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Abstract

We present the sypersymmetric scalar-vector equations for massive and massless fields. The gauge invariance for
the potentials described by second-order and first-order wave equations and for field strengths described by the
systems of Maxwell-like equations is demonstrated.

1. Introduction

In classical electrodynamics the electromagnetic field is described by scalar ¢ and vector A

potentials [1]. The strengths of electric and magnetic fields are defined as:
E=-04-Vo,

- = - Y (1.1)

H=[Vx4]

Here V is the Hamilton operator (nabla-operator) and we use the following notation for the time
differential operator:
;10
c ot
where c is the speed of light. The electromagnetic field potentials satisfy the Lorentz gauge condition

(1.2)

0p+(V-4)=0. (1.3)

The equations for electromagnetic field are gauge-invariant. The substitutions
®—>p+0a,

-~ - . 1.4
A—>A+Va, 14

do not change the electric and magnetic fields. Here «(r,r) is arbitrary scalar function satisfying

homogeneous wave equation (because of the Lorentz gauge (1.3)). The gauge invariance is a cornerstone
of modern field theory [2]. However, if the mass of a field quantum is nonzero (massive field), there is a
problem with the violation of gauge invariance [2, 3].

In recent years many attempts have been made to generalize the second-order wave equation for
massive field using different algebras of hypercomplex numbers, such as four-component quaternions
(including scalar and vector) and eight-component octonions (including scalar, vector, pseudoscalar and
pseudovector). The authors discussed the possibility of constructing the field equations similar to the
equations of electrodynamics but with a massive ”photon”. In particular they tried to represent the wave
equation as the system of first-order Maxwell-like equations. However, the resulting Proca-Maxwell
equations enclosing field’s strengths and potentials are not gauge invariant [4-6]. Besides, a consistent
relativistic approach implies equally the space and time symmetries that require the consideration of the
extended sixteen-component space-time algebras.

Recently we proposed the space-time algebra of sixteen-component sedeons generating
noncommutative associative scalar-vector Clifford algebra [7, 8]. The sedeons take into account the
properties of physical values with respect to the space-time inversion and realize the scalar-vector
representation of Poincare group. In present paper, we use the sedeonic approach for the consideration of
massive fields described by sedeonic second-order and first-order wave equations within a unified field
conception. The gauge invariance of supersymmetric sedeonic field equations is demonstrated.



2. Space-time sedeons

The sedeonic algebra [7] encloses four groups of values, which are differed with respect to spatial and
time inversion.

e Absolute scalars (7) and absolute vectors (7) are not transformed under spatial and time inversion.

e Time scalars (¥,) and time vectors (¥,) are changed (in sign) under time inversion and are not
transformed under spatial inversion.

e Space scalars (¥.) and space vectors (V.) are changed under spatial inversion and are not
transformed under time inversion.

e Space-time scalars (¥, ) and space-time vectors (¥, ) are changed under spatial and time inversion.

Here indexes t and r indicate the transformations (t for time inversion and r for spatial inversion),
which change the corresponding values. All introduced values can be integrated into one space-time
sedeon V , which is defined by the following expression:

V=VAV AV AV, 4V +V. +V, +V,. 2.1

Let us introduce a scalar-vector basis a,, a,, a,, a,, where the element a, is an absolute scalar unit
(a, =1), and the values a,, a,, a, are absolute unit vectors generating the right Cartesian basis. Further
we will indicate the absolute unit vectors by symbols without arrows as a,, a,, a,. We also introduce the
four space-time units e,, e,, e,, e,, where e, is an absolute scalar unit (e, =1); e, is a time scalar unit
(e, =e,); e, is a space scalar unit (e, =e_); e, is a space-time scalar unit (e, =e, ). Using space-time
basis e, and scalar-vector basis a, (Greek indexes «,B=0,1,2,3), we can introduce unified sedeonic

components ¥, in accordance with following relations:

V =eJV,a,,

V=e,(Va,+V,a, +V,a,),

Vi=elay,

Vi=e (V,a,+V,a, +Va,), (2.2)
V. =ela,,

/. =e,(V,a, +Vya, +7,,),

Ve =eVa,,

V, =e, (V,a, +V,a, +Va,).

