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Preface
Usually the models of real world problems in almost all disciplines like en- 
gineering, medical sciences, mathematics, physics, computer science, man- 
agement sciences, operations research and arti�cial intelligence are mostly 
full of complexities and consist of several types of uncertainties while deal- 
ing them in several occasion. To overcome these di¢  culties of uncertainties, 
many theories have been developed such as rough sets theory, probability 
theory, fuzzy sets theory, theory of vague sets, theory of soft ideals and the 
theory of intuitionistic fuzzy sets, theory of neutrosophic sets, Dezert-
Smarandache Theory (DSmT), etc. Zadeh discovered the relationships of 
probability and fuzzy set theory which has appropriate approach to deal 
with uncertainties. Many authors have applied the fuzzy set theory to gen- 
eralize the basic theories of Algebra. Mordeson et al. [26] has discovered the 
grand exploration of fuzzy semigroups, where theory of fuzzy semigroups is 
explored along with the applications of fuzzy semigroups in fuzzy coding, 
fuzzy �nite state mechanics and fuzzy languages and the use of fuzzi�ca- 
tion in automata and formal language has widely been explored. Moreover 
the complete l-semigroups have wide range of applications in the theories of 
automata, formal languages and programming. It is worth mentioning that 
some recent investigations of l-semigroups are closely connected with 
algebraic logic and non-classical logics.

An AG-groupoid is a mid structure between a groupoid and a commuta-
tive semigroup. Mostly it works like a commutative semigroup. For instance
a2b2 = b2a2, for all a; b holds in a commutative semigroup, while this equa-
tion also holds for an AG-groupoid with left identity e. Moreover ab = (ba)e
for all elements a and b of the AG-groupoid. Now our aim is to discover
some logical investigations for regular and intra-regular AG-groupoids us-
ing the new generalized concept of fuzzy sets. It is therefore concluded
that this research work will give a new direction for applications of fuzzy
set theory particularly in algebraic logic, non-classical logics, fuzzy coding,
fuzzy �nite state mechanics and fuzzy languages.
In [28], Murali de�ned the concept of belongingness of a fuzzy point to

a fuzzy subset under a natural equivalence on a fuzzy subset. The idea of
quasi-coincidence of a fuzzy point with a fuzzy set is de�ned in [32]. Bhakat
and Das [1, 2] gave the concept of (�; �)-fuzzy subgroups by using the �be-
longs to�relation 2 and �quasi-coincident with�relation q between a fuzzy
point and a fuzzy subgroup, and introduced the concept of an (2;2 _q)-
fuzzy subgroups, where �; � 2 f2; q;2 _q;2 ^qg and � 6=2 ^q. Davvaz
de�ned (2;2 _q)-fuzzy subnearrings and ideals of a near ring in [4]. Jun
and Song initiated the study of (�; �)-fuzzy interior ideals of a semigroup
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in [14]. In [35] regular semigroups are characterized by the properties of
their (2;2 _q)-fuzzy ideals. In [34] semigroups are characterized by the
properties of their (2;2 _qk)-fuzzy ideals.
In chapter one we have introduced the concept of (2;2 _q)-fuzzy ideals

in an AG-groupoid. We have discussed several important features of a com-
pletely regular AG-groupoid by using the (2;2 _q)-fuzzy left (right, two-
sided) ideals, (2;2 _q)-fuzzy (generalized) bi-ideals and (2;2 _q)-fuzzy
(1; 2)-ideals.
In chapter two, we investigate some characterizations of regular and

intra-regular Abel-Grassmann�s groupoids in terms of (2;2 _qk)-fuzzy
ideals and (2;2 _qk)-fuzzy quasi-ideals.
In chapter three we introduce (2
 ;2
 _q�)-fuzzy right ideals in an AG-

groupoid. We characterize intra-regular AG-groupoids using the properties
of (2
 ;2
 _q�)-fuzzy subsets and (2
 ;2
 _q�)-fuzzy right ideals.
In chapter four we introduce the concept of (2
 ;2
 _q�)-fuzzy quasi-

ideals in AG-groupoids. We characterize intra-regular AG-groupoids by the
properties of these ideals.
In chapter �ve we introduce (2
 ;2
 _q�)-fuzzy prime (semiprime) ideals

in AG-groupoids. We characterize intra regular AG-groupoids using the
properties of (2
 ;2
 _q�)-fuzzy semiprime ideals.
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Generalized Fuzzy Interior
Ideals of AG-groupoids
In this chapter, we have introduced the concept of (2;2 _q)-fuzzy ideals in
an AG-groupoid. We have discussed several important features of a com-
pletely regular AG-groupoid by using the (2;2 _q)-fuzzy left (right, two-
sided) ideals, (2;2 _q)-fuzzy (generalized) bi-ideals and (2;2 _q)-fuzzy
(1; 2)-ideals. We have also used the concept of (2;2 _qk)-fuzzy left (right,
two-sided) ideals, (2;2 _qk)-fuzzy quasi-ideals (2;2 _qk)-fuzzy bi-ideals
and (2;2 _qk)-fuzzy interior ideals in completely regular AG-groupoid and
proved that the (2;2 _qk)-fuzzy left (right, two-sided), (2;2 _qk)-fuzzy
(generalized) bi-ideals, and (2;2 _qk)-fuzzy interior ideals coincide in a
completely regular AG-groupoid.

1.1 Introduction

Fuzzy set theory and its applications in several branches of Science are 
growing day by day. Since paci�c models of real world problems in var- 
ious �elds such as computer science, arti�cial intelligence, operation re- 
search, management science, control engineering, robotics, expert systems 
and many others, may not be constructed because we are mostly and un- 
fortunately uncertain in many occasions. For handling such di¢  culties we 
need some natural tools such as probability theory and theory of fuzzy sets 
[40] which have already been developed. Associative Algebraic struc- tures 
are mostly used for applications of fuzzy sets. Mordeson, Malik and Kuroki 
[26] have discovered the vast �eld of fuzzy semigroups, where the- oretical 
exploration of fuzzy semigroups and their applications are used in fuzzy 
coding, fuzzy �nite-state machines and fuzzy languages. The use of 
fuzzi�cation in automata and formal language has widely been explored. 
Moreover the complete l-semigroups have wide range of applications in the 
theories of automata, formal languages and programming.
The fundamental concept of fuzzy sets was �rst introduced by Zadeh [40] 

in 1965. Given a set X, a fuzzy subset of X is, by de�nition an arbitrary
mapping f : X ! [0; 1] where [0; 1] is the unit interval. Rosenfeld intro-
duced the de�nition of a fuzzy subgroup of a group [33]. Kuroki initiated
the theory of fuzzy bi ideals in semigroups [18]. The thought of belonging-
ness of a fuzzy point to a fuzzy subset under a natural equivalence on a
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fuzzy subset was de�ned by Murali [28]. The concept of quasi-coincidence of
a fuzzy point to a fuzzy set was introduce in [32]. Jun and Song introduced
(�; �)-fuzzy interior ideals in semigroups [14].
In [28], Murali de�ned the concept of belongingness of a fuzzy point to

a fuzzy subset under a natural equivalence on a fuzzy subset. The idea of
quasi-coincidence of a fuzzy point with a fuzzy set is de�ned in [32]. Bhakat
and Das [1, 2] gave the concept of (�; �)-fuzzy subgroups by using the �be-
longs to�relation 2 and �quasi-coincident with�relation q between a fuzzy
point and a fuzzy subgroup, and introduced the concept of an (2;2 _q)-
fuzzy subgroups, where �; � 2 f2; q;2 _q;2 ^qg and � 6=2 ^q. Davvaz
de�ned (2;2 _q)-fuzzy subnearrings and ideals of a near ring in [4]. Jun
and Song initiated the study of (�; �)-fuzzy interior ideals of a semigroup
in [14]. In [35] regular semigroups are characterized by the properties of
their (2;2 _q)-fuzzy ideals. In [34] semigroups are characterized by the
properties of their (2;2 _qk)-fuzzy ideals.
In this paper, we have introduced the concept of (2;2 _qk)-fuzzy ideals

in a new non-associative algebraic structure, that is, in an AG-groupoid and
developed some new results. We have de�ned regular and intra-regular AG-
groupoids and characterized them by (2;2 _qk)-fuzzy ideals and (2;2 _qk)-
fuzzy quasi-ideals.
An AG-groupoid is a mid structure between a groupoid and a commuta-

tive semigroup. Mostly it works like a commutative semigroup. For instance
a2b2 = b2a2, for all a; b holds in a commutative semigroup, while this equa-
tion also holds for an AG-groupoid with left identity e. Moreover ab = (ba)e
for all elements a and b of the AG-groupoid. Now our aim is to discover
some logical investigations for regular and intra-regular AG-groupoids us-
ing the new generalized concept of fuzzy sets. It is therefore concluded
that this research work will give a new direction for applications of fuzzy
set theory particularly in algebraic logic, non-classical logics, fuzzy coding,
fuzzy �nite state mechanics and fuzzy languages.

1.2 Abel Grassmann Groupoids

The concept of a left almost semigroup (LA-semigroup) [16] or an AG-
groupoid was �rst given by M. A. Kazim and M. Naseeruddin in 1972. an
AG-groupoid M is a groupoid having the left invertive law,

(ab)c = (cb)a, for all a, b, c 2M . (1)

In an AG-groupoid M , the following medial law [16] holds,

(ab)(cd) = (ac)(bd), for all a, b, c, d 2M . (2)
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The left identity in an AG-groupoid if exists is unique [27]. In an AG-
groupoid M with left identity the following paramedial law holds [31],

(ab)(cd) = (dc)(ba); for all a; b; c; d 2M: (3)

If an AG-groupoid M contains a left identity, then,

a(bc) = b(ac), for all a, b, c 2M . (4)

1.3 Preliminaries

Let S be an AG-groupoid. By an AG-subgroupoid of S; we means a non-
empty subset A of S such that A2 � A. A non-empty subset A of an AG-
groupoid S is called a left (right) ideal of S if SA � A (AS � A) and it is
called a two-sided ideal if it is both left and a right ideal of S. A non-empty
subset A of an AG-groupoid S is called quasi-ideal of S if SA \ AS � A.
A non-empty subset A of an AG-groupoid S is called a generalized bi-ideal
of S if (AS)A � A and an AG-subgroupoid A of S is called a bi-ideal of
S if (AS)A � A. A non-empty subset A of an AG-groupoid S is called an
interior ideal of S if (SA)S � A.
If S is an AG-groupoid with left identity e then S = S2. It is easy to see

that every one sided ideal of S is quasi-ideal of S. In [30] it is given that
L[a] = a [ Sa, I[a] = a [ Sa [ aS and Q[a] = a [ (aS \ Sa) are principal
left ideal, principal two-sided ideal and principal quasi-ideal of S generated
by a. Moreover using (1), left invertive law, paramedial law and medial law
we get the following equations

a (Sa) = S(aa) = Sa2, (Sa)a = (aa)S = a2S and (Sa) (Sa) = (SS) (aa) = Sa2.

