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Abstract

This work presents a formalism of the notions of space and of time which
contains that of the special relativity, which is compatible with the quantum
theories, and which distinguishes itself from the general relativity by the fact
that it allows us to define the possible states of motion between two observers
arbitrarily chosen in the nature. Before calculating the advance of the peri-
helion of an orbit, it is necessary to define the existence of a perihelion and
its possible movement. In other words, it is necessary to express the use of
a physical space which is a set of spatial positions, a set of world lines con-
stantly at rest according to a unique observer. This document defines all the
physical spaces of the nature (some compared with the others) by noting that
to choose a temporal variable in one of these spaces, it is enough to choose
a particular parametrization along each of its points. If the world lines of
a family of observers are not elements of a unique physical space, then even
in classical physics, how can they manage to put end to end their rulers to
determine the measure of a segment of curve of their reference frame (each
will have to ask to his neighbor: a little seriousness please, do not move un-
til the measurement is ended) ? This question is the basis of the solution
which will be proposed to paradox of Ehrenfest. A notion of expansion of the
universe is established as being a structural reality and a rigorous theoretical
formulation of the Hubble’s experimental law is proposed. We shall highlight
the fact that a relative motion occurs only along specific trajectories and this
notion of authorized trajectories is not a novelty in physics as it is stated in
the Bohr atomic model. We shall also highlight the fact that a non-uniform
rectilinear motion possesses a horizon having the structure of a plan.

1 Introduction

The universe U is a topological space whose elements are called events and such that
each event has a neighborhood homeomorphic to an open subset of R4. A world line
segment can be represented by a continuous function which is defined on a part of
R and which takes its values in U . We can define several parameterizations along
a unique world line segment. If this segment represents a trajectory of material
body then compared with every experimenter it is or in motion or motionless. For
example, a space shuttle can be constantly at rest according to an experimenter
on the surface of the earth and be in motion according to an experimenter on the
surface of the moon.

Every experimenter possesses a unique physical space which is all the world
lines (chosen among those which describe the trajectories of material bodies) which
appear to him to be constantly at rest. Thus, when we have arbitrarily defined a
local coordinate system, in other words a homeomorphism between an open subset
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of U and a bounded part of R4, every experimenter has a unique explicit formula
(which depends on the coordinate system) to characterize each point of his physical
space. This formula can be the constancy of a triplet of coordinates which will be
considered as spatial by the experimenter or it can be more complex. It is necessary
to use a temporal variable of a physical space to define a state vector in quantum
mechanics, it is necessary to use this physical space to develop this state vector and
write a wave function, it is necessary to use a physical space to define the motion of
a body in classical mechanics. In special theory of relativity, we say that there is a
Doppler effect when the source moves in the physical space of the receiver.

There are several physical spaces on each open subset of U . That of the experi-
menter P who is on the platform is different from that of the experimenter P ′ who is
on a boat in movement according to P . If the first one expresses that a bird makes
round trips between two fixed points A and B of his physical space, the second
can express that the same bird is moving in a zigzag without ever going back at a
same point of his physical space. A physical space characterizes the state of motion
of an experimenter (whoever owns this physical space) and as we will show at the
end of the section 2, even in classical physics, there are coherent families of world
lines which are not physical spaces. Every theory has to specify what it considers
as being the set of all possible physical spaces of nature. We know that the state of
motion of an experimenter has to be defined with respect to another experimenter
consequently a physical space has to be defined with respect to another physical
space.

Mathematically, a parametrized curve defined on a physical space is not a world
line but each point of this curve (which is a space curve) is a world line. A space
curve defined on a particular physical space is the path of a particular family of
world lines on this physical space. Mathematically, we cannot compare a segment
of space curve defined on a physical space R and a segment of space curve defined
on a different physical space R′ (because mathematically a point of R is not a
point of R′ or because these segments of curves are not represented by the same
families of segments of world lines) but we can make assumptions to compare their
lengths. Each physical theory must provide implicit or explicit assumptions to
make this comparison and these assumptions are going to characterize the states of
relative motions between physical spaces. Classical physics suggests certain explicit
assumptions to make this comparison and the kinematics of the section 4 proposes
another hypothesis.

Defining a geometry on a physical space consists in attributing an intrinsic mea-
sure to each of its space curve and the geometry (the proper geometry) of a physical
space is the one which reports the character superposable or not superposable of
its space curves (which can be paths of rays of light) by a simple comparison of
their measures. This physical measure of a segment of space curve can be realized
by summing the local measures made by a family of experimenters who possess the
same physical space and who are arranged along the curve. Although the geome-
try of each physical space is assumed to be Euclidean in this document 1, one may
wonder if in reality it is not Riemannian or more complex and if it does not vary
from a physical space to another.The purpose of this work is to highlight the pos-
sibilities of construction of the theories which allow to express without ambiguity
that every experimenter knows how to characterize mathematically the immobility
of a segment of world line.

1We can define several inner products on a unique vector space consequently we can define
several Euclidean geometries on a unique affine space. We can also define very complex Riemannian
geometries on the same space and for each of geometry, the spatial distance between two points is
the measure of the smallest of the segments of parametrized curves which connects them.
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2 An original approach to classical kinematics:

construction of all the three-dimensional rela-

tive physical spaces.

We cannot express simply that the four-dimensional universe of the classical physics
is an affine space whose difference space is V because every time we shall evoke
the use of a cartesian coordinate system, it will be necessary to specify that this
system is on a same and unique decomposition of V in a direct sum of two subspaces
among which one is one-dimensional. It will then be possible to state that one of
the cartesian coordinate represents the universal temporal variable and the other
three cartesian coordinates are of spatial nature but this can not mean that there
is a unique physical space (which is constituted by a special family of world lines)
in a physics where the immobility of a body is mathematically a notion relative to
the experimenter who notices it: all the physical spaces (each being associated with
an experimenter) will be equivalent for the statement of a problem of kinematics
but not for the statement of a problem of dynamics. The physical space of an
experimenter on the surface of the earth is different from the physical space of an
experimenter on the surface of the moon.

An experimenter is always provided with an intrinsically regular clock in the sense
where he knows how to appreciate the equality or the difference of time intervals
defined by two couples of events arbitrarily chosen on his world line. Establishing
the laws of physics means determining the relations which exist between measurable
parameters consequently the dating of the events which are not elements of his world
line is an inevitably arbitrary choice under the only condition to use an operational
definition. This arbitrary character appears as soon as we do not consider the time
parameter of classical physics as an inaccessible variable by the experiment but as a
variable which must be measured : The fact of expressing the use of dates indicated
by a family of clocks synchronized with one of them which is chosen as reference
means expressing the use of a dating of the events made by the reference clock
through a process which must be explained. An operational process of dating of
the events in a physical space will always have to be specified in the formulation
of a theory evoking a temporal variable otherwise we can just assume that each
physical space must have a privileged temporal variable which will implicitly be
used and whose measure (the process to initialize the clocks constantly at rest in
the physical space) will be explained subsequently. In this last situation, since
choosing a particular parametrization along each of the world lines which constitute
a physical space R is not equivalent to choosing a particular parametrization along
each of the world lines which constitute another physical space R′, the relation
between the privileged temporal variables of two different physical spaces is not
necessarily trivial. Therefore, the following hypothesis is a strong condition:

Hypothesis 1 There is a universal temporal variable which allows to determine,
by a simple subtraction of the values assigned to the events of their trajectories, the
elapsed times in all possible regular clocks.

