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Abstract

We propose a model scheme of microscopic black holes. We assume that at the
center of the hole there is a spin % core field. The core is proposed to replace the
singularity of the hole. Possible frameworks for non-singular models are discussed

briefly.
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1 Introduction and Summary

The motivation behind the model described here is to find a way to go beyond the
Standard Model (BSM), including gravity. Gravity would mean energies of the Planck
scale, which is far beyond any accelerator experiment. This work is hoped to be a
small step forward in exploring the role on gravity in particle physics while any
complete theory of quantum gravity is still in an early developmental phase, and
certainly beyond the scope of this note.

In particular we pay attention to the nature of microscopic quantum black holes
at zero temperature. We make a gedanken experiment of what might happen when
exploring a microscopic black hole deep inside with a probe. In [1] we made two
assumptions

(i) when probed with a very high energy E > Epj.ha point particle a microscopic
black hole is seen as a fermion core field in Kerr, and ultimately Minkowski, metric.
The point-like core particle of the hole may have a high mass, something like the
Planck mass. However, in the Minkowski metric limit the mass should approach zero.
The core field is called here gravon. It should have a position in the standard model
together with other fermions.

(ii) the core may be the stable (or decaying) remnant of the hole, and the black
hole singularity is replaced by the core field.

The core is introduced to illustrate the case of singularity free black hole, but it
may also be a possible remnant with its own interactions. It may be a candidate
for dark matter. In this note we try to discuss theoretical models available in the
literature to get support, or deprecation, for the above assumptions.

With the Planck scale having its the conventional value 10! GeV finding a gravon
is hard. Gamma-ray signals from the sky may be a promising way. A gamma-ray, or
particle, with energy half the Planck mass would be a clear signal of the models of
this type.

There are models which may bring the relevant energy scale down within reach
of the LHC. Provided the Planck scale is down at TeV scale black holes with mass
in the TeV region may be formed. The basic idea discussed here does not depend on
the value of the Planck scale.

In sections below we discuss briefly some possible scenarios of microscopic black
holes, renormalization group improved gravity, bouncing universes, their roles in cos-
mology and testing the model. The nature of the present note is a concise preliminary
(potpourri) survey of literature with a limited scope.
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2 Black Hole Finals

2.1 Discrete Emission Lines

Bekentein’s formula [2] for black hole horizon area quantization reads [3] in gravita-
tional units G = ¢ = 1 A,, = vhAn where the fudge factor v is v = 41In(k), k is an
integer, yielding

A, =4nhln3,n=1,2,3... (1)

A Schwarzschild black hole has a discrete energy (mass) spectrum of the form

hln3
47

M, = n (2)

The quantized black hole emits gravitational radiation with frequencies which are
integer multiplet of the fundamental black hole frequency

In3

Wy = (Mn+1 - Mn)/h = ST M

(3)

In a quantum theory of gravity, the black-hole spacetime is expected to possess a
set of zero-point quantum gravity fluctuations. It has been suggested in [4] and [5]
that these zero-point fluctuations of the black hole spacetime and, in particular, the
quantum gravity fluctuations of the black hole horizon may enable quanta to tunnel
out of the black hole. These black hole spacetime fluctuations are characterized by
the fundamental resonance frequency wy of the black hole spacetime, and multiplets
of it 2wy, 3wy, ...) to tunnel out of the quantum black hole. Therefore a quantum black
hole is expected to show discrete line emission best measureable when the black hole
mass approaches the Planck mass.

2.2 Black Hole Remnants

Giddings has discussed black hole remnants in detail [6]. We cite his work below
briefly although we think it likely that information is lost in gradually by entanglement
during Hawking radiation, see eg. [7]

In [6] it is assumed there is an upper bound on the information content within a
given volume, determined by the Planck length. The entropy in a black hole formed
from an initial mass M requires a volume V;; that grows with M. A natural guess is
that the entropy density is bounded by the Planck density, which gives the estimate
Var ~ B0 (M/Mprane)?. A black hole of mass M should have a finite-sized core in
which information is distributed (on the surface) instead of being concentrated at the
singularity. One might expect that this has volume of order Vj;, and a naive estimate
of the radius of the core region is therefore

T~ lPlanck<M/MP1anck)2/3 (4)

3



There are two different logical possibilities for how a core with size of order V),
can be accommodated within the black hole. The first is that the core extends out to
some radius that grows with the mass, for example as given by the entropy estimate
above.