To obtain some more useful equations we use medial, paramedial laws
and (1), we get

(Sa)2 = (Sa)(Sa) = (SS)a2 = (aa)(SS) = S((aa)S)

= (SS)((aa)S) = (Sa2)SS = (Sa2)S.

Therefore
Sa2 = a2S = (Sa2)S: (2)

The following de�nitions are available in [26].
A fuzzy subset f of an AG-groupoid S is called a fuzzy AG-subgroupoid

of S if f(xy) � f(x) ^ f(y) for all x, y 2 S: A fuzzy subset f of an
AG-groupoid S is called a fuzzy left (right) ideal of S if f(xy) � f(y)
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(f(xy) � f(x)) for all x, y 2 S. A fuzzy subset f of an AG-groupoid S
is called a fuzzy two-sided ideal of S if it is both a fuzzy left and a fuzzy
right ideal of S. A fuzzy subset f of an AG-groupoid S is called a fuzzy
quasi-ideal of S if f �CS \CS �f � f . A fuzzy subset f of an AG-groupoid
S is called a fuzzy generalized bi-ideal of S if f((xa)y) � f(x)^f(y), for all
x, a and y 2 S. A fuzzy AG-subgroupoid f of an AG-groupoid S is called a
fuzzy bi-ideal of S if f((xa)y) � f(x)^f(y), for all x, a and y 2 S. A fuzzy
AG-subgroupoid f of an AG-groupoid S is called a fuzzy interior ideal of
S if f((xa)y) � f(a), for all x, a and y 2 S. Let f be a fuzzy subset of an
AG-groupoid S, then f is called a fuzzy prime if maxff(a); f(b)g � f(ab);
for all a; b 2 S: f is called a fuzzy semiprime if f(a) � f(a2); for all a 2 S:
Let f and g be any two fuzzy subsets of an AG-groupoid S, then the

product f � g is de�ned by,

(f � g) (a) =

8<:
_
a=bc

ff(b) ^ g(c)g , if there exist b; c 2 S, such that a = bc:

0; otherwise.

The symbols f \ g and f [ g will means the following fuzzy subsets of S

(f \ g)(x) = minff(x); g(x)g = f(x) ^ g(x); for all x in S

and

(f [ g)(x) = maxff(x); g(x)g = f(x) _ g(x); for all x in S:

Let f be a fuzzy subset of an AG-groupoid S and t 2 (0; 1]. Then xt 2 f
means f(x) � t, xtqf means f(x) + t > 1, xt� _ �f means xt�f or xt�f ,
where �; � denotes any one of 2; q; 2 _q; 2 ^q. xt� ^ �f means xt�f and
xt�f , xt�f means xt�f does not holds. Generalizing the concept of xtqf ,
Jun [13, 14] de�ned xtqkf , where k 2 [0; 1), as f (x)+ t+ k > 1. xt 2 _qkf
if xt 2 f or xtqkf .
Let f and g be any two fuzzy subsets of an AG-groupoid S, then for

k 2 [0; 1); the product f �k g is de�ned by,

(f �k g) (a) =

8<:
_
a=bc

�
f(b) ^ g(c) ^ 1�k

2

	
, if there exist b; c 2 S, such that a = bc:

0; otherwise.

The symbols f ^ g and f _ g will means the following fuzzy subsets of an
AG-groupoid S.
(f ^ g)(x) = minff(x); g(x)g for all x in S.
(f _ g)(x) = maxff(x); g(x)g for all x in S.

De�nition 1 A fuzzy subset f of an AG-groupoid S is called fuzzy AG-
subgroupoid of S if for all x; y 2 S and k 2 [0; 1) such that f(xy) �
minff(x); f(y); 1�k2 g:
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De�nition 2 A fuzzy subset f of an AG-groupoid S is called fuzzy left
(right) ideal of S if for all x; y 2 S and k 2 [0; 1) such that f(xy) �
minff(y); 1�k2 g (f(xy) � minff(x);

1�k
2 g):

A fuzzy subset f of an AG-groupoid S is called fuzzy ideal if it is fuzzy
left as well as fuzzy right ideal of S:

De�nition 3 A fuzzy subset f of an AG-groupoid S is called fuzzy quasi
ideal of S; if
f(a) � minf(f � &)(a); (& � f)(a); 1�k2 g: where & is the fuzzy subset of S

mapping every element of S on 1.

De�nition 4 A fuzzy subset f is called a fuzzy generalized bi-ideal of S
if f((xa)y) � minff(x); f(y); 1�k2 g, for all x, a and y 2 S. A fuzzy AG-
subgroupoid f of S is called a fuzzy bi-ideal of S if f((xa)y) � minff(x); f(y); 1�k2 g;
for all x; a,y 2 S and k 2 [0; 1).

De�nition 5 An (2;2 _qk)-fuzzy subset f of an AG-groupoid S is called
prime if for all a; b 2 S and t 2 (0; 1]; it satis�es,
(ab)t 2 f implies that at 2 _qkf or bt 2 _qkf:

Theorem 6 An (2;2 _qk)-fuzzy ideal f of an AG-groupoid S is prime if
for all a; b 2 S, it satis�es,
max ff (a) ; f (b)g � minff (ab) ; 1�k2 g:

Proof. It is straightforward.

De�nition 7 A fuzzy subset f of an AG-groupoid S is called (2;2 _qk)-
fuzzy semiprime if it satis�es,
a2t 2 f this implies that at 2 _qkf for all a 2 S and t 2 (0; 1]:

Theorem 8 An (2;2 _qk)-fuzzy ideal f of an AG-groupoid S is called
semiprime if for any a 2 S and k 2 [0; 1), if it satis�es,
f (a) � minff

�
a2
�
; 1�k2 g:

Proof. It is easy.

De�nition 9 For a fuzzy subset F of an AG-groupoid M and t 2 (0; 1],
the crisp set U(F ; t) = fx 2M such that F (x) � tg is called a level subset
of F .

De�nition 10 A fuzzy subset F of an AG-groupoid M of the form

F (y) =

�
t 2 (0; 1] if y = x
0 if y 6= x

is said to be a fuzzy point with support x and value t and is denoted by xt.

Lemma 11 A fuzzy subset F of an AG-groupoid M is a fuzzy interior
ideal of M if and only if U(F ; t) (6= ;) is an interior ideal of M .
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De�nition 12 A fuzzy subset F of an AG-groupoid M is called an (2;2
_q)-fuzzy interior ideal of M if for all t; r 2 (0; 1] and x; a; y 2M .
(A1) xt 2 F and yr 2 F implies that (xy)minft;rg 2 _qF:
(A2) at 2 F implies ((xa)y)t 2 _qF:

Theorem 13 For a fuzzy subset F of an AG-groupoid M . The conditions
(A1) and (A2) of De�nition 4, are equivalent to the following,
(A3) (8x; y 2M)F (xy) � minfF (x); F (y); 0:5g
(A4) (8x; a; y 2M)F ((xa)y) � minfF (a); 0:5g.

Lemma 14 A fuzzy subset F of an AG-groupoid M is an (2;2 _q)-fuzzy
interior ideal of M if and only if U(F ; t) (6= ;) is an interior ideal of M ,
for all t 2 (0; 0:5].

Proof. Let F be an (2;2 _q)-fuzzy interior ideal of M . Let x; y 2 U(F ; t)
and t 2 (0; 0:5], then F (x) � t and F (y) � t, so F (x) ^ F (y) � t. As F is
an (2;2 _q)-fuzzy interior ideal of M , so

F (xy) � F (x) ^ F (y) ^ 0:5 � t ^ 0:5 = t.

Therefore, xy 2 U(F ; t). Now if x; y 2M and a 2 U(F ; t) then F (a) � t
then F ((xa)y) � F (a) ^ 0:5 � t ^ 0:5 = t. Therefore ((xa)y) 2 U(F ; t) and
U(F ; t) is an interior ideal.
Conversely assume that U(F ; t) is an interior ideal ofM . If x; y 2 U(F ; t)

then F (x) � t and F (y) � r which shows xt 2 F and yr 2 F as U(F ; t)
is an interior ideal so xy 2 U(F ; t) therefore F (xy) � minft; rg implies
that (xy)minft;rg 2 F , so (xy)minft;rg 2 _qF . Again let x; y 2 M and
a 2 U(F ; t) then F (a) � t implies that at 2 F and U(F ; t) is an interior
ideal so ((xa)y) 2 U(F ; t) then F ((xa)y) � t implies that ((xa)y)t 2 F so
((xa)y)t 2 _qF . Therefore F is an (2;2 _q)-fuzzy interior ideal.

De�nition 15 A fuzzy subset F of an AG-groupoid M is called an (2;2
_q)-fuzzy bi-ideal of M if for all t; r 2 (0; 1] and x; y; z 2M .
(B1) xt 2 F and yr 2 F implies that (xy)minft;rg 2 _qF:
(B2) xt 2 F and zr 2 F implies ((xy)z)minft;rg 2 _qF .

Theorem 16 For a fuzzy subset F of an AG-groupoid M . The conditions
(B1) and (B2) of De�nition 5, are equivalent to the following,
(B3) (8x; y 2M)F (xy) � minfF (x); F (y); 0:5g
(B4) (8x; y; z 2M)F ((xy)z) � minfF (x); F (y); 0:5g.

Proof. It is similar to proof of theorem 13.

De�nition 17 A fuzzy subset F of an AG-groupoidM is called an (2;2 _q)-
fuzzy (1; 2) ideal of M if
(i) F (xy) � minfF (x); F (y); 0:5g; for all x; y 2M:
(ii) F ((xa)(yz)) � minfF (x); F (y); F (z); 0:5g; for all x; a; y; z 2M:
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Example 18 Let M = f1; 2; 3g be a right regular modular groupoid and
" � " be any binary operation de�ned as follows:

� 1 2 3

1 2 2 2
2 2 2 2
3 1 2 2

Let F be a fuzzy subset of M such that

F (1) = 0:6; F (2) = 0:3; F (3) = 0:2:

Then we can see easily F (1 � 3) � F (3) ^ 0:5 that is F is an (2;2 _q)-
fuzzy left ideal but F is not an (2;2 _q)-fuzzy right ideal.

Theorem 19 Every (2;2 _q)-fuzzy bi-ideal is an (2;2 _q)-fuzzy (1; 2)
ideal of an AG-groupoid M , with left identity.

Proof. Let F be an (2;2 _q)-fuzzy bi-ideal of M and let x; a; y; z 2 M
then by using (4) and (1), we have

F ((xa)(yz)) = F (y((xa)z)) � min fF (y); F ((xa)z); 0:5g
= min fF (y); F ((za)x); 0:5g � min fF (y); F (z); F (x); 0:5; 0:5g
= min fF (y); F (z); F (x); 0:5g :

Therefore F is an (2;2 _q)-fuzzy (1; 2) ideal of an AG-groupoid M .

Theorem 20 Every (2;2 _q)-fuzzy interior ideal is an (2;2 _q)-fuzzy
(1; 2) ideal of an AG-groupoid M , with left identity e.

