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Abstract

This paper proposes a Galilean-invariant theory otlectromagnetism, applicable at first order
in v/c, describing both instantaneous and propagate interactions.

To extend this theory to higher orders, definitionsof universal time and proper time are
introduced. New transformations between referenceadmes are suggested.

Abbreviations:

STR: Special Theory of Relativity
GTR: General Theory of Relativity
IRF/s: Inertial Reference Frame/s
GT: Galilean Transformations

LT: Lorentz Transformations

Introduction

The Special Theory of Relativity (STR) plays a kel in the physical description of the world.

It implies that space and time cannot be conceageseparate structures, but must be taken together
as a single structure: the space-time continuum.

Its points — the so-called space-time events —tlaeenatural elements of reality, namely the
fundamental elements around which a convenientriggien of the world can be formulated.

According to STR, physical laws are described i@ same way in all inertial reference frames
(IRFs), and therefore each IRF possesses equatydign

The only kinematic elements relevant to a phenothogical description are positions and
velocities (of particles or field disturbances)tate to an arbitrarily chosen inertial observer.

The concept of “absolute motion” is excluded frdma physical description of reality.

According to STR, the Lorentz transformations (laFg the relationships between measurements,
in different IRFs, of spatial distances or timesmils between events.

The LT imply, changing the IRF, invariance of tleecalled space-time interval between a generic
pair of events.

The invariant interval between events can be geacady interpreted as a distance between points
in a four-dimensional pseudo-Euclidean space, dheatied Minkowski space-time.

Unlike space-time intervals, spatial distancestand intervals lose their property of invariance.
One is compelled to abandon the concept of abssinteltaneity of spatially separated events.

In this context, to express physical theories, rtiwst appropriate mathematical entities are four-
tensors.

Unsurprisingly, Maxwell’s electromagnetism can Bpressed by this formalism.

STR has reified the LT as the transformation lawsvieen IRFs and those transformations leave
the form of Maxwell’'s equations unchanged (it iklghat Maxwell’'s equations are covariant under
LT).

The adoption of the STR and therefore of the LTtstérom the following observation: if we
assume the contemporary validity of Galilean tramsftions (GT) and of Maxwell's equations
into a privileged reference frame (the postulateedionm for the propagation of light, called



“ether”), this produces conclusions that contradibe results of the Michelson-Morley
interferometer experiments.

However, the resolution of the incompatibility beem experiments and theory can be theoretically
pursued (and historically it has been) via diff¢r@pproaches.
They can be classified into the following options:

1. Accept Maxwell's equations as the correct desaiptf electromagnetic phenomena, or at
least as a sufficiently correct description to captthe “true” symmetry of space-time,
missed by the equations of classical mechanics.

This implies adopting LT in place of GT as the eotrdaws of transformation between IRFs.

2. Leave both GT and Maxwell's equations unchanged, modify the model of the
propagation medium.

3. Maintain the GT and change the description of ebecagnetic phenomena.

4. Change both the transformation laws between IRBdl@m electromagnetic theory.
The STR is the full development of the first option
Complete or partial ether dragging theories arengtes of the second option.

An example of a theory that pursues the third filityiwas formulated by T.E. Phipps

He proposed an electromagnetic theory that was ditynequal to Hertz’s original theory, but
reinterpreted it in the meaning of the terms.

Old mathematics and a new symbolic interpretatiadpced a new theory — which | shall refer to
it as Hertz-Phipps electromagnetism — displayinvgiiance under GT.

Phipps proposed this theory as a valid approximabahe first order in v/c.

The extension of the theory, which was describedPhipps as “Neo-Hertzian” and claimed to
overcome the limitations of the first order, re@m@s a transition to the fourth option.

In fact, the extended theory involves the introdutbf a new type of time (the proper time) and a
consequent change of the GT.

The result is a strictly relativistic theory, siniteimplies no privileged reference frame and the
kinematic quantities are expressed relatively geeric inertial observer.

However, the Neo-Hertzian version of the theorydpices paradoxical predictions, as | will show
later in this paper.

The third option was also pursued by F. Séilgniough a theory called “Weak Relativity”.

In Selleri’s theory the existence of an absoluference frame S, — is assumed.

Assuming the validity of Maxwell’s electromagnetismthis preferred reference frame, the speed
of light would only be isotropic in respect %.

In IRFs different fromS, (which therefore have absolute speeds), the spédight would be
anisotropic.

However, for any closed path, the average speédhifshould remain constant in all IRFs.

In Selleri's Weak Relativity, the LT are replaceddm-called Inertial Transformations.

The transformations of the electromagnetic fieldsaccordance with Inertial Transformations are
described in a paper by G.D. Puctiand in another paper by B. Buondura

The theory is called weak because, unlike the STiRquires the existence of an absolute reference
frame, but maintains the name of relativity becaihgeimplied state of absolute motion is locally
unmeasurable.



It is a kind of relativity in which the slowing dowof moving clocks has an asymmetrical
description. In contrast to the predictions maddheySTR, two different inertial observers would
agree on which of their identical clocks is beatngjower pace.

Equally asymmetric is the length contraction.

Weak Relativity, even if it provides different ratéor clocks at rest in different IRFs, restores th
absolute simultaneity of spatially separated events

In this theory the absolute reference frame camtagpreted as a Lorentz-type ether that justifies
the effects (shortening of the bodies’ lengths atmving of the clocks as absolute effects)
produced by motion.

In his book “Weak Relativity” and other publicatsfi, Franco Selleri is particularly effective at
showing the weaknesses of the TRR interpretatipalméty in different areas (the Sagnac effect,
non-inertial systems or stellar aberration desionyst, for example).

Among the objections that Selleri poses to the SM& most philosophical one can be summarized
as follows.

The LT, which constitute the relational structuretvieen different IRFs, impose a form of
ontological confusion (since they pertain to thedamental categories of being), giving the same
status of reality to the past, present and future.

According to the LT, different inertial observeraut” space-time in different constant time slices,
meaning that each of the observers attributesrdittecollections of events to their present.

This means that events placed in my future (namednts not yet manifested in my co-moving IRF
present) may belong to the past of a differenttialeobserver.

The equal dignity of all inertial observers alsguiees the equal dignity of all these possible
different “nows”.

Therefore, what | call “my future”, in its having be the past of another “present” with equal s8ght
of reality, is also reified.

This implies an absolute determinism.

Such a description is therefore philosophicallyo(ifh not mathematically) irreconcilable with
guantum mechanics, which admits an inherently goilisic description of the future.

If one accepts the description of space and tinogiged by LT as correct, one must also accept
that uncertainty (which is necessary to a quant@scption) is merely a kind of mirage or
illusion.

These considerations motivate the search for thieal@lternatives that are capable of breaking the
symmetry of the LT and reintroducing the absolineustaneity concept.

Selleri’'s theory is interesting in this sense, ahdvould be even more interesting to test it
experimentally through measurements of the speédtafon one-way paths in different directions.
Measurements of the flight time of an electromagnptlse could be carried out by means of
distant clocks, not synchronized at a distance tiie Einstein method, but synchronized in
contiguity conditions and transported in quasistatinditions (low speed) to their final positions.
Clocks synchronized in this way make it possibledgeeal any differences in the flight time of
electromagnetic pulses which propagate in oppabiections along the straight line joining two
clocks.

However, since Selleri’'s theory is only alternatiee STR, it is only applicable to the physical
descriptions made by inertial observers.

“Inertial observers” must be understood in the masr sense of observers moving at a constant
speed in regions far from significant masses; &#iafy observers in regions with a gravity gradient
are therefore excluded.

Consequently these tests should ideally be conddateaway from gravitational sources.



By adopting Inertial Transformations instead of WVeak Relativity is not compatible with that

generalization of STR, the General Theory of Relgt(GTR).

Thus, if one regards the dependence of the beafittte clocks on the gravitational potential as an
empirical truth, in absence of an alternative gedional theory to GTR that is able to justify this
dependence, it is not obvious how to correct tlegtial Transformations to make them applicable
in extended regions where a gravitational fieldrissent.

Although | agree with Selleri’s criticism of STRdhconsider his theory plausible, | believe that a
revision of the classical electromagnetic desaipts indicated by Phipps in his book can suggest
further interesting alternatives.

Phipps’s proposed modification of the classicatetenagnetic theory is persuasive in the necessity
to use the total time derivative in order to fulgpresent the experimental Faraday results regardin
induction.

His theory is invariant (not covariant) in respecGT.

| will show that his theory must be modified, sintpredicts results that disagree with experience.
In fact, using Phipps’s theory to calculate forbetween stationary current elements, one finds
results that are incompatible with empirical evicken

| also believe that his equations should be remde@mpatible with the experimental results,
documented in:

* L. Kholmetskii, O. V. Missevitch, R. Smirnov-Rueddeasurement of propagation velocity
of bound electromagnetic fields in near zone - JOBR OF APPLIED PHYSICS 102,
013529 (2007).

» A. Calcaterra, R. de Sangro, G. Finocchiaro, PteRaM. Piccolo, G. Pizzella: Measuring
Propagation Speed of Coulomb Fields — arXiv:1211329 [gr-qc] 13 Nov 2012.

Both these experimental approaches show evideniostahtaneous interactions.

Instantaneous interactions are not representalfenvaxwell’s electromagnetism, since the latter
must obey the space-time symmetries described by LT

Instantaneous interactions imply that the princgilenergy conservation takes a non-local form.
Instead, as pointed out by Feynriahe conservation principle imposed on energyhieySTR has

a strictly local nature.

In short: energy conservation in local form firsttyeans that energy is a quantity placeable in
space, describable by a density function.

It also means that, if the energy in a region clkanthis may only occur through a flow of the same
energy crossing the boundaries of that region.

A non-local principle of conservation — accordilmgwthich a certain physical quantity decreases in
a place and simultaneously increases in anothee plisstant from the former, so that the sum
remains constant at every instant — is in conttexficwith the STR since the simultaneity of
spatially separated events is not shared by diftenertial observers.

The appearance-disappearance of energy at disiants pevaluated as occurring simultaneously by
one inertial observer, would be evaluated by amothertial observer as the disappearance of
energy at a certain instant and the appearandeedame amount of energy in another instant. Thus
there would be a time interval with a shortagexmess of energy.

Instantaneous interactions are, instead, reprddenta an electromagnetism with properties of
invariance or covariance under GT.



Not having problems with the contemporaneity oftah$ events, this electromagnetism can be
formulated to admit instantaneous interactionshaeuit falling into contradiction.

Put another way, it is expressible in a manner ihatonsistent with these recent experimental
observations, because the various electrical diesitare not obliged to be components of four
vectors or four tensors.

Premises

Lorentz Transformation@nore extensive notes in Appendix - A)

Given two IRFs:S and$S’, let (F,t) and (7',t') be the spatial and temporal coordinates of the

same event in the two reference frames.\Ldte the velocity 0§’ with respect tc.
Expressed in vector form, the Lorentz Transfornregtiare:

F':F+(y—1)\7[2r\7—y\7t t':{t—v?j where:y:J/wll—vz/c2

Vv C

Galilean Transformations and operators

Given two IRFsS andS’, in vector form, the Galilean transformations are:
F'=r-vt t'=t

From these transformations, relations between ¢qesrare derived (details in Appendix - B):

0'=0 2L =2 4y

The operatof] is therefore invariant, while the operat@fdt is not.

Maxwell’'sequations in vacuurfaccording to International System of Units)

nE=~ @)
80
OB=0 2)
. 0B
ODE=-— 3
= (3)
0B = 43 + o (4)

These four field equations, with appropriate ihiiad boundary conditions, determine the electric
field E(x, y,zt) and the magnetic field(x, y,zt) at a generic poinfx, y,z) in space at a generic
instantt.

The equations are not invariant under GT due tonthe-invariance of the operatat/Jt which
appears in equations (3) and (4).



Phipps’ criticisms of Maxwell’s electromagnetism

Under-parameterization

Maxwell's equations lack of reciprocity in consiggy motions of charges.
In an observer’s inertial reference frame, the muoaets of the source charges are described by the

J current density field.

The movements of the field detector (or absorbvehnjch is as conceptually essential as the source,
is absent from the description.

Maxwell's equations are under-parameterized wiipeet to the detector’s state of motion because
they do not contemplate it.

The connection between fields and detector is duced through the definition of force: the
Lorentz force.

It is reasonable to consider a change of Maxwelfisations, introducing a role for the state of
motion of the charge detector-absorber.

Faraday’'s observations and the use of the timeal®re operator

Although based on Faraday’s observations, Maxwelfgation (3) appears lacking as a translation
of those same observations.
The results of Faraday’s experiments can be suraethm the integral form:

jﬁémr:—d—q’:—ijé [ dS

! dt dt g

where® is the B -field flux through a surfac& bounded by a closed conductive circlit

In Faraday’'s experiments, variations of the magniiix passing through a closed electrical circuit
were realized not only by acting on the field seutaut also through a change of the circuit’'s shape
Because the path of the line integral may be tiemgant —L = L(t) — the use of the total
derivative in place of the partial derivative ismdatory.

These considerations also compel the use of thed tigrivative operator in the differential
formulation.

Equation (3) OOE = —% should be replaced by: OOE=-—



The total derivative

The above summarized considerations suggest awagpsimilar to the Lagrangian one, used in
fluid dynamics, in which a fluid is described bytimovement of its various parts.

The individual fluid particles are individually laled and followed in their motions.

The alternative approach, called Eulerian, dessribe fluid through functions of position and time,

i.e. through scalar or vector fields (speed, pressiensity, etc.).

In the Eulerian description, the position that appeas an argument of a function is the position of
a geometrical point, regardless of the preseneespiecific fluid particle.

In this context it is natural to define the “paltiane derivative”, denoted by the symbaldt, as

the limit of the ratio between the variation of aaqtity in a fixed point of space and the time

interval of this variation, when this interval tentwards zero.

In the Lagrangian description it is rather usefudefine the “total time derivative”, denoted by th
symbol d/dt, as the limit of the ratio between the variatidraauantity to follow the motion of a
particle and the time interval of this variatiorhen this interval tends towards zero.

If x, (t), yp(t), zp(t) are the coordinates of a moving particle, the tttegvative of the propertyf
evaluated on that particle is

df:df(t,xy,z):6f+6fpr+afdyp+afde:af+VX£+v of,, of
dt dt ot dx dt oy dt o9z dt ot "ox "oy ™oz

In vector notation:

In the electromagnetic framework the use of th&dt operator assigns a role to the motion of the
field detector.

