answers2[] = new int[n]; // for case where settings are random 

r=new Random();   // init quasirandom generator to current time 

for (int i=0; i<n; i++) { 

 
// source: choose a random angle (number) from 0 to 2pi for the spin of emitted particles 
double angle = r.nextDouble()*Math.PI*2.0; 

// set the first detector to one of three positions randomly  
double pos1 = r.nextDouble()*3.0; 
double pos1angle = 0.0;  
if (pos1>0.0 & pos1<1.0) pos1angle = 0.0;  
if (pos1>1.0 & pos1<2.0) pos1angle = Math.PI*2.0/3.0;  
if (pos1>2.0 & pos1<3.0) pos1angle = Math.PI*4.0/3.0; 

// for first test run lets take the second detector to be the same as 1st always 
double pos2angle = pos1angle; 

             // for second test run we take second detector to be also random 
double pos3 = r.nextDouble()*3.0;  
double pos3angle = 0.0;  
if (pos3>0.0 & pos3<1.0) pos3angle = 0.0;  
if (pos3>1.0 & pos3<2.0) pos3angle = Math.PI*2.0/3.0;  
if (pos3>2.0 & pos3<3.0) pos3angle = Math.PI*4.0/3.0; 

 
// ok lets see what the results of this run are 
// getresult needs to return 0 (one or both off), 1 (disagree), or 2(agree)  

 
answers1[i] = getResult(pos1angle, pos2angle, angle); 
answers2[i] = getResult(pos1angle, pos3angle, angle);  

} 

 
// Output our result of the simulation to stdout 
int numTrue2 = 0; int numFalse2 = 0;  
for (int i=0; i<n; i++) { 

if (answers1[i]==2) numTrue1++; 
if (answers1[i]==1) numFalse1++; 
if (answers2[i]==2) numTrue2++; 



if (answers2[i]==1) numFalse2++; 
} 
System.out.println("numTrue 1,  numFalse1 " + numTrue1 + " " + numFalse1); 
System.out.println("numTrue 2,  numFalse2 " + numTrue2 + " " + numFalse2);

// calculate probabilities based on total cases of double coincidence 
double prob1 = (double)numTrue1/(double)(numTrue1+numFalse1); 
double prob2 = (double)numTrue2/(double)(numTrue2+numFalse2); 
System.out.println("1st test: " + prob1 + " 2nd test: " + prob2); 

} 

/** 
*  This returns 0 if one or both still unlit, 1 if disagree, and 2 if agree 
*  
*   SettingA is detector 1 orientation, SettingB is detecter 2 orientation, 
*   spin is particle spin (angle)   
*   settings are 0, 2*pi/3, and 4*pi/3 
*/ 
public int getResult(double settingA, double settingB, double spin) { 

// set up our random number generator at each detector 
Date d = new Date(); 

// current status of light at each detector (0=off, 1=red, 2=green) 
int lightA = 0; 
int lightB = 0; 

// we calculate the difference between 
    //the detector angle and particle angle  

double diffA = Math.abs(settingA­spin); 
double diffB = Math.abs(settingB­spin); 

// maximum angle between the two is 180 degrees ..  
// if it's more use the equivalent between 0 and PI 
if (diffA > Math.PI) diffA = 2.0*Math.PI ­ diffA; 
if (diffB > Math.PI) diffB = 2.0*Math.PI ­ diffB; 

 
// There are two choices.  
// If we are within 90 degrees we go for green.  
// Outside 90 degrees, we go red.  
if (diffA > Math.PI/2.0) { 

// A has a chance to light up green 
if (r.nextDouble() < 0.0­Math.cos(diffA)) lightA = 2; 

} 
if (diffA < Math.PI/2.0) { 

// A has a chance to light up red 
if (r.nextDouble() < Math.cos(diffA)) lightA = 1; 

} 
if (diffB > Math.PI/2.0) { 

// B has a chance to light up green 
if (r.nextDouble() < 0.0­Math.cos(diffB)) lightB = 2; 

} 
if (diffB < Math.PI/2.0) { 

// A has a chance to light up red 
if (r.nextDouble() < Math.cos(diffB)) lightB = 1; 

} 

// if the lights are the same return true.  else return false. 
if (lightA==0 | lightB==0) return 0; 
else if (lightA==lightB) return 2; 
else if (lightA!=lightB) return 1; 
return 3; // (never) 

} 
}