Proof. Let F be an (2;2 _q)-fuzzy interior ideal ofM and let x; a; y; z 2M
then by using (1), we have

F ((xa)(yz)) � min fF (xa); F (yz); 0:5g � min fF (xa); F (y); F (z); 0:5; 0:5g
= min fF ((ex)a); F (y); F (z); 0:5g = min fF ((ax)e); F (y); F (z); 0:5g
� min fF (x); F (y); F (z); 0:5; 0:5g = min fF (x); F (y); F (z); 0:5g :

Therefore F is an (2;2 _q)�fuzzy (1; 2) ideal of an AG-groupoid M .

Theorem 21 Let � :M �!M� be a homomorphism of AG-groupoids and
F and G be (2;2 _q)-fuzzy interior ideals of M and M�,respectively. Then
(i) ��1 (G) is an (2;2 _q)-fuzzy interior ideal of M .
(ii) If for any subset X of M there exists x� 2 X such that F (x�) =_
fF (x) j x 2 Xg, then � (F ) is an (2;2 _q)-fuzzy interior ideal of M�

when � is onto.

Proof. It is same as in [14].
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1.4 Completely Regular AG-groupoids

De�nition 22 an AG-groupoid M is called regular, if for each a 2 M
there exist x 2M such that a = (ax) a.

De�nition 23 an AG-groupoid M is called left (right) regular, if for each
a 2M there exist z 2M (y 2M) such that a = za2

�
a = a2y

�
.

De�nition 24 an AG-groupoid M is called completely regular if it is reg-
ular, left regular and right regular.

Example 25 Let M = f1; 2; 3; 4g and the binary operation " �" de�ned on
M as follows:

� 1 2 3 4
1 4 1 2 3
2 3 4 1 2
3 2 3 4 1
4 1 2 3 4

Then clearly (M; �) is a completely regular AG-groupoid with left identity
4.

Theorem 26 If M is an AG-groupoid with left identity e, then it is com-
pletely regular if and only if a 2 (a2M)a2.

Proof. Let M be a completely regular AG-groupoid with left identity e,
then for each a 2 M there exist x; y; z 2 M such that a = (ax)a; a = a2y
and a = za2, so by using (1); (4) and (3), we get

a = (ax)a = ((a2y)x)(za2) = ((xy)a2)(za2) = ((za2)a2)(xy)

= ((a2a2)z)(xy) = ((xy)z)(a2a2) = a2(((xy)z)a2)

= (ea2)(((xy)z)a2) = (a2((xy)z))(a2e) = (a2((xy)z))((aa)e)

= (a2((xy)z))((ea)a) = (a2((xy)z))a2 2 (a2M)a2.

Conversely, assume that a 2 (a2M)a2 then clearly a = a2y and a = za2,
now using (3); (1) and (4), we get

a 2 (a2M)a2 =
�
a2M

�
(aa) = (aa)

�
Ma2

�
= (aa) (M (aa))

= (aa) ((eM))(aa)) = (aa) ((aa) (Me)) � (aa) ((aa)M)
= (aa)

�
a2M

�
=
�
(a2M

�
a)a = (((aa)M) a) a = ((aM) (aa)) a

= (a ((Ma) a)) a � (aM)a:

Therefore M is completely regular.

Theorem 27 If M is a completely regular AG-groupoid with left identity
e, then every (2;2 _q)-fuzzy (1; 2) ideal of M is an (2;2 _q)-fuzzy bi-ideal
of M .
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Proof. Let M be a completely regular with left identity e, and let F be an
(2;2 _q)-fuzzy (1; 2) ideal of M: Then for x 2M there exists b 2M such
that x = (x2b)x2, so by using (1) and (4), we have

F ((xa)y) = F ((((x2b)x2)a)y) = F ((ya)((x2b)x2))

� min
�
F (y); F (x2b); F (x2); 0:5

	
� min

�
F (y); F (x2b); F (x); F (x); 0:5; 0:5

	
= min

�
F (y); F (x2b); F (x); 0:5

	
= min fF ((xx)b); F (x); F (y); 0:5g
= min fF ((bx)x); F (x); F (y); 0:5g
� min fF (bx); F (x); 0:5; F (x); F (y); 0:5g
= min fF (bx):F (x); F (y); 0:5g
= min

�
F (b((x2b)x2)); F (x); F (y); 0:5

	
= minfF ((x2b)(bx2)); F (x); F (y); 0:5g
= min

�
F (((bx2)b)x2); F (x); F (y); 0:5

	

= min
�
F ((((eb)x2)b)(xx)); F (x); F (y); 0:5

	
= min

�
F ((((x2b)e)b)(xx)); F (x); F (y); 0:5

	
= min

�
F (((be)(x2b))(xx)); F (x); F (y); 0:5

	
= min

�
F ((x2((be)b))(xx)); F (x); F (y); 0:5

	
� min

�
F (x2); F (x); F (x); 0:5; F (x); F (y); 0:5

	
� min fF (x); F (x); 0:5; F (x); F (x); F (x); F (y); 0:5g
= min fF (x); F (y); 0:5g .

Therefore, F is an (2;2 _q)-fuzzy bi-ideal of M .

Theorem 28 If M is a completely regular AG-groupoid with left identity
e, then every (2;2 _q)-fuzzy (1; 2) ideal of M is an (2;2 _q)-fuzzy interior
ideal of M .

Proof. Let M be a completely regular with left identity e, and F is an
(2;2 _q)-fuzzy (1; 2) ideal of M: Then for x 2M there exists y 2M such
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that x = (x2y)x2, so by using (4); (1); (2) and (3), we have

F ((ax)b) = F ((a((x2y)x2))b) = F (((x2y)(ax2))b)

= F ((b(ax2))(x2y)) = F ((b(a(xx)))(x2y))

= F ((b(x(ax)))(x2y)) = F ((x(b(ax)))((xx)y))

= F ((x(b(ax)))((yx)x)) = F ((x(yx))((b(ax))x))

= F (((ex)(yx))((x(ax))b)) = F (((xx)(ye))((a(xx))b))

= F (((xx)(ye))((b(xx))a) = F (((xx)(b(xx)))((ye)a))

= F ((b((xx)(xx)))((ye)a)) = F ((b(ye))(((xx)(xx))a))

= F ((a((xx)(xx)))((ye)b)) = F (((xx)(a(xx)))((ye)b))

= F ((((ye)b)(a(xx)))(xx)) = F ((((ye)b)(x(ax)))(xx))

= F ((x(((ye)b)(ax)))(xx)) � minfF (x); F (x); F (x); 0:5g
= minfF (x); 0:5g.

Therefore F is an (2;2 _q)-fuzzy interior ideal of M .

Theorem 29 Let F be an (2;2 _q)-fuzzy bi-ideal of an AG-groupoidM . If
M is a completely regular and F (a) < 0:5 for all x 2M then F (a) = F (a2)
for all a 2M .

Proof. Let a 2M then there exist x 2M such that a = (a2x)a2, then we
have

F (a) = F ((a2x)a2) � minfF (a2); F (a2); 0:5g
= minfF (a2); 0:5g = F (a2) = F (aa)
� minfF (a); F (a); 0:5g = F (a).

Therefore F (a) = F (a2).

Theorem 30 Let F be an (2;2 _q)-fuzzy interior ideal of an AG-groupoid
M with left identity e. If M is a completely regular and F (a) < 0:5 for all
x 2M then F (a) = F (a2) for all a 2M .

Proof. Let a 2 M then there exists x 2 M such that a = (a2x)a2, using
(4); (1) and (3), we have

F (a) = F ((a2x)a2) = F ((a2x)(aa)) = F (a((a2x)a))

= F (a((ax)a2)) = F ((ea)((ax)a2)) = F ((((ax)a2)a)e)

= F (((aa2)(ax))e) = F (((xa)(a2a))e) = F ((((a2a)a)x)e)

= F ((((aa)a2)x)e) = F (((xa2)(aa))e) = F (((xa2)a2)e)

� minfF (a2); 0:5g = F (a2) = F (aa)
� minfF (a); F (a); 0:5g � minfF (a); 0:5g = F (a).

Therefore F (a) = F (a2).
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1.5 (2;2 _qk)-fuzzy Ideals in AG-groupoids
It has been given in [13] that xtqkF is the generalizations of xtqF , where
k is an arbitrary element of [0; 1) as xtqkF if F (x) + t + k > 1. If xt 2 F
or xtqkF implies xt 2 _qkF . Here we discuss the behavior of (2;2 _qk)-
fuzzy left ideal, (2;2 _qk)-fuzzy right ideal,(2;2 _qk)-fuzzy interior ideal,
(2;2 _qk)-fuzzy bi-ideal, (2;2 _qk)-fuzzy quasi-ideal in the completely
regular AG-groupoid M .

Example 31 Let M = f1; 2; 3g be any AG-groupoid with binary operation
" � " de�ned as in Example 18. Let F be a fuzzy subset of M such that

F (1) = 0:7; F (2) = 0:4; F (3) = 0:3:

If we choose k 2 [0:3; 1], then we can see that F (1 � 3) � F (1)^ 1�k
2 and

F (13) � F (3)^ 1�k
2 by a simple calculation that is F is an (2;2 _qk)-fuzzy

ideal but clearly F is not an (2;2 _q)-fuzzy ideal.

De�nition 32 A fuzzy subset F of an AG-groupoid M is called an (2
;2 _qk)-fuzzy subgroupoid of M if for all x; y 2 M and t; r 2 (0; 1] the
following condition holds

xt 2 F; yr 2 F implies (xy)minft;rg 2 _qkF .

Theorem 33 Let F be a fuzzy subset of M . Then F is an (2;2 _qk)-fuzzy
subgroupoid of M if and only if F (xy) � minfF (x); F (y); 1�k2 g.

Proof. It is similar to the proof of Theorem 13.

De�nition 34 A fuzzy subset F of an AG-groupoid M is called an (2;2
_qk)-fuzzy left (right) ideal of M if for all x; y 2 M and t; r 2 (0; 1] the
following condition holds

yt 2 F implies (xy)t 2 _qkF (yt 2 F implies (yx)t 2 _qkF ) .

Theorem 35 Let F be a fuzzy subset of M . Then F is an (2;2 _qk)-fuzzy
left (right) ideal ofM if and only if F (xy) � minfF (y); 1�k2 g

�
F (xy) � minfF (x); 1�k2 g

�
.

Proof. Let F be an (2;2 _qk)-fuzzy left ideal of M . Suppose that there
exist x; y 2 M such that F (xy) < min

�
F (y) ; 1�k2

	
. Choose a t 2 (0; 1]

such that F (xy) < t < min
�
F (y) ; 1�k2

	
. Then yt 2 F but (xy)t =2 F and

F (xy) + t + k < 1�k
2 + 1�k

2 + k = 1, so (xy)t 2 _qkF , a contradiction.
Therefore F (xy) � minfF (y); 1�k2 g.
Conversely, assume that F (xy) � minfF (y); 1�k2 g. Let x; y 2 M and

t 2 (0; 1] such that yt 2M then F (y) � t: then F (xy) � minfF (y); 1�k2 g �
minft; 1�k2 g. If t >

1�k
2 then F (xy) � 1�k

2 . So F (xy)+t+k >
1�k
2 + 1�k

2 +

k = 1, which implies that (xy)t qkF . If t � 1�k
2 , then F (xy) � t. Therefore

F (xy) � t which implies that (xy)t 2 F . Thus (xy)t 2 _qkF .
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Corollary 36 A fuzzy subset F of an AG-groupoid M is called an (2;2
_qk)-fuzzy ideal of M if and only if F (xy) � minfF (y); 1�k2 g and F (xy) �
minfF (x); 1�k2 g.