Given an inertial reference frangeto which the coordinates of each relevant emtigyreferred, the
use of the operatad /dt is intended to mean that the temporal variatidrguantities are not those

“seen” from the fixed point instantaneously occdpi®/ the detector, but are those “seen” in the
same point by the detector in motion.

More generally, the use of the total time derivatbperator in differential equations of fields mgan
that temporal variations of variables are not messon fixed points ir5, but on points in motion,
which share the same instantaneous speed of teetolet

So temporal variations of all quantities are meaduin the non-inertial (but not rotating) reference
frame,Sy, moving with speed, in respect t&.

Considering a point particle field detector in &doly motion with velocityv, =V, (t) relative to
an arbitrarily chosen inertial observer, from theaia rule it follows that:

i:i+\7d 1

dt ot



Invariance ofd/dt under GT

Applying the Galilean law of composition of velaeg to the detector motion:

—

V' =V,—-V

V, is the speed of the detector evaluate8.in
V,' is the speed of the detector evaluate8'in
V is the speed d&’ evaluated irS.

Having already established:

0'=0 2 =2 4y — =24y, @

it follows that:

d = i+\‘/’d[|] :i+\7d'g]]': i+\7[|] +(\7d—\7)D]]:—+\7dDD:—
dt ot ot' ot

which verifies the first-order invariance dfdt.
V is necessarily constant, given the hypothesiseatiality.

V, is not necessarily constant, as an attributee@htim-inertial motion of a Lagrangian particle.



Hertz-Phipps Electromagnetism

Referring to a generic IRE, in empty space the equations for the electrontagheld valid to first
order ofv /c are:

nE=~ (1H)
gO
OB=0 (2H)
npge=-98 (3H)
dt
SELERS = (4H)

They are complemented by a definition of force:

—

F=qE (5H)

In contrast to Maxwell’'s equations, /dt replacesd /dt. Also, the densityd_ is interpreted as the
current density “seen” by a detector in motionhwielocity v, (t ) in S.

jm is related to the Maxwellian current density the current density “seen” by a detector fixed at
that point inS, by the following expression:

—

Jm:j—pvd (6H)

- pV, is an equivalent current due to the detector madiovelocityv, .

A detector stationary i8 represents the special casg:= . 0
Given that: da._9 +v, O,
dt oat

for v, =0, total and partial derivatives become equal.

In this case, the field equations become indisisttable from Maxwell’s.
Furthermore, the force expressions coincide irwuetheories.

Therefore, in the case of a hon-accelerated detestipposing equal descriptions of the sourges (

and J) in the IRF in which the field detector is at rés; = 0), all the predictions of Maxwell’s
theory are reproduced by the Hertz-Phipps theory.

This does not mean, however, as Phipps statedthibatew theory constitutes a “covering theory”
of Maxwell's electromagnetism, since the descriptad the sources differs, in general, in the two
theories.



In Maxwell's theory, p and J densities are transformed when the reference mysteanges,
whereas in the Hertz-Phipps thegoyand jm densities and are invariant (as will be showrr)ate

In the case of a detector moving 8 a comparison between the two theories cannot be
accomplished by only considering the field equagjdyut by also considering the differences in the
definitions of the electrodynamic force adoptedha two theories.

In Maxwell’s theory the Lorentz force is assumed: F = Eyuuer + AV 0Byae

—

In the Hertz-Phipptheory the force law is: F

T

q

Hertz

It is therefore postulated that the electric fiekttor is sufficient to evaluate the force actingao
charge. The magnetic field plays an indispensal&einodetermining the electric field in dynamic
situations, but it does not appear explicitly ie taw of force.

Galilean source transformation equations

Consider two generic IRFSandS’.
Let S’ in motion be at constant velocitiwith respect t&.
The charge density transformation equation is:

This assumption can be understood by considerirtg tha

r*andr refer to the same poiRtin space viewed i8’ andS, respectively.
t'=t for the assumption of GT validity.

p(f , t) must be intended as the ratio between the amdumetacharge (the algebraic sum of a

finite number of point-like charges whose conseovatis postulated) contained in a given
infinitesimal volumedV , centered irP, stationary irS, and the volume itself.

p'(f', t') must be intended as the ratio between the amdunétocharge contained in a given
infinitesimal volumedV ; with the same linear size oV , centered irP, stationary inS’, namely
in motion at speed in S, and the volume itself.

dV' is instantaneously coincident with/ because of the invariance of the lengths implie&b.

The coincidence of reference volumes in differerfidRmplies the same amount of net charge and
therefore the same evaluation for the density.

10



To evaluate the transformation of the current dgngiis appropriate to begin with the definitions
of J and J,, in a given IRFS.

Consider a limited region of space where therepsstive electric charge distribution with density
yoR (f,t) and a negative electrical charge distribution wligmsity o_ (F,t).

p. is therefore a positive real number, whie is a negative real number.
The net charge density will be:

P=pP, TP
The volume elemendV identified byr , at timet, will have a total electric charge:
p(r.t)dv =[p.(7.t)+p(F,t)]dv

In S, if all positive charges contained @V share thev, velocity, while all negative charges share
the V_ velocity, the Maxwellian current density is definas:

J=p,V, +p._V.
In S, the Hertzian current density is defined as:
In=J-pV=p,V,+p V. -pV,

In the IRFS’ (moving at speed/ with respect tdS), adopting the GT, the Maxwellian current
density becomes:

Since the expression af contains the speed & with respect tdS, it shows the non-invariance
under Galilean transformations (unless the sowceutral).
In contrast, the Hertzian current density remamshanged (invariant) passing fr@ro S’:

11



The Hertzian current densit.ivm, described as “measured” by Phipps (although nibisclear how

its measurability deviates from the Maxwellian gnig) not invariant because it is measured but
because it is suitably defined.
In fact, its definition only makes relative veloeg relevant between source charges and detector.

J_. can be expressed as:

Jn=p VPV ~pVy=p, U, +p ¥ ~(p, +p ) ¥, =
=0, (Ve =V )+ o (Vo= ¥y ) =0, Vg + 0 Vi
or:
3, =PV +p V= p Vy=p,V, +(0=-p)V.~p V= p, V.~ p, V. +pV ~p V,=
Vg )7 Vg -+ P Vg g
or:

3=V, +p V.~ pV=(p-p )V, +p. V.~ p V,=p (V.- ¥, )+p(V,- V)=
:p—vrel—+ +p\7re|+d

<l

«+q 1S the velocity of positive charges containediv with respect to the detector

<l

«-q IS the velocity of negative charges contained\f with respect to the detector

<l

o+ IS the velocity of positive charges @V with respect to negative chargesdw
V. _. IS the velocity of negative chargesd¥ with respect to positive chargesaV

In any case,jm is only expressible through the use of the retasipeeds between charges.
And since the relative speeds under the GT ares#tiee in any inertial reference frame, the
invariance ofJ_ follows.

Galilean transformations of fields

Since the operator§l and d/dt appearing in the Hertzian field equations are |€adinvariant,

and sincep and jm are quantities on which all observers agree, igld quations are Galileo-
invariant too.

The field transformation laws, in passing fr&to S’, are therefore:

12



Continuity equation

Using the total derivative, one also arrives atadil€an invariant continuity equation:

0, + 9P =0 (7H)

This equation (like the corresponding Maxwellian Joiseémplicitly contained in the filed equations,
as can be verified by differentiating the equatibd) with respect to time:

fE _1dp

at e dt ©
calculating the divergence of equation (4H):
O:/JODDjm+/JO£ODEI§§ (w)
introducing the equatiomj into (m):
—~ 1dp
0=p,00, +lE———
Ho m T Ho Ogo dt

from which the equation (7H) follows.

Wave equations

Taking the rotor of (4H) and using the vector idniil D(D D\7) = D(D W/) -0% :

no(oog)=00o(y,Jd,)+0 D(/Joeoz—fj

0(D8)- 026 = 4,0 Djm"—:uo‘go%(m DE)

-0°B=p,00J, + 'UOSO%(_%] — considering (2H) and (3H) —
. . 2 =g dzé _ =g
it follows that: 0°B- /JOEOF =-u,00J, (8H)

which expresses a local constraint obeyed byBHield, described ir$, at any point in space.
The points are identified i, but the temporal variations of the field at thpeats are evaluated as

they move with instantaneous velocity with respect t&.
In a similar way, starting from (3H), it is postib obtain an equation for tHe field:

d’E _  dJ
dt2 _/'10

1
m 4 =[] 9H
TR (9H)

O%E - 1 &,

13



(8H) and (9H) are propagation equations with |doating terms (functions of charge density and
current density).
They express local constraints, but also dependnianalocal way on the speed of the deteatpr

through the interpretation of the total time detiva and the definition oﬁm.

Comparison between Maxwell’'s theory and the Hettipps theory

Let S be the observer's IRF, in respect to which thersmpositions and the field points are
described.

In the case of a stationary detectoSjnf the descriptions of the sources coincide,tthe theories
would make the same predictions about the elefotlt and the force acting on the detector.

The expected magnetic field would also have the saalee, but with different operational
meaning.

According to both theories, the magnetic field doesproduce effects on a stationary detector.
However, while in Maxwell's theory the magneticliecalculated at the position of the detector
could be used to evaluate the force experiencednogher detector with the same instantaneous
position but not null speed, in Hertz's theory tigsnot true, because the field depends on the
detector’s motion.

The different description of the sources in the tWeories is due to the fact that, according to
Maxwell, charge and current densities depend orattopted IRF, while according to Hertz-Phipps
the densities are invariant.

The question can be better understood using an dgamp

Consider a neutral magnetostatic source consisfig electric circuit in which a constant current
flows.

Assume that the circuit is realized by means ofdaal conductor at rest in the inertial system of
the laboratonys, .

In S, the circuit identifies a region of space charazeet by ©=0 and J # 0.

According to Maxwell, a detector moving at a certapeed in the laboratory frame undergoes a
force totally justified by the magnetic componehthe Lorentz force, the electric field being zero.
Instead, inSy., i.e. the IRF instantaneously co-moving with tretedtor, the force must have a
purely electric justification and thus the soureamot show local neutrality.

In Sy.i the circuit identifies a (moving) region of spat®racterized byo 0.

As is well known, different evaluations g made by different inertial observers are possible,
assuming the conservation of charge, by meanseafidh-invariance of lengths provided by LT.
According to Hertz-Phipps’s theory, if the sourseneutral inS_ then it is also neutral in any other
IRF.

Therefore, the description of the field sources miaglan observer co-moving with the detector is
different in the two theories.

In the case of a moving detectorSnthe comparison between Hertzian and Maxwelligtjstions

is more complex. One must consider the differenaeshe operators (partial and total time
derivative) as well as differences in the defimsaf force.

According to Maxwell, in a generic IRE, at every instant and in every point of the spdlke,
magnetic field must satisfy the equation:

14



0°B,,
0%By =~ Mofo—a- PYE: =-4, 0073

J is the Maxwellian current density $
The field is described as independent from the nwpehrarge intended to detect it.

According to Hertz-Phipps, the magnetic field meegisfy the equation:

- d’B
2B~ loEy——F
:uO Odtz

=-u,00J,
The spatial and temporal coordinates that are thanaents of the vector functioB are the

coordinates ofS. However, the variations oB are valued by an observer co-moving with the
detector, i.e. as if the evaluation points were imgwith velocity v, in S.

jm Is the Hertzian current density $or, by reason of its invariance, in any other IRF.

The previous two differential equations also prodddéerent solutions in the case of a neutral
source (whenJ = J_), as becomes evident expanding the total derieatis (details in Appendix
-C):

a5 0 5, 98- w0553
LB = € 0512 ~ Ho&o ot (v, )8+ (v, D]])a_+(vd m)(V, D)B} = 4,0 0{J - p,

Similarly, it can be said that, according to Maxiwiel S the electric field should satisfy:

°°o"t AT €o

According to Hertz-Phipps:
d?E_ dJ, 1
dt2 _/'10 +_|:|p

O2E -y,
Hoéo dt &

p is the charge density field B
According to Maxwellp describes the charge density exclusivel$g.in
According to Hertz-Phippg describes the charge density botlsiand in any other IRF.

This Hertzian wave equation can also be express8dhnithe form (details in Appendix - C):

v, m)E]+ (v, m)°F

IRV di. 1
(o, @, W)} = e+ L0
0

al

ot

0%E
0°E - Ho€ 06 ~Hy o{

Which highlights the role of the detector’s insameous velocity on the wave equationEof
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In the Hertz-Phipps theory, for the calculationfields, it is convenient to use their invariance
property and choos&y., i.e. the IRF instantaneously co-moves with theeder, as a reference
frame.

The variables evaluated $., will be marked by an asterisk as superscript.

The relations betwee®., andS are:

Vg =0 Fr=F =Vt t =t p=p0
J =7 0 =0 d).-d i*:iwdm
dt dt Jt Ot
In Sy, the equations (8H) and (9H) become:
_ 62
0°B~ toEe—— = ~H,00J,, (10H)
ot
_ 0%E 0J. 1
O%E - u,& = m+ 0 11H
Ho Odt*z Mo ot , 0 ( )

They are formally identical to the Maxwellian ones Sy, but differing in the description of
sources.

They only provide a consistent description at eandtant in the case of the detector’s uniform
motion (because in the case of an acceleratedtdet®&g, changes continuously) and imply the
retarded solutions:

Where the “retarded timet}, is implicitly defined by the equation:  t, =t —‘ F—F"(tgy) ‘/c

The perturbations of the fields are “seen” propagatith speea in Sy.;.

That such spatial and temporal field distributi@ne “seen” is obviously metaphorical and should
be understood as: “inferred in order to justify tieserved forces, in a manner consistent with the
theory”.

The totally inferred nature of the fields is pautarly evident in this theory. The fields, whose
perturbations propagate according to the wave emsa{(10H) and (11H), are not testable, even
conceptually.

At any instant and point in space not belonginghi world line of the detector, the electric field
may be intended as the force per unit charge pexdeby a virtual detector sharing the
instantaneous speed of the real detector and piadkdt given point at that instant.

However, where a real charge is not present toatpeas a detector, there is no possibility of
introducing a charge later in order to test a pbgtion “intended” for another detector.

16



The presence of the detector must be conceptualifemplated a priori in the description of the
electromagnetic system in question, since its stheotion influences the propagation.

Applying the GT, one can deduce that,9nthe field perturbations are “seen” propagatinghwi
speedc+u, M,, wheret, is the unit vector in the propagation direction.