In a Euclidean space we know how to define the lengths of the segments of the
parametrized curves which are straight lines and we can deduct the length of any
other segment of parametrized curve by performing Riemann sums of straight line
segments which exist between the consecutive points of its subdivisions.

Hypothesis 2 The proper geometry of each physical space is Euclidean and two
experimenters P and P ′ can always choose their standard of lengths so as to notice
the same measures for the straight line segments joining pairs of simultaneous events.
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Proposition 1 Any transformation between cartesian and rectangular spatial coor-
dinates (x2, x3, x4) and (x′2, x

′
3, x
′
4) that P and P ′ can use to identify the points of

their physical spaces is of the shape:x2x3
x4

 =

l2(t)l3(t)
l4(t)

+ λAt

x′2 + k′2
x′3 + k′3
x′4 + k′4


t being the universal temporal variable and At being an isometry.

<,>p being an inner product on the vector space Vp associated with the physical
space Ep, we can represent this Euclidean physical space by the triplet (Ep,Vp, <,>p)
or by the triplet (Ep, TOp , <,>p) where O is arbitrarily chosen in Ep and where the
affine structure TOp is a function defined on R2 × E2p by the relation :

ϕp(O, T
O
p (a, b,M,N)) = aϕp(O,M) + bϕp(O,N) (1)

ϕp is the application with values in Vp which determines vectors in the physical
space of P and TOp is an affine structure which allows P to appreciate the character
aligned or not aligned of points of his space, and which enables him to recognize
that a quadrilateral of Ep is or is not a parallelogram. The coordinates he uses
to parametrize his physical space are cartesians if there is a basis B of Vp and an
element O of Ep such as those which are associated with an element M of Ep are the
components in B of the vector ϕp(O,M). To establish a transformation between
cartesian spatial coordinates built by P and P ′ who are at rest on the points Op and
Op′ of their spaces, classical physics is going to emit the following assumption :

Hypothesis 3 Whatever the elements M ′ and N ′ of Ep′ which describe in Ep the
trajectories M ′(.) and N ′(.), whatever the date t,

T
Op′

p′ (a, b,M ′, N ′)(t) = T
Op′ (t)
p (a, b,M ′(t), N ′(t))

(B′i)i and (Bi)i are triplets of elements of Ep′ and Ep that define orthonormal bases
of euclidean physical spaces by the equalities:

B′ = {(ϕp′(Op′ , B
′
i))i} B = {(ϕp(Op, Bi))i}

We consider a phenomenon which occurs on the date t, at the points M ′ and M ′(t)
of Ep′ and Ep. We note (x′i) and (xi) its cartesian spatial coordinates which are
associated with B′ and B equipped with the origins O′ and O, and we note (k′i) the
coordinates of ϕp′(Op′ , O

′) in B′. We can write:

M ′ = T
Op′

p′ (x′4 + k′4, 1, B
′
4, T

Op′

p′ (x′3 + k′3, x
′
2 + k′2, B

′
3, B

′
2))

The hypothesis 3 allows to write:

M ′(t) = T
Op′ (t)
p (x′4 + k′4, 1, B

′
4(t), T

Op′ (t)
p (x′3 + k′3, x

′
2 + k′2, B

′
3(t), B

′
2(t)))

We can note:

ϕp(O,M
′(t)) = ϕp(O,Op′(t)) +

4∑
i=2

(x′i + k′i)ϕp(Op′(t), B
′
i(t))

The hypothesis 2 allows to assert that the triangle (Op′(t), B
′
i(t), B

′
j(t)) is isosceles

right according to P because (Op′ , B
′
i, B

′
j) is isosceles right according to P ′. There
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is thus a scalar λ which describes the ratio of the standards of the lengths and an
isometry At of Vp such as:

ϕp(Op′(t), B
′
i(t)) = λAtϕp(Op, Bi)

We obtain:

ϕp(O,M
′(t)) = ϕp(O,Op′(t)) + λAt

4∑
i=2

(x′i + k′i)ϕp(Op, Bi)

Let us look for the Eulerian description of the authorized relative motions in
classical kinematics. We can write:

ϕp(M
′(t), N ′(t)) = λAt

4∑
i=2

(y′i − x′i)ϕp(Op, Bi)

ϕp(M
′(t2), N

′(t2))− ϕp(M ′(t1), N
′(t1)) = (At2A−1t1 − I)ϕp(M

′(t1), N
′(t1))

If the function with value in the whole of the orthogonal matrices r 7→ Ar is
differentiable and if Ar1 = I , then by writing its first-order Taylor series expansion
and by using the characteristic formula ATr Ar = I of an orthogonal matrix Ar, we

show that the matrix derivative
d

dr
Ar


r=r1

is an antisymmetric matrix.

It results from this proposal that there is a vector function ~w(t) such that, if M ′

and N ′ are two points of the space of P ′ whose paths in the space of P are described
by the functions M ′(t) and N ′(t), then:

d

dt
ϕp(M

′(t), N ′(t)) = ~w(t)× ϕp(M ′(t), N ′(t))

The operator × depends on the inner product <,>p. M
′ being arbitrarily chosen

in Ep′ and O being arbitrarily chosen in Ep, we can write :

d

dt
ϕp(O,N

′(t)) = ~w(t)× ϕp(M ′(t), N ′(t)) + ~v(t,M ′) ∀N ′ ∈ Ep′

d

dt
ϕp(O,N

′(t)) = ~w(t)× ϕp(O,N ′(t)) + ~v(t,M ′, O) ∀N ′ ∈ Ep′

(xi(t)) being the cartesian spatial coordinates of N ′(t) with respect to an orthonor-
mal basis B of Vp equipped with the origin O, we can write:

d

dt
xi(t) =

4∑
j=2

wij(t)xj(t) + vi(t) wji(t) = −wij(t) 2 ≤ i, j ≤ 4

S being the cartesian coordinates system of Ep with respect to (O,B), the Eulerian
description of the velocity field U(τ, x2, x3, x4) = (Ui)2≤i≤4 which represents the
motions in S of points of Ep′ is :

Ui(t, x2, x3, x4) =
4∑
j=2

wij(t)xj + vi(t) wji(t) = −wij(t) 2 ≤ i, j ≤ 4 (2)

This relation does not depend on coordinate systems that P ′ can choose to study
a phenomenon and will be equivalent to the equations (6), (10), (11) within the frame
of the new theory which distinguishes itself by a more realistic modelling since the
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choice of a process of dating of the events in a physical space by an experimenter
should not allow to guess the intrinsic regularities of all the possible clocks. In
accordance with (2), declare in classical physics that P ′ has a uniform rotational
motion (respectively a uniform translational motion) with respect to P mean only
that any body which is constantly at rest with respect to P ′ moves with a uniform
speed along a circular path (respectively it moves with a uniform speed along a
straight path) in the physical space of P when he choose to use the the universal
temporal variable and the proper geometry on this physical space.