De�nition 37 A fuzzy subset F of an AG-groupoid M is called an (2;2
_qk)-fuzzy generalized bi-ideal of M if for all x; y; z 2 M and t; r 2 (0; 1]
the following conditions hold

De�nition 38 A fuzzy subset F of an AG-groupoid M is called an (2;2
_qk)-fuzzy bi-ideal of M if for all x; y; z 2M and t; r 2 (0; 1] the following
conditions hold
(i) If xt 2 F and yr 2M implies (xy)minft;rg 2 _qkF ,
(ii) If xt 2 F and zr 2M implies ((xy) z)minft;rg 2 _qkF .

De�nition 39 A fuzzy subset F of an AG-groupoid M is called an (2
;2 _qk)-fuzzy generalized bi-ideal of M If xt 2 F and zr 2 M implies
((xy) z)minft;rg 2 _qkF , for all x; y; z 2M and t; r 2 (0; 1]

Theorem 40 Let F be a fuzzy subset of M . Then F is an (2;2 _qk)-fuzzy
bi-ideal of M if and only if
(i)F (xy) � minfF (x) ; F (y); 1�k2 g for all x; y 2M and k 2 [0; 1),
(ii)F ((xy)z) � minfF (x); F (z) ; 1�k2 g for all x; y; z 2M and k 2 [0; 1).

Proof. It is similar to the proof of Theorem 13.

Corollary 41 Let F be a fuzzy subset ofM . Then F is an (2;2 _qk)-fuzzy
generalized bi-ideal of M if and only if F ((xy)z) � minfF (x); F (z) ; 1�k2 g
for all x; y; z 2M and k 2 [0; 1).

De�nition 42 A fuzzy subset F of an AG-groupoid M is called an (2;2
_qk)-fuzzy interior ideal of M if for all x; a; y 2 M and t; r 2 (0; 1] the
following conditions hold
(i) If xt 2 F and yr 2M implies (xy)minft;rg 2 _qkF ,
(ii) If at 2M implies ((xa) y)minft;rg 2 _qkF .

Theorem 43 Let F be a fuzzy subset of M . Then F is an (2;2 _qk)-fuzzy
interior ideal of M if and only if
(i) F (xy) � minfF (x) ; F (y); 1�k2 g for all x; y 2M and k 2 [0; 1),
(ii) F ((xa)y) � minfF (a); 1�k2 g for all x; a; y 2M and k 2 [0; 1).

Proof. It is similar to the proof of Theorem 13.

Lemma 44 The intersection of any family of (2;2 _qk)-fuzzy interior
ideals of AG-groupoid M is an (2;2 _qk)-fuzzy interior ideal of M .

Proof. Let fFigi2I be a family of (2;2 _qk)-fuzzy interior ideals of M
and x; a; y 2 M . Then (^i2IFi)((xa)y) = ^i2I(Fi((xa) y). As each Fi is
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an (2;2 _qk)-fuzzy interior ideal of M , so Fi((xa)y) � Fi(a) ^ 1�k
2 for all

i 2 I. Thus

(^i2IFi) ((xa)y) = ^i2I(Fi((xa) y) � ^i2I
�
Fi(a) ^

1� k
2

�
= (^i2IFi(a)) ^

1� k
2

= (^i2IFi) (a) ^
1� k
2

.

Therefore ^i2IFi is an (2;2 _qk)-fuzzy interior ideal of M .

De�nition 45 Let f and g be a fuzzy subsets of AG-groupoid S, then the
k-product of f and g is de�ned by

(f�kg)(a) =

8<:
_
a=bc

minff(a); f(b); 1�k
2 g if there exists b; c 2 S such that a = bc;

0 otherwise.

where k 2 [0; 1):
The k intersection of f and g is de�ned by

(f \k g)(a) = ff(a) ^ f(b) ^
1� k
2

g for all a 2 S.

De�nition 46 A fuzzy subset F of an AG-groupoid M is called an (2;2
_qk)-fuzzy quasi-ideal of M if following condition holds

F (x) � min
�
(F � 1) (x) ; (1 � F ) (x); 1� k

2

�
.

where 1 is the fuzzy subset of M mapping every element of M on 1.

Lemma 47 If M is a completely regular AG-groupoid with left identity,
then a fuzzy subset F is an (2;2 _qk)-fuzzy right ideal of M if and only if
F is an (2;2 _qk)-fuzzy left ideal of M .

Proof. Let F be an (2;2 _qk)-fuzzy right ideal of a completely regular AG-
groupoidM , then for each a 2M there exists x 2M such that a = (a2x)a2,
then by using (1), we have

F (ab) = F (((a2x)a2)b) = F ((ba2)(a2x))

� F (ba2) ^ 1� k
2

� F (b) ^ 1� k
2

.

Conversely, assume that F is an (2;2 _qk)-fuzzy right ideal of M , then
by using (1), we have

F (ab) = F (((a2x)a2)b) = F ((ba2)(a2x))

� F (a2x) ^ 1� k
2

= F ((aa)x) ^ 1� k
2

= F ((xa)a) ^ 1� k
2

� F (a) ^ 1� k
2

.
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Theorem 48 If M is a completely regular AG-groupoid with left identity,
then a fuzzy subset F is an (2;2 _qk)-fuzzy ideal of M if and only if F is
an (2;2 _qk)-fuzzy interior ideal of M .

Proof. Let F be an (2;2 _qk)-fuzzy interior ideal of a completely regular
AG-groupoid M , then for each a 2 M there exists x 2 M such that a =
(a2x)a2, then by using (4) and (1), we have

F (ab) = F (((a2x)a2)b) � F (aa) � F (a) ^ F (a) ^ 1� k
2

, and

F (ab) = F (a((b2y)b2))F ((b2y)(ab2)) = F (((bb)y)(ab2))

= F (((yb)b)(ab2)) � F (b) ^ 1� k
2

.

The converse is obvious.

Theorem 49 If M is a completely regular AG-groupoid with left identity,
then a fuzzy subset F is an (2;2 _qk)-fuzzy generalized bi-ideal of M if
and only if F is an (2;2 _qk)-fuzzy bi-ideal of M .

Proof. Let F be an (2;2 _qk)-fuzzy generalized bi-ideal of a completely
regular AG-groupoidM , then for each a 2M there exists x 2M such that
a = (a2x)a2, then by using (4), we have

F (ab) = F (((a2x)a2)b) = F (((a2x)(aa))b)

= F ((a((a2x)a))b) � F (a) ^ F (b) ^ 1� k
2

.

The converse is obvious.

Theorem 50 If M is a completely regular AG-groupoid with left identity,
then a fuzzy subset F is an (2;2 _qk)-fuzzy bi-ideal of M if and only if F
is an (2;2 _qk)-fuzzy two sided ideal of M .

Proof. Let F be an (2;2 _qk)-fuzzy bi-ideal of a completely regular AG-
groupoidM , then for each a 2M there exists x 2M such that a = (a2x)a2,
then by using (1) and (4), we have

F (ab) = F (((a2x)a2)b) = F ((((aa)x)a2)b) = F ((((xa)a)a2)b)

= F ((ba2)((xa)a)) = F ((b(aa))((aa)x)) = F ((a(ba))((aa)x))

= F ((aa)((a(ba))x)) = F ((((a(ba))x)a)a) = F ((((b(aa))x)a)a)

= F ((((x(aa))b)a)a) = F ((((a(xa))b)a)a) = F (((ab)(a(xa)))a)

= F ((a((ab)(xa)))a) � F (a) ^ F (a) ^ 1� k
2

= F (a) ^ 1� k
2

.
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And, by using (4) ; (1) and (3),we have

F (ab) = F (a((b2y)b2)) = F ((b2y)(ab2)) = F (((bb)y)(a(bb)))

= F (((a(bb)y)(bb)) = F (((a(bb))(ey))(bb)) = F (((ye)((bb)a))(bb))

= F ((bb)((ye)a))(bb)) � F (bb) ^ 1� k
2

. � F (b) ^ F (b) ^ 1� k
2

.

= F (b) ^ 1� k
2

.

The converse is obvious.

Theorem 51 If M is a completely regular AG-groupoid with left identity,
then a fuzzy subset F is an (2;2 _qk)-fuzzy quasi-ideal of M if and only if
F is an (2;2 _qk)-fuzzy two sided ideal of M .

Proof. Let F be an (2;2 _qk)-fuzzy quasi-ideal of a completely regular
AG-groupoid M , then for each a 2 M there exists x 2 M such that a =
(a2x)a2, then by using (1), (3) and (4), we have

ab = ((a2x)a2)b = (ba2)
�
a2x
�
=
�
xa2
� �
a2b
�

= (x (aa))
�
a2b
�
= (a (xa))

�
a2b
�
=
��
a2b
�
(xa)

�
a.

Then

F (ab) � (F � 1) (ab) ^ (1 � F ) (ab) ^ 1� k
2

=
_

ab=pq

fF (p) ^ 1 (q)g ^ (1 � F )(ab) ^ 1� k
2

� F (a) ^ 1 (b) ^
_

ab=lm

fF (l) ^ 1(m)g ^ 1� k
2

= F (a) ^
_

ab=((a2b)(xa))a

�
1
��
a2b
�
(xa)

�
^ F (a)

	
� F (a) ^ 1

��
a2b
�
(xa)

�
^ F (a) ^ 1� k

2
= F (a) ^ 1� k

2
.

Also by using (4) and (1), we have

ab = a
�
(b2y

�
b2) =

�
b2y
� �
ab2
�
= ((bb) y)

�
ab2
�

=
��
ab2
�
y
�
(bb) = b

�
(
�
ab2
�
y
�
b).

Then

F (ab) � (F � 1) (ab) ^ (1 � F ) (ab) ^ 1� k
2

=
_

ab=pq

fF (p) ^ 1 (q)g ^
_

ab=lm

f1(l) ^ F (m)g ^ 1� k
2

� F (b) ^ 1(
��
ab2
�
y
�
b) ^ 1 (a) ^ F (b) ^ 1� k

2
= F (b) ^ 1� k

2
.
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The converse is obvious

Remark 52 We note that in a completely regular AG-groupoid M with
left identity, (2;2 _qk)-fuzzy left ideal (2;2 _qk)-fuzzy right ideal, (2;2
_qk) fuzzy ideal,(2;2 _qk)-fuzzy interior ideal, (2;2 _qk)-fuzzy bi-ideal, (2
;2 _qk)-fuzzy generalized bi-ideal and (2;2 _qk)-fuzzy quasi-ideal coincide
with each other.