This means that, given a source contained in atdomand motionless spatial region & the
perturbations of the fields propagating from tharse travel at speeds higher (or lower) tlgah
associated with a detector moving away from (ore@ghing) the region.

This wave dragging mechanism, which makes the spédceld perturbations equal to with
respect to the detector, is compatible with thé redults of the Michelson-Morley interferometer
experiments.

Irrespective of the source-detector distance, ddéated electromagnetic field, behaves as if ittkne
its destination, changing as a function of the cetreabsorber motion.

Every charge is connected with each other regadieshe distance (since all the charges must
share information about their mutual state of motio

Therefore, the total time derivative as used intH&hipps’s theory introduces a link between
fields and detectors of a non-local nature, a kihentanglement.

It should be noted that, despite the non-local tamg that acts on the propagation speed, the

electromagnetism formulated by means of the equait{@H), (2H), (3H) and (4H) only implies
propagative solutions, i.e. delayed.

17



Solutions of the wave equation

Consider a homogeneous wave equationobut the procedure also appliesgo:
= d?E
2 —_
U°E- ,UOEOW =0
and a linearly polarized monochromatic plane-wantatsn:

E=E, sin(k T - wt +¢)= E(p)

Since a constant phase can be set to zero by abkuithoice of the zero value for time, for the
phasep one may consider the simplified expression:

p=KF - wt = xk, + yk, + zk, - awt

which corresponds to a phase velocity:

Vo =K.

Introducing the solution in the wave equation (detan Appendix - D), considering only non-
accelerated detectors, one obtains:

~ d2E 1 . \]2) 9%E
DZE—,UOEOW={ kz—?[a)—(vd Ek)] }apz =0
It follows that:
1 o =\]2
kZ—F[a}—(vd ®)]* =0
And so:
w=+ ck +k [V, (eol)

In IRF S, thewave phase propagation speed of a plane wave “hooked” on a given non-accelerated
detector, with speed, in S, is:

x| =~

Y =%:ic+ v, (e02)

ph

Considering a different IRE’, moving with speedi in S, the invariance of fields implies:

E(p)=E'(p),
SO:
P=p,
which means:
KOF-wt=K'[f'-w't"

This describes a constant phase value of the watreitwo IRFs.

18



Applying the GT: rsr-vt, t'=t
the previous relation becomes: KO -wt=k'fr-vt)-w't
SO: (R—R')[ﬁ”:(a)—w'—ﬁ'm’)t

Sincer andt are arbitrary and independent variables, the ¥gliof equality implies that the
coefficients that multiply them are zero. It follswhat:

—

k'=k w=w-KI (e03)

The first result shows that, in the descriptionagblane wave associated with that given detector,
the wave propagation direction does not changkedriransition fronSto S'.

The second result describes a variation of theugaqy ascribed to the plane wave in the change of
IRF. This frequency variation is not a measuredntjtig since the measurements only pertain to

the detector.

Assuming thatS’ coincides withSy.,, i.e. the IRF instantaneously co-moving with timertial
detector ¢, =V), it follows that:

k'=k w'=w-k ¥, (e04)

Now the second result binds the angular frequenepsured by the detector with the angular
frequency of the wave describedSnin which the detector has velocity.

By applying the GT to the IRF variation, the figiglgows how the direction of any given point of
the wave front changes, while it does not changelitection of the front as a whole.

Phipps interprets the restit =k as if he were describing the aberration of ligtijch, therefore,
would be zero in the first order version of theattye

The conclusion is wrong.

The result only says that the wave veckorof a plane wave associated with a given detestor i
invariant when we change the IRF in which the wiawvéescribed.

To evaluate the Hertz-Phipps theory about lightria@ben, the change of the IRF in which the
motion of the inertial detector is described is @aoélevant question.

19



Instead, having chosen the source, it is importaninderstand if and how the wave vector varies
when the speed of a detector in the same IRF ckBange

Alternatively, we must understand how the wave mecof electromagnetic waves, generated by
the same source but associated with two detectithstviferent speeds in the same IRF, are linked.

Plane waves associated with different instantafg@asncident detectors but with different speeds
are not necessarily subject to the constraint ofakiy for their phases in a generic point of the

space at a given instant.

The same can be said for the waves associatedthatisame detector, having different uniform

speeds at different times.

Therefore, the previously used procedure canndpb@wved to infer the invariance ok to the
change of the detector or its state of motion.

For this purpose it is, instead, useful to consttlerrole of the initial conditions for determinitige

orientation of a planar travelling wave solution.
Far from the source, the wave equation is:

9’E

DZE _,UOEOW

-] o (5, 0E] +(5, W2 + (5, W, m)E =0

It can be rewritten in the form:

, = 2E - _ . dE ~ 22| _
[ E_ﬂogoﬁ_ﬂogo (8, M)E +2(v, M)—— +(v,M)°E ;=0

Consider a monochromatic source of angular frequeng, ... placed at a great distance from the

detector, so that a plane solution constitutescanrate local approximation of the spherical swefac
of the front at the detector’s position. It is enplified model of a stellar source.

Let S be the IRF in which the source is at rest.

Letd1 andd2 be two different detectordl, stationary irS, andd2, with constant velocity, in S.

Suppose there is an instant, defined a®, in which the two detectol andd2 are coincident, at
a (large) distanck from the source.

Let the x-axis be oriented as the straight linaijaj the source andfl.
Let the origin of the axes be placed into the seurc
Let S’ be the IRF in which the detectdt is stationary.

Let the origins of the axes of the two IRFs be cmlant att = Q
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Wave equation associated to deteckhrin S:

((

O%E - 1,é,

inS

Iﬁ'aums -

i Souree

))

%
C Ukt

dl
O— > X
La =
Ya=0

This equation admits, i, a solution with a propagation speed equal tf form:

E=I§lsin(lzl[ﬁ“—a)lt)

With:
Angular frequency @ = s = Wayyree
\ i 2711V i
Wavelength A g =28 = piinS _
f1 inS C({ inS source

, . o
Wavenumber k, = 1inS _ Ysource

Vpn inS

The propagation direction is coincident with thaxxs:

ukl = ux
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Wave equation associated to detect®rwith d2 moving away from the source in the direction of
the positive x-axi§Vv, // G, ):

. _ 92 0E 2 =
inS: 0% E = to&o——5 ~ Hoo (v, )=~ +(v,M)°E ;=0
ot ot
- 5 0°E _
inS” DZE—/JOeOat2 =0
%
ko
—
S e
(( inS Vd
Iﬁ'oums =0 Ia’? =L+ vd’ £
Y source = 0 — Yaz = 0
.................. (c+w) l?kl
rA >
y K,
%
e (ins
- ”
1 C 2 1
xﬁ'aume = _vd £ N Id? =
. ¢ Uk '
.}Fﬁ'ourcs =0 ; - _}-’dz =0

The second equation admits,Sh a solution with a propagation speed equal tf form:

E=E, sin(lZZ'EF'—a)z't)

S . . K,
Due to the symmetry of the system, the propagatimection is coincident with the x-axis =,

2
This means that the first equation (describing $slaene entity inS) admits a solution, with
propagation velocity 15, evaluated by (eo2), equal tor G, , [V, =c +v;,.
This solution can be expressed as:

E:EZSin(RZEF—a)Zt)

Equating the phases of the two descriptions antbdoting the coordinate transformations
(F'=F -V, t ), the expressions (eo4) are obtained.

Therefore: k,'=k,

i)
I
i)

k2
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In S
C()2 = 6()2 inS = wsource

_Vorz ins _ 27Vpro ins _ 277(C+ 0, ) _ 277 (c+v,)

A, .=
2 inS
f2 inS 6‘)2 inS a)source a)source
C“z inS C“z inS wsource
K, =K; ins = = . = + (eo5)
Vph2 inS C uk2 d C Vd

In S’, considering (eo4):

W,'= Wy g = Wy s — K, IV

. wz inS — a)source Vd Vd
wz - wz inS _( _ uk2 Wd - wsource - - a)sourc 1-

c+ U, W, C+Vy C+V,
A= _ Vo2 ins _ 2nvph2 inS _ 2mc _C+yv,
2 2 inS'" — f - - C - f
2 inS' wz inS' source
wsource
C+V,
Therefore:
._ C
w, = wsourceﬁ (606)
. CHv,
A= i ‘ (eo7)

source

(eo6) and (eo7) describe the Doppler effect, iimgerof angular frequency and wavelength,
associated with a detector moving away from thecguaccording to the first order theory.

In case ofl2 approaching the source along the x-axis:

w, = wsourceL (608)
C—Vy
FRE “;_Vd (€09)
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Wave equation associated with deted®rwith d2 moving in respect to the source in the direction
of the positive y-axi§V, 00, ):

. - ’E . \OE o -

inS: DZE—,Uosow—,uoso{z(vd D]])H +(v, m) E} =0
=

inS”: DZE—uogongf:O

The second equation admits,3h a solution with a propagation speed equal tf form:
E=E, sin(lZZ' ' - a)z't)

So the first equation (describing the same entity)iadmits a solution with propagation velocity in
Sequal toc+d,, ¥, :

E=E, sin(lz2 EF—a)zt)
For the equality of the phases in the two desaniysti one still obtains: R2'= IZZ.

However, in this case: u, ZU,.
In fact, the propagation direction must be conatistégth the description of the source in the IRF in
which the solution is expressed.

In S’, whered2 is stationary, the source is described in movemhtvelocity - v, .

Let t,,, be the propagation time, i.e. the time taken byase front to traverse the space between

the source and the detector.
It follows that the distance traversed by the waeat (the hypotenuse of the right triangle with

cathetsD andL in the figure below) is:  ct

D has a length equal to: Vg torop -

Ct,., sin(8).

So the following must apply: Vg torop = C o

Finally, it follows that:
(e010)

The expression (eol10) describes aberration acagptdithe first order theory for a detector moving
with respect to the source in a direction perparidicto the straight line joining source and
detector.
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Source X,=L
Position at -
_ Vi =0
t=- tprop
H y —
D
J
0
((
))
I.:S'aurcs = D
' _ Source
-}’ ouree —v, t .
8 : Position at =0
L
Therefore:

InS:

W, = jns = W,

source

2
V
. 2m| c+——
) 27TV, s 2m(c+0,, )  2m(c+v,sin(8)) C
2inS - - -
wz inS wsource wsource wsource
k2 — k2 o - az inS - a‘f inS — wsourct; (6011)
Vonz ins  CH Uy, By C+Vd



In S’, considering (eo4):

W' =Wy jhs =Wy s — Ky [V

2 2
T O — wsource Vd — Vd
C‘)z - wz ins k2 uk2 ISVd - wsource - - wsourc 1-

c+VL2 ¢ c?+v,”
C
Therefore:
v 2
w2':wsource(l_ 2 : ZJ (9012)
C” +V,
— Apparent Source
T Position at = 0
inS ?2
D
J
g
J
J
Xy =0 Real Source
Yo = Position at = 0
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Hertzian potentials

A zero divergence vector field can be expresseatie@asurl of another vector field.
Therefore:

B=OOA (12H)

A vector potential is determined up to the gradmfan arbitrary scalar field; on the basis of (J2H
the vector fieldsA and A'= A+ 0y are equivalent.
Introducing (12H) into equation (3H):

DDE:—ﬁ:—i(DDA):_DD%
dt dt dt

If the permutability between the total time derivatand curl operator is not evident, see the proof
in Appendix - E.

0 D(E +d_Aj -0
at

- dA . : . :
soE +E is conservative and therefore may be expressadjeadient of a scalar potential.

~ dA
E+—=-
dt ¢
~ dA
E=-0¢ - — 13H
@ ot (13H)

Gauge transformations

The constraint (12H) betwedb and A leaves the divergence @f undefined.
This implies the possibility to add the gradientasfy scalar function, the so-called gauge Ao

without altering the magnetic field. )
By applying a variation in the gauge #éf.
A = A+0y (14H)
introducing (14H) into (3H):
OOE :——:——(D DA“)=—D O0——

0 D(E +dij =0
at
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Hence: E+—=-0¢"

Arranging the terms and substitutifg with its expression, it follows that:

dA" _dA _d dy ) dA
dt

E=-0¢" ———=-0¢" -——-——0Oy=-01¢" +——
? dt ? T (¢ dt

From the comparison of the previous expression (@8t), it follows that:
~  dy
O +— | =0
(¢ +% =00

nog d¢
¢ =9 m (15H)

which shows how the scalar potential is affectedhigychoice of the vector potential’s gauge.

Gauge invariance

It is known that Maxwell’s electromagnetism is gatigvariant.
This property is due to the structure of Maxwediguations and the Lorentz force, which exclude

the influence of the divergence #f in any measurable physical manifestation.

The gauge invariance also applies to electromagmedescribed by the Hertz-Phipps equations.

To verify this assertion it is sufficient to seartie expression of the force (or of the electratd
acting on a charge-detector according to Hertz{p4igpequations, expressed in terms of potential,
and apply a variation of the gauge.

E:_D¢_T:_D¢_E_(vd M)A (16H)
since: 0(am)=(am)b+(bm)a+an(oob)+bo(@oa)
by placing: a=v, b=A
it follows that: 0(v, &)= (v, m)A+(Am)v, +v, D[00A)+ AD(@O OV,)
O(v, A)=(v, m)A+ o +v, 0004+ o
(v, m)A=0(v, (&)-v, 0[0OA)
E= _D¢_?9_f\_ D(\?d D&)+\7d D(D DA) (17H)
Since: F=qE

28



it follows that: F q( D¢—C(;—'?j (18H)

F q(—w—%—ﬂ—q(% m)A (19H)
If=q(—D¢—%—f‘J+q\7d 0(00A)-qo(v, &) (20H)
F = F o —q0(v, ) (21H)

For the force on the detector, Hertz-Phipps’s @quatimply an expression equal to that of Lorentz,

corrected with an additional term.
Applying a gauge transformation to potentials,ingroducing (14H) and (15H) into (20H):

AN

., . 9A
R AT

J+q\7d 0(ooA)-qo(v, &)

' =g _D(Wﬁj :t(Amw)}quD[DD(Amw)] q 0V, dA+0y)]

£ =g -0p+ 0¥ ——aA—aD‘”}qu 0[ooA]-qo[v, A]-q0ofv, my]

I dt ot ot
N o] dA 90 . - S .
F'=q| -0O¢+ a‘” m(0y)- 50 a:"}qum(DDA)—qD(vd EA)—qD(vdDDw)

-0¢ + (v, m)mw—%—f +q\7dD(DDA) qD(vd ) qO(v, M)

T
>
1]
o]
1
l
| I |

= =—qD¢—q%—f‘+ qv, D(D DA)—q D(\?d D&)—q 0(v, M)+

o
=<
2
]
A

Using the vector identity: D( )E( )b + ( )é+aD(D Ob)+b0O(00a)
setting: a=v, b=0y

it follows that: 0(v, My) = (v, M)(Og)+ (0w m) v, +v, 0(000yw)+ 0w 0(0 0v,)
Because the curl of a gradient is null andbehaves like a constant with respect to any dpatia
differential operator, we can say:

0(v, my) = (v, m)(@y)

Therefore:
E" = q[—m¢—%—'ﬂ+ qv, D(D DA)—q D(Vd D&) which meansF" =F.