If E = {M(t), N(t), ...} is a set of Lagrangian trajectories which are described in
Ep by Eulerian formulas (2), and if the basis B (with respect to which the cartesian
spatial coordinates are defined) is orthonormal with respect to an inner product on
Vp which represents the proper geometry of Ep, then we can express the existence of
an experimenter P ′ who notices that all elements of E are constantly motionless. If
the basis B is orthonormal with respect to an inner product on Vp which does not
represent the proper geometry 2 of Ep, then we cannot express the existence of an
experimenter P ′ who notices that all elements of E are constantly motionless. In this
last situation, E is not a physical space but we can build several four-dimensional
coordinate systems (x1, x2, x3, x4) in which the equation of each element of E is the
constancy of the triplet (x2, x3, x4): if t0 is a real number and if R is a coordinate
system on Ep, in other words R is a function defined on Ep and with values in R3,
then an event which belongs to the element M(t) of E can be described by the
coordinates x1 = t, (x2, x3, x4) = R(M(t0)). The concept of a physical space is quite
different from that of a coordinate system. The description of the motions of a set
of bodies with respect to a four-dimensional coordinate system does not necessarily
mean that these motions are described with respect to a certain experimenter, even
in classical physics. It is up to each theory to be equipped with tools which allow to
specify when a family of world lines of material bodies constitutes a physical space
and when this family does not constitutes a physical space. A physical space is
inevitably defines with respect to another chosen as reference and these tools can be
the use of a special family of coordinates systems (between which transformations
have a certain structure), each element of the family being clearly attached to a
unique observer. Inspired by the mathematical expression of the Hubble’s law,
it is necessary to propose specific hypotheses for comparing on the one hand the
”proper distance” D (which can change over time) between a particular object and
an experimenter P arbitrarily chosen, and on the other hand the ”proper distance”
D′ between the same object and a second experimenter P ′ which is also arbitrarily
selected.

3 On the Ehrenfest paradox

Different approaches to this subject are presented in [3], [4] and [5]. Generally,
this problem is introduced to show that we can deduce from special relativity the
existence of an observer who finds that his three-dimensional space is not Euclidean
and must renounce to an immediate interpretation of some coordinate systems.

Thus, using the assumption that a body D is described by an inertial reference
frame R as a disc in uniform rotation about an axis perpendicular to the disc plane
and passing through its center, it should be concluded :
(i) There exists an observer of D who can state that ”D has actually and constantly

2If <,>1 and <,>2 are two inner products defined on a finite dimensional vector space V, then
there exists an automorphism P of V such that, for all (~u,~v) ∈ V2, < ~u,~v >2 = < P~u,P~v >1. If
A is a linear isometry of (V, <,>2), then PAP−1 is a linear isometry of (V, <,>1).
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the shape of a disc”.
(ii) The observer of D notices that the relationship which connects the circumference
and diameter of D is not that of Euclidean spaces in other words the ratio between
these two quantities is not the number pi.

We will show that (i) is questionable. Indeed, consider two material points which
are fixed on D and such that one is on its center and the other on its circumference.
Then:
(a) By assumption, since D has actually and constantly the shape of a disc with
respect to R, this inertial frame can assert that the spatial distance between these
two points does not vary over time.
(b) The Lorentz transformation allows to state that there is at least one inertial
frame R′ who can say that the spatial distance between these two points varies over
time in other words D is constantly in deformation and has the shape of an ellipse
with respect to R′.

Because R assert that D does not undergo distortion and has the shape of a disc,
and because R′ asserts the opposite, knowing that all inertial reference frames are
physically equivalent, it is subjective to assert that there is an observer of D who
notices that D does not undergo distortion and has the shape of a disc. Thus, (i) is
questionable.

To demonstrate (b) it is sufficient to choose R′ as an inertial reference frame
whose velocity vector ~v (with respect to R) is in the plane of D and is therefore
orthogonal to the axis of rotation ofD. Under these conditions, the transformation of
Lorentz teaches that the contraction of the lengths entersR andR′ is maximal when
the radius vector between both material points is colinear to ~v and this contraction
of the lengths enters R and R′ is worthless when the radius vector between both
material points is orthogonal to ~v. Finally, we know that the radius vector between
the two material points occupy alternately each of these two configurations because
D is rotating.

By noticing that even in classical kinematics we can build a coherent 3 family
of world lines that are not a set of fixed points with respect to a unique observer
(shown at the end of the section 2), we can propose that in a relativist framework:
(a) The family of trajectories (described with respect to an inertial coordinate sys-
tem by equations that highlight the classical notion of rotational motion) does not
constitute a set of fixed points with respect to a unique observer.
(b) It is therefore not surprising that we have difficulty in conceiving that regular
digital clocks having these trajectories are synchronisables in the sense of the special
relativity.
(c) It is necessary to reinvent the complexity of the equations which have to describe,
with respect to an inertial coordinate system, a set of points continuously fixed with
respect to an accelerated experimenter: do not plagiarize the equations of classical
kinematics.
(d) The geometry of the three-dimensional space of an accelerated observer can
remain Euclidean if the fixed points which constitute this three-dimensional space
are described (with respect to an inertial coordinate system) by the new complex
equations.

3Such a family can be artificially used as a set of spatial positions without any ambiguity because
there is no intersection between its elements.
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4 A relativistic kinematics

In classical physics, because of the strong hypotheses which are postulated to guess
the correspondences between the measures of space and time that can perform dif-
ferent experimenters, the relation Doppler-Fizeau depends not only on the motion
of the source in the physical space of the receiver, but also depends on motion of
the source and the receiver compared with the particular physical space where the
theory of the electromagnetism of Maxwell is formulated. This oddity is abnormal
according to certain physicists and Woldemar Voigt, in his article on the Doppler
effect [1], will establish a linear transformation of coordinates which leaves invari-
ant the wave equation. These transformations constitute the Poincaré group which
contains particular subgroups constituted by the Lorentz transformations, formulas
which differ from those of Voigt by a change of the standard of lengths during the
change of physical space and for the authors it is a question of highlighting practical
variables in physical spaces which are in uniform translational motion compared
with the ether. Albert Einstein notices in [2] that it is possible to find this special
formulas when observers of each physical space chooses to measure the spatial dis-
tances and to date the events in a specific way and the new kinematics highlights
the symmetry of the Doppler-Fizeau relation.

The intrinsically regular clock of an experimenter can be chosen with a digi-
tal display which is cartesian and normally oriented : the duration of proper time
elapsed between successive dates t1 and t2 is proportional to the positive real num-
ber t2 − t1, the positive constant of proportionality characterizing a choice of the
standard. For a digital display which is cartesian and abnormally oriented, this du-
ration is proportional to the positive real number t1− t2. As in classical physics, the
geometry of each physical space Ep will be described by a pair (TOp , <,>p) and an
experimenter will say that a coordinate system is cartesian if it consists of cartesian
spatial coordinates (allowing to identify the points of his physical space) associated
with a particular dating of each event. This dating of events, which is a cartesian 4

dating of events, is obtained by emitting at a date t− of his clock an electromagnetic
signal which propagates in the vacuum, by receiving at a date t+ the signal reflected
at the event and by using the formula:

t =
1

2
(t+ + t−)

It is assumed that the nature is such as every experimenter can make a cartesian
dating of events (the dates of transmission and reception have to be uniquely deter-
mined) and the following hypothesis is a rigorous formulation of the second postulate
of special relativity:

Postulate 1 Every experimenter P who uses a cartesian dating of events made
by himself can define a Euclidean geometry (TOp , <,>p) on his physical space so as
to notice that an electromagnetic signal which originates in a given event always
propagates in the vacuum in the form of a sphere whose radius increases with a
constant speed, the value of this speed characterizing a choice of the standard of
lengths.