Theorem 53 If M is a completely regular AG-groupoid then F ^k G =
F �k G for every (2;2 _qk)- fuzzy ideal F and G of M .

Proof. Let F is an (2;2 _qk)- fuzzy right ideal ofM andG is an (2;2 _qk)-
fuzzy left ideal of M , and M is a completely regular then for each a 2 M
there exists x 2M such that a = (a2x)a2, so we have

(F �k G) (a) = (F �G) (a) ^ 1� k
2

=
_
a=pq

fF (p) ^G (q)g ^ 1� k
2

� F (a2x) ^G
�
a2
�
^ 1� k

2
� F (aa) ^G (aa) ^ 1� k

2

� F (aa) ^G (aa) ^ 1� k
2

� F (a) ^G (a) ^ 1� k
2

= (F ^G) (a) ^ 1� k
2

= (F ^k G) (a).

Therefore F ^k G � F �k G, again

(F �k G) (a) = (F �G) (a) ^ 1� k
2

=

 _
a=pq

fF (p) ^G (q)g
!
^ 1� k

2

=
_
a=pq

�
F (p) ^G (q) ^ 1� k

2

�
�
_
a=pq

�
(F (pq ^G (pq)) ^ 1� k

2

�
= F (a) ^G (a) ^ 1� k

2
= (F ^k G) (a) .

Therefore F ^k G � F �k G. Thus F ^k G = F �k G.

De�nition 54 an AG-groupoid M is called weakly regular if for each a in
M there exists x and y in M such that a = (ax)(ay).

It is easy to see that right regular, left regular and weakly regular coincide
in an AG-groupoid with left identity.

Theorem 55 For a weakly regular AG-groupoidM with left identity, (G^k
F ) ^k H) � ((G �k F ) �k H), where G is an (2;2 _qk)- fuzzy right ideal,
F is an (2;2 _qk)- fuzzy interior ideal and H is an (2;2 _qk)- fuzzy left
ideal.
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Proof. LetM be a weakly regular AG-groupoid with left identity, then for
each a 2 M there exist x; y 2 M such that a = (ax)(ay), then by using
(3), we get a = (ya)(xa), and also by using (4) and (3), we get

ya = y((ax)(ay)) = (ax)(y(ay)) = (ax)((ey)(ay)) = (ax)((ya)(ye))

Then

((G �k F ) �k H)(a) =
_
a=pq

f(G �k F )(p) ^H(q)g � (G �k F )(ya) ^H(xa)

� (G �k F )(ya) ^H(a) ^
1� k
2

=
_

ya=bc

fG(b) ^ F (c)g ^H(a) ^ 1� k
2

� (G(ax) ^ F ((ya)(ye))) ^H(a) ^ 1� k
2

� (G(a) ^ 1� k
2

^ F (a) ^ 1� k
2

) ^H(a) ^ 1� k
2

= (G(a) ^ F (a)) ^H(a) ^ 1� k
2

= ((G ^ F ) ^H)(a) ^ 1� k
2

= ((G ^k F ) ^k H)(a).

Therefore, (G ^k F ) ^kH) � ((G �k F ) �k H).

Theorem 56 For a weakly regular AG-groupoidM with left identity, Fk �
((F �k 1) �k F ), where F is an (2;2 _qk)- fuzzy interior ideal.

Proof. LetM be a weakly regular AG-groupoid with left identity, then for
each a 2M there exist x; y 2M such that a = (ax)(ay), then by using (1)
a = ((ay)x)a. Also by using (1) and (4), we have

(ay) = (((ax)(ay))y) = ((y(ay))(ax)) = ((a(yy))(ax))

= (((ax)(yy))a) = ((((yy)x)a)a).
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Then

((F �k 1) �k F )(a) = ((F � 1) � F )(a) ^ 1� k
2

=
_
a=pq

f(F � 1)(p) ^ F (q)g ^ 1� k
2

� (F � 1)(((ay)x) ^ F (a) ^ 1� k
2

=
_

(ay)x=(bc)

fF (b) ^ 1(c)g ^ F (a) ^ 1� k
2

� F (ay) ^ 1(x) ^ F (a) ^ 1� k
2

= F ((((yy)x)a)a) ^ F (a) ^ 1� k
2

� F (a) ^ 1� k
2

^ F (a) ^ 1� k
2

= F (a) ^ 1� k
2

= Fk(a).

Therefore, Fk � ((F �k 1) �k F ).



2

Generalized Fuzzy Ideals of
Abel-Grassmann groupoids
In this chapter, we investigate some characterizations of regular and intra-
regular Abel-Grassmann�s groupoids in terms of (2;2 _qk)-fuzzy ideals
and (2;2 _qk)-fuzzy quasi-ideals.
An element a of an AG-groupoid S is called regular if there exist x 2 S

such that a = (ax)a and S is called regular, if every element of S is regular.
An element a of an AG-groupoid S is called intra-regular if there exist
x; y 2 S such that a = (xa2)y and S is called intra-regular, if every
element of S is intra-regular.
The following de�nitions for AG-groupoids are same as for semigroups

in [34].

De�nition 57 (1) A fuzzy subset � of an AG-groupoid S is called an (2
;2 _qk)-fuzzy AG-subgroupoid of S if for all x; y 2 S and t; r 2 (0; 1], it
satis�es,
xt 2 �, yr 2 � implies that (xy)minft;rg 2 _qk�.
(2) A fuzzy subset � of S is called an (2;2 _qk)-fuzzy left (right) ideal

of S if for all x; y 2 S and t; r 2 (0; 1], it satis�es,
xt 2 � implies (yx)t 2 _qk� (xt 2 � implies (xy)t 2 _qk�).
(3) A fuzzy AG-subgroupoid f of an AG-groupoid S is called an (2;2

_qk)-fuzzy interior ideal of S if for all x; y; z 2 S and t; r 2 (0; 1] the
following condition holds.
yt 2 f implies ((xy)z)t 2 _qkf .
(4) A fuzzy subset f of an AG-groupoid S is called an (2;2 _qk)-fuzzy

quasi-ideal of S if for all x 2 S it satis�es, f(x) � min(f � CS(x); CS �
f(x); 1�k2 ), where CS is the fuzzy subset of S mapping every element of S
on 1.
(5) A fuzzy subset f of an AG-groupoid S is called an (2;2 _qk)-fuzzy

generalized bi-ideal of S if xt 2 f and zr 2 S implies ((xy) z)minft;rg 2
_qkf , for all x; y; z 2 S and t; r 2 (0; 1].
(6) A fuzzy subset f of an AG-groupoid S is called an (2;2 _qk)-fuzzy

bi-ideal of S if for all x; y; z 2 S and t; r 2 (0; 1] the following conditions
hold
(i) If xt 2 f and yr 2 S implies (xy)minft;rg 2 _qkf ,
(ii) If xt 2 f and zr 2 f implies ((xy) z)minft;rg 2 _qkf .

Theorem 58 [34] (1) Let � be a fuzzy subset of S. Then � is an (2;2 _qk)-
fuzzy AG-subgroupoid of S if �(xy) � minf� (x) ; �(y); 1�k2 g.
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(2) A fuzzy subset � of an AG-groupoid S is called an (2;2 _qk)-fuzzy
left (right) ideal of S if
�(xy) � minf�(y); 1�k2 g

�
�(xy) � minf�(x); 1�k2 g

�
.

(3) A fuzzy subset f of an AG-groupoid S is an (2;2 _qk)-fuzzy interior
ideal of S if and only if it satis�es the following conditions.
(i) f (xy) � min

�
f (x) ; f (y) ; 1�k2

	
for all x; y 2 S and k 2 [0; 1).

(ii) f ((xy)z) � min
�
f (y) ; 1�k2

	
for all x; y; z 2 S and k 2 [0; 1).

(4) Let f be a fuzzy subset of S. Then f is an (2;2 _qk)-fuzzy bi-ideal
of S if and only if
(i) f(xy) � minff (x) ; f(y); 1�k2 g for all x; y 2 S and k 2 [0; 1),
(ii) f((xy)z) � minff(x); f (z) ; 1�k2 g for all x; y; z 2 S and k 2 [0; 1).

Here we begin with examples of an AG-groupoid.

Example 59 Let us consider an AG-groupoid S = f1; 2; 3g in the following
multiplication table.

� 1 2 3

1 2 2 2
2 3 3 3
3 3 3 3

Note that S has no left identity. De�ne a fuzzy subset F : S �! [0; 1] as
follows:

F (x) =

8<: 0:9 for x = 1
0:5 for x = 2
0:6 for x = 3

Then clearly F is an (2;2 _qk)-fuzzy ideal of S.

Example 60 Let us consider an AG-groupoid S = f1; 2; 3g in the following
multiplication table.

� 1 2 3
1 3 1 2
2 2 3 1
3 1 2 3

Obviously 3 is the left identity in S. De�ne a fuzzy subset G : S �! [0; 1]
as follows:

G(x) =

8<: 0:8 for x = 1
0:6 for x = 2
0:5 for x = 3

Then clearly G is an (2;2 _qk)-fuzzy bi-ideal of S.

Lemma 61 Intersection of two ideals of an AG-groupoid is an ideal.

Proof. It is easy.
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Lemma 62 If S is an AG-groupoid with left identity then (aS)(Sa) =
(aS)a, for all a in S.

Proof. Using paramedial law, medial law and (1), we get

(aS)(Sa) = [(Sa)S]a = [(Sa)(SS)]a = [(SS)(aS)]a = (a(SS))a = (aS)a.

Lemma 63 [23]If S is an AG-groupoid with left identity; then S is intra-
regular if and only if for every a in S there exist some x, y in S such that
a = (xa)(ay):

Lemma 64 Let S be an AG-groupoid. If a = a(ax), for some x 2 S, then
a = a2y, for some y in S.

Proof. Using medial law, we get

a = a(ax) = [a(ax)](ax) = (aa)((ax)x) = a2y, where y = (ax)x.

Lemma 65 Let S be an AG-groupoid with left identity. If a = a2x, for
some x in S. Then a = (ay)a, for some y in S.

Proof. Using medial law, left invertive law, (1), paramedial law and medial
law, we get

a = a2x = (aa)x = ((a2x)(a2x))x = ((a2a2)(xx))x = (xx2)(a2a2)

= a2((xx2)a2)) = (((xx2)a2)a)a = ((aa2)(xx2))a = ((x2x)(a2a))a

= [a2f(x2x)ag]a = [fa(x2x)g(aa)]a = [a(fa(x2x)ga)]a
= (ay)a, where y = fa(x2x)ga.

Using (2) and lemma 65, we get the following crucial lemma.

Lemma 66 Every intra-regular AG-groupoid with left identity is a regular
AG-groupoid with left identity.

The converse of lemma 66 is not true in general.

Example 67 Let us consider an AG-groupoid S = f1; 2; 3g in the following
multiplication table.

� 1 2 3
1 1 1 1
2 1 1 3
3 1 2 1

Clearly S is regular because 1 = 1 � 1, 2 = (2 � 3) � 2 and 3 = (3 � 2) � 3. But
S is not intra-regular because the element 2 is not intra-regular.
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Lemma 68 Let S be an AG-groupoid with left identity, then (aS)a2 �
(aS)a, for all a in S.