So gauge invariance applies.
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Hertzian equations expressed through potentials

Introducing (12H) into (1H):

DEE—D¢—‘Z—'?]=

d .
0%p+—0O0A=-
" G

o“’) |‘Q om |b

Introducing (12H) and (13H) into (4H):

- < d dA
OO0 oOA)=u,Jd +uc,—| - ——
( ) Hodm T Hy Odt( @ dtj
Using the vector identity: O D(D O A)= D(D D&)— %A

- - = dO d?A
D(D DD\)_DZA:,UO‘Jm _ﬂogowqj_luo‘go?
d2A

. - - dg
D(D EA)—DZA: o, —,L10£0D——,L10£0F

dt

- d2A _ dg -
DZA_,UOEOF - D(D DA"'/JO‘&'OE] =~y dn,

Thus the new system of differential equations, Whiaplaces (1H), (2H), (3H) and (4H), is:

0% +%D A=-£
€0 (22H)

-
A D(D Dﬁ\+uo£of'j—fj = 11,3,

D02 A= loEy—s —
:uO Odtz

which must be completed by the force law expregséerms of potential, i.e. (18H).
The decoupling of the equations of system (22H) lmamwbtained by using the properties of gauge
invariance.

Lorenz-like gauge: DA = -yt d(iL @)

With such a gauge, system (22H) takes the form:

D°@, — UoEe— 5 d¢;L = gﬁ
AL 0 (23H) - Lorenz
DZAL Moy dt2 =—HyJ

with: E=-0¢, -dA /dt
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The equations have propagative solutions for bothrgials.

It should be noted thal\ is not uniquely defined. The gauge}] acts on the divergence but does
not make it unique.

If A and ¢, are a pair of potentials satisfying¥), then this same conditiofY) is also satisfied

by A 'and g, ', defined by

o o dA
A'=A +041 ¢L:¢L_E’
d’A

where A is the solution of %A — /,1050F =0

The potentials, as well as the fields, are attatub points in space at rest in the IRF, but eatakl

in points that are moving with the detector’s vélc

In the IRF instantaneously co-moving with the d&iedhe potentials — calculated using the gauge
({2}) — are described as propagating at speed

Instead, the potentials’ propagation speed is de=tas different frone in other IRFs.

Using a different gauge, for example:

—

Coulomb-like gauge: OMA. =0 (©0)

system (22H) takes the form:

D2¢c = -£
€o
— (24H) - Coulomb
= d? = d
0% A _,UOEOTA;C = —lody * /’IOEOD%

with: E=-0¢. - dA./dt

The system’s first equation has an instantaneouwso@w potential as a solution.

The second equation provides propagative solutions.

The forcing term has a local component, which igpprtional to the current density, and a non-
local component, which is proportional to the geadi of the temporal derivative of the
instantaneous scalar potential.

It is clear that, just like for Maxwell's electrompaetism, gauge invariance allows the use of

different pairs of potentials, with different pramadion speeds, obtaining the same physical
predictions.
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Calculation of force between steady current elemedcording to the Hertz-Phipps theory

Consider a magnetostatic situation with two statgrcircuits in which continuous currents flow.
Evaluate the forces acting between the circuiesmants.

Let the closed circuif ¢, traversed by a constant current with magnitugdebe the source.
Let I', be the second closed circuit, traversed by a aahsurrentl ;.

Let the conductor of the circuits be thin but wikgligible electrical resistance.
LetS_ be the IRF of the laboratory in which the condustare fixed.

Let drs be an infinitesimal portion of’g, placed in positionrg and oriented as the positive
direction of the current.

As a detector, choose the charge elendgt (conduction electrons), moving at a constant speed
v,and associated with an infinitesimal line elemeht of I, , oriented in the positive direction of

the current. Lef, be the position ofll, .

dl,

W.

Treating the wire sections as infinitesimal, thecwits are described by lines, one-dimensional
entities immersed i3,

y

The link between these quantities is obviously: dg, = -1, dt =-1,

Let:

d®F, force exerted or di, by I dl,

/. /)
y
Y
/ g
y
y
y
y
j P

(See Appendix - F for a note on alternative histdly proposed expressions of the force between
current elements).

d?F, force exerted on dig by I dI,

In S, in which the conductors are stationary, the wises described by charge densities: the
positive pq, (F), o,.(F) — representing fixed charges — and the negajine(r), o, (F).
representing conduction electrons in motion.

Adopting the hypothesis of neutrality for condustonplies:

ps. (7)+ ps (F)=0; Pu. (T)+ py-(F)=0.
Because GT preserve length invariance, this néytremains true in all reference frames.

Furthermore, due to the neutrality, Maxwellian dthertzian current densities associated with the
sources are equal:

j=3

32



Consider the potential equations with the constramposed by the Lorenz-like gauge, system
(23H). Adopting the hypothesis of neutrality of teeurce, the system is reduced to the single
equation (the subscript “L” is omitted for brevity)

- d?A -
DZA_IUOEOF = —Hod,

In S4., i.e. the IRF instantaneously co-moving with tie¢edtor, the equation takes the form:

2 A aZIB\ _ 3
O A_ILIO‘EOW =M J,

In Sy.1, the conductors are not stationary, but movindp welocity — v, .
The vector potential produced by the single cur&ﬂMentjdeS = |Sd|;, in the detector position,
is:

e\ ] dl.
aa(r )= i \rd*(t)—:s*(tR)\

Under the condition:

Therefore neglecting the propagation delay:

R di,
dA( F, ,t)~ A(:,TS ‘rd*(t)—sfs*(t)‘

Remembering that the force on a charge, in any t8f,be expressed as:

= = dA
F :qE:q[—D¢—E

that, inSy.;, becomes:

0A
ot

F=cE= q[— O¢ -
Considering the neutrality of the source and thestraint between the partial time derivatives
expressed % andSy., the force exerted on the currendl, by the element (i will be:

d2F, =dq, ¢E =-I, %[— a(O'A)}:l i {a((ﬁ)%% ) 4)}

vy at’ Ty, | ot

For the assumed stationarity bf in S, it follows that: %td—i‘) =0

So:
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d?E, =1, o (v, m)( )
Vd
2F — dl (o Hyls drs :ﬂoldls% < drs
a7y =14 v, (% DD)[ AT |rj,—r;|] A v, (% DD)(‘Q—VJ

Using the identity( v, I0)C = D(Vd [C )—\7d D(D 0C ):

dzlfd::uold|8% D[vdmrsj_vdm DD( drS J
Am vy |Fd_rs| |Fd_rs|

d°F, _Holgls diy v, [l O % -v, 000 Hdlsa

47T Vd |rd _rs| |rd _rS|

Mathematical note:

1 r-r' d._..
] = - = - r-r
r=r |F-rf  |F-F)
di e 0, . . : :
DD(Q AIJ: 3(r—r)DdI:— —— [dl (Proof in Appendix - G).
|7 =7 7 -7 |7 =7

Using the previous results:

2 ::UOIdIS% o | - Ui | _ Uy T
d“F, A7 v, {vd ml{ |}S|2J vdD{ |Fds|2 Ddls}}

= (I I
d2F, = Hols 2d d_d{_(v
Amry” Vy

o
a
» !
~—
<
o
n
+
<
o
O
—
]
o
(%]
|
o
n
~—

Since: —%-V, :—drd (the moving charge is negative, therefoig is opposite to the positive
Vd

direction of the current, which is the directiondf ), it follows that:

Q.

d’F, =%ﬁd|;[(dr m_.s)uds_drd D(Ud Odl, )]
S

dzlfd =%[(dl} mrs)uds+dfd D(d# DUdS)]
ds

The second of the two terms coincides with the esgion of Grassmann'’s force, the force expected
by Maxwell's electromagnetism.

—

d’F,

_Molsly
armr

(o, @i, ), +d2ES
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Using the identity: a0(b 0¢)=(ate)b -(am)c, so:

it is possible to express® Ifd in another form:

d°F, :% [ (o, @i, )tys + (o, i), —(a, @i, ) |
ds

a2F, =#olsbe [(ar, my, )]

So the force is oriented likell .

By reversing the roles of source and detectorfahewing expression is obtained:

d2F, = Holsla (g m,)ar]

Amr,’

These expressions are not compatible with reality.

Considering, for example, the case of linear paralbnductors placed at distanddrom each
other, the integration of the elemental forces gltre wires’ path according to Maxwell’s theory
(but also according to the Ampere’s original lawplies a force per unit length, attractive in the
case of currents in the same direction, with amgét

LA ANY
L 2d

By repeating the same integration, using the esprasof the force according to Hertz-Phipps’s
theory, since the elemental forces lie on the dameeof the wires, no attraction is predicted.

In its present wording, the theory is thereforeb® abandoned due to incompatibility with
experimental observations.
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Some considerations on predictive failure and an itial proposal for amendment

The previous expressions of the forces betweeresuglements show that the relation between
force and magnetic field, created only implicitly the use of the total time derivative in the field

equations, fails to represent the force componemtcteéd perpendicular to the motion of the

detector.

It is not possible to adjust the law of force bggly adding a term, thus adopting Lorentz force,
due to the invariant nature of the fields.

Since the fieldsE and B are invariant, the forcgE is also invariant on account of the invariance

of g, while the forceqV, OB is not, due to the dependencevpfon the IRF.
And it does not seem possible to conceive a defmivf force with an invariant and explicit role

for B that is compatible with observations.

It does not even seem possible to modify the themmake it covariant with respect to the change
between IRFs, since covariant fields require cardrsource terms. Furthermore, it is impossible to
have a covariant charge density if one assumegalidity of the GT and conservation of charge.

| propose an initial amendment to the theory, whidserves its invariant character but changes the
description of the sources with respect to theaets motion.
Since the effect of this motion must be invaridhg detector’s state of motion cannot be described

using V,, which is the speed evaluated by an inertial ofeserdue to the arbitrariness of the
observer. So the relative velocities between detesid sources must be considered.

Therefore, | assume that the divergence of thereddteld (from the detector’'s “point of view”)
does not depend solely on the source charge desitierstood as the number of charges in the

unit volume), but on a scalar function, an equintidensity o,,, function ofv,g, which is reduced
to p for v, = 0.

OCE = pm(vds)/go

It should be noted that the current density inHlegtzian theory already plays a similar role.
In fact, in the general case of a non-neutral smuig introduces an effect of the relative velocity
of the detector and source on the curl of the miagfield produced by the source.

To clarify this proposal, consider a limited regiohspace with the presence of a positive charge
with density o, (F,t) and a negative charge with densiy(F,t).

The net charge density ig= p, + o_

The volume elemendV , located inr, at the instant, has a total electric charge:

p(F.t)av =[p,(F.t)+p (F.t)]av

If, in S, all positive charges contained @V share the same average velocity while all the
negative charges share the same average velacity is possible to define the following current
densities:

jr; =P, (\7+ - vd) (25)
n=p (V. -v,) (26)
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The Hertzian current density $is then expressible as:
Jp=dm+3, (27)
Indeed:

—

Jn =0V, ~Vy)+ o (V. =V,)= p,V, =, Yy + .V~ p_ ¥y = p, ¥, + p_V_~ pV,
which coincides with the original definition.

It has previously been shown that, by adopting @€, Hertzian current density is invariant to
changes of IRF. It has also been shown that itariamce corresponds to the possibility of being
expressed by means of the only relative speedseleeteharges:

'Jm =P vrel+d +10— vrel—d =P Vrel+— +10\7rel+d =p- VreI—+ +10Vrel+d

So | define:
- — |2
+ 1 T+ e — 1 — — — — V+_V
pm=10++?Jm|:(’v+_Vd):p++?10+(V+_Vd)[ﬂv+_vd)=p+{1+%] (28)
. — |2
_ 1 - . . 1 N V.-V
,0m=,0+E3m[(’V‘Vd):,0+EP(V‘Vd)[GV‘Vd):P{1+%] (29)
P = P+ P (30)

The scalar fieldso}, (V... ), 07 (Vs ) and p, (V.. ,V,c ) are invariant — meaning they have values on
which all inertial observers agree — because tle@edd on the only relative speeds. It follows that:

2 2 =
LV Y -2V, IV,

1
2c?

Pm = p+(1+

\7+ W+ _2\7+ |yd +\7d Eydj_
2 _10+
2c

_ _ _ 2 2 _hg
o= p 1+ VI -2V I, +V, ¥ ) _ o1+ VS +v," -2V Y,
2c? 2c?

PV, +p, V. N, + p V.U -2p,V, ¥, =2p_V, U
2c?

P =Pt P =P+
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Alternatively:

P =Pt P =Pt o I, = V,)+ ot T - )=
= p, +%J v, —212Jm137 + 0. +—J v —%J v,
=p- 22 (j j)EP +21J EP+1J,;E7_=
=p‘2—i25m57d+2—i2j%57++2—12j%@—
Since c= ! that means: 1 K it follows that:

NP S 2c%, 2

P2 P B (v, M, +p,V, 0, + p. V.. ~2p,V, 0, ~20.¥,W.)  (31)
E & 2

Or:
PP Fo( 5w, +3im, +3;) (32)
E & 2

Referring to a generic IRB, in empty space the equations for the electrontagfield, valid to
first order ofv /c, become:

OCE = Pm (1Hm)
‘90
OB=0 (2H)
- dB

O0E=-— 3H

at (3H)

O0B = uyd, +uoeo% (4H)

The force law: F=qE (5H)

It should be noted that this formulation provides the existence of forces exerted by currents on
fixed electric charges.
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Calculation of force between steady current elesyetcording to the modified theory

In S, the system is described thus:

Source the circuitlg, in which | flows.