It results from this postulate that if P and P ′ build the cartesian coordinate
systems (ct, x2, x3, x4) and (c′t′, x′2, x

′
3, x
′
4) which are relative to orthonormal bases

4A cartesian dating of events made by an experimenter P can be mathematically used as a
temporal variable in all possible physical spaces and represents the universal temporal variable in
classical physics if and only if P is constantly motionless in the particular physical space where
the theory of the electromagnetism of Maxwell is formulated.
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of their physical spaces (such a coordinate system will be called an observer), c and
c′ being the values chosen to mathematically represent the speeds of propagation of
an electromagnetic signal in each physical space, then whatever the events i and j,
we can write:

(ct(j)−ct(i))2 =
4∑

k=2

(xk(j)−xk(i))2 ⇐⇒ (c′t′(j)−c′t′(i))2 =
4∑

k=2

(x′k(j)−x′k(i))2 (3)

By definition, the function (ct, x2, x3, x4) 7→ (ct′, x′2, x
′
3, x
′
4) is element of the group

of the real eligible transformations. The affine solutions form the Poincaré group
and we can think that this group contains the Jacobian matrices of the not affine
solutions because (3) is valid in a neighborhood of each event. We shall say that a
continuously differentiable mapping which is defined on a subset of R4 is an admis-
sible transformation if there is a pair of real numbers (c, c′) such as it transforms
any trajectory realized with an instantaneous velocity vector of constant modulus
equal to c to a trajectory realized with an instantaneous velocity vector of constant
modulus equal to c′.

Theorem 1 Any real eligible transformation is an admissible transformation.

S and S ′ being two observers built by the experimenters P and P ′, the trajectory in
S of a body whose modulus of the velocity vector is constantly equal to c between
the events a and b is described by the set:

{(ct, x2(ct), x3(ct), x4(ct)) , t ∈]ta, tb[ ,
4∑
i=2

(
dxi
dt

)2 = c2}

We can define the sets:

S̃1 = {(u2, u3, u4) , ui ∈ C1(R,R) , ui = ui(ξ) ,
4∑
i=2

(
dui
dξ

)2 = 1}

T (S̃1) =
{
{(u1(η), u(u1(η))) , η ∈ O} , u1 ∈ C1(R,R) , u ∈ S̃1 , O ouvert de R

}
We can note:

x1 = ct x′1 = c′t′ x′k = fk(x1, x2, x3, x4) f = (f1, f2, f3, f4)

Λ′ = {(u′1(η), u′2(u
′
1(η)), u′3(u

′
1(η)), u′4(u

′
1(η))) , η ∈ O} = {f(M),M ∈ Λ} = f(Λ)

Λ ∈ T (S̃1)

The theorem 1 allows to write:

Λ ∈ T (S̃1) =⇒ f(Λ) ∈ T (S̃1)

By noting F = (fij)ij the Jacobian matrix of f , we get:

du′1
dη

d(u′2 ◦ u′1)
dη

d(u′3 ◦ u′1)
dη

d(u′4 ◦ u′1)
dη


= F



du1
dη

d(u2 ◦ u1)
dη

d(u3 ◦ u1)
dη

d(u4 ◦ u1)
dη


du′1
dη



1
du′2
dξ′
du′3
dξ′
du′4
dξ′


= F

du1
dη



1
du2
dξ
du3
dξ
du4
dξ


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(
du1
dη

)2

−
4∑
i=2

(
d(ui ◦ u1)

dη

)2

= 0 =⇒
(
du′1
dη

)2

−
4∑
i=2

(
d(u′i ◦ u′1)

dη

)2

= 0

It results that F is such that:

∀ h ∈ R4 ,

{
h21 −

4∑
i=2

h2i = 0

}
=⇒

{
h′

2
1 −

4∑
i=2

h′
2
i = 0

}
h′ = Fh

This last relation allows to demonstrate by calculations of linear algebra that f
has the following properties:

i Its Jacobian matrix F is element of the Poincaré group at each event, all its
coefficients are expressed using the partial derivatives of f1, and the square
root of the absolute value of Jacobian determinant, which is an eigenvalue of
the positive definite symmetric matrix F TF , is given by:

µf = f 2
11 −

4∑
i=2

f 2
1i > 0 (4)

ii P being equipped with one of his observer S, P ′ can always choose one of his
observer S ′ such that:

fii =
√
µf +

f 2
1i

f11 +
√
µf

fij =
f1if1j

f11 +
√
µf

fi1 = f1i 2 ≤ i, j ≤ 4 i 6= j

(5)

iii By noting τ ′ = f11(τ, x2, x3, x4) and by solving
dx′i
dτ ′

= 0, we get that the compo-

nents vi of the velocity vector in S of a point of the physical space of P ′ are
such that:

dxi
dτ

(τ) =
vi
c

(τ) = − f1i
f11

(τ, x2(τ), x3(τ), x4(τ)) 2 ≤ i ≤ 4 (6)

iv If f is continuously differentiable to second order then there are three matrices
Afi such that:

∂

∂xj

 fi2
fi3
fi4

 = Afj

 fi2
fi3
fi4

 2 ≤ i, j ≤ 4 (7)

We can note h(τ) the function which is defined along the trajectory of P ′ and
which realizes the correspondence between the temporal coordinate τ in S and the
temporal coordinate in S ′. If (x′i(Op′))i represents the coordinates of P ′ in S ′ and
if τ−(α) and τ+(α) are the temporal coordinates in S of emission and reception by
P ′ of signals which allow him to date the event α, then the postulate 1 gives the
relations : √√√√ 4∑

i=2

(fi(.)− x′i(Op′))2 =
|h(τ+(.))− h(τ−(.))|

2

f1(.) =
h(τ+(.) + h(τ−(.))