Proof. Using paramedial law, medial law, left invertive law and (1), we get

(aS)a2 = (aa)(Sa) = [(Sa)a]a = [(aa)(SS)]a = [(SS)(aa)]a

= [af(SS)ag]a � (aS)a.

Lemma 69 Let S be an AG-groupoid with left identity, then (aS)[(aS)a] �
(aS)a, for all a in S.

Proof. Using left invertive law and (1), we get

(aS)[(aS)a] = [f(aS)agS]a = [(Sa)(aS)]a = [af(Sa)S]a � (aS)a.

Theorem 70 Let S be an AG-groupoid with left identity, then B[a] =
a [ a2 [ (aS) a is a bi-ideal of S.

Proof. Using lemmas 62, 68, 69, left invertive law and (1), we get

(B[a]S)B[a] = [fa [ a2 [ (aS) agS][a [ a2 [ (aS) a]
= [aS [ a2S [ ((aS) a)S][a [ a2 [ (aS) a]
= [aS [ a2S [ (Sa) (aS)][a [ a2 [ (aS) a]
= [aS [ a2S [ a((Sa)S)][a [ a2 [ (aS) a]
� [aS [ aS [ aS][a [ a2 [ (aS) a]
= (aS)

�
a [ a2 [ (aS) a

�
= (aS) a [ (aS) a2 [ (aS) f(aS)ag
� (aS) a [ (aS) a2 [ (aS) (Sa)
� (aS) a �

�
a [ a2 [ (aS) a

�
.

Thus a [ a2 [ (aS) a is a bi-ideal.

De�nition 71 (1) Let f and g be fuzzy subsets of an AG-groupoid S. We
de�ne the fuzzy subsets fk, f ^k g and f �k g of S as follows,
(i) fk (a) = f (a) ^ 1�k

2 .
(ii) (f ^k g) (a) = (f ^ g) (a) ^ 1�k

2 .
(iii) (f �k g) (a) = (f � g) (a) ^ 1�k

2 , for all a 2 S.
(2) Let A be any subset of an AG-groupoid S, then the characteristic

function (CA)k is de�ned as,

(CA)k (a) =

�
� 1�k

2 if a 2 A
0 otherwise.
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Lemma 72 [22]The following properties hold in an AG-groupoid S:
(i) A is an AG-subgroupoid of S if and only if (CA)k is an (2;2 _qk)-

fuzzy AG-subgroupoid of S.
(ii) A is a left (right, two-sided) ideal of S if and only if (CA)k is an

(2;2 _qk)-fuzzy left (right, two-sided) ideal of S.
(iii) A is bi-ideal (quasi-ideal) of an AG-groupoid S if and only if (CA)k

is (2;2 _qk)-fuzzy bi-ideal (quasi-ideal).
(iv) For any non-empty subsets A and B of S; CA �k CB = (CAB)k and

CA ^k CB = (CA\B)k:

2.1 Characterizations of Regular AG-groupoids
with Left Identity

Theorem 73 In AG-groupoid S, with left identity the following are equiv-
alent.
(i) S is regular.
(ii) I \B � IB, where I is an ideal and B is a bi-ideal.
(iii) I[a] \B[a] � I[a]B[a], for all a in S.

Proof. (i)) (ii)
Let I and B be a two-sided ideal and a bi-ideal of a regular AG-groupoid

S, respectively. Let a 2 I \B; this implies that a 2 I and a 2 B: Since S is
regular so for a 2 S there exist x 2 S such that a = (ax) a 2 (IS)B � IB:
Thus I \B � IB:
(ii)) (iii) is obvious.
(iii)) (i)
Since I[a] = a [ Sa [ aS and B[a] = a [ a2 [ (aS) a are two sided ideal

and bi-ideal of S generated by a. Thus using lemmas 68, 69, (1) and medial
law we get

(a [ Sa [ aS) \
�
a [ a2 [ (aS) a

�
� (a [ Sa [ aS)

�
a [ a2 [ (aS) a

�
= a2 [ aa2 [ a ((aS) a) [ (Sa) a [ (Sa) a2

[ (Sa) ((aS) a) [ (aS) a [ (aS) a2 [ (aS) ((aS) a)
� a2 [ aa2 [ (aS) a2 [ Sa2 [ Sa2 [ a2S
[ (aS) a [ (aS) a [ (aS) a [ (aS) a
� a2 [ Sa2 [ (aS) a.

Hence by lemma 65 and (2), S is regular.

Corollary 74 In AG-groupoid S, with left identity the following are equiv-
alent.
(i) S is regular.
(ii) I \ L � IL, where I is an ideal and L is left ideal of S.
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(iii) I[a] \ L[a] � I[a]L[a], for all a in S.

Corollary 75 For an AG-groupoid S with left identity; the following are
equivalent.
(i) S is regular.
(ii) I = I2, for every ideal I of S:
(iii) I[a] = I[a]I[a], for all a in S.

Theorem 76 In AG-groupoid S, with left identity the following are equiv-
alent.
(i) S is regular.
(ii) f ^k g � f �k g where f is an (2;2 _qk)-fuzzy ideal and g is an

(2;2 _qk)-fuzzy bi-ideal of S.

Proof. (i)) (ii)
Let f be an (2;2 _qk)-fuzzy ideal and g be an (2;2 _qk)-fuzzy bi-ideal

of a regular AG-groupoid S, respectively. Since S is regular so for a 2 S
there exist x 2 S such that a = (ax) a: Thus we have,

(f � g) (a) =
_
a=pq

f (p) ^ g (q) ^ 1� k
2

� f (ax) ^ g (a) ^ 1� k
2

� f (a) ^ g (a) ^ 1� k
2

= (f ^k g) (a) :

Thus f ^k g � f �k g:
(ii)) (i)
Since I[a] = a[Sa[aS and B[a] = a[a2[(aS) a are two sided ideal and

bi-ideal of S generated by a. Therefore by lemma 72, (CI[a])k and (CB[a])k
are (2;2 _qk)-fuzzy two-sided and (2;2 _qk)-fuzzy bi-ideals of S. Thus by
(ii) and lemma 72, we have,

(CI[a]\B[a])k = (CI[a])k ^k (CB[a])k � (CI[a])k �k (CB[a])k = (CI[a]B[a])k

Thus I[a] \B[a] � I[a]B[a]. Hence by theorem 73, S is regular.

Corollary 77 For an AG-groupoid S with left identity; the following are
equivalent.
(i) S is regular.
(ii) f �k f � fk, for an (2;2 _qk)-fuzzy ideal f of S.

Corollary 78 In AG-groupoid S, with left identity the following are equiv-
alent.
(i) S is regular.
(ii) f ^k g � f �k g, where f is an (2;2 _qk)-fuzzy ideal and g is an

(2;2 _qk)-fuzzy left ideal of S.
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2.2 Characterizations of Intra-regular
AG-groupoids with Left Identity

Example 79 Let S = fa; b; c; d; eg, and the binary operation "�" be de�ned
on S as follows:

� 1 2 3 4 5 6
1 1 1 1 1 1 1
2 1 2 1 1 1 1
3 1 1 4 5 6 3
4 1 1 3 4 5 6
5 1 1 6 3 4 5
6 1 1 5 6 3 4

By AG-test in [31] it is easy to verify that (S; �) is an AG-groupoid. Also
1 = (1�12)�1; 2 = (2�22)�2; 3 = (4�32)�3; 4 = (4�42)�4, 5 = (3�52)�6
and 6 = (3�62)�3. Therefore (S; �) is an intra-regular AG-groupoid. De�ne
a fuzzy subset f : S �! [0; 1] as follows:

f(x) =

8>>>>>><>>>>>>:

0:9 for x = 1
0:8 for x = 2
0:7 for x = 3
0:6 for x = 4
0:5 for x = 5
0:5 for x = 6

Then clearly f is an (2;2 _qk)-fuzzy quasi-ideal of S.

Lemma 80 If I is an ideal of an intra-regular AG-groupoid S with left
identity, then I = I2.

Proof. It is easy.

Theorem 81 [21, 22] (1) For an intra-regular AG-groupoid S with left
identity the following statements are equivalent.
(i) A is a left ideal of S.
(ii) A is a right ideal of S.
(iii) A is an ideal of S.
(iv) A is a bi-ideal of S.
(v) A is a generalized bi-ideal of S.
(vi) A is an interior ideal of S.
(vii) A is a quasi-ideal of S.
(viii) AS = A and SA = A.
(2) In intra-regular AG-groupoid S with left identity the following are

equivalent.
(i) A fuzzy subset f of S is an (2;2 _qk)-fuzzy right ideal
(ii) A fuzzy subset f of S is an (2;2 _qk)-fuzzy left ideal
(iii) A fuzzy subset f of S is an (2;2 _qk)-fuzzy bi-ideal
(iv) A fuzzy subset f of S is an (2;2 _qk)-fuzzy interior ideal
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(v) A fuzzy subset f of S is an (2;2 _qk)-fuzzy quasi-ideal.

Theorem 82 For an AG-groupoid with left identity e, the following are
equivalent.
(i) S is intra-regular.
(ii) Q1 \Q2 = Q1Q2, for all quasi-ideals Q1 and Q2.
(iii) Q[a] \Q[a] = Q[a]Q[a], for all a in S.

Proof. (i) =) (ii)
Let Q1 and Q2 be the quasi-ideals of an intra-regular AG-groupoid S.

Therefore for each a in S there exists x; y in S such that a = (xa2)y. Now
by theorem 81, Q1 and Q2 become ideals of S. Now let a 2 Q1 \ Q2 this
implies that a 2 Q1 and a 2 Q2. Therefore using (1) and left invertive law
we get

a = (xa2)y = (x(aa))y = (a(xa))y = (y(xa))a 2 (S(SQ1))Q2 � Q1Q2.

Now by lemma 61, Q1 \ Q2 is an ideal and (Q1 \ Q2)2 � Q1Q2. Using
lemma 80, we get (Q1 \Q2) � Q1Q2. Hence Q1 \Q2 = Q1Q2.
(ii) =) (iii) is obvious.
(iii) =) (i)
For a in S; Q[a] = a [ (Sa \ aS) is a quasi-ideal of S generated by a.

Therefore using (1), left invertive law, medial law and (iii), we get

[a [ (Sa \ aS)] \ [a [ (Sa \ aS)] = [a [ (Sa \ aS)][a [ (Sa \ aS)]
� (a [ Sa)(a [ Sa)
= a2 [ a(Sa) [ (Sa)a [ (Sa)(Sa)
= a2 [ Sa2.

Therefore a = a2 or a 2 Sa2 = (Sa2)S. Hence S is intra-regular.

Theorem 83 For an AG-groupoid with left identity e, the following are
equivalent.
(i) S is intra-regular.
(ii) f ^k g = f �k g, for all (2;2 _qk)-fuzzy quasi-ideals f and g.