The elemen'dlﬁS of I'; contains the negative chargeg_ (conduction electrons moving at velocity
Vs_ in ) and the positive chargeg, (positively charged metal ions, motionlessiix:

dgs. =-lgdt=-1g — dgs, = -dgg_
Detector 1 the negative chargelq,. (conduction electrons moving at velocity,, in S),

associated with the infinitesimal portiath, of the circuitl", .

dl
dg,. =-l,dt=-1,—2%
le
Detector 2 the positive chargelq,, (metal ions, motionless 18 ), associated witldﬂ, .

dly

dg,, =-dg,_ =1
d d dvdl

In a generic IRFS, the potential equations with the Lorenz-like gabbgcome:

d’¢ _ p
]2 £ = _Fm
¢ :uO Odtz ‘90
-
O0%A-u € = J
Ho Odt ~HoInm

Referring t0Sy., i.e. the IRF instantaneously co-moving with tie¢edtor, this system becomes:

0% - 1, &, (j:qg =0%0 - ly&, ( ) ,0
-
02 A= &, (jt*p)‘z =02A-u (6 '3‘2 N

Two different IRFs will therefore be used, eachneoving with the respective detector.
Given their invariance propertieg,, and jm can be calculated in any IRF, therefore alsg in
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For detector 1, i1%, :

p=0 v, =0 V. =Vg_ Vy =V,
'jr;l =P. (_.+ _vdl): on \7d1 - jr;l m+ =0
Jm =0 (a—_vdl) - Jn V= p. (V—_vdl)m;
Ja =PV, + PV = pVy, =p_V_ - I Wy = p_V_ ¥y,

So, inSd|
2
D2¢1_,uo‘90( ¢)12 z_iml Z&Jml[ﬂzvdl v )
0
- 92 A -
O*A ,uo‘€0( tfjiz = —Hod g

Therefore, the infinitesimal contribution to scalaotential perceived by detector 1, placed in
position ﬁ,* and generated by the infinitesimal source plangabsition FS*, is:

)P dv, =, J 2y, V) dv,
R o T R T T era

I's

Considering thatl,, Sezdl, = I dl, it follows that:

dg (F* t): ~ Ho jml [szdl_v—) Sezdlg _ T Ho Isdrs [qzvdl _\7—)
o st R 0-r ) 87 |n 0 G

Neglecting the propagation delay:

~ _Ho Isdrs [qzvdl_v—)
87 |5, (1)-7(1)

dg, (7, t)

The infinitesimal contribution to vector potentisi
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For detector 2, i1%, :

p=0, v, =0, V.=V V, =V, =0
Jro =P, (V, = V,,) = 0 - Jrp [, =0
J=p (V.-V,)=p V. — J, 0 =p VI
J2 =PV APV —pVy, =p V=T, o Jio ¥y, =0

= 2\ _ Pm2 dVs _Ho jml A dVs

t) = =
W)= e T O-r ) 8 nf)-ra)
oM I Sexdly gy lodigV
)= e T O-r ) 8 )l

, ledig ¥
87 |7, (t)-Ts(t)]

dg, (F,.t) =

The vector potential perceived by detector 2 isléwvant for force calculation, given that its total
time derivative is certainly zero, because of theetindependence of the current that nullifies the
partial derivative time inS_. and the stillness of the detector that nullifiee effect of v, [

operator.
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The force on detector 1 is:

d°F,, = dq, E =1, %{—D(dm)— o{ch)

Var

B} dl, [ , i
szdlzld V_d_D(d¢1)+(Vd1DD)(dAi)]
di
B} di Uy odigf2v, -v.)) Hpls di
d2F, =1, —¢| O - Fo Zs=s 2V TaEeli
- Va1 ( 87 |rd rs| ]-‘-( dl[ﬂ])( an |rd rs|

4mrys” Vg

Holsly dld J I i I i I
_ [dilg Uy —dl, O\ Uy Udl

4ﬂrdsz{ 2v,, s Hds d (dS s)

Since the moving charge is negatiwg, is oriented in opposition to the positive direntiof the

current.
dl,

So: v v, = —dl,
. I dl ) L
a2, =Folste J _ % G mi g +di, Oldi. DOa 33
. 4%2{ . V- @150+l 0 ds)} 33
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dl,

The force on detector 2, remembering dg,, =-dq,. =1, —, is:
le

d2E,, = da, dE=|dd'{ O(dg,)- (d’&z)}—ldﬂm(wz)

d1 ot Var
le 8 |I’d s | Am vy 2 |rd_r3|
Holyls dly 1 I dgdl, 1
Holals Ty g, = 'UOU'3—‘3'v_EjIS——:’S2
4m vy, |rd_r| 47T Vg 2\ ||
So:
- |
d2F,, = Holsly [ dly iV Eﬂ (34)
Amr, 2le

The total force acting on the circuit portiai, , then, is:

Expression (35) coincides with the expression @sSmann'’s force:
d?F, =d*F

Maxwell's theory and the modified version of HeRhipps's theory predict the same forces

between circuits in stationary conditions.
Instead, the two theories would make different mtezhs if one replaces the neutralized current of

circuit [, with an electron beam in vacuum.
If, however, one considers the case of a singlatmiiarge detecto, , motionless ir5., the new

theory predicts that the element of the currendi should exert a force on it equal to:

o da,)
atSL

dlfd =Qyq dE =Qy { (d¢2) }:_Qd D(d¢2)

ldig ) ] .
_Q S¥'S 0°S Q a dl ]
d [877' |rd _r3| 87Trds d S Yds
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A second proposal for amendment

As already mentioned in the introductory part oistlwork, experimental results suggest the
introduction of some kind of instantaneous intemacinto the description of the electromagnetic
phenomena. The existence of instantaneous intengctippears conceptually compatible with the
non-locality introduced by using the total timeidative.

It is necessary to further modify the theory — dibsal by the equations of fields (1Hm), (2H), (3H)

and (4H), by the definition of force (5H) and byetHescriptions of sources (25), (26), (27), (28),
(29) and (30) — which only provides solutions wfitlite propagation speed.

The new equations are:

E=E +E, (al)
B=B +B, (a2)
OE, =" (a3)
gO
OOE =0 (ad)
O, = (a5)
_ dB

O0E,=—— a6

2= "4 (a6)
OB, =0 (a7)
O0B, = u,J,, (a8)
OB, =0 (a9)
008, = ue, 9E (a10)

dt
with:
Jn=p,(, -Y,) (all)
Jn=p-(V.-V,) (a12)
J. =3 +3- (a13)
+ 1 T+ o =
P =P, = I 1V, - V,) (a14)
2C
_ y

,Om—P_+2—Csz - =Y,) (al5)
P = Pt Pry (al6)
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Continuity equation

Differentiating the sum of (a3) and (a5) with respe time:

%(DEE):%[DE(Q'FE)]:DDC;E:zf_td(ﬁm ©

Calculating the divergence of the sum of (a8) aidy:

DEﬁDDé):DEﬁDD(él+§2))=ozuODEﬁm+uogoDB(:T|tE s0:
ﬂoDEﬁm+ﬂogoDG(jj£tl:O ®
- : . 1dp, _ .
Introducing ) into (¢): MU E.l] + UEg— =0 So:
g, dt
0.+ 9Pm = (al7)
dt

Poisson’s equations and wave equations

0%B, =-u,00J_ (a18) instantaneous
2p
2B, — i, ddt82 = €, OddtBl (al9)propagative
2 = 1 .
0°E, =—10p,, (a20)instantaneous
EO
) = d?E,  dJ d2E, .
U°E, — Uy&, ek My at + 050? (a21)propagative

Proof in Appendix - H.

E, and B, can be called the instantaneous components @f¢otric and magnetic fields.

E, and B, can be called the induced components of the @eatd magnetic fields.
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Absence of sources

Considering the fields’ instantaneous componehts,cbndition of “absence of sources” is true in
every point of the space in which the charge dgrmsitl current density are equal to zero.
In those regions:

0°B, =0 0%, =0

Instead, considering the induced components offitlds, in every point in which the charge
density and current density are equal to zerowdnee equations reduce to:

d2E d’E,

d’B d? Bl
0°B, — UpEy——2 = O%E, —2=
~HMHoéo—75 = Hobo— 75 — Hoéy at? =Hoéo— 5 dt?

dt? dt?

The forcing terms are second order total time @gnes of the instantaneous fields and they are
continuous functions which extend beyond the regmecupied by the charges.

So the wave equations do not become homogeneousdiataly outside these regions, but only at
distances that are large enough from the chargeenider the contributions of these continuous
functions negligible.

Thus, the radiation sources would not be point-ilkkehe same way as the elementary charges
which constitute the sources, but would be extendeslnd the charges and described by

continuous distributions, decreasing accordingy/t3 .
At a great distance from the sources, the equadomspproximated by their homogeneous forms:
d’E

0?E, = y&,——2
2 = Moo at?

d?B,

0B, = u,£,——2
o = Moy dt2

which describe the far field propagation.

The instantaneous equations (al8) and (a20) remmaiitered in any IRF.

The propagation equations (al9) and (a21), foramelerated detectors, $3.,, take the form:

~ 9°E 0J 0°E,
0%E, — Ho&, ot == Uy ot tHoEo— > ot 2
9%B, _ _ 9°B
/’IO 0 at /’IO 0 Ay 2 at

With respect to the wave equation at a great distdrom the source, the procedures followed
using the previous version of the theory are afijplicable.

Therefore, regarding aberration and Doppler effebts relations (eo6), (eo7), (e08), (e09), (eol0),
(eoll) and (e012) are still valid.
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Introduction of potentials

0 OE, =0 means thaE, is conservative, so it can be expressed as:

El = —|:J¢l (3.22)

= _ P _P 24 __P
O, =" = Of-0g¢, )= =N 0%¢, = —Fm
g, [ﬁ ¢1) , ?, ,

OB, =0 and OB, = Oimply that B, and B, can be expressed by means of potential vectors:

B, =00A (@23)
B, =00A, (a24)
So, calling: A=A +A,

B=8+B,=00A+00A=00(A+A)=00A (a25)

Introducing (a25) into (a6):

OO, :—%:—%(D DA)=-O D%‘ = DD(EZ+2—?]

0
- dA. . . ~ dA _ _
It means that, +E IS conservative, so it can be expressed IE;:FE =-0¢,. So:

£, =0, - 90 _ 9% (a26)

Equations (a23) and (a24) leave the divergenca aind A, indefinite.
This implies the possibility of adding gradients afly scalar function (nameable gauges) to
potentiaIsAL and Az without altering the corresponding magnetic ﬁ;e@ and I§2.

Effect of a change in the gauge Af

- A - A

By applying a gauge variation: A" = A + 0y, A=A +0y,
So: A" = A+0y, +0y,
and introducing this expression into equation (a6®llows that:
OOE, =_4B _ —i(m DAA):—D gdi
dt dt dt
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B, ~_dA" _ dA dA, d )
=-0¢, ~———=- D +
¢2 dt ¢2 dt dt dt ¢’1 l/’z (¢2

From the comparison of the previous expression (/aﬂﬁ), it follows that:

d‘/’l d‘/jz —
(¢2 dt + dt j_D¢2

dy, , dy, | _dA _dA
dt dt dt dt

dg, _dg,

Consequently: b, =@, i

which shows the effect of the choice of the vepiatientials’ gauge on the scalar potengal

Gauge invariance

Gauge invariance applies. To verify this assertibis, sufficient to express the electric fieldiagt
on a detector according to the new equations egpde terms of potential, and apply a change of
the gauge (details in Appendix - I).

Equations expressed through potentials

Introducing (a22) into (a3):

D[ﬁ‘D¢1)=% S0 DZ¢1=_%
0 0

Introducing (a26) into (a5):

dA dA, oo od _ ood_
0 0%, +——0A +— 004, =0
EE %275t J > Pt g A G

Introducing (a23) into (a8):

00(00A)=md, 00 mA)-02A = 43, 02A -0 A ) =43,

Introducing (a24) into (a10):

D(D O AZ): :uogoj_lf o)
(O A,)-024, = %{—wl g, - 9A %—?J
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dt? dt? dt dt
In this way one arrives at a system of four equtio

< d?A d? dg, dg,
D2A2 _:Uogo—Az ~Hobo 5 Ai (D qu t Moo~ T Hobo—— j 0

D2¢1 = —&
0
0%, +%DD&1+%DD&2 =0
(a27)

%A 00 R )= -3

olzli2 d?A - dg, dg,
Az Hoéo dt2 ~Hoéo 0742 _D(D%+NO€OT+/’IO€O dt =0

The system can be rewritten in a simpler form bypaithg the following choices of gauge:
O =0 (v1)

dg, dg,

gt Hofogr (v2)

O Da‘z = ~Hoéy
In such a case the system becomes:

O,
0 2 T Ho¢‘o 2
dt dt (a28)

Az_ﬂ

O A, = [o&, a2 Hoéo dt2

which must be completed by the force law expregséerms of potentials:

ﬁ=qé=q(él+éz)=q(—m¢l 04, - dd? dd?}q(—w—‘i—f] (a29)
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Solutions of system (a28)

For a non-accelerated detectorSin, system (a28) becomes:

D2¢1: &

‘90
0%¢ 0%¢
026, — &, 6t22 = 1y&, atzl

(a31)

Dz'&i: /Jojm
- %A, 02 A
TR G = M

The instantaneous equations, which retain the sfnme in any IRF, have the instantaneous
solutions:

_ 1 o.(F 1)
¢, (\r,t)= s dV (a32)
l( ) 4ﬂ€0all_§[)ace| _r|
attime(t
A(f t):ﬂ I jm(F',t) dv (333)
V) e

all space
attime(t)

The wave equations with non-local forcing termsehsolutions with propagation speed equal.to
The forcing terms are not concentrated on chargedibtributed in the space around them.
They are continuous functions, decreasing accoraig .

The solutions are:

62¢1(Fl’t_| r-r |/C) az¢1[rl(tR)’tR]
=) _ _ Hoéo ot’ — _Hoéo ot* '
:(71)= 471I |7 -7 V= 4nj | F(t)-7(t) | v (a34)
0’A(rt-|r-1|/c) 0* Al (te ). te]
A (e +)— _ Moo ot’ v _Hoéo ot* '
A(rt)= 4nI 7 -7 N==r J |F()-7(t) | v (235)

t, is implicitly defined by: t, =t-| 7 -7'(ts)|/c
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Some additional considerations on the new theory

The relativistic constraint which requires the spdienit c for the propagation of energy and
information is consistent with the idea of locatihg energy in the field.