A second possibility is suggested by the work of refs. [8] and [9]: in curved space
an arbitrarily large volume can be hidden within a fixed radius. Thus the volume
of the core may grow as its radius stays fixed; the core can be thought of as a large
internal geometry attached to the outside geometry through a fixed-size neck.

Now consider what happens to the core as the black hole evaporates. With the
arguments of [10] and [11] one assumes that the information does not escape in the
Hawking radiation or through topology change. If one supposes the curvature bound
for the core radius, then the core radius shrinks with the mass of the evaporating
black hole. But since the core itself must act as a repository of information one
expects it not to shrink. Indeed, in the model of [10] it grows, albeit in a highly
cutoff-dependent way. If the radius of the horizon has shrunk down to the Planck
size, the horizon and neck meet. Now there are two possibilities. One is that the neck
can pinch off; the core then becomes a child universe. Another possibility is that the
core stays connected to our Universe through the neck. In that case, one views it as
a Planck-sized remnant from the outside. The large interior of the core contains the
missing information but is not visible without passing through the Planck-sized neck.

If such remnants in fact exist, then it should in principle be possible to find them
through direct observation. One looks for massive high density objects that nonethe-
less do not have horizons and therefore may emit or scatter radiation from their
surfaces. Furthermore, such objects could clearly have astrophysical consequences,
although determining these consequences would depend both on the initial mass dis-
tribution of black holes from which they formed as well as on their dynamics (e.g.
stability). The latter in particular is uncertain due to the lack of detailed knowledge
about the short distance physics responsible for their existence. Possible implications
for, e.g., dark matter remain to be investigated.

One can conclude that black holes have finite-sized cores and that these cores
could become massive remnants after Hawking emission. Such remnants do not have
the black hole information problem.

3 Einstein-Dirac Cosmology

The work of Finster and Hainzl [12] gives indication of singularity avoidance in
Friedmann-Robertson-Walker (FRW) cosmology. The authors study Einstein-Dirac
(ED) equations

Rj — 5 R6; = 8w} (5)
(D —m)¥ =0 (6)
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where TJZ is the energy-momentum tensor of the Dirac particles, « is the gravitational
constant, D is the Dirac operator and ¥ the wave function. For metric the closed
Friedmann-Robertson-Walker is chosen

ds® = dt* — R*(t)do? (7)
where R is the scale function and do? is the line element on the unit 3-sphere
2 dr® 2 102 205207 12
do =7 5 +77d0" + r°sin"0do (8)
—r

where r, § and ¢ are the standard polar coordinates. The Dirac operator in this
metric is written as

. 3R(t) 1 0 Dgs
D=iy"|0 : 9
i ( e 2R(t)) RO (—DSS 0 (9)
where 7 is the standard Dirac matrix, and Dgs is the Dirac operator on the unit
3-sphere. The operator Dgs has discrete eigenvalues A = :I:%, :I:%, ..., corresponding

to quantization of momenta of the particles. The Dirac equation is separate with the

ansatz
1
_s [87k L\ | 2 [a(t) ¥a(r,v 90))
Uy=R(t) 2 |— [N == s , 10
L= [ 3 ( 4)} (ﬂ(t)%(n"t?,w) (10
where o and [ are complex functions. For a homogenous system the components of
the energy-momentum tensor simplify and the time component is

SR} = [m(IaF ~18) - % Re(o@] . (11)

Substituting ¥ and Tij into the Einstein-Dirac equation one gets

d [« m  —=AR)\ ([«
als) = (e 20 0) .
R = " (aP - |5P) _%(5%@5). (13)
With the ansatz all single particle wave functions have the same time dependence
thus they form a coherent macroscopic quantum state. The fermionic many-particle
state is a spin condensate.