Then sedeon (2.1) can be written in the following expanded form:

V= € (Vooao +Va, +V,a, + Vo_%as)
+el(VIOaO +ha, +V)a, +V1333) (2.3)
+€, (Vzoao +Va, +V,a, + Vz_zas)

+e3 (I/}an + V}lal + V}ZaZ + V33a3) *

The sedeonic components 7,, are numbers (complex in general). Further we will omit units a, and e, for

the simplicity. The important property of sedeons is that the equality of two sedeons means the equality of
all sixteen components V,, .

Let us consider the multiplication rules for the basis elements a_, and e, (Latin indexes n, k=1, 2, 3).
The vectors a, and space-time units e, satisfy the following rules:

aa =a =1, (2.4)
aa =—aa_ (for nzk). (2.5)
aa,=ia,, a,a,=ia,, a,a, =ia,. (2.6)
ee =e =1, 2.7)
ee =—¢ee (for n=k), (2.8)



ee, =ie,, e, =ie , ee =ie,. (2.9

Here and further the value ; is imaginary unit (i* =—1). The multiplication and commutation rules for
sedeonic absolute unit vectors a, and space-time units e, can be presented for obviousness as the tables
1 and 2.

Table 1. Multiplication rules for absolute unit vectors a .

a, a, a,
a, 1 ia, —ia,
a, —ia, 1 ia,
a, ia, —ia, 1

Table 2. Multiplication rules for space-time units e, .

€ ¢ ¢
e, 1 ie, —ie,
e, —ie, 1 ie,
e, ie, —ie, 1
Note that units e, commute with vectors a_ :
ae =ea (2.10)

for any n and k.
In sedeonic algebra we assume the Clifford multiplication of vectors. The sedeonic product of two
vectors A4 and B can be presented in the following form:

AB=(4-B)+[ 4xB]. (2.11)

Here we denote the sedeonic scalar multiplication of two vectors (internal product) by symbol “-” and
round brackets

(4-B)= 4.8, + 4., + 4,B,, (2.12)

and sedeonic vector multiplication (external product) by symbol “x ” and square brackets
[AxB|=i(4,B,— AB,)+i( 4B~ AB)+i(AB, - 45). (2.13)

Note that in sedeonic algebra the expression for the vector product differs from analogous expression in
Gibbs vector algebra.

3. Lorentz transformations

In the frames of sedeonic algebra the transformation of values from one inertial coordinate system to
another are carried out with the following sedeons:
L =cosh 9 —e,7isinh 9,

L' =cosh 9 +e, msinh 9,

3.1)

where tanh(29)=v/c; ¢ is the speed of light; v is the speed of uniform motion of the system along the
absolute vector 7. Note, that

DE-0 =1, (3.2)

Let us consider the Lorentz transformation of the sedeon V . The transformed sedeon V' can be written



as sedeonic product
V'=L'VL. (3.3)
The transformed sedeon V' have the following components:
V=V, cosh(29)+e, (ii-¥, )sinh (29),
V=V, cosh(29)+e, (rﬁ : I7t)sinh(29),

o (3.4)
V)= t+(ﬁ1 t) (cosh29-1)+e,V, msinh(29),

I7r'=17r+(ﬁ1 17) (cosh29 —1)+e, V,msinh(29).

V'=V,

Vtt,‘ _Vtr’

V'=V cosh(29) ( ) (cosh29-1)+e, [zﬁxﬁrJSinh(ZS), (3-5)

V. =V, cosh(28)- (m V, )m (cosh29—1)+e, [zﬁ x V} sinh (29).

The Lorentz transforms (3.4) coincide with the common used transformations of field potentials in
classical electrodynamics, while the transformations (3.5) are valid for the field strengths.