It is assumed that the electromagnetic energyheaproperty of being placed with a certain density
in the space between the charges.

u =%£O ELE +2i BB s intended as energy per unit volume;
Ho
= 1-_ = . . . .
S=—EUB is intended as energy transferred per unit fi@reunit cross-sectional
Hy
area,
d :%é is intended as momentum per unit volume.
C

This interpretation shows its usefulness in diffiiérigtuations, but it is less than satisfactoryause

it is irreconcilable with a point-like descriptiaf the electric charges.

In fact, from the above definition of electromago&nergy density, the energy associated with the
field of a point charge has an infinite value.

Considering the charge dynamics, the need to e&cthd (infinite) contribution of such energy
from gravitational or inertial properties (i.e. thrass) of the charge shows the limits of consistenc
in the preceding assumptions.

In the new theory, assuming the existence of inateous interactions (action at a distance) and the
fields’ dependence on the detector’s state of motilee idea of spatially placeable electromagnetic
energy seems to loose further credibility.

It seems more natural to interpret the energy aslaional property associated with the whole
system of electric charges.

Only the phenomena of absorption and emission wioale a location in space.
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Possible extensions of the theory

Higher-order theory according to Phipps

Phipps proposed to extend the applicability oftheory beyond the limit of the first order (calling
this version Neo-Hertzian), assuming the invariaofcéhe following differentials:

2
1 dr dr? =z =97 with: dr? = dx? +dy? +dz?

C2
2: or

In the first case, the differentiatlr and dr refer to coordinate increments associated withspi
successive events, belonging to the trajectorysingle particle.

dt is the time interval between such events, meadwyexdclock at rest in the chosen IRF, calked

It is therefore a differential of IRF coordinateng.

dr is the time interval between such events, meadwyedclock at rest with respect to the particle.
dr is the spatial distance between such events, aemlunsS.

The invariance ofdr must be intended in the sense that all observenghatever state of motion
will agree on its numerical value.

The value of proper time may be (ideally) read on a clock co-moving with garticle.

d denotes a separation between events on the sarttdimeo

In the second case&)r indicates a spatial separation between pointsnigeig to an extended
structure (like a standard meter), which meanstadce measured through rigid bodies at rest in an
arbitrary IRF.

0 denotes a separation between events on differemthmes at the same coordinate time.

From the definition ofd7* (considering the positive root only):

2 2 2
dr = dtz_sz EZ 1—%%: 1—V_2 :i
\ c dt V= c?dt \ c y

The proper time used in electromagnetic theoriiésproper time of the detectar=r, .

The new field equations are obtained by substigutire non-invariant time with the assumed
invariant timer =7, .

. p _ _ L dE -
Ok =X O0Mm=0 UOE=—-—— a0dB=u.J. + Uu.E.— J =J-
£ dr Hodm T Hy prge PVy

52



Problematic nature of such choices

The adoption of a proper time in accordance withppdis assumptions leads to paradoxical
predictions in respect to the assumption that aibsaimultaneity exists between spatially separated
events.

To clarify this statement, consider two genericrtiaé detectorsdl and d2, i.e. two classical
particles with a uniform state of motion with resp® any IRF.

Let S1andS2be the IRFs respectively co-moving with andd2.
Therefore, speaking of the detectors’ proper timesquivalent to speaking of the coordinate time
of SlandS2

To simplify the situation, assume that there israarsection of the worldlines of the detectdfs
andd2.

This means that the trajectory @f intersects the trajectory d, and that the positions of the two
particles coincide in the intersection.

Let us use this event of coincidence to make aagaivsynchronization of the clocks carrieddiy
andd2.

Consistent with Phipps’s definition of proper tinogie can say the following.

In S1, the instant, of its coordinate time must correspond to valueead on the clock carried by
d1, and to valud, read on the clock carried lol2, with:

_ t
t, = YVa inSlzl/\/l_(VdZ in31)2/02
Vi ins

Vo inss 20 = Yoo ina >1 = t, <t

In S2, the instant, of its coordinate time must correspond to valyeread on the clock carried by
d2, and to valueg, read on the clock carried loht, with:

* f
t, = 2 ydlinszzl/\/l_(vdlinSZ)z/Cz
Vains2

Vi insiz 20 = Yains: >1 = t, <t, <t,.

We may therefore conclude that, in the event o ‘ttock carried byl2 marking the timet,”, the
two inertial observers cannot agree on the timekathby the clock carried .

Since y is a monotonically increasing function of the miedaf the detector-inertial observer’s

relative velocity, the proper time of any deteatomotion with respect to the adopted IRF should
flow slower than coordinate time.

And it must be true in every SRI, given the arlitress of its choice.

The adoption of these constraints rules out theipiisy of a description of space and time which
admits absolute simultaneity between distant events
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Searching for alternatives

The simplest alternative approach, which keepsntade of invariance of the two differentiadsr

and dr , is the following.

It postulates the existence of a privileged refeeginameS,, in respect to which the time flow is the
maximum. Namely the beating of a clock at resijnvould have the maximum frequency.

The most natural candidate for such a privilege Wuld be one in which the dipole component
of the cosmic background radiation vanishes.

Let t, be the coordinate time &.
Given a generic particld, identified inS, by the vectorr,, (to), one can assume the invariance (in
the sense that all observers will agree on itse)abd:

2
2_dr0d

dr, =, dt, >

c

intended as the particle’s proper time differentiadollows that:

dt, ¢ dt,’ ¢y,

de = [1- 1 drOd

V, is the particle velocity it% (its absolute velocity).

Vv, dt Vv,
dr, =,/1—C;‘2 dt, =y—d0 1y = 1—? dt,

Using the coincidence of the proper time of a umifonoving particle and the coordinate time of
the co-moving IRF, new transformation rules betwidh can be obtained.

Consider a generic IRE.

Let (,t) and(F,,t,) be the spatial and temporal coordinates of theesarant irs andS,.

Let Vs be the velocity o8 in S.

Let us choose the coordinate systems so that thm®of the axes in the two IRFs coincide at the
chosen zero time.
The transformations can be expressed vectorially by

F=r, -Vt f=to (T1)
Vs
The inverse transformations are:
[y =T +Vg pt ty=yst (T2)
2
with: Vs =]/ 1- \232
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The originO of theS-axes is identified by the vectors:

F(O)=0, inS F,(O) =V, ys t =Vg t,, in S
. . . o . . dr,(0)
Therefore, inS, O is described as moving with velocity: V(0)= dt =Vs.
0
The originQy of theSy-axes is identified by the vectors:
r(0,) =0, inSy: F(O,)=-Vaty =-Vs ys t, inS
. . . o . 3} dr(o,) .
Therefore, iSOy is described as moving with velocity: v(0,) = q = Vs v

The speed 0Dy evaluated by is greater than the speed®@kvaluated byD.

Absolute simultaneity is recovered with these tfamsations, but the anti-symmetric property of
the relative velocity is lost.

(T1) and (T2) allow linking the descriptions of tiretion of a generic partickin S and inS.

Lo df, _dRy S foa dty, VARY, j v

e dtood a Vs v = (Vi Vs ) v =Vi vs +9(0,) (T3)

foa =T +\73 Yst=Ty +\7s t,

- dr. r - r -~ vV = _V v

Vd:_Od:di.pvs:di£+vszv_d+vszv_d+V(O) (T4)
dt, dt, dt dt, Vs Vs

Finally, considering a third IRE’, with the absolute velocitys., supposing the coincidence of the
origins of all three IRFs at time zero, it follows:

- t
F=r-Vgt t=-"2
0 S "0 yS
o =T +Vg st =)t
- t
F'=r, -Vt t'=—2
0 S0 ys'
fo =F'+ Vg yo t th=Vst
Eliminating the variables with subscript O:
Fr=r+ (Vo -V ) et =25y (T5)
Vs
r=r+ (Vo Vs ) po t =22 (T6)
Vs
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Using (T5) and (T6) it is easy to express the netanotion of the origins of the axes®andS’:

I?'(O): ( Qs _\73 )VS't V'y = d ZE.O) = (\73 _\73 )Vs
I?(()'):(\73'_\7S)J/st VO':dFCEtOI) :(_.s —\73)ys

(T5) and (T6) allow linking the descriptions of thmtion of a generic partickkin Sand inS’.

LA _dE (g o dr, dt (o v e e
V= dtd- = dtd' +(VS_VS') s = dtdF-'-(VS_VS')VS':VdTZ+(VS_VS')y5'=Vd7z+VO
(T7)
B L LA R N LA S A S AN VA
Vy _td_ ds (VS'_ S)ys— dtdlE+(VS.—VS)}/S—de—s+(VS,—VS)yS_de_S+VO'
S' S
(T8)

Such a formulation, although consistent and endowiéld at least one interesting feature, has the
theoretical disadvantage of erasing the principleetativity and the practical defect of disagregin
with empirical evidence.

The interesting feature concerns the re-evaluatfdhe energy role.

In fact, the expression of the detector’s propmetcan be rewritten in the form:

[ v,? [ 2T T
dr, = 1—(:;‘2 dt, = 1—m 2 dt, D(l—m C2jdtO
d d

This formulation postulates a direct link betweamekic energy and the proper time of the particle.
Along with the usual properties of indestructilyilithis formulation also attributes energy with the
character of having an absolute value. It recogaesgy’s role of “fundamental substance”.
However, the extension of the proper time’s depeoéeon other forms of energy, such as the
gravitational potential energy, does not seem cailpawith experimental results (for example
with data supplied from atomic clocks used in GRt®lktes).

It has been experimentally established that clgd&esed in fixed positions in a gravitational field
with spherical symmetry show a dependence on Newtogravitational potential (with zero
potential located to infinity) in sound agreemeittwvthe relation:

dr,, D1/1+£ dry,. D(1+3;jdrd0w where: <1>(r)=—G'vIS
c c r

dr,, is the proper time differential of a clock pladgada generic fixed position with respect to the

gravitational field source.

dr,,. is the proper time differential of a clock at resliative to the gravitational field source and
positioned at spatial infinity.

Mg is the mass of the source.
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Using the first expression for the differentialdescribe the behavior of a clock that is motionless
relative to the source of the gravitational fietdlglaced at infinity, we can say:

V& V.2
o o {125

Vs =V, is the absolute velocity of the gravitational s@ur

Therefore, the behavior of a clock which is motessl relative to the source, but located at a
generic distance from it, would be described by:

® A GIRAVA
d Ol1+— || 1- dt, O 1+ - d
Tao ( czj( ZCJ b ( c? 2c j b

To describe the behavior of a clock moving relatvéhe source, it is plausible to postulate:

M. V,°
dar, O J“@ 2T D[hz T jdto{lﬁ_;_ ]d
c m, c® cc myc rc 2cC

Let us use this expression to evaluate the tineeabbck carried by a GPS satellite.
Consider a simplified system consisting of the &arth and a satellite.
The orbits are considered circular.

The absolute velocity of the satellite (detecter) Vy =V, +Vean sun ™ Vsar camn

Vo,,= absolute velocity of the Sun.
aEanh_Sun = relative velocity the Earth-Sun 8.
Vs ean = Telative velocity Satellite-Earth .

Vg,, =370 kmy/sec, on the basis of the dipole component of the codrackground radiation.

VEarth_Sun =30 kn'}/SEC
VSat_Earth =39 kn}/SGC

So:

— —

2 - -
VEarth_Sun +VSat + 2VSun WEarth Sun + 2VEarth_Sun |N/Sat_ Earth + 2VSun WSat_ Earth

V—V

Sun

The mixed term2V, W/Sat ey, Should produce a change in the rhythm of the lgatelock with

Sun
amplitude in the order @V, Vs, g.n/2¢* =16 10°.

The maximum value occurs when the plane of thdlgate orbit is parallel to the velocity vector
of the Sun.
Such a variation would have a periodicity of hatidereal day.

This prediction clearly conflicts with the availabiiata, making it necessary to reject the previous
approach.
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Behavior of the clocks carried by the GPS satsllis=cording to GTR

Relativistic descriptions applied to the GPS sys{ege for example referedyeappear to agree
with the experimental data, although they fail tstify the irrelevance of the solar and lunar
gravitational potential in these descriptions.

These descriptions begin by applying the Schwailzbchetric in the so-called Earth Centered
Inertial frame (ECI), a reference frame fixed te tarth’s center of gravity but not rotating.

The Schwarzschild metric is an exact solution ofsEgin’s equations, valid in the case of a single
static and spherically symmetric gravitational seur
In this metric, the expression of the line elemsnt

2G Mg

- dr2 +r2dg? +r2sin?(9) dg>
rc

1
2:—1— 2t2+—
ds ( de 1_ZG|\/|S
r c?

For weak fields, expanding thdr® coefficient (as a function of the variabM) into the Taylor
series, the above formula can be approximatedédlinbarized Schwarzschild metric:

ds? D—(l—L'\Z/'Sj c2dt? +(1+&'\2"8j dr2 +r2d@? +r2sin(9) dg? =
rc rc

= —(1+ i_j’j c?dt? +(1—i—g’j dr? +r2( dg? +sin?(9) dg?)
The presupposed spherical symmetry automaticalyudrs any role for sources other than the

source placed in the origin of the coordinates.

The expression of the proper time differential, lemable to a satellite orbiting the Earth, obtained
from this metric is:

2
dr, D[1+;—qz—;ldczjdt ©1)

dt is the differential of a coordinate time, anddentical to the proper time of a clock in a fixed
position with respect to the central source andtied at infinity.

The coordinate time differs from the GPS coordinate time by a scalddia which serves to
transform it into the proper time measured by akclagidly coupled to the reference geoid.

In the case of a circular orbit, the expressi@a)(implies two corrective terms of opposite sign fo
the time indicated by the orbiting clock, comparedhe time indicated by a clock at rest in the ECI
reference frame at ground level.

The first term means that time beats more quickig tb the fact that the module of gravitational
potential at orbital altitude has a lower value paned to ground level.

The second term constitutes a slowdown in the dfetine due to the orbital velocity.

In the specific case of a GPS satellite orbit tatbiadius= 26600 km), there is an overriding
influence of the first term dictating an increasepeed (about 33/day).

If one assumes a Keplerian orbit for the satelétgression91) also allows a correct prediction of
the periodic variations in the proper time, assedavith the orbital eccentricity.
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Assuming that expression?{) is extendable to the case in which the poteriahot only
associated with the central source, but also iredual contribution from a remote source (such as
the Sun), the solar potential should manifest medde effects on the rhythm of the clock.

This means that if we assume the validity of thpregsion

O, +D v,
dr, D[1+ Ea“hcz Sun — 212] dt (?2)

the effects caused by changes in the solar pokedtig, around the satellite’s orbital path — as a

result of variations in the satellite-Sun distanreeshould be measurable for clocks orbiting in
Keplerian motion.