Proof. (i) =) (ii)
Let f and g be (2;2 _qk)-fuzzy quasi-ideals of an intra-regular AG-

groupoid S with left identity. Then by theorem 81, f and g become (2
;2 _qk)-fuzzy ideals of S. For each a in S there exists x; y in S such that
a = (xa2)y and since S = S2, so for y in S there exists u; v in S such that
y = uv. Now using paramedial law, medial law and (1), we get

a = (xa2)y = (xa2)(uv) = (vu)(a2x) = a2((vu)x) = (a(vu))(ax).
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Then

(f �k g) (a) =
_
a=pq

�
f (p) ^ g (q) ^ 1� k

2

�
�
�
f (a(vu)) ^ g (ax) ^ 1� k

2

�
� f (a) ^ g (a) ^ 1� k

2
= f ^k g(a).

Therefore f �k g � f ^k g. Also

(f �k g)(a) =
_
a=bc

f(b) ^ g(c) ^ 1� k
2

=
_
a=bc

(f(b) ^ 1� k
2

) ^ (g(c) ^ 1� k
2

) ^ 1� k
2

�
_
a=bc

f(bc) ^ g(bc) ^ 1� k
2

= f ^k g(a).

Therefore f �k g � f ^k g. Hence (f �k g)(a) = (f ^k g)(a):
(ii) =) (i)
Assume that Q1 and Q2 are quasi-ideals of an AG-groupoid S with left

identity and let a 2 Q1 \ Q2. Then by lemma 72, (CQ1
)k and (CQ2

)k are
(2;2 _qk)-fuzzy quasi-ideals of S. Thus by (ii) and lemma 72, we get

(CQ1Q2
)k (a) = (CQ1

�k CQ2
) (a) = (CQ1

^k CQ2
) (a)

= (CQ1\Q2
)k (a) �

1� k
2

.

Therefore a 2 Q1Q2. Now let a 2 Q1Q2, then

(CQ1\Q2
)k (a) = (CQ1Q2

)k (a) �
1� k
2

.

Therefore a 2 Q1 \Q2. Thus Q1Q2 = Q1 \Q2. Hence by theorem 82, S is
intra-regular.

Theorem 84 For an AG-groupoid with left identity e, the following are
equivalent.
(i) S is intra-regular.
(ii) Q\L = QL (Q\L � QL), for every quasi-ideal Q and left ideal L.
(iii) Q[a] \ L[a] = Q[a]L[a] (Q[a] \ L[a] � Q[a]L[a]), for all a in S.

Proof. (i) =) (ii) is same as (i) =) (ii) of theorem 82.
(ii) =) (iii) is obvious.
(iii) =) (i)
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For a in S; Q[a] = a [ (Sa \ aS) L[a] = a [ Sa are quasi and left ideals
of S generated by a. Therefore using (1), left invertive law, medial law and
(iii), we get

[a [ (Sa \ aS)] \ [a [ Sa] = [a [ (Sa \ aS)][a [ Sa]
� (a [ Sa)(a [ Sa)
= a2 [ a(Sa) [ (Sa)a [ (Sa)(Sa)
= a2 [ Sa2.

Hence S is intra-regular.

Theorem 85 For an AG-groupoid with left identity e, the following are
equivalent.
(i) S is intra-regular.
(ii) f ^k g = f �k g (f ^k g � f �k g), where f is any (2;2 _qk) fuzzy

quasi-ideal, g is any (2;2 _qk) fuzzy left ideal.
(iii) f ^k g = f �k g (f ^k g � f �k g), where f and g are any (2;2 _qk)

fuzzy quasi-ideals.

Proof. (i) =) (iii)
Let f and g be (2;2 _qk)-fuzzy quasi-ideals of an intra-regular AG-

groupoid S with left identity. Then by theorem 81, f and g become (2
;2 _qk)-fuzzy ideals of S. Since S is intra-regular so for each a in S there
exists x; y in S such that a = (xa2)y. Now since a = (a(vu))(ax). Therefore

(f �k g) (a) =
_
a=pq

�
f (p) ^ g (q) ^ 1� k

2

�
� f (a(vu)) ^ g (ax) ^ 1� k

2

� f (a) ^ g (a) ^ 1� k
2

= (f ^k g)(a):

Thus f �k g � f ^k g. Also

(f �k g)(a) =
_
a=bc

f(b) ^ g(c) ^ 1� k
2

=
_
a=bc

(f(b) ^ 1� k
2

) ^ (g(c) ^ 1� k
2

) ^ 1� k
2

�
_
a=bc

f(bc) ^ g(bc) ^ 1� k
2

= (f ^k g)(a):

Therefore f �k g � f ^k g. Hence (f �k g)(a) = (f ^k g)(a):
(iii) =) (ii) is obvious.
(ii) =) (i)
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Let a 2 Q \ L, then by (ii) and lemma 72, we get

(CQL)k (a) = (CQ �k CL) (a) = (CQ ^k CL) (a)

= (CQ\L)k (a) �
1� k
2

.

Therefore a 2 QL. Now let a 2 QL, then

(CQ\L)k (a) = (CQL)k (a) �
1� k
2

:

Therefore a 2 Q \ L. Thus QL = Q \ L. Hence by theorem 84, S is intra-
regular.

Theorem 86 For an AG-groupoid with left identity, the following condi-
tions are equivalent.
(i) S is intra-regular.
(ii) f ^k g � f �k g, for every (2;2 _qk)-fuzzy quasi-ideal f and every

(2;2 _qk)-fuzzy left ideal g.
(iii) f ^k g � f �k g, for every (2;2 _qk)-fuzzy quasi-ideals f and g.

Proof. (i) =) (iii)
Let f and g be (2;2 _qk) fuzzy quasi-ideals of an intra-regular AG-

groupoid with left identity S. Then by theorem 81, f and g become (2;2
_qk)-fuzzy ideals of S. Now since S is intra-regular. Therefore for a 2 S
there exists x; y in S such that a = (xa2)y which yields that a = (a(vu)(ax).
Then

(f �k g)(a) =
_
a=pq

�
f(p) ^ g(q) ^ 1� k

2

�
� f(a(vu)) ^ g(ax) ^ 1� k

2
= f(a) ^ g(a) ^ 1� k

2

= f(a) ^ g(a) ^ 1� k
2

= (f ^k g)(a).

Thus f �k g � f ^k g.
(iii) =) (ii) is obvious.
(ii) =) (i)
Let A and B be quasi and left ideals of S. Then by lemma 72, (CA)k

and (CB)k are (2;2 _qk)-fuzzy quasi and (2;2 _qk)-fuzzy left ideals of S
and by (ii), we get

(CA\B)k = CA ^k CB � CA �k CB = (CAB)k.

Now let a 2 A \ B. Then (CAB)k(a) � (CA\B)k(a) � 1�k
2 . Therefore

a 2 AB. Thus A \B � AB. Hence by theorem 84, S is intra-regular.



36 2. Generalized Fuzzy Ideals of Abel-Grassmann groupoids

Theorem 87 For an AG-groupoid with left identity, the following condi-
tions are equivalent.
(i) S is intra-regular.
(ii) Q[a] \ L[a] � L[a]Q[a], for all a in S.
(iii) Q \ L � LQ, for every quasi-ideal Q and left ideal L of S.
(iv) f ^k g � g �k f , for every (2;2 _qk)-fuzzy quasi-ideal f and every

(2;2 _qk)-fuzzy left ideal g.
(v) f ^k g � g �k f , for every (2;2 _qk)-fuzzy quasi-ideals f and g.

Proof. (i) =) (v)
Let f and g be (2;2 _qk) fuzzy quasi-ideals of an intra-regular AG-

groupoid S with left identity. Then by theorem 81, f and g become (2;2
_qk)-fuzzy ideals of S. Since S is intra-regular. Therefore for a 2 S there
exists x; y in S such that a = (xa2)y. Now using (1) and left invertive law,
we get

a = (xa2)y = (a(xa))y = (y(xa))a.

Also

(g �k f)(a) =
_
a=pq

�
g(p) ^ f(q) ^ 1� k

2

�
� g(y(xa)) ^ f(a) ^ 1� k

2

= f(a) ^ g(a) ^ 1� k
2

= (f ^k g)(a).

Thus g �k f � f ^k g.
(v) =) (iv) is obvious.
(iv) =) (iii)
Let Q and L be quasi and left ideals of S. Then by lemma 72, (CA)k and

(CB)k are (2;2 _qk)-fuzzy quasi and (2;2 _qk)-fuzzy left ideals of S and
by (ii), we get

(CQ\L)k = CQ ^k CL � CL �k CQ = (CLQ)k.

Therefore Q \ L � LQ.
(iii) =) (ii) is obvious.
(ii) =) (i)
For a in S; Q[a] = a [ (Sa \ aS) L[a] = a [ Sa are quasi and left ideals

of S generated by a. Therefore using (1), left invertive law, medial law and
(iii), we get

[a [ (Sa \ aS)] \ [a [ Sa] � [a [ Sa][a [ (Sa \ aS)]
� (a [ Sa)(a [ Sa)
= a2 [ a(Sa) [ (Sa)a [ (Sa)(Sa)
= a2 [ Sa2.

Hence S is intra-regular.
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Theorem 88 For an AG-groupoid S with left identity, the following are
equivalent.
(i) S is intra-regular.
(ii) L[a] \Q[a] = (L[a]Q[a])L[a](L[a] \Q[a] � (L[a]Q[a])L[a]), for all a

in S.
(iii) L\Q = (LQ)L(L\Q � (LQ)L), for left ideal L and quasi-ideal Q

of S.
(iv) f ^k g = (f �k g) �k f(f ^k g � (f �k g) �k f), for (2;2 _qk)-fuzzy

left ideal f and (2;2 _qk)-fuzzy quasi-ideal g of S.
(v) f ^k g = (f �k g) �k f(f ^k g � (f �k g) �k f), for (2;2 _qk)-fuzzy

quasi-ideals f and g of S.

Proof. (i) =) (v)
Let f and g be (2;2 _qk)-fuzzy quasi-ideals of an intra-regular AG-

groupoid S with left identity. Since S is intra-regular therefore for each
a 2 S there exist x; y 2 S such that a =

�
xa2
�
y. Then by theorem 81, f

and g become (2;2 _qk)-fuzzy ideals of S. Then using (1), left invertive
law, paramedial and medial law, we get

a = (xa2)y = (x(aa))y = (a(xa))y = (y(xa))a

= (y(xa))((y(xa))a) = (a(y(xa)))((xa)y).