2
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Let us specify f1 which is the generative function of f because it allows to build its
Jacobian matrix. M ′(.) = (σ, y2(σ), y3(σ), y4(σ)) and N ′(.) = (τ, x2(τ), x3(τ), x4(τ))
being two trajectories of body in motion in S, we note σ(τ) the function which to
the date τ of emission of an electromagnetic signal by N ′ associates the date σ of
interception of the signal by M ′. If the cartesian digital clock used by P to build S
is normally oriented, then :

σ(τ)− τ =

√√√√ 4∑
i=2

(yi(σ(τ))− xi(τ))2

The calculation gives :(
σ(τ)− τ −

2∑
i=2

(yi(σ(τ))− xi(τ))
dyi
dσ

)
dσ

dτ
= σ(τ)− τ −

2∑
i=2

(yi(σ(τ))− xi(τ))
dxi
dτ

The duration in S ′ which separates the emission of the signal by N ′ and its
reception by M ′ is the absolute value of the number :

f1(σ(τ), y2(σ(τ)), y3(σ(τ)), y4(σ(τ)))− f1(τ, x2(τ), x3(τ), x4(τ))

If the admissible transformation f is a real eligible transformation then when M ′

and N ′ are constantly at rest according to P ′,
dyi
dσ

and
dxi
dτ

being determined by (6),

this duration does not depend on the variable τ . We obtain:

dσ

dτ
(f11 +

2∑
i=2

f1i
dyi
dσ

)(σ(τ),M ′(σ(τ))) = (f11 +
2∑
i=2

f1i
dxi
dτ

)(τ,N ′(τ))

dσ

dτ

µf
f11

(σ(τ),M ′(σ(τ))) =
µf
f11

(τ,N ′(τ))

By noting :

li(τ) =
yi(σ(τ))− xi(τ)

σ(τ)− τ
We get :

1

µf
(f11 +

4∑
i=2

f1ili)(σ(τ),M ′(σ(τ))) =
1

µf
(f11 +

4∑
i=2

f1ili)(τ,N
′(τ))

Thus, ∀(τ, x2, x3, x4) ∈ R4, ∀(l2, l3, l4) ∈ R3, l22 + l23 + l24 = 1, the function :

1

µf
(f11 +

4∑
i=2

f1ili)(τ + ε, x2 + εl2, x3 + εl3, x4 + εl4)

does not depend on the the positive variable ε. It results :

d

dτ
(
f11
µf

) +
4∑
i=2

(
d

dτ
(
f1i
µf

) +
d

dxi
(
f11
µf

)

)
li +

4∑
j=2

4∑
i=2

(
d

dxj
(
f1i
µf

)

)
lilj = 0 (8)

We have to associate with this equation the fact that (6) gives the velocity
vector known along the trajectory of P ′ and as in classical physics (according to (2)
he can move with a rotational motion relative to P ), his world line is not sufficient to
specify his state of motion. All the solutions of (8) and (4) are physically acceptable.
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Any affine function f1 which is solution of (4) is acceptable and the associated
transformation f is an element of the Poincaré group.

In a coordinate system, a clock that revolves around itself (possibly without
translational motion) is physically distinguishable from a clock that does not revolve
around itself therefore it would not be a conceptual absurdity if the relationship
between ”the proper time of a clock H in motion in an inertial coordinate system
S” and ”the temporal variable of S” depended on the movement of H around itself
(with respect to S). This is the case in the new model. Rigorously, a unique
world line segment which describes a trajectory of material body can have a certain
cartesian proper time (which is simply a parametrization recognized as affine) when
it is considered as a point of a physical space R and it may have a different cartesian
proper time when it is considered as a point of a different physical space R′. This is
forbidden in general relativity which supposes, by definition, that a cartesian proper
time comes from the metric tensor: it is not a consequence of special relativity and
it is not a consequence of the equivalence principle.

By noting gp =
f1p
µf

, gpq =
∂

∂xq
gp, 1 ≤ p, q ≤ 4, we can write:

g11 +
4∑
i=2

(gi1 + g1i)li +
4∑
j=2

4∑
i=2

gijlilj = 0

By noting
α2 = −1 0 ≤ θ ≤ π 0 ≤ ψ < 2π

l2 = cos θ l3 =
1

2
sin θ(eαψ + e−αψ) l4 =

1

2α
sin θ(eαψ − e−αψ)

This equation can be noted:
2∑

n=−2

sne
αnψ = 0

It is a trigonometric polynomial. The explicit shape of s−2 and s2 gives :

g34 + g43 = 0 g33 = g44

The symmetries of the equation (8) or the permutations of the indices of the trans-
formations li 7−→ (θ, ψ) allow to write:

gij + gji = 0 gii = gjj 2 ≤ i, j ≤ 4 i 6= j

By replacing these relations in the explicit shape of s−1, s0 and s1, we obtain :

g1i + gi1 = 0 gii = −g11 2 ≤ i ≤ 4

We can write:

gpq = −gqp gii = −g11 2 ≤ i ≤ 4 1 ≤ p, q ≤ 4 p 6= q (9)

By using alternately the antisymmetric relation of the equation (9) and Schwarz’
theorem we can write:

gpqn = −gqpn = −gqnp = gnqp = gnpq = −gpnq = −gpqn 1 ≤ p, q, n ≤ 4 p 6= q 6= n

We get:

gp =
∑
q 6=p

Gpq(xp, xq) 1 ≤ p, q ≤ 4

12



Let us exploit the relation g22 = g33. By noting Gij
k =

∂

∂xk
Gij we can write:

G21
2 (x2, x1) +G23

2 (x2, x3) +G24
2 (x2, x4) = G31

3 (x3, x1) +G32
3 (x3, x2) +G34

3 (x3, x4)

By performing a derivation of both sides of this equality with respect to a same
variable we can write:

∂

∂x1
G21

2 (x2, x1) =
∂

∂x1
G31

3 (x3, x1)
∂

∂x4
G24

2 (x2, x4) =
∂

∂x4
G34

3 (x3, x4)

On one side we have a function of (x2, x1) and of the other one we have a function
of (x3, x1). We can write, using Schwarz’ theorem :

∂

∂x2
G21

1 (x2, x1) =
∂

∂x3
G31

1 (x3, x1) = H̃(x1)

∂

∂x2
G24

4 (x2, x4) =
∂

∂x3
G34

4 (x3, x4) = R̃4(x4)

We can write:

G21
1 (x2, x1) = H̃(x1)x2 + L̃2(x1) G24

4 (x2, x4) = R̃4(x4)x2 + w̃24(x4)

G31
1 (x3, x1) = H̃(x1)x3 + L̃3(x1) G34

4 (x3, x4) = R̃4(x4)x3 + w̃34(x4)

Since g22 = g33 = g44 we can write, 2 ≤ i, j ≤ 4, i 6= j :

Gi1(xi, x1) = H(x1)xi +Li(x1) +Dii(xi) Gij(xi, xj) = Rj(xj)xi +wij(xj) +Dij(xi)

We get, 2 ≤ i, j, k ≤ 4, i 6= j 6= k, Di = Dii +Dij +Dik :

gi = [H(x1) +Rj(xj) +Rk(xk)]xi +Di(xi) + Li(x1) + wij(xj) + wik(xk)

Since gii = gjj we can write, 2 ≤ i, j, k ≤ 4, i 6= j 6= k :

H(x1) +Rj(xj) +Rk(xk) +
dDi

dxi
(xi) = H(x1) +Ri(xi) +Rk(xk) +

dDj

dxj
(xj)

Ri(xi)−
dDi

dxi
(xi) = Rj(xj)−

dDj

dxj
(xj)

On one side we have a function of xi and of the other one we have a function of xj
then we can write, 2 ≤ i ≤ 4, h ∈ R :

Ri(xi)−
dDi

dxi
(xi) = h

By redefining the function H we can write, 2 ≤ i, j, k ≤ 4, i 6= j 6= k :

gi = [H(x1) +
dDj

dxj
(xj) +

dDk

dxk
(xk)]xi +Di(xi) + Li(x1) + wij(xj) + wik(xk)