4. Second-order equation for massive field
Let us consider the sedeonic second-order wave equation for massive field [9]:
(ieﬁ —e V- ietrm)(ietﬁ —e V- ietrm) w_o=J. 4.1)

where W, is a sedeonic potential, J_is a phenomenological sedeonic source of massive field (index m).
We use the following operators:

1
S
c ot
v=La+%0,+%, 4.2)
Ox Oy oz
_ M
7
Let us choose the potential as
W, = iae, —iae, +a, —iae, + Ae, + Ae, — Ae, +id,, 4.3)

where components a, and A4 are real functions of coordinates and time. Here and further the index
S=1,2, 3, 4. Also we take the source in the following form:

J., =—ipe +ip,e. —p,+ipe,. — je, —jzet +f3etr - ]'41' s 4.4)

. . - A4r -, - . .
where p, =4np. (p, is the volume density of charge) and - Jo (Js is volume density of current).
C

Multiplying the operators in the left part of equation (4.1) we obtain the following wave equations for the

components of potentials:
0’ —A+m’)ag = pg,
( ) o7 (4.7)
(07— A+m*) 4 = .

Let us introduce the scalar g, and vector G, field strengths according the following definitions:



g, =0a, +(§-;12) mas,
g, =0a, +(§~;13)+ma2,
g, —8a4+(§ ;14)—mal,

(4.8)

G, = —04, - Va, —i[ﬁx;u + mA,,
G, =04, ~Va, +1[Vx 4, ]-mA,
The definitions of field strengths (4.8) have the specific gauge invariance. It is easy to verify that g, and
G, are not changed under the following substitutions for the potentials:
a, = a, +0g, —msg,,
a, = a, +0s, + ms;,
a, = a, + 0, —me,,
a, = a,+0s, +meg,,
G = 4-e,
Q= d-ve,
A, = 4, -Ve,,

Q= 4, Ve,

(4.9)

Here ¢ , ¢,, ¢, ¢, are arbitrary scalar functions satisfying the homogeneous Klein-Gordon wave
equation. Taking into account (4.8) we get that

(zeté—erV—zetrm)(zalet —iae, +a, —iae, +Ae, +Ae —Ae, +1A4)

- L. - (4.10)

=-g +ig,e, +ig.e —ig,e +Ge,  —iG,+Ge, +Ge,,

and the initial wave equation (4.1) is reduced to the following equation:
(ieta —eV —ietrm)(—gl +ig,e, +ig.e, —ig.e, +Ge, —iG, +G.e, + @et) @.11)

=—ipe tip,e —p,+ip,e, — je. —j,e + je. — j,i

Producing the action of the operator on the left side of equation (4.11) and separating the values with
different space-time properties, we obtain a system of equations for the field strengths, similar to the
system of Maxwell equations in electrodynamics:

og, +(V-G -

3
%
[
S}

og,+(V-G,)+mg, = p,,
0g; "‘(6 3)—mg2 =P

6g4+(§' 4)+mg1=p4a (4 12)

The system (4.12) is also invariant with respect to the following substitutions:



g, = g, +0¢g —meg,,

g, = g, 0, —mé;,

g, = g, +0&, —ms,,

g, = g, —0¢, —mg,, (4.13)
G =G -V,

64 =G, +Vs,,

Multiplying each of the equations (4.12) to the corresponding field strength and adding these equations to
each other, we obtain:

Jo(girgirgi gl + GG G4 G)
+g1(V@l)+g2(§-@)+g3(§-é3)+g4(§~é4)
+(G, Vg, )+(G, Vg, )+(G, Vg, )+(G, Ve, ) (4.14)
4i(G [9%G,))-i(6, {96, ))-i(6, {96, ])+i(G-[Vx a)

VAR

=8P 18208305t 84y — (G ]l) (G2 Jz) (G

This expression is the analog of Poynting’s theorem for massive field. The term
1 o e -
w=§(gf+g§+g_f+gf+Gf+G22+G_f+G42) (4.15)
plays the role of field energy density, while the term
— C — — — — . — — . — —
p =E(glGl +8,G, + 8,6, +2,6,-i[ G, G, |+i[ G,xG, ) (4.16)

plays the role of energy flux density.
On the other hand, applying the operator (ieta—eﬁ—ie"m) to the equation (4.11) we obtain the

following wave equation for the field strengths:
(ieta —e V- ietrm)(ieta —e V- ietrm)(—gl +ig,e, +ig.e, —ig.e, +Ge, —iG, +Ge, +Ge, )
- . . . . 4.17)
= (ieta -e V —ietrm)(—iplet +ip,e. —p,+ip,e, — je. — j,e + je, — j4i).