The ED equations further reduce to ordinary differential equations involving the
scale function R(t) and the complex functions a(t) and F(¢). In the limits A = 0
and m = 0 the equations reduce to the Friedmann equations for dust and radiation
universes, respectively. For large R the universe behaves classically as in the dust
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case. But near the singularities big bang and big crunch quantum effects change the
situation. Under certain conditions R can become zero and change sign even for small
values of R. Now the formation of a big bang or big crunch is prevented. This effect
is called the bouncing scale function.

4 Asymptotically Free Quantum Gravity

A modern view is that general relativity forms a quantum effective field theory at low
energies. This view is applied in this and the next section, also to high energies.

Building on higher derivative terms in the Einstein-Hilbert action, super-renorma-
lizable and asymptotically free (AF) theories of gravity have been discussed in the
literature [13] (see also [14]). Asymptotic freedom removes the singularity. Secondly,
asymptotic freedom due to higher derivative form factor causes an effective negative
pressure. Repulsive gravity at high density produces a bounce of a black hole. Black
holes in fact never form. A distant observer sees a long lifetime for the trapped surface
and interprets it as a black hole. The bounce is not given by Heisenberg uncertainty
but follows from the dynamics of the system.

In [13] the following non-polynomial extension of the quadratic gravitational action
of [15] has been considered

21/4| V(-O/A*)~t -1
_ 4 v
S = /d x—ﬁz [R -G = RM (14)
where x? = 327Gy and A is the Lorentz invariant energy scale. Its value is of

the order of Planck mass. The form factor, an entire function V' contains the non-
polynomial property of the theory. V cannot have poles in the complex plane to
ensure unitarity and it must have at least logarithmic behavior in the UV to give
super-renormalizability at the quantum level. The theory reduces to general relativity
in the low energy limit since all the corrections to the Einstein-Hilbert action are
suppressed by the factor A~

The form factor is related to the propagator and to the effective potential of the
theory. An example of a form factor is

V(2)™" = exp(z") (15)

where z = —[J/A? and n is a positive integer. String theory suggests n = 1. These
theories have only the graviton pole. There are no ghosts or tachyons. The UV is
dominated by the bare action, counterterms are negligible. Further details of these
theories are discussed in [13].

It is known that if one adds all quadratic curvature invariants to the Einstein-
Hilbert action the resulting theory is renormalizable at the price of ghost modes



[15]. In string theory the Einstein-Hilbert action is the first term of an infinite series
containing powers of the curvature tensor and its derivatives.

According to Narain and Anishetty [16] the behavior of running coupling constant
in the coupled system of higher derivative gravity and gauge fields is renormalizable to
all order loops. The leading contribution to the gauge coupling beta function comes
entirely from quantum gravity effects and it vanishes to all order loops.

In [16] the authors study fourth order higher derivative gravity which is claimed
to be renormalizable to all loops [15] and is unitary [17]. The motivation for their
study came from the realization that at one loop four kinds of divergences appear
V—=9:v/—9R,/=gR,, R*"and\/=gR?. They consider the following higher derivative
gravity action in dimensions 2 < d < 4

S = / % [—R - % (RWR’“’ - ﬁm) + %RQ (16)

where M has dimension of mass and w is dimensionless. There are negative norm
states, the propagator of the spin 2 massive mode appears with wrong sign violating
unitarity at tree level. It was found though that in a certain domain of coupling
parameter space, large enough to include known physics, the one loop running of
gravitational parameters makes the mass of spin 2 massive mode behave in such a
way that it is always above the energy scale being studied.

For our scheme asymptotically free quantum gravity is extremely interesting.
There may not be at the moment general consensus of it.

5 Asymptotic Safety

5.1 Functional Renormalization Group Method

Asymptotic safety was proposed by Weinberg [18] in 1976 as a condition of renor-
malizability. It is based on a nontrivial, or non-Gaussian, fixed point (NGFP) of
the underlying renormalization group (RG) flow for gravity. It is nonperturbative in
character and it guaranties finite results for measureable quantities. The method for
investigation of this scenario is functional renormalization group equation (FRGE) for
gravity. The FRGE defines a Wilsonian RG flow on a theory space which consists of
all diffeomorphism invariant functionals of the metric g, of the type occuring in the
action of general relatvity. From this construction emerges a theory called Quantum
Einstein Gravity (QEG). QEG is not a quantization of classical general relativity, but
it is consistent and predictive theory within the framework of quantum field theory.
A modern view is that general relativity forms a quantum effective field theory at low
energies.