Since gij = −gji we can write, 2 ≤ i, j ≤ 4, i 6= j :

d2Dj

dx2j
(xj)xi +

dwij
dxj

(xj) = −d
2Di

dx2i
(xi)xj −

dwji
dxi

(xi)

We get, 2 ≤ i, j, k ≤ 4, i 6= j 6= k :

d3Dj

dx3j
(xj)xi +

d2wij
dx2j

(xj) = −d
2Di

dx2i
(xi)

d3Dj

dx3j
(xj) = −d

3Di

dx3i
(xi)
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d3Dj

dx3j
(xj) = −d

3Di

dx3i
(xi) = −(−d

3Dk

dx3k
(xk)) =

d3Dk

dx3k
(xk) = −d

3Dj

dx3j
(xj)

We get, i 6= 1, ai, αi, ci, wij ∈ R :

d3Di

dx3i
(xi) = 0 Di(xi) =

ai
2
x2i + αixi + ci

d2wij
dx2j

(xj) = −ai
dwij
dxj

(xj) = wij − aixj

We can write :
ajxi + (wij − aixj) = −aixj − (wji − ajxi)

We get, 2 ≤ i, j ≤ 4, i 6= j, bij ∈ R :

wji = −wij wij(xj) = −ai
2
x2j + wijxj + bij

By noting b̃i = bij + bik + ci and by redefining the function H we can write, 2 ≤
i, j, k ≤ 4, i 6= j 6= k :

gi = H(x1)xi + Li(x1) +
ai
2

(x2i − x2j − x2k) + ajxjxi + akxkxi + wijxj + wikxk + b̃i

Since g11 = −gii , i 6= 1, we can write :

4∑
n=2

G1n
1 (x1, xn) = −[H(x1) +

4∑
n=2

anxn]
∂

∂xi
G1i

1 (x1, xi) = −ai

G1i(x1, xi) = −aixix1 − Ti(x1)− Pi(xi)
∂

∂x1
(

4∑
n=2

Tn(x1)) = H(x1)

Since g1i = −gi1 , i 6= 1, we can write :

−aix1 −
dPi
dxi

(xi) = −dH
dx1

(x1)xi −
dLi
dx1

(x1)

We get, i 6= 1 :

d2H

dx21
(x1)xi +

d2Li
dx21

(x1) = ai
d2H

dx21
(x1) = 0

d2Li
dx21

(x1) = ai

We get, i 6= 1, L1, Li, H, c̃i, di ∈ R :

H(x1) = Hx1 + L1 Li(x1) =
ai
2
x21 + Lix1 + c̃i

dPi
dxi

(xi) = Hxi + Li

Pi(xi) =
H

2
x2i + Lixi + di

4∑
n=2

Tn(x1) =
H

2
x21 + L1x1 + d1

By noting bi = b̃i + c̃i, b1 = d1 + d2 + d3 + d4, i 6= 1, We get :

g1 = −H
2

(
4∑
p=1

x2p)− (
4∑

n=2

anxn)x1 − (
4∑
p=1

Lpxp)− b1 (10)

gi = Hxix1 +
ai
2

(x21 −
4∑

n=2

x2n) + (
4∑

n=2

anxn)xi + Lix1 + L1xi + (
4∑

n=2

winxn) + bi (11)

wji = −wij 2 ≤ i, j ≤ 4 (12)

Let us look for compatibility equations.
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By noting µg = g21−g22−g23−g24 =
1

µf
, the generative function f1 being supposed

continuously differentiable to second order, we can write:

d

dxi
(
gj
µg

) =
d

dxj
(
gi
µg

)
d

dxi
(
g1
µg

) =
d

dx1
(
gi
µg

) 2 ≤ i, j ≤ 4 i 6= j

By noting µgl =
d

dxl
µg, we can write:

(gij−gji)µg = giµgj−gjµgi (gi1−g1i)µg = giµg1−g1µgi 2 ≤ i, j ≤ 4 i 6= j (13)

These are equalities between polynomials of degree at most equal to five. In this
document we are only going to be interested in the solutions for which (H, a2, a3, a4)
= (0, 0, 0, 0). We do not ask if there are others solutions.

When Q is a polynomial of finite degree, one can note Zl[Q] the sum of monomials
of degree l. We can write:

Z2[giµg1 − g1µgi] = Z1[gi]× Z1[µg1]− Z1[g1]× Z1[µgi]

Z2[(gi1 − g1i)µg] = 2LiZ2[µg]

The equality
∂2

∂x1∂xi
Z2[(gi1 − g1i)µg] =

∂2

∂x1∂xi
Z2[giµg1 − g1µgi] gives:

L1(L
2
j + L2

k + w2
ij + w2

ik) = 0 2 ≤ i, j, k ≤ 4 i 6= j 6= k

We must distinguish the solutions for which L1 = 0 and the solutions for which L1

6= 0.

4.1 The Big Bang observational reference frame: R0

The solutions for which L1 6= 0 are formed between an observer S ′ of one particular
physical space R0 and an observer S of a physical space R which is different from
R0. I do not preach the existence of several Big Bang physical spaces because of
an analysis of the effects of the composition of a Lorentz transformation and the
solution that I will get.We can write :

µg = (L1x1 + b1)
2 −

4∑
n=2

(L1xn + bn)2

Li = wij = 0 g1 = −L1x1 − b1 gi = L1xi + bi 2 ≤ i, j ≤ 4 i 6= j

The Eulerian description of the velocity field U(τ, x2, x3, x4) = (Ui)2≤i≤4 which rep-
resents the motions in S of points of R0 is given by the equation (6) and one can
write:

Ui(τ, x2, x3, x4) = − gi
g1

(τ, x2, x3, x4) =
L1xi + bi
L1τ + b1

2 ≤ i ≤ 4

In a description of Lagrangian trajectories in S of points of R0, we must write:

dxi
dτ

(τ) =
L1xi(τ) + bi
L1τ + b1

2 ≤ i ≤ 4

We get
d2xi
dτ 2

(τ) = 0 2 ≤ i ≤ 4
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Thus, each point of R0 moves with a constant speed in S. Furthermore, there exists
a unique point of R0 which is continuously motionless in R: its spatial coordinates

in S are xi = − bi
L1

, 2 ≤ i ≤ 4. However, this world line possesses no peculiarity

in R0 because it depends on the choice of the physical space R with which S is
associated. Indeed, if E is a physical space which is such that a transformation
between one of its observers and S is element of the Poincaré group, then R and E
has no common point if they are distinct.

Besides, for each value of L1, each of the three numbers b2, b3, and b4 may be

expressed as a function of b1. In fact, using the expression of
dxi
dτ

(τ), it is sufficient

to know, at a time τ0 in S, the position and the speed of a particular point which is
arbitrarily chosen in R0.