Separating the terms with different space-time properties we get the following wave equation for the field
strength components g and G :

(4.18)

[
G §p;+5jz+l|:vxj4:|_mj2a
G

Vp, +d, - [Vx]‘J+mjl.

It can be seen that equations (4.18) are invariant with respect to the following substitutions:



As an example, let us consider the fields produced by a one type of sources p,

p, = p, +0g —me,,
p, = p, +0&, + ms;,
p; = p, +0¢g, —me,,
p, = p, +0e, +meg,,
J,=J, Vs,
b= -Ve,,
j.% = js —6.93,
J.=7j,-Ve,.

massive field is described by @, and 4, potentials:

W, =iae, + Ae, .

Then we have only the following nonzero field’s strengths:

g, =0aq, +(§-;ll),

84 =—ma,
G, =-04, —Va,,
éz =—i[§><;ll],
G, =-mi,

and the wave equation (4.4) takes the following form:

(iet@—eﬁ—ietrm)(—gl ~ig,e, +Ge, —iG, +G4et)

=—ipe, —je,.

Then the system (4.12) can be rewritten as

og,+(V-G,)+mg, =0,

oG, +Vg, +i[§xé&+m@ =—7,
0G, ~i[ VG, | =0,
—i[?xé4]+méz =0,

oG, +Vg, —mG, =0.

(4.19)

and j,. In this case the

(4.20)

(4.21)

(4.22)

(4.23)

The system (4.23) is the analog of Proca-Maxwell equations. In addition, we have the following wave

equations for the field strengths:

Assuming the charge conservation

(4.24)

(4.25)



we can choose the scalar field strength g, equal to zero. This is equivalent to the following gauge
condition:

da, +(V-4)=0, (4.26)
similar to the Lorentz gauge in electrodynamics.

Let us consider the stationary field of point scalar source. In the static case j =0, and
potential of the field can be chosen as

W, =iea (7). (4.27)

Then we have only two nonzero field components:

=-ma,,
S (4.28)
G, =—-Va,,
and the following filed equations:
(ﬁ'él)_méﬁ =P
-i[VxG, |=0, (4.29)

§g4 —mél =0.

As an example, let us consider the field produced by scalar point source. In this case the charge density
can be presented as

P =q,6(7), (4.30)

where ¢, is the point charge and &(7) is delta function. Then stationary wave equation can be written in
the spherical coordinates as

(%%(i’%}—m}a (7)=—a5(F). 4.31)
The partial solution of the equation (4.31), which decays at » —> o0, is
a, = %exp(—mr) . (4.32)
Thus, the stationary field has scalar and vector components

g, =—mTexp(-mr), (4.33)

7

G, = (1+mjﬁexp(—mr)fo, (4.34)

r r
where 7, is a unit radial vector.
Let us consider the interaction of two point charges g,, and g,, due to the overlap of their fields.

Taking into account that the field in this case is the sum of the two fields g, =g, +g,, and G, =G, +G,,,
the energy of interaction is equal (see expression (4.15))

W= i {g41g42 +(Gn '612)} av, (4.35)

where the integral is over all space. Substituting (4.33) and (4.34), we obtain

W, =q”—glzexp(—mR), (4.36)

where R is the distance between the point charges.



5. Second-order equation for massless field

In the case of massless field the equation (4.1) takers the following form [10]:
(ieﬁ—eﬁ)(ieﬁ—eﬁ)wo =J,, (5.1)

where we choose the potential W, and source J, of massless field (index 0) in the form of (4.3) and (4.4)
as before

W, = ibe, —ibe, +b, —ibe, +Be, +B,e, —Be, +iB,, (5.2)
j0 = _iﬂlet +iﬂ2er _ﬂs +iﬂ4err - Zer _Z2et +T3etr - Zli ’ (53)

where B, = 478! (B is the volume density of charge) and I, = 4—”2 (L is volume density of current). We
C

introduce the scalar and vector field strengths according following definitions:

(5.4)
]