On the contrary one could rejeétd), since §2) is obtained from{1) by extending its validity to
the total potential — an operation that necessdabtroys the assumed spherical symmetry.

In this case, however, it is unclear how to quantife effects of the Sun’s and the Moon’s
potentials.

In the relativistic literature concerning the GBStem, there is no satisfactory justification foe t
apparent irrelevance of the solar potential orotiteéting clocks.

Consider for example referericewhich claims to explain the phenomenon by invgkitne
principle of equivalence and the free-falling statehe Earth and its system of satellites witla t
Sun’s gravitational field.

If such considerations were correct, they couldpglied to erroneously deduce the irrelevance of
the terrestrial potential on a GPS satellite cl@ik¢e the satellite is free-falling around thet&ar

Assuming the validity of ¢2), it would be easier to justify the non-obsermatof satellites’ proper
time dependence on the varying distance from the iSwe abandon the hypothesis of strictly
Keplerian orbits.

Changes in a satellite’s velocity, due to the preseof the Sun’s gravitational field, should proeluc
effects on the clock that compensate for those ymed by the variation of the distance from the
Sun.

In more general contexts, with multiple gravitaibsources in relative motion, the possibility to
express the proper time of a generic space prabieich is not constrained to follow a closed orbit
around a dominant source — does not seem to beedgmroblem according to the GTR.
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The proposed new extension

Definitions and postulates

IRF: reference frame in uniform motion, far awaym gravitational sources.
Free-falling observers in regions with a gravitgdjent are therefore excluded.

t: universal time; it is assumed to be common thdRE.
r,: proper time of the detector.

In what follows, only gravitational sources conisigtof a finite set of point sources with masses
m were considered, but the generalization to coptisulistributions is evident.

Proper time postulate

Consider a generic observ@y with an associated non-rotating reference fr&me

Sis therefore a coordinate system, whose origiodated in the observer’s point of view.

To give a physical interpretation to the spatiabrdinates, we can understand them as describing
the positions of a set of material points, withi@#ily small masses, distributed in space and

constrained to maintain constant their mutual dists.

The system of material points is therefore compartba rigid body.

If Sis inertial, no action is required to ensure canesy in the mutual relations between the material

points, which serve as a physical support for terdinate system.

Otherwise, the rigidity of the system will be olnidl by the application of forces.

The reference fram@ will be used to describe the positions of all val& entities.

It is postulated that the proper tinrg of detectord — with chargeq,, (small) massm,, and
moving with a velocity evaluated Iy as being equal tg, — is linked to the universal time by:

dry _, Ri-Ky_ 1
dt 1+ c? Yy (b1)
with:
P =Y 6 =Y " (b2)
|rd—r|
1 dr, r:
SRV 4-2‘ - a (b3)
[Do | _[Oo |
a; = (b4)
| Do |
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The coefficient a; “weighs” the relevance of the gravitational sounvéh massm in its
(positional and kinematic) connection to the detect
Definition (b4) of the weight functiong; is merely one of the simplest alternative proposait a

weight function that could contemplate more compkgdations.

From (b1l): dt=y, dr,

and: Yy = /(1+Pd_2Kd):1/{1+12 Z(d)i —;Nd -V, ‘zj a; }
c c® 4

Applying the previous expression in regions of spadhere the inertial reference frames are
definable, namely in regions distant from the sesiwherea; — Qit follows that:dr = dt.

Equation (b1) theorizes that the variation of tle¢edtor's proper time in relation to the universal
time depends exclusively on the position and ve&oaf the detector with respect to the
gravitational sources.

Postulates on Dynamics

It is postulated that a particle’s dynamics cardsmulated according to the following definitions:

momentum: p= md—r = mdr (b5)
dt pdr
— — 2>

force: ﬁzﬂ:yﬂ:ymd Z:ymé (b6)
r t dt

F =-00 (b7)
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Draft of an electromagnetic theory with the use oproper time

Applying (b1) to a generic observ@rand to detectad:

o fue (ool ot

1 | _34_42|D¢i| _dt
{ _2IZ (CDi Z‘Vd i‘j|DcD|:|}dt—yd

Where:

<

ar, -
=_1 VvV, =—9
dt ¢

V, =0, sinceO defines the origin of the chosen reference frame.

Using the following notation:

- _dr : , . . :

V, = dtd detector’s velocity with respect @, calculated using universal time.

v, = ji detector’s velocity with respect @ calculated using the proper time@f
Z-O

In short, Vv, is the speed of the detector evaluate®by

—

(b8)

(b9)

_ dr . . . .
Vg o= —4  detector’s velocity with respect @, calculated using the detector’s proper time.

dr,

It follows that:

Vd:drd: dr, _ dr, . devd_d:v_d
dt y,dry, y,dr, Yy Yo
\Z:dri: dr, _ dr . \szi_sz_i
dt y,dry, y,dr, Yy Yo
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Other useful expressions:

dr |2
dt=y, dr, =y, dr —o0=7d
Yo QTo =Y,y AT - dr, v,
Y/ v -
Vd: f/;d :y_i — Von:Vd
Yo - _
- y_(:vd_d =Vy

It is assumed that the detector’'s proper time nigstused in place of the coordinate time to
formulate the differential equations of the fields.

It is appropriate to offer some clarifications Imstregard.

Given a generic observé@, associated with a non-rotating reference fr&aad a particle, which
constitutes the real detector in motion with respe© with velocity\7d (evaluated using universal
time), the proper time of such a detector is exqgedy (b9).

In spatial positions different from those occupdthe real detector, we should instead consider a
virtual detector which shares the same velocitthefreal detector with respect@(again assessed
through universal time).

Because a virtual detector will “see” different gtational potentials and gradients of these
potentials compared to those “seen” by the reaalet (since the two have different positions), the
y, of the virtual detector is generally differentrfrahat of the real detector.

Therefore, the proper time of a virtual detectoeglaot necessarily coincide with the proper time of
the real detector to which it is associated.

The proposition is therefore that of a mechanisnciwimixes local influences (the potential in the

virtual detector’s position) with non-local influees (the speed of the real detector, placed
elsewhere).
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Total derivative with respect to the detector'sgaotime

The “total proper time derivative” is intended & fimit of the ratio between the variation of a
guantity to follow the motion of a detector and greper time interval of this variation, when this
interval tends towards zero.

If x,(7,), y,(7,) and z,(7,) are the coordinates of a detector as a functioitsabwn proper
time, it follows that:
df _9f ,ofdx ofdy, ofdz _of

- =21 +(v, ,m)f
dr, dr, oxdry, dydry, o0dzdr, 01, -

df:afdr0+afdxddr0+afdyddr0+6fdzddrozﬁ af+(\7dD]])f
dry, dr,dry, dxdr,dr, o0ydr,dr, dzdr,dry, y, |07,

df _of dt ofdx, dt dfdy, dt ofdz dt _ af+(\7dD]])f
dr, odtdr, ox dt dr, dy dt dr, oz dt dr, ot

and:

LI B
|

2 2 7
d :yd{yd|: 0 +an DD+(\7d Dﬂ)i'*'%(i'*' /. [

dr,’ a® ot

In many cases‘?aitOI =0 and (\7d D]])yd =0.

So:

Loy, {Vd DT( i DD]”(V" o)+ (v )l DD)”%Z w
d
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Equations of the electromagnetic field in emptycgpan a generic non-rotating reference fradne

associated with observer

E

E, +E,

B=B, +B,

OE, =F£o

.y

o
Pn= P25

P = P+ P

V. —\7d):p_

(c1)
(c2)
(c3)
(c4)
(c3)
(c6)
(€7)
(c8)
(c9)

(c10)

(c11)

(c12)

(c13)

(c14)

(c15)

(c16)

Vv, (V) is the average speed of the positive (negatib@yges contained imV , evaluated by

observerO.
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Continuity equation

Differentiating the sum of (c3) and (c5) with resp® the detector’s proper time, we can say that:

d
dr,

i e e J=ocfR = 2o 6)

Calculating the divergence of the sum of (c8) arid]:

D[ﬁmD§)=DtﬁmD(él+é2))=o=uomcﬁm+uogoDG:TE ©)
d
, : _ —~ 1dp, _
Introducing €) into (?): M OOD + UgEg— =0
g dr,
So: 0.+ 9Pn = (c17)

dr,

Poisson’s equations and wave equations

Using the same procedure followed in the first-ord@rsion, one obtains:

0%B,=-u,00J (c18)
- d’B d’B
0°B, — U, 2 = lU,E, 1 c19
2,uoodd2 ,uoodz_dz ( )
2 = 1
0°E, =—10p,, (c20)
EO
- d’E dJ d’E
O%E, — U4y& 2 = M+ U, E, 1 c21
2 — My Ode2 'uOde Ho Ode ( )
At a great distance from the sources, the wavetemsaare approximated by their homogeneous
forms:
= d’B = d’E
0°B, = l,6,—= 0%E, = Uy6,—=
2 = Hy Ode2 2 OOde2
. Yy vi
If: ¥ =0 and(V, m)y, =
ot
2 2
then: d° . Vs d

dr,’ dt?



In such a case, the homogeneous wave equatiorecgpproximated by:

DZE — 2 dzéz DZE _ 2
2 = Moo Vy dt? 2 = Ho&o V4

Considering the propagation of an electromagndsturbance associated with a detector at rest
with respect to a single dominant gravitationalrseufrom such equations one can deduce that the
speed of the electromagnetic front decreases wthergravitational field is more intense.

Conclusions

Driven by the desire to seek alternatives to thecefiime description proposed by the theory of
relativity, this paper has critically reviewed HeRhipps's electromagnetic theory, which is
considered interesting due to its properties o&rance under Galilean transformation laws.

It has been shown that this theory is incompatitith experience regarding interactions between
electrical circuits in a stationary state. An amaedt, which seems to solve these predictive
discrepancies, has been proposed.

The modified theory involves the coexistence ofantaneous and delayed interactions.

The adequacy of this new theory regarding the itgtaif known electromagnetic phenomena
remains an open question.

In the more general formulation, the theory drawsoncepts of a material particle’s universal time
and proper time, the latter being defined as thee tmarked by a clock transported from the
particle.

The universal time coincides with the proper tinh@ alock in uniform motion and placed at a great
distance from all gravitational sources.

It is hypothesized that the beating of such clecétiits maximum pace.

In every other case, a particle’s proper time suaged to be an exclusive function of its position
and speed with respect to each gravitational source

Unfortunately, such a formulation does not seerhealeducible by an elegant principle, as in the
case of the constancy of the speed of light forredttial observers. Instead, the theory adopts a
phenomenological approach.

The theory can be called relativistic, since it flomt presuppose the existence of a privileged
reference frame and because only relative posifodsspeeds have relevance.

It is my hope that this work will be deemed worttfya theoretical critique and that it may provide

a stimulus towards the implementation of wider expental activities in order to confirm or
disprove the existence of instantaneous interagtion
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Appendix

A. Lorentz Transformations

Given the two IRFS andS’, let (7,t) and (F',t') be the spatial and temporal coordinates of the

same event in the two reference frames.\Ldte the velocity o§’ in relation toS.
Expressed in vector form, the Lorentz transfornmetiare:

F'=F+(y—1)\7[2r\7—y\7t t'={t—gj with: y=]/w/1—v2/c2

Vv C

They assume the simplest form when they refer tdeSian
coordinates with appropriate choices regardingotientation

of the axes, the location of the origins and theia of
synchronization of the two observers’ clocks.

LetO, x,y, z, andO’, X', y’, Z’ be the Cartesian coordinates
associated witls andS’ respectively, chosen so that the axes
X andx’ are superimposed and oriented in the same directic®
as the relative speed, whias parallel toy’ andz parallel to

z.

Let the zero of time be chosen at the overlappastant ofO andO’.
Then Lorentz Transformations can be expresseckifotm:

direct transformations inverse transformations
X'=y (x—vt) X=y (x'+vt)

y'=y y'=y

z2'=7 z2'=7

t':y[t—lzxj t:y[t'+l2xj
c c

Considering only transformations of the first order v/c (the first-order Taylor series
approximation of transformation equations), we say that:

x'Ox—vt

y'=y

z2'=2

t Ot -
(o

It must be noted that, even in this special cds®etis a deviation from the Galilean transfornratio
regarding the time coordinate, a non-conformityt thereases with distance.
It means that low-speed LT only coincide with thE IGcally.
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B. Galilean transformations and operators

g'=0d

The proof of the above expressions is simple censid the fact thav is constant and that the
chain rule applies for partial differential operastdhat operate on the fields, as functions of

XY, 2Zt.
Given a generic vector fiel@ , which is a function of the spatial coordinates &me, it follows
that:
dC _JC dx +aé ay +aé dz _dC
ox'  oJdx ox' oJdy Jdx' Jdz Jdx' OIx
— dC _odC dC _odC
Similarly: — = — =
ay' oy 2z 0z
it follows that: 0'C=0C
Since: X'=xX-v_t y'=y-v,t z'=z-v,t
it follows that: IxX ” (. -V 9z __ ,
ot ot Y ot
Since: X=X"+v, t y=y+y, t' z=7'+v, t
it follows that: IX _y, Y _y I9z_,,
at' ot 7’ at'
Therefore:
dC _JdCdx JdCdy JdCIz dCdt _JdC  oIC dC  oC
= + —+———+——= v, + v, + v, +
ot' OJx ot Jdy ot Jdz ot ot ot Ix * Jdy T dz ¢ ot
ie. d—C:d—C+(vm)é
ot' ot
(g.e.d.)
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Expansion on the total time derivative expressiomiwave equations inS

C.
- d?B _ -
OB - Hoeo—— =—H,U D0,
dt
ﬁ:a_B+(\7d DD)E
dt oat

dt> ot| ot at
d?B _0°B . 0 (/. gl (o —n0@B o N/ =

= o] (% W)+ (v, m) S+ (v, m)(v, )

So:

- 0°B 0/ =l /- 0B ,_ = -
DZB_ILIOSO?_#OSO{E[ (Vd DD)B +(Vd D]])E-'-(Vd DD)(Vd [[D)B} =-4,00J,
Similarly:

= d’E dJ, 1
O%E = o€, dt? =Hy dt +£_0Dp
d’E _0°E 0 [,. vzl (o ~\0E . _\_ =
=+ (v ME] (v, ) + (v, m)(v, DE
So:

02 ; 21 /. _\OE . ; . dJ, 1

0°E :uogo?_:uogo{a (Vd DD)E (dDD)E (dDD)(Vd [[D)E} O dt +£—0 0
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D. Wave equation and its monochromatic solutions

Consider the homogeneous wave equation:  [?E - uogozif =0
The solution we seek takes the form: E =E(p)
Where the phase is: p= KT -t = xk, + yk, + zk, — wt
which corresponds to a phase velocity: Vo, = W'k
The following expression therefore applies:
oy Dl By B,

Introducing the solution in the wave equation axpla@ding on the terms, it follows that:
2 2 2 2 2 2

()= CEL) OB TEM; [T 256, TE(),
9 X2 oy’ 9 72 Py 3y 37 y

4 0°E(p) , 0°E/(p) , 9%E,(P) |
ax° dy? 0z | *

0°E,(p) _0 (9E(p)ap)_ 0 (9E(p), |_0°E(p) 0D, _°E(P),: o

x> ox\ dp 9dx) ax| ap ap> ax * ap>
So:

_ 9°E,(p ’E,(p) ,|. T[a%E,(p) . .]. 9’E _ , 0%
(e | [ P o, TP o, v i) 28 e 28




2= 2= v
it follows that: % £ =9 E 4 OV 1y |& 1 2(v, ) 0 + (v, m)E
dtz ot | ot ot

The various terms can be expressed as:

0°E_0[0OE|_o[oEap]|_o%E(ap) _o%E
ot> ot| ot | at| ap ot

ov, = dE 0E 0E dEdp dEdp dEdp
—2 M |E = —+ + = — 4+ -4 =2 F -
(at J “ 0 X a“yay a“Zaz a“*ap X Hy poy Pz poz
0E 0E 0E - 0E
= —k + ——k + ——k =3, [k —
adxap X adyap y adzap z ad p
2(v, m) 2 E=2(v, m)E2P =5y, O [9E |,y O [OE),, O[OE)0D_
ot p ot ox{ap dylap 0z\dp t
_ 0 (0E)\dp d (0E)Q d (0E)Q _
-7 dx dy — | = TV — W=
oplop)ox op\op)oy op\op)oz
[ 0%E 0%E 0%E . - 0%E
=-2 dx a 2 kx +de a 2 ky de apz kz} w= 2Vd H( 2

pox “Yopdy %oapaoz D
+VdZaip{degEkx+ dngkV’deg_EkZ}%:
|:dx2 Z;kx axVay Z;ky dx dzaz_z.kz:|kx |:dxvdy ZEkx dy2 az;ky dedegzplsz}ky

2= 2= 2F
+ |:dede Z_pE kx + devdz g_pE ky + Vd22 g_pE kzi|kz =

0%E 0%E 0%E 0°E 0°E 02
2 2 2 2
=v, —k " +v,v, —kk +v.v. —kk +v.v. —Kkk +v,—Kk “+v ., v, — kK
dx apz X dx dyapz Xy dx dzapz X'z dx dyapz X'y dy apz y dy dzapz y' -z
0%E 0%E 0%E
+devdza 2 kxkz+vdyvdza zkykz-i_vdz2 2k22_

5=
_ 2y, 2 2y, 2 2y, 2
- (de kx + 2devdy kxky + 2devdzkxkz + de ky + 2dedekykz + de kz )
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It follows that:

2 = 2 = — 2 2 =
dzE:OE 2+*dElkaE—2”dEkazw+(\7de)zaE
dt op op op

- _
:[a)z—ZvdEHEaH(VdDE)}aE *d[ka—E:
ap p
_\12 9%E _ ) E
=|lw-\V, k]| —+a, [k —
[ (d )] apZ d ap

which means:

(RO JLE T

ap> ¢

(res. 2)

Limiting ourselves to the consideration of inertigtectors only, wheré, = , @ follows that:

(10 Lo () 28

C op
Consequently:
kz—ciz[a)—(vd EIJE)]2 =0 czkz—[a)—(vOI K
c?k? = [a)—(vd EIE)] ’ + ck :a)—(vd [k
So:

In addition:
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Note

Returning to the general case of non-inertial detecit has been shown that the wave equation, for
monochromatic solutions, takes the form:

{kz—c—lz[w—(vd [ﬁ?)]z}g;'f +Ci2 3, [ﬂ?a—E:o

The fulfillment of this constraint is equivalentttee contemporary fulfillment of:

s}

kz—ciz[a)—(\?d Eﬂ?)]zzo and k=0

The second constraint is not compatible with thti@riness ofa.

This result simply demonstrates the incompatibilingtween accelerated detectors and a
monochromatic description of the wave.

Since the frequency perceived by the detector dipen its velocity, if the detector has variable
velocity, the frequency cannot be described bynglsivalue, so the wave cannot be described as
monochromatic.
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E. Curl and the total time derivative operators’ permutability

i:i+(\7d|]:|) DETi+Ii+Ei
dt oat ox "0dy 0z
wm:wxa+wmy\@££ -%@DQ:3@5Q+Wﬁm@DQ

EEA:E i £=T(6AZ—6AYJ—T(0AZ—MJ+E(6—AV aa_/xj

oXx 0y 0z oy 0z oxX 0z 0 X y
AA A
v, D)0 0A)=v,,—(00A)+v,,—(00A)+v,—|00A)=
7 aax 0
i, afea oA, afan 0A) o (oa _0A)|,
“ox\ oy adz) Poylay oz oz ay oz
il ofom an),, o (oA 0A), afaa oAl
“axl ax az Yoyl ax az “9z\ ax 0z
cely 0(2A A, a(0A aA), a(0A oA
| Tox{ox oy ) “aylox ay) “az(ax ay

z oy* 0ydz
2A1_62 ‘v aZAZ _ aZA( ‘v aZAZ 02A<
Yoxay dyoz) “loaxdz 07

LKk de[(ﬁpy_ 62A< j+vd (62,0& _62—A<]+Vd(62py B 02A< ]:l
Y ‘toxoz dyoz

=va(yAz—aﬂxJ+w{92£—EgiJ+w{aQ¥‘aa>)

(res. a)

oy
+K|v, 9B a 6AZJ

oax Mgy

=ip+ip,+kps



It follows that:

Ik
0 0 0| (0P 0P| (0P _0Ps), (0P, 0Ps|_
oxX 0z oxX 0V

) 2 2 7 9’ 9’ o°A, |
Cil[u, OBy, OAL, OA [, OA LA A
0Xx0z ayaz 07°
0°

I{(V 0°A, +v 0°A, +V,, 0°A, j_(de 90°A Iy A,

axdz “oyoz Vo g p

A, A L A, A
de dy de
6x6y ay? dyoz

(res. b)

By comparing the terms of (res. a) and (res. b3, @an deduce the identity of the two expressions.
Therefore:

(v, Y0 0A)=00[(v, m)A
It follows that:

%(DDA):ai(DDA) + (v, DD)(DDA)=DD%—A+DD[( m)A|= DD[%? (vdDD)A}DD‘Z—f‘

(q.e.d.)
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F. Regarding expressions of the force between curreptements

In the historical development of
electromagnetism, two alternative laws have
been proposed in magnetostatics to describe the
force between constant current elements.

These laws are known as the Ampere force and
the Grassmann force (see referéfice

Let di, be an infinitesimal stretch of a circuit in
which the continuous currenitg flows.

Let di, be an infinitesimal stretch of a second
circuit in which the continuous current g

flows.
We shall use the following notation:

Let d®F, be the force exerted ohdi, by I.dl,, and d?F, be the force exerted ohdiy by
| dI, .

According to Ampere:

d2FA = %Z? [3(a, mi,e) (dF, i) - 2 (ol @, )] 0,6

d?EA :%ZL; [3(ar, mig,) (o, mig,) -2 (o, i, )] g,

Therefore: d?F) = -d?F3

The forcesd®F,;* andd®F.* also share the same line of application.
Thus the principle of action and reaction (Newtahisd law) applies.

According to Grassmann:

d?ES =%oﬂ"d 0(di;, Do)
ds

a*Fs =20 >l O(dl, D)
ds
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The Grassmann force is adopted by Maxwell’'s elecagnetism.

It also appears in the literature with the denonnoms of the Biot-Savart force, because it is
obtainable by means of the two Laplace formulas fiist of which is a generalization of the Biot-
Savart law and the second is equivalent to thertar®rce.

Indeed:

d’Fe =1, dI, OdB, Second Laplace Formula (Lorentz force)

déd — dé(rd) — Ho lS dIS F(Fd_._:%rS)
47T |rOI —rs|

First Laplace Formula, a generalization of thetBi

Savart law for the evaluation of the magnetic figéosherated by a rectilinear conductor.

So: d?Ee =1, df, 0t s As Ols - Aolsls g (g1 g,
4 |rds| 47Tr

Similarly:

d?FS = I dig OdBg

B, = dB(r,) = olo Al (55— Fy)
47T |rs—rd|

So: d?FS =1, di, 0Fols Ao Osa - Aol sla g (g7 pa,)
4T |rSd| 47T,

Since d?FS and d?F are respectively perpendiculard, anddi,, we can clearly see that such
forces do not necessarily share the same linepicapion.

So, in general: d?F¢ # —d?F
Consequently, Newton’s third law is not respected.

It has been shownh that by evaluating the forces acting between ceteptircuits (necessarily
closed), the Ampere and Grassmann laws producgathe results.

On the other hand, these two laws envisage diffes=ults when considering the forces exerted on
limited sections of the circuits.
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1

G. Gradient and curl of the function |a ﬂ|
r—r

i ] k

noa=2 9 i:r(aAz_a%]_?(aﬂ_a&}k(aﬂha&j
ox o0y 0z 0y 0z ox 0z ax oy
AA A

Dm(lﬁdr;'dzl L ly-y)a,~(z-2)a, ]+
-7 [(x=x)dl,'~(z=2)dl ']+ k [(x—x‘)dly'—(y— y')dlx']}
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—

Given: d=ai+a, j+a,k b=b, i +b, j+b,k

it follows that: alb = (aybZ - azby)iﬁ+(agbX -ah,) J7+(axby —aybx) k
Given that: F-r'=(x-x)i +(y-y)j+(z-2)k
and: di'=dl'i +dl,' j+dl,'k

it follows that:

(F-F)0di "= T[(y— y)dl,'—(z- z')dly']— i[(x=x)dl,'~(z=2)d1, ']+ R[(x— x)dl,'~(y - y')dlx']

So:
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H. Poisson and wave equations for instantaneous anddinced components

Taking the rotor of (a8) and using the vector idgni] D(D D\7) = D(D W7) -0/, it follows that:

oo(oog,)=00(k43,) = 0o(0m,)-0%8 = 40037,
Considering (a7): -0%B, = 4,00J,,
Equation (a18) follows as a consequence.

Taking the rotor of (a10) and using the previownidy, we can say that:

DD(DDI?;Z):DD(,UOEO%J = oo EBZ)—DZBZZ/,J()&O%(D nE)

- — - d -~ -
Considering (al): D(D EBZ)— 0B, = ,uogoa(D UE +00 Ez)

. _ - d( dB
Considering (a9), (a4) and (a6): -0°B, = ,Uofoa P

o » d (dB d (dB
Considering (a2): —0%B, = —Uyeg—| —= |~ HoEy—| —2

g (@2) 2 /Joodt[dtj /Joodt(dtJ

Equation (al19) can therefore be deduced.
Taking the rotor of (a4), it follows that:
0o(0oE)=0 =  O[0E)-0% =0
Considering (a3), equation (a20) follows as a cqusece.
Taking the rotor of (a6), we can say:
no(oE,)=-0 D% = oo EEZ)—DZEZ:—%(D 08)

. . . =l 2 = _ d =g =g
Considering (a2): 0(0E,)-0%E, = _E(D 08, +008,)

S _ ,= _d =\ d ~
Considering (a5): O°E, = E(D 0 Bl)+a(D 0 BZ)
Considering (a8) and (al10): O%E, :%(,uojm)+%(,uogod—fj

L _ dJ, d{d (= =
Considering (al): 0°E, = 4, R yogoa{a( L +E, )}
Expressed differently:

_ d’E dJ, d’E
DzEz_,uo‘go dt22 =l dt +'UO£OT21

Equation (a21) follows as a consequence.
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Gauge invariance in the proposed theory with instataneous and induced components

= — _A ﬂ i:i vV

E=-0¢, -0, -~ e A

so: E=-0p,-00,- 22 (v, m)A -2 - (7, )4,

Since: ) ) ) ) ) )
(v, m)A :D(vd DA&)_vd D(D DA.I.) (v, M)A, = D(vd DA‘Z)_vd D(D DAz)

it follows that:

c=-06,-08,- 28 -olu B)ss, o10a)- S - ole A )ew, oo 08

Applying a gauge variation:

A =A+iy A=Ay, ¢ =g,-20 0%
we obtain: )
E' =-0¢,-0¢, a;Atl—D( & )+v, 0(0 DA“)—G%—D(% @&, )+v, 0[00A,")
23 :—D¢1—D(¢2 - dé‘:zj_a(ﬁu;tﬂwl)_ 0(v, fA +0g))+v, 00 0(A +0g)+
_a(Aza;tD‘/’z)— o(v, dA, +0g,))+v, 0[00(4, + 0y, )=

diy, ddw, 0A o0y, (. = B} B} -
=-U¢,-Ugp, + df[ﬂ + dlt// _6?_ a:ﬂ _D(Vd DO&)_D(VUI Dﬂwl)+vd D(DDA&)+

2, 304 _ (o, 8,)-0(e, Ty )7, {0 OA, 44, DO 00S,)-

o0y, (o
+ |V
i\

+v, 0000w, -

oA a0y, |

mOy.) -7~

m)(Dw,)+

od =
=-U¢,-0g, + ) Twz"'(

- 0(5, (&)~ 0% ) +5, 00 0A)+3, DO 00g,)- 22 -0z

-0V, R, )-0(v, my,)+v, DO OA)+v, 0[O 00y,) =
=-0¢,-0¢,-2% oy, & )+v, oloo )a—AZ—D(vd &, )+v, 0[0DA,)
0( v,

ot
+(V, D)Og,) + (v, D) Og,) - 0(v, My,)-0(V, My, )+, 00 00¢,)+v, O(000¢,)

Since: (v, m)(Og)=0(v, my) it follows that:

=-U¢, -Ug, _aa_?_ D(vd DB&)"'Vd D(D D'Bi)_aa_ﬁt‘z_ D(Vd D&2)+\7d D(D D'B‘z)

1
m
T

>

1
T

This means that: E (g.e.d.)
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