Furthermore, equation (4) is used to write:

µg =
1

µf
> 0

Thus, for each value of the couple (L1, b1), the cartesian temporal variable τ (which

is assumed to be normally oriented) exists only in the real interval ]
−b1
L1

; +∞[. At

each time τ of this real interval of cartesian dating of the events, the physical space

R exists only in the open ball with center (xi = − bi
L1

), 2 ≤ i ≤ 4 and radius

| L1τ + b1 |.
Besides, we can write:

d

dτ
(xi(τ) +

bi
L1

) =
L1

L1τ + b1
(xi(τ) +

bi
L1

) 2 ≤ i ≤ 4

OR being this unique world line which is both a point of R and a point of R0, if
M ′ is a point of R0 whose spatial coordinates in S are represented by (xi(τ))2≤i≤4,
and if dτ (M

′, OR) is the spatial distance which separates M ′ and OR in R at the
cartesian time τ , we can write:

dτ (M
′, OR) =

√√√√ 4∑
i=2

(xi(τ) +
bi
L1

)2

d

dτ
dτ (M

′, OR) =
L1

L1τ + b1
dτ (M

′, OR) (14)

Thus, for each value of τ , the speed of estrangement between M ′ and OR is pro-
portional to the distance dτ (M

′, OR) : This is the description of the structural
expansion of the universe. We can write the solution:

dτ (M
′, OR) = (τ +

b1
L1

)

√√√√ 4∑
i=2

(
L1xi(τ0) + bi
L1τ0 + b1

)2 , τ0 ∈]− b1
L1

; +∞[

The world lines M ′ and OR are constantly at rest in R0. We can write a description
of the structural expansion of the universe with regard to each of the points of R. In
fact, if O is a point arbitrarily chosen in R, and if β is the angle which is formed in
R by the vector space ϕR(O,OR) and ϕR(OR,M

′), and if d(O,OR) is the constant
spatial distance between O and OR in R, then we can write:

dτ (M
′, O) =

√
d2τ (M

′, OR) + 2dτ (M ′, OR)d(O,OR) cos β + d2(O,OR)
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This suggests a characteristic equation of the structural expansion of the universe.
Besides, we can write:

f1l =
gl
µg

1 ≤ l ≤ 4

We get:

f1(τ, x2, x3, x4) = Cf1 −
1

2L1

ln[(τ +
b1
L1

)2 −
4∑
i=2

(xi + bi)
2]

All the generatives functions of the real eligible transformations between two des-
ignated physical spaces can be deduced from each other by a mathematical affine
transformation. This is because a generative function is a cartesian dating of events
and therefore it depends on the arbitrary choice of the unity of durations, on the
arbitrary choice of the numerical value assigned to a reference event, and the arbi-
trary choice of one of the two orientation of the mathematical real number line in
order to characterize the succession of events. So we need to specify the value of
the couple (L1, Cf1) in specific physical conditions. On the unique world line that is
both constantly at rest in R and R0, we can write:

f1(τ,−
b2
L1

,− b3
L1

,− b4
L1

) = Cf1 −
1

L1

ln(τ +
b1
L1

)

If the cartesian temporal variables of S and S ′ are both normally oriented then
the constant sign of the function f11 is positive consequently L1 < 0. If c is the
positive number which is chosen to represent the intensity in the vaccum of an
electromagnetic signal in R then we can write:

f1(ct,−
b2
L1

,− b3
L1

,− b4
L1

) = Cf1 −
1

L1

ln(ct+
b1
L1

)

The following theorem is based on a purely mathematical argument of a symmetry:

Theorem 2 The cartesian datings of the events being normally oriented in R and
R0, the standarts of lengths of these separate physical spaces are identical when
L1 = −1. If furthermore R chosen to make a cartesian dating of the events which
takes values in the real interval ]0; +∞[, then b1 = 0 and we shall say that the
cartesian clocks of R and R0 are synchronized if Cf1 = 0.

Even in a situation where the physical spaces R and R0 choose the same real
number c to represent the intensity of an electromagnetic signal in vacuum, the ex-

plicit relation that will exist between the temporal variable t′ =
f1
c

of R0 and the

temporal variable t of R will depend on the numerical value of c which characterizes
(in each physical space) the particular relation which exists between the natural
period which is arbitrarily chosen to be the unity of the durations and the natural
measure which is arbitrarily chosen to be the unity of the lengthes. This importance
of the numerical value of c can already be noticed in a transformation of Lorentz.

Let us look for more information on the structure of the transformation f . If
the observers S and S ′ are chosen so that the particular conditions of the theorem
2 are satisfied, and also so that the unique world line which is a point of R and R0

has the spatial coordinates (0, 0, 0) in S, then we can write:

f1(x1, x2, x3, x4) = ln[
√
x21 − x22 − x23 − x24]
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By noting δ = x21 − x22 − x23 − x24, the equations (5) can be written:

fi1 = −xi
δ

fii =
x1
√
δ + δ + x2i

x1δ + δ
3
2

fij =
xixj

x1δ + δ
3
2

2 ≤ i, j ≤ 4 i 6= j

By noting flpq =
∂2fl

∂xp∂xq
, 2 ≤ i, j, k ≤ 4 , i 6= j 6= k, we get:

fijk − fikj = 0 fiji − fiij = − x1xj

x1δ
3
2 + δ2

fij1 − fi1j =
xixj

x1δ
3
2 + δ2

Thus, the conclusions of the Schwarz theorem are not completely satisfied and this
indicates that the real eligible transformation f which is defined from R to R0, as
well as its inverse which is defined from R0 to R, are not continuously differentiable
to second order.

4.2 Transformations between two different physical spaces
of R0

We are interested in the solutions for which L1 = 0. Because we come to a con-
tradiction when it is not satisfied, all the relations stemming from the equality
Z2[giµg1 − g1µgi] = Z2[(gi1 − g1i)µg] produce the equation:

Liwjk + Ljwki + Lkwij = 0 2 ≤ i, j, k ≤ 4 i 6= j 6= k (15)

The equality Z1[giµg1−g1µgi] = Z1[(gi1−g1i)µg] gives the equations, 2 ≤ i, j, k ≤
4, i 6= j 6= k:

Lj(bjLi − biLj) + Lk(bkLi − biLk) = b1(Ljwji + Lkwki)

wji(bjLi − biLj) + wki(bkLi − biLk) = b1(w
2
ji + w2

ki)

wjk(bjLi − biLj) = b1wjkwji

The equality Z0[giµg1− g1µgi] = Z0[(gi1− g1i)µg] gives the equations, 2 ≤ i, j, k ≤ 4,
i 6= j 6= k:

bj(bjLi − biLj) + bk(bkLi − biLk) = b1(bjwji + bkwki)

The equality Z2[giµgj−gjµgi] = Z2[(gij−gji)µg] gives the equation (15). The equality
Z1[giµgj − gjµgi] = Z1[(gij − gji)µg] gives the equations, 2 ≤ i, j, k ≤ 4, i 6= j 6= k:

Lk(biwjk + bjwki + bkwij) = 0

wki(biwjk + bjwki + bkwij)− Li(bjLi − biLj) = b1Liwij

−Lk(bjLi − biLj) = b1Lkwij

We can write:

biwjk + bjwki + bkwij = 0 2 ≤ i, j, k ≤ 4 i 6= j 6= k (16)

Furthermore :

(L2, L3, L4) = (0, 0, 0) or biLj − bjLi = b1wij 2 ≤ i, j ≤ 4 i 6= j

The equality Z0[giµgj − gjµgi] = Z0[(gij − gji)µg] gives the equations, 2 ≤ i, j, k ≤ 4,
i 6= j 6= k:

b1(biLj − bjLi) + bk(biwjk + bjwki + bkwij) = b21wij
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We can write:
b1(biLj − bjLi) = b21wij 2 ≤ i, j ≤ 4 i 6= j

