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Abstract: This paper studies the relationship between the prime divisor and Stirling's approximation.

We get prime number theorem and its corrected value. We get bound for the error of the prime

number theorem. Riemann hypothesis is established.
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1. INTRODUCTION

In mathematics, the Riemann hypothesis, proposed by Bernhard Riemann (1859), is a conjecture that

the non-trivial zeros of the Riemann zeta function all have real part 1/2.

The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely

convergent infinite series[1]
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The Riemann hypothesis is one of the most important conjectures in mathematics[2]. Hilbert listed
the Riemann Hypothesis as one of his 23 problems for mathematicians of the twentieth century to
work on[3].

Von Koch (1901) showed that the Riemann hypothesis is equivalent to[4]:
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2. RESEARCH ON THE PRIME NUMBER THEOREM

If P is a prime number, the number of prime divisor P which is contained by the natural number

is less than N is:

The number of natural number which contains more than one prime divisor P is N
P
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The number of natural number which contains more than m prime divisors P is m
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So the number of prime divisors P which is contained by the natural number less than N is:
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We assume that the primes less than N is:

1 2, ,......, mP P P , 1 2 ...... mP P P   .

We assume that the number of prime factor P which is contained[5] by the natural number

less than N is  .
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Prime number density is ( )n
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3. DICUSSION ON THE NUMBER OF PRIME NUMBERS’ EXPECTED VALUE

We assume that the Prime number density is
1

ln N .
The product of all prime factors is
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Error of the prime number theorem which is caused by
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can ignore the error.

The product of all prime divisor P is
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Prime number which is corrected is closer to the actual value.
4. DISCUSS ON THE ERROR OFTHE PRIME NUMBER THEOREM



The product of all prime factors P is
1
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primes is 1 2 3, , ,...... lP P P P . The remainder that N is divided by 1 2 3, , ,...... lP P P P is

1 2 3, , , ...... l    . The value range of 1 is  10, 1P  . The value range of

2 is  20, 1P  ……. When 1 2 3...... lN PP P P , 1 2 3, , ,...... l    contain all different values, and

each value is the unique. When N is a certain value, 1 2 3, , ,...... l    is a fixed value. With the

increase of N, the value of 1 2 3, , ,...... l    change, and tend to disorder. When P is much less

than N ,  is random.When P is not much less than N ,  is not random. With the increase

ofN ,  * *P m  increases and decreases periodically. So location of P is not random. The

error of the prime number theorem will be reduced.
The changes of Prime’s location change the number of prime numbers. The product of all prime

factors P is
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 . When P is increased, the product is reduced, so we need more prime. When

P is reduced, the product is increased, so we need to reduce the number of prime.  increases and

decreases periodically. Prime does not change the position more than two times or less than 1/2.
Therefore, the number of prime numbers will not change more than two times or less than 1/2. So it
can't bring magnitude changes.

We analyze the random error. The maximum error is N . We can assume that the probability that
error is N is 0.5 and the probability that error is 0 is 0.5. Mean square error of the number of prime

numbers is about  

1
2

1
22 ln

N

N . The maximum number of primes’ error is about

1
2

2
N

. The probability

that error is greater than
1
23N tends to 0. The level of the actual value is not more than

1
2

2
N

.

Von Koch (1901) showed that the Riemann hypothesis is equivalent to:

   logx Lix x x  

So Riemann hypothesis is established.
5. SUMMARY
This paper analyses error of the prime number theorem. Riemann hypothesis is established. Through
the further analysis, we may obtained the error function. This method is effective on the twin prime
conjecture, Goldbach's conjecture and Mersenne Primes conjecture.
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