The method of Reuter [19] uses the effective average action I'y, which is back-
ground independent. The RG scale dependence is governed by the FRGE of Wetterich
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[20]

1 52T -
KOWTL[®, ] = SStn [(—’“ + Rk) kO Ry

dPAIDE (17)

where ®4 is the collection of all dynamical fields and ®4 denotes their background
counterparts. Ry is an infrared cutoff which vanishes for p?> > k2 and provides a
k-dependent mass term for fluctuations with momenta p? < k2. Solutions of the
FRGE give families of effective field theories I';[g,.],0 < k < oo, labeled by the
coarse graining scale k. The solution 'y interpolates between the microscopic action
at k — oo and the effective action I';_g.

Suppose there is a set of basic functionals P,[]. Any functional can be written as
a linear combination of the P,’s. The the solutions I'y, of the FRGE have expansions
of the form

Al®, 8] = i i Po[®, 3] . (18)

The basis P, [-] may include local field monomials and non-local invariants. We use the
generalized couplings u, as local coordinates. Or better, we use a subset of couplings,
so called essential couplings which cannot be absorbed by a field reparametrization.
Though the method is non-perturbative truncations have to be made to the expan-
sions of solutions.

Expandin I'y as above and inserting into FRGE we obtain a system of infinitely
many coupled differential equations for the u,’s

KOy tio (k) = B, (U, Ug, -+ k), a=1,2,---. (19)

which can be solved using analytical or numerical methods.

A simple ansatz for action is the Einstein-Hilbert action where Newton’s constant
G}, and the cosmological constant Ay depend on the RG scale k. Let g,v and g,
denote the dynamical and background metric, respectively. The effective action then
satisfies in arbitrary spacetime dimension d

1
N 167TGk

Tulg.9.6,€] / d'yg( — Rlg)+200) + 119, 5+ 1'19.5.6.8)  (20)

where R(g) is the scalar curvature from metric g,,, Fif denotes the gauge fixing
action and Fih the ghost action with the ghost fields & and &.

The corresponding -functions describing the evolution of the dimensionless New-
ton constant g, = k%"2G}, and dimensionless cosmological constant A\, = k~2A;,, were
derived the first time by Reuter in [19] for any value of the spacetime dimensionality.
The most important result is the existence of a non-Gaussian fixed point suitable
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for asymptotic safety (AS). It is UV-attractive both in ¢g- and A-directions (roughly
A~ .35 and g ~ 4).

In the study of [21] it was shown that for » — 0 the RG improved black hole metric
approaches that of de Sitter space. This means that the quantum corrected spacetime
is completely regular, free from any curvature singularity unlike the Schwarzschild
black hole. The improved regularity comes because the 1/r-behavior of fuuss = 1 —
2GoM /r is tamed by very rapidly vanishing of the Newton constant at small distances.

A very heavy black hole obeys the classical relation Tgy ~ 1/M. The mass of the
hole is reduced by the radiation the temperature increases. This tendency is opposed
by quantum effects. Once the mass is as small as M., ~ Mppna the temperature
reaches its maximum value Ty (M,.,.) [21]. For even smaller masses it drops very
rapidly and vanishes at or below the Mpjane. The microscopic black hole could have
a remnant which does not Hawking radiate any more.

Asymptotic safety is an important theoretical tool for quantum gravity. The
methods used to derive the result are relevant to our scheme, but the analysis does
not support asymptotic freedom. On the other hand, the FRGE analysis necessi-
tates approximations, like series truncations, and contains a number of field theory
subtleties.