Since µg > 0, the function g1 never vanishes and we can write:

(L2, L3, L4) = (0, 0, 0) =⇒ (g1, w23, w24, w34) = (b1, 0, 0, 0)

We get:
biLj − bjLi = b1wij 2 ≤ i, j ≤ 4 i 6= j (17)

The equations (15) and (16) are consequences of the equations (17).The Eulerian
description of the velocity field U(τ, x2, x3, x4) = (Ui)2≤i≤4 which represents the
motions in S of points of R′ is given by the equation (6) and one can write:

Ui(τ, x2, x3, x4) =
Liτ + wijxj + wikxk + bi
L2x2 + L3x3 + L4x4 + b1

2 ≤ i, j, k ≤ 4 i 6= j 6= k (18)

4.3 The admissible rectilinear motions

One can study a rectilinear motion by imposing relations:

U3(τ, x2, x3, x4) = U4(τ, x2, x3, x4) = 0 ∀(τ, x2, x3, x4)

Wet get:
L3 = L4 = b3 = b4 = w23 = w24 = w34 = 0

If L2 = 0 then f is an element of the Poincaré group. Necessarily, the constant f11

depends only on the intensity of the velocity
vi
c

(f) = − f1i
f11

, 2 ≤ i ≤ 4, which results

from the equation (6). By calculating the inverse of the Jacobian matrix of f which
is given by the equations (5), we obtain 5, i 6= 1:

(f−1)11 =
f11
µf

(f−1)1i = −f1i
µf

We can write:

vi
c

(f−1) =
f1i
f11

4∑
i=2

[
vi
c

(f−1)]2 =
4∑
i=2

[
vi
c

(f)]2 =
v2

c2

The following theorem is based on a purely mathematical argument of a symmetry:

Theorem 3 The standarts of lengths of the physical spaces R and R′ are identical
when (f−1)11 = f11.

5Since it was specified that the equations (5) describe a situation where the observer S′ is chosen
in a particular way with regard to S, in generality there is a constant orthogonal matrix Mf such

that f−111 =
f11
µf

and

 f−112

f−113

f−114

 = − 1

µf
Mf

 f12
f13
f14

 and we always get

4∑
i=2

[
vi
c

(f−1)]2 =

4∑
i=2

[
vi
c

(f)]2
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We can write:

(f−1)11 = f11 =⇒ f11
µf

= f11

=⇒ µf = 1

=⇒ f 2
11 −

4∑
i=2

f 2
1i = 1

=⇒ f 2
11(1−

v2

c2
) = 1

=⇒ |f11| =
1√

1− v2

c2

Alternatively, if L2 6= 0 then there is a number ν such that b2 = νL2. We get:

g1(x1, x2, x3, x4) = −L2(x2 +
b1
L2

) g2(x1, x2, x3, x4) = L2(x1 + ν) g3 = g4 = 0

We can write:
1

µf
= µg = L2

2[(x2 +
b1
L2

)2 − (x1 + ν)2] > 0

Thus, for each value of x1, the transformation f is defined for values of x2 which

are such as (x2 +
b1
L2

)2 − (x1 + ν)2 > 0. In particular, f is not defined on the plane

of equation x2 = − b1
L2

. We already know that in a physical space which is different

of R0, each cartesian time τ which is normally oriented is always greater than some
number whose numerical value is derived from an arbitrary choice. The coordinate
system S can be chosen so that x1 take its values in real interval ] − ν; +∞[. In a
description of Lagrangian trajectories in S of points of R′, we must write:

d

dτ
x4(τ) =

d

dτ
x3(τ) = 0

d

dτ
x2(τ) =

τ + ν

x2(τ) + b1
L2

2 ≤ i ≤ 4 i 6= j 6= k

We get:

x2(τ) = − b1
L2

+ι

√
(τ + ν)2 + (x2(τ0) +

b1
L2

)2 − (τ0 + ν)2 τ0 ∈]−ν; +∞[ ι ∈ {−1, 1}

The generative function f1(x1, x2, x3, x4) = f1(x1, x2) is determined by the relations:

f11 =
−1

L2

x2 + b1
L2

(x2 + b1
L2

)2 − (x1 + ν)2
f12 =

1

L2

x1 + ν

(x2 + b1
L2

)2 − (x1 + ν)2
(19)

5 Conclusion

We can distinguish two practices in physics. The first is the proposal of formulae
(Newton’s first law of motion, Maxwell’s equations, Lorentz force, Newton’s law
of gravitation, Doppler effect, Schrödinger’s equation...) to describe the evolution
of the elements of a system according to their intrinsic natures and their states of
motion. The second is the precision of the observers who can notice the accuracy of
these formulae (an observer is needed to notice the states of motions of the elements
of a system). This second aspect is practicable only if we define beforehand all the
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possible observers by indicating how determining the states of motion of some with
regard to the others.

When we express that we must associate to every experimenter a particular
family of world lines which follow him in his motion and represents his physical space,
it is a definition which offers mathematical possibilities. The classical kinematics
operates a possibility to define all the physical spaces of the nature (some compared
with the others) and this document operates another possibility. If a spatial position
is defined as being a world line and not simply an element of U , it is because an
experimenter can notice in corpuscular model that a body makes round trips between
two fixed points or is moving a zigzag without return by a same point, and in a
quantum model he can be interested in the variation over time of the probability of
finding a particle system in a bounded region of his physical space which is the set
of fixed points.

We can define several temporal variables in each physical space (because it is
sufficient to choose a particular parametrization along each point of this space)
and some of them, by example the cartesian datings of events made by different
experimenters who are in motion the ones compared with the others, are directly
measurable. We showed at the end of the section 2 that we can propose mathe-
matically consistent but physically false answers to the following question: if R and
R′ are two physical spaces, what is the structure of the states of motion that an
experimenter of R notices for each world line which constitute R′ ? One is free to
choose any geometry and any temporal variable on R to write equations.

In classical physics we express that every experimenter can define a Euclidean
geometry on his physical space so that all notice the same spatial distances between
pairs of simultaneous events, this simultaneity resulting from a privileged temporal
variable the existence of which is supposed. We establish then the states of relative
motion between two arbitrarily chosen physical spaces in the nature and we ob-
tain the equation (2) which highlights the existence of rotational motions, possibly
coupled with translational motions.

A cartesian dating of events made by an experimenter on the surface of the earth
is a temporal variable t, and a cartesian dating of events made by an experimenter
on the surface of the moon is another temporal variable t′. In a relativistic theory,
by definition, none of the measurable temporal variables (and more generally none
of the relations of simultaneity on U) is recognized as privileged by all the possible
experimenters consequently we cannot resume the assumption of the classical physics
on the conservation of lengths of certain segments of parametrized curves defined
on the physical spaces. We propose then the postulate 1 which results from special
relativity and experiments of Michelson and Morley, and we obtain the equations
(6) and (8), and we propose the equation (14) as a rigorous theoretical formulation
of the Hubble’s experimental law.
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