Note that the definitions (5.4) are invariant with respect to the following substitutions:

b = b +0¢,,
b, = b, +0s,,

b, = b, +0s,,
b, = b, +0¢,,
B = B Vg, (5.3)
B, = E’2 Ve,,
E’z = 5’3 Ve,
E’4 = E’4 Ve,
Taking into account (5.4) we get
(ieté —eﬁ)(z’blet —ibe, +b,—ibe, + Eler + ézet —§3etr + i§4) (5.6)
=—h, +ihye,, +ihe, —ihe, + He, —iH,+ H,e, +H,e,, '
and wave equation (5.1) can be rewritten as
(ieta —eﬁ)(—hl +ihye, +ihe, —ihe, + He, —iH, + He, + I:I4et) 5.7)

=—ife, +if,e. —p,+ipe, —le —Le +Le, —[i

Producing the action of the operator on the left side of equation (5.7) and separating the terms with
different space-time properties, we obtain two independent systems of the equations for the field strengths,
similar to the system of Maxwell equations in electrodynamics. The first system is



o +(V-H,)=B,,
o, +(V-H,) =B, 58

oH, +Vh, +i[§xﬁ2J =,
oH, +Vh, —i[@xﬁ& =1,
This system is invariant with respect to the following substitutions:
h = h +0e,,
h, = h, —0¢,,
i = H,-Ve,
H, =, + Ve,

(5.9)

The second system is
Ohy +(V-H,) = B,,

oh, +(V-H,)=B,, 510

OH, +Vhy —i| VxH, | =L,
oH, +Vh, +i[§x1fl3J =1,
This system is invariant with respect to the following substitutions:

h, = h, +0¢,,
h, = h, -0,

H,= H,-Vs,,
A, = H,+Ve,

(5.11)

Accordingly, the wave equations for the massless field strengths are also divided into two independent
systems. The first system combines the potentials and sources, which are transformed in accordance with
Lorentz transformations of type I (see (3.4))

(2% =) =08, ~(¥-1).
(2% =), =-0p, ~(V-1,).
(6" —A)H, =V, +al —i[ V1, ],
(6"~ A)H, = VB, +0l, +i[ VxI, .

(5.12)

The second system combines the fields and sources, which are transformed in accordance with Lorentz
transformations of type II (see (3.5))

(¢ -A)h =, ( 7
EEN (T
(0 -a)d

(0" -A)H, =VB,+al, -

)
)

13
Hy =V, +0l +i[ VI, ], G139
[V

L)

The equations (5.12) and (5.13) are invariant with respect to the substitutions

10



B, = B, +0¢,,
B, = B, +0¢,,
B, = B, +0s;,
B, = B, +0¢,,
ij_ﬁgl’ (5.14)

[ =i -Ve,

l; = l: - 653,

[ =7 Ve,
The system of equations (5.8) corresponds to the usual system of Maxwell equations. Let us show it. If
we assume the charge conservation

OB, +(V-1;) =0,

op,+(V-L)=0,
then as it follows from (5.12) we can choose the scalar fields 4 and 4, equal to zero and obtain the
following system:

(5.15)

- (5.16)
61512 —i[ﬁxﬁljz—l;.

Here H, is the electric field strength; H, is the magnetic field strength; g, is the volume density of
electrical charge; f8, is the volume density of magnetic charge; /, is the volume density of electrical

current; 7, is the volume density of magnetic current. Taking into account the experimental fact that in
our part of the universe there is no magnetic charges and currents, we obtain the system of equations

(6 ’ [j] 1 ) = ﬂl s
(V-d,)=0,
_ L - (5.17)
o, +i| VxH, |=-I,
oH, —i[ VxH, | =0,
which coincides with the conventional system of Maxwell's equations.
6. First-order equation for massive field
Let us consider a massive field, which is described by the sedeonic first-order equation [9]:
(ie,0-e,V-ie,m)W, =1, . (6.1)

Here I is the phenomenological field source, which can be chosen in the following sedeonic form:

im =—d, +id,e, +id.e, —id,e, + flen —ifz + ﬁer +f4€:t (6.2)

where d, =4rd' (d' are the volume density of charges) and f =4—ﬂfk' ( /' are the corresponding
C

volume density of currents). Choosing the potential W, in the form of (4.3) we can rewrite the equation
(6.1) in the following expanded form

(zetﬁ -eV —zetrm)(zalet —ia,e, +a, —iae, + e, +Ae —Ae, +1A4)

- L - (6.3)
=—d +id,e, +id.e, —ide, + fie, —if, + fie, + f,e,.