5.2 Starobinsky Model

A very interesting model for gravitation was suggested by Starobinsky [22]. The
model was originally studied to evaluate the one-loop corrections to the Einstein-
Hilbert action resulting from vacuum quantum fluctuations in the matter sector at
sufficiently high energies [22, 23], which can be taken into account effectively by adding
an R2-term to the gravitational action. It was also the first model for inflation in big
bang, at least without assuming any new source for inflation but the gravitational
sector. The model is even now consistent with the latest Planck satellite data [24].
The action of the model is obtained by adding a square of the Ricci scalar R term to
the standard action

4 1 Lo
S—/dxﬂ(mRJrgR) (21)
with the dimensionless coupling b usually expressed as b = 6M?/M3,, ., with M a
constant of mass dimension one, where Mppana = G~ /2 is the Planck mass, G is
Newton’s constant which will become scale dependent and g is the determinant of
the metric.

Inflation occurs in the model at sufficiently high curvature regime in the early
universe the R? term dominating in the action causing an unstable inflationary period
with exponential expansion. As the curvature decreases with time, the first term of
the action eventually dominates, and inflation ends with a graceful exit.

In [25] the authors study the quantum fluctuations in gravity using the renormal-
ization group approach. They take the Newton constant G and the R2-term coupling



b as running parameters. They start with the generating functional
Z[J] = /ng/ ei(S[g,wa TH guu+Sar+Sgn+ASk) (22)

where S[g,,] corresponds to the bare gravitational action, J*” is an appropriate ex-
ternal source with Sgp, Sy, denoting appropriate gauge-fixing and ghost terms, re-
spectively. The bare action is further modified by the presence of the scale-dependent
infrared regulator ASy. The latter is chosen such as to suppres momenta lower than
the infrared cut-off k£, and the integrating out of degrees of freedom proceeds in a
Wilsonian fashion, i.e. shell by shell in momenta [27].

The coarse-grained effective action I';[g,,| corresponding the above generating
functional can be derived using a Legendre transformation

1 —1
KOT4g) = 5T {(r,@ + By atRk} , (23)

with Ff) denoting the inverse, full propagator, and 0y = 0/0k, where the infrared
(IR) cut-off scale k sets the coarse graining or RG scale. This looks like equation
(17), apart from some notational differences, and is here called exact renormalization
group equation (ERGE). In particular, momentum modes below k are suppressed,
while those above k are not, and therefore integrated out. The regulator Rj ensures
IR regularisation as well as finiteness of the trace under very generic requirements
27].

An effective action associated with a Wick-rotated Starobinsky action (21), the
two beta functions are

d

k—
dk

~ _ d _
where we have introduced the dimensionless Newton’s coupling & (k) = K*G(k). The
beta functions are calculated partly numerically together with analytic approxima-
tions in [25].

If one would consider the action only the R? term the corresponding beta function

in leading order in b is
d 1117 2

dk~ 864072’
and is qualitatively similar to the quantum chromodynamics (QCD) case. The beta
function (25) exhibits one fixed point, b = 0, with an associated eigenvalue equal to
zero. The vanishing of the coupling b in the UV persists after the inclusion of the
linear curvature term.

The fixed points of the system of beta functions (24) can be found by setting
the corresponding right hand sides to zero. Using the cut-off scheme of ref. [26] we
find that they exhibit three real-valued fixed points, a Gaussian Fixed Point (GFP)

(25)
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labeled (a), and two UV (or non-Gaussian) Fixed Points (UVFP) labeled (b) and (c),
respectively

(a) (G, b,) = (0,0), (26)
(b) (Ggpbgp)1 = (2.451,914.57), (27)
(€) (G b)) = (247/17 ~ 4.44,0). (28)

The fixed point (28) is rather special, and one of the most important results of that
work: it describes an asymptotically safe (AS) Newton’s coupling and a vanishing R?
coupling in the UV. Apart from its interest from a pure RG perspective, this fixed
point gives rise to RG trajectories along which Starobinsky inflation can be viably
realized.

We summarize some the results of [25]. The second fixed point (28) is rather
special, and one of the most important results of this work:

It describes an asymptotically safe Newton’s coupling and a vanishing R? coupling
in the UV. Apart from its interest from a pure RG perspective, this fixed point gives
rise to RG trajectories along which Starobinsky inflation can be viably realized.

The existence of the fixed point (28) is crucial for the resulting inflationary be-
havior as it provides us with a mechanism for naturally producing small inflationary
fluctuations at the perturbative level. This type of behavior is able to overcome some
previously found problems in the context of AS inflation, i.e. combining a sufficient
number of e-folds with the requirement of obtaining the correct amplitude for the
metric fluctuations.

To conclude this subsection we would like to mention - to the joy of friends of
quantum chromodynamics - that an approximate system of beta functions for G(k) =
k*G(k) and b(k) can be solved analytically to find

~ Go A%
G(k)_l %&2(]?0)’
+ 5 (%)

(29)

with é(] and by being constants of integration, and ky a constant non-vanishing ref-
erence scale, which we will choose to be the Planck mass as it is measured today,
i.e. kg = Mpranec- This choice allows us to measure everything in units of the Planck
mass. The values of all physical observables are then defined with respect to the
chosen scale. It is easy to see that in the IR limit, i.e as k — 0, b — by, and G — 0,
respectively. This behavior is in very good agreement with the full numerical solution
of equations in the vicinity of the GFP.
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6 Planck Stars

In [28] the quantum gravitational effects come from quantum cosmology. In loop
cosmology the scale factor a(t) of the universe is modified by quantum gravitational

effects
2 -2 »

where G is the Newton constant, p the energy density of matter and

PPlanck ™~ MPlanck/lglanck ~ 05/(h02) (31>

where A is the reduced Planck constant. Quantum gravity corrections appear when
p ~ pe. This may happen before [ ~ lppua- A collapsing universe may bounce back
into expansion. This repulsion is due to Heisenberg uncertainty relations. In a matter
dominated universe the volume of the universe at the bounce is

Vo~ m/MPIaDCk l%’lanck (32>

where m is the total mass of the universe. This volume of the universe is estimated
to be about 75 orders of magnitude larger than the Planck volume.

Quantum analysis of a collapsing star leads to similar results. The gravitational
collapse of a star does not lead to singularity but to a new phase of the star where
the large gravitational attraction is balanced by large quantum pressure. The authors
call stars in this phase Planck stars, and they estimate that a stellar mass black hole
could have a radius of the order of 107!° cm. This is very small, of course, compared
to the original star but still more than 20 orders of magnitude larger than the Planck
length.

The lifetime of a Planck star is very long for a distant observer since it is deter-
mined to the Hawking evaporation time of the black hole. But if measured on the
surface of the star it is very short, the time light takes to cross the star.

A primordial black hole with mass about 10'? kg has a lifetime of the order of the
age of the universe ty ~ 14 x 10? years. So they would be at the end of their lifetime
now and be detectable at present. The size of this kind of object is

r= {’/tH/(348 71-tPlanck)lPlanck ~ 10714 cm (33)

The size of the black hole is the only scale in the process and it therefore fixes the
energy scale of the emitted particles in the last stage. Assuming that all fundamental
particles emitted with about the same energy taken at

h
Epurst = 2—; ~ 3.9 GeV (34)

From detectional viewpoint it is natural to measure emitted gamma-rays. Only di-
rectly emitted gamma-rays (estimated to be about 3 per cent) are at the energy

12



Epurst- Most gamma-rays come from decays of hadrons, mainly from neutral pions.
The authors [28] have made a Pythia [29] analysis of secondary gamma-rays emitted
by a Planck star at the end of its life. The mean energy is of the order 0.03 X Epyurst,
which is in the tens of MeV range. The multiplicity is quite high at about 10 photons
per q¢. A major hindrance comes from the maximum distance at which bursts can be
detected. For measuring say 10 photons using a 1 m? detector surface the estimated
distance of burst origin is only about 200 light years.

7 Cosmology

In the schemes considered for quantum gravitation the initial singularity is smoothed
into a very high but finite density and temperature objects. After inflationary phase
the standard model particles are formed together with occasional black holes asso-
ciated with the gravon. Their relative presence is a free parameter depending on
the properties of Planck scale black holes but a first guess is equal amount of each
standard model fermions.

This does not lead to major deviations from the standard cosmological model. The
abundance of primordial black holes contributes to the distribution of dark matter
of the universe. Quantitative differences to the standard model should be looked for
from gamma-ray spectra. The formation of stellar size black holes proceeds as in
general relativity theory.