11



This sedeonic equation is equivalent to the following system:

Oa, +(§;1 )+ma4 =d,

Oa, + ( )— ma, =d,,
Oa, + ( )+ ma, =d,,
Oa, + ( )— ma, =d,,
—8A Va +1[ ]+mA ]7, ©4)
~04, -Va, - 1[ ]—m;13=f2,
—04, Va3—z[ ]+m;12:]73,
—04, -Va, +i[V><A3]—m;1l = /;4.
On the other hand, introducing the massless field strengths according the definitions (5.2) we get
-g, tig,e, +ig.,e —ig.e + Gletr —iéz + G3er + @et 6.5)

=—d, +id,e, +id,e, —id e, + fie,. —if, + fe, + f,e,

It means that in fact the field strengths are non-zero only in the regions of the field sources.
Applying the operator (ieta —e V- iet,m) to the equation (6.3) we obtain the following second-order

wave equation:

(zeta -e V- zetrm)(zeté -e V- zetrm)(zalet —ia,e, +a,—iae, +Ae. +Ae —Ae, + zA4)

= (ie,0~ e,V ~ie,m)(~d, +ide, +ide, ~id,e, + fie, ~ifs + fie, + fe,). (©©
which is equivalent to the following system:
(6>~ A+m’)a, =0d, +(V- /) -md,,
(6>~ A+m*)a, =od, +(V -, )+ md,,
(6°—Aa+m’)a, =od,+(V- f,)-md,,
(0°—Aa+m’)a, =ad,+(V-f,)+md, 67
(0 —A+m*) 4, =-0f, - Vd, —z[vX 2] mf,,
(6>~ A+m’)d, ==of, =V, +i[ Vx f, |+ mf,,
(0" —A+m’) 4, =-0f, ~Vd +i[6xf4] mf,,
(0 —a+m’ v

It can be seen that equations (6.7) are invariant with respect to the following substitutions for the sources:
d = d +0s +ms,,
d, =d, +0s,—me,,
d, = d, + 0, + mg,,
d, =d,+0g,—meg,
= = = 6.8
fi=7 -V, (6:8)
f,=J,-Ve,,
fz = f% - 6.93,
fi=f,-Ve,.

12



7. First-order equation for massless field

In massless case the first-order wave equation can be presented as
(ie0-¢,V)W, =1, (7.1)
where the potential W, and phenomenological source I, have the following form:

W, = ibe, —ibe, +b, —ibe, +Be, +B,e, —Be, +iB,, (7.2)

I, =-v +iv,e, +ive —ive +7.€, —iV, +7,e +7,e, . (7.3)

. . . 4z, . _, . .
Here v, =4nv, (v is the volume density of charge) and 7, = 7”;/5' (75 1s volume density of current). The

equation (7.1) is equivalent to the following system:

(7.4)

The equations (7.4) are invariant with respect to the substitutions (5.5).
As an example, let us consider the massless field generated by scalar point source. In this case we can
choose the scalar source in the form

I, =4, , (7.2)
It follows that only scalar field strength % (see definition (5.2) for massless field) is nonzero:
h =4nv), . (6.10)

This field is non-zero only in the region of source. The density of charge for point source is equal

v'=06(r), (6.11)
where o, is the point charge. Then the interaction energy of two point charges can be presented as
follows:

1
W, =—/\hh,dv. 6.12

12 472:'[ 17712 ( )

Substituting (6.10) and (6.11), we obtain
W, =4r0,0,0(R), (6.13)

where R is the vector of distance between first and second charges. It indicates that two point charges
interact only if they are at the same point of space.
7. Conclusion

Thus we have presented the sypersymmetric scalar-vector equations for massive and massless fields.
The gauge invariance for the potentials described by second-order and first-order wave equations and for
field strengths described by the systems of Maxwell-like equations has been demonstrated.
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