8 Experimental Tests

As mentioned, high accuracy measurements of gamma-ray signals from the sky [30]
is at present the most promising key to observe new physics. With the Planck scale
at about 10'° GeV, all particles coupling to gravity, any particle with energy half
the Planck energy is a clear signal. A remmnant is expected to have two and many
particle decay channels, of which the few particle channels have rather clear signals.
Information and global charge conservation are imteresting questions.

There are models which may bring the relevant energy scale down within reach
of the LHC. These include models of ref. [31]. Provided the Planck scale is brought
down to TeV scale black holes with mass in the TeV region may be produced by
gravitational interaction. The basic idea discussed here does not depend on the value
of the Planck scale.

Cross sections and decay channels have been extensively calculated in [32]. De-
tailed analysis indicates best few body decay channels, in particular ey pair, for black
hole production.
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9 Discussion and Conclusions

The present note contains some tentative thoughts, and references elsewhere, how to
go a short step beyond the standard model towards a model of Planck scale phenom-
ena, assuming the standard model is valid up to that scale. At the Planck scale black
holes are the key objects of quantum gravity to study. Unfortunately existing model
calculation results concerning Planck mass region black holes are still unreliable. Fur-
thermore, the literature is scattered in time over about half a century to pre-arXivian
times, independent researchers are locally over all continents, and the results cover
several branches of special fields and journal publications. (A modest hope of this
concise note is to collect a few of the interesting results together.) Nevertheless, it
turns out that more is known of quantum gravity as an effective quantum field theory
at low energies than any single piece of work let us expect. But a key idea is still
missing.

The details of the theoretical models discussed in Sections 2-6 vary somewhat but
the singularity softening trend seems to be on rather sound basis. Information loss
can be avoided in one way or another. Dark matter has reasonable candidate models
while dark energy is harder to explain.

Our assumption (i) of section 1 may or may not be true (see last paragraph below)
though it is endorsed by the Section 4 models. Assumption (ii) is open with respect
to the remnant but is likely true because of the above mentioned non-existence of
singularity:.

The next task is to find a specific action for the model scheme of this note as a
field theory, or other type of theory, first for pure gravity later one and more standard
model particles included. Pure gravity should be taken in this model as gravon and
graviton terms in a quantum bound state that will correspond the Einstein equation
(5). On the other hand, the bound state scheme for the black hole could also be
checked against the phase transition picture like the the gravastar model [33], and
the one developed by Laughlin et al [34].

The phases of a black hole late life start with thermal Hawking radiation, followed
by emission of gravitational quanta as discussed in subsection 2.1. The remaining
remnant of black hole, without a horizon, is coupled to all other particles of the
standard model, or whatever a more complete model is. Its decay is interesting to
try to observe. It should be searched as a long lived heavy decaying particle.

The scheme discussed here can be summarized as having the gravon and the
graviton the fundamental elementary particles of quantum gravity, to be included to
the standard model. The dressed gravon is a natural candidate for dark matter.

A realistic model of quantum gravity should start from the microscopic entities
operating at the quantum scale, like the Planck scale. Then the methods of the new
model theory, be it quantum field theory or something else, will be introduced to
calculate the properties of the model like the UV behavior of the interaction.

The physical picture would be as follows. It is closer to quantum chromodynamics
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rather than quantum electrodynamics. But for color and electric charge the relevant
objects, hadrons and atoms, respectively, are neutral, of course, as seen from a proper
distance while mass cannot be similarly "hidden”. Even for a single massless core in
vacuum, very close to the core virtual particle pairs are created and destroyed, making
a cloud of mass/energy around the core, all objects interacting gravitationally with
the core and each other. At shortest scales mainly neighboring gravons and gravitons
interact. When the scale is increased gradually larger blocks of gravons and virtual
particles interact. With the renormalization group techniques, or whatever the proper
method is, it is expected that an equivalent of curved spacetime is created. With
high enough energy density a horizon is expected to surround the system. In the
classical limit general relativity would be obtained. But all this happens within the
gravitational field of everything else in the universe. And it has to be taken into
account. It may mean that quantum cosmology needs be simultaneously developed.
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