Now

((f �k g) �k f)(a) =
_
a=pq

(f �k g)(p) ^ f(q) ^
1� k
2

� f �k g(a(y(xa))) ^ f((xa)y) ^
1� k
2

� (f �k g)(a(y(xa)) ^ f(a) ^
1� k
2

=

8<: _
a(y(xa))=uv

f(u) ^ g(v)

9=; ^ f(a) ^ 1� k2
� f(a) ^ g(y(xa))) ^ 1� k

2
^ f(a) ^ 1� k

2

�
�
f(a) ^ g (a) ^ 1� k

2

�
^ f(a) ^ 1� k

2

= f(a) ^ g (a) ^ 1� k
2

= (f ^k g) (a) :
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Therefore f ^k g � (f �k g) �k f . Also

((f �k g) �k f)(a) =
_
a=pq

(f �k g)(p) ^ f(q) ^
1� k
2

=
_
a=pq

f
_
p=cd

f(c) ^ g(d) ^ 1� k
2

g ^ f(q) ^ 1� k
2

�
_
a=pq

f
_
p=cd

f(cd) ^ g(cd) ^ 1� k
2

g ^ f(pq) ^ 1� k
2

=
_
a=pq

ff(p) ^ g(p) ^ 1� k
2

g ^ f(pq) ^ 1� k
2

�
_
a=pq

f(pq) ^ g(pq) ^ f(pq) ^ 1� k
2

= f(a) ^ g(a) ^ f(a) ^ 1� k
2

= f(a) ^ g(a) ^ 1� k
2

= (f ^k g)(a).

Therefore f ^k g � (f �k g) �k f . Hence f ^k g = (f �k g) �k f .
(v) =) (iv) is obvious.
(iv) =) (iii)
Let L and Q be left and quasi-ideals of an AG-groupoid S. Then by

lemma 72, (CL)k and (CQ)k are (2;2 _qk)-fuzzy left and quasi-ideals of S.
Then using (iii), we have

(CL\Q)k = (CL ^k CQ) = (CL �k CQ) �k CL = (C(LQ)L)k:

This implies that L \Q = (LQ)L.
(iii) =) (ii) is obvious.
(ii) =) (i)
For a in S; L[a] = a[Sa and Q[a] = a[(Sa\aS) are left and quasi-ideals

of S generated by a. Therefore using (1), medial law, left invertive law and
(ii), we get

[a [ Sa] \ [a [ (Sa \ aS)] = ([a [ Sa][a [ (Sa \ aS)])[a [ Sa]
� f(a [ Sa)(a [ Sa)g(a [ Sa)
� f(a [ Sa)(a [ Sa)gS
= fa2 [ a(Sa) [ (Sa)a [ (Sa)(Sa)gS
= fa2 [ Sa2gS = Sa2.

Theorem 89 Let S be an AG-groupoid with left identity then the following
conditions are equivalent.
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(i) S is intra-regular.
(ii) B \Q � BQ, for every bi-ideal B and quasi-ideal Q:
(iii) f ^k g � f �k g, for every (2;2 _qk)-fuzzy bi-ideal f and (2;2 _qk)-

fuzzy quasi-ideal g:

Proof. (i) =) (iii) Assume that S is an intra-regular AG-groupoid with
left identity and f and g are (2;2 _qk) fuzzy bi and quasi-ideals of S
respectively. Thus, for any a in S there exist u and v in S such that a = uv;
then

(f �k g)(a) =
_
a=uv

f(u) ^ g(v) ^ 1� k
2

:

Since S is intra-regular so for any a in S there exist x; y 2 S such that
a = (xa2)y: Since S = S2, so for y in S there exist s and t in S such that
y = st. By using (1), left invertive law; paramedial law and medial law; we
get

a = (xa2)y = (x(aa))y = (a(xa))y = (y(xa))a

= [(st)(xa)]a = [(ax)(ts)]a = [f(ts)xga]a = [f(ts)xg((xa2)y)]a
= [(xa2)(f(ts)xgy)]a = [fa(xa)g(f(ts)xgy)]a
= [f(f(ts)xgy)(xa)ga]a
= [fp(xa)ga]a, where p = ((ts)x)y

Now

p(xa) = p[xf(xa2)yg] = p[(xa2)(xy)]
= (xa2)[p(xy)] = [(xy)p](a2x)

= a2([(xy)p]x) = a2q, where q = [(xy)p]x

Therefore a = f(a2q)aga, where q = [(xy)p]x and p = ((ts)x)y.
Thus, we have

(f �k g)(a) =
_
a=uv

f(u) ^ g(v) ^ 1� k
2

� f((a2q)a) ^ g(a) ^ 1� k
2

� (f(a2) ^ f(a)) ^ g(a) ^ 1� k
2

� (f(a) ^ f(a)) ^ g(a) ^ 1� k
2

= (f ^ g)(a) ^ 1� k
2

:

= (f ^k g)(a):

This implies that f ^k g � f �k g:
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(iii) =) (ii) Let B be a bi-ideal and Q be a quasi ideal of S. Then, by
lemma 72, (CB)k and (CQ)k are (2;2 _qk)-fuzzy bi-ideal and (2;2 _qk)-
fuzzy quasi ideal of S. Then, by using lemma 72 and (ii), we get

(CB\Q)k = CB ^k CQ � CB �k CQ = (CBQ)k:

Thus B \Q � BQ:
(ii) =) (i) Since Sa is both bi-ideal and quasi ideal of S containing a.

Therefore by (ii) and using medial law, paramedial law and (1); we obtain

a 2 Sa \ Sa � (Sa)(Sa) = (SS)(aa) = (aa)(SS)
= S(a2S) = (SS)(a2S) = (Sa2)(SS) = (Sa2)S.

Hence S is an intra-regular AG-groupoid.



3

Generalized Fuzzy Right Ideals
in AG-groupoids
In this chapter, we introduce (2
 ;2
 _q�)-fuzzy right ideals in an AG-
groupoid. We characterize intra-regular AG-groupoids using the properties
of (2
 ;2
 _q�)-fuzzy subsets and (2
 ;2
 _q�)-fuzzy right ideals.

3.1 (2
;2
 _q�)-fuzzy Ideals of AG-groupoids

Let 
; � 2 [0; 1] be such that 
 < �. For any B � A; let X�

B be a fuzzy

subset of X such that X�

B(x) � � for all x 2 B and X�


B(x) � 
 otherwise.
Clearly, X�


B is the characteristic function of B if 
 = 0 and � = 1:
For a fuzzy point xr and a fuzzy subset f of X, we say that
(1) xr 2
 f if f(x) � r > 
:
(2) xrq�f if f(x) + r > 2�:
(3) xr 2
 _q�f if xr 2
 f or xrq�f:
Now we introduce a new relation on F(X), denoted by �� _q(
;�)�, as

follows:
For any f; g 2 F(X); by f � _q(
;�)g we mean that xr 2
 f implies

xr 2
 _q�g for all x 2 X and r 2 (
; 1]: Moreover f and g are said to be
(
; �)-equal, denoted by f =(
;�) g; if f � _q(
;�)g and g � _q(
;�)f .
The above de�nitions can be found in [37].

Lemma 90 [37] Let f and g be fuzzy subsets of F(X). Then f � _q(
;�)g
if and only if maxfg(x); 
g � minff(x); �g for all x 2 X:

Lemma 91 [37] Let f , g and h 2 F(X): If f � _q(
;�)g and g � _q(
;�)h;
then f � _q(
;�)h:

The relation �=(
;�)�is equivalence relation on F(X), see [37]. Moreover,
f =(
;�) g if and only if maxfminff(x); �g; 
g = maxfminfg(x); �g; 
g for
all x 2 X.

Lemma 92 Let A, B be any non-empty subsets of an AG -groupoid S with
a left identity. Then we have
(1) A � B if and only if X�


A � _q(
;�)X�

B ; where r 2 (
; 1] and


; � 2 [0; 1]:
(2) X�


A \X�

B =(
;�) X

�

(A\B):

(3) X�

A �X�


B =(
;�) X
�

(AB):
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Lemma 93 If S is an AG-groupoid with a left identity then (ab)2 = a2b2 =
b2a2 for all a and b in S.

Proof. It follows by medial and paramedial laws.

De�nition 94 A fuzzy subset f of an AG-groupoid S is called an (2
 ;2

_q�)-fuzzy AG-subgroupoid of S if for all x; y 2 S and t; s 2 (
; 1], such
that xt 2
 f; ys 2
 f we have (xy)minft;sg 2
 _q�f:

Theorem 95 Let f be a fuzzy subset of an AG groupoid S. Then f is an
(2
 ;2
 _q�)-fuzzy AG subgroupoid of S if and only if maxff(xy); 
g �
minff(x); f(y); �g; where 
; � 2 [0; 1]:

Proof. Let f be a fuzzy subset of an AG-groupoid S which is (2
 ;2
 _q�)-
fuzzy subgroupoid of S. Assume that there exists x; y 2 S and t 2 (
; 1],
such that

maxff(xy); 
g < t � minff(x); f(y); �g:
Then maxff(xy); 
g < t, this implies that f(xy) < t � 
, which fur-

ther implies that (xy)minft;sg2
 _q�f and minff(x); f(y); �g � t, therefore
minff(x); f(y)g � t this implies that f(x) � t > 
, f(y) � t > 
; im-
plies that xt 2
 f , ys 2
 f but (xy)minft;sg2
 _q�f a contradiction to the
de�nition. Hence

maxff(xy); 
g � minff(x); f(y); �g for all x; y 2 S:

Conversely, assume that there exist x; y 2 S and t; s 2 (
; 1] such that
xt 2
 f , ys 2
 f by de�nition we write f(x) � t > 
; f(y) � s > 
; then
maxff(xy); �g � minff(x); f(y); �g this implies that f(xy) � minft; s; �g:
Here arises two cases,
Case(a): If ft; sg � � then f(xy) � minft; sg > 
 this implies that

(xy)minft;sg 2
 f:
Case(b): If ft; sg > � then f(xy) + minft; sg > 2� this implies that

(xy)minft;sgq�f:
From both cases we write (xy)minft;sg 2
 _q�f for all x; y in S:

De�nition 96 A fuzzy subset f of an AG-groupoid S with a left identity
is called an (2
 ;2
 _q�)-fuzzy left (respt-right) ideal of S if for all x; y 2 S
and t; s 2 (
; 1] such that yt 2
 f we have (xy)t 2
 _q�f (resp xt 2
 f
implies that (xy)t 2
 _q�f):

Theorem 97 A fuzzy subset f of an AG-groupoid S with a left identity is
an (2
 ;2
 _q�)-fuzzy right ideal of S if and only if for all a; b 2 S,

maxff(ab); 
g � minff(a); �g.

Proof. Let f be an (2
 ;2
 _q�)-fuzzy right ideal of S. Suppose that there
are a; b 2 S and t 2 (
; 1] such that

maxff(ab); 
g < t � minff(a); �g:
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Then maxff(ab); 
g < t � 
 implies that (ab)t�2
f which further implies
that (ab)t2
 _q�f . From minff(a); �g � t > 
 it follows that f(a) � t >

, which implies that at 2
 f . But (ab)t2
 _q�f a contradiction to the
de�nition. Thus

maxff(ab); 
g � minff(a); �g.

Conversely, assume that there exist a; b 2 S and t; s 2 (
; 1] such that
as 2
 f but (ab)t2
 _q�f: Then f(a) � t > 
; f(ab) < minff(a); �g
and f(ab) + t � 2�. It follows that f(ab) < � and so maxff(ab); 
g <
minff(a); �g; which is a contradiction. Hence at 2
 f which implies that
(ab)minft;sg 2
 _q�f (respectively at 2
 f implies that (ab)minft;sg 2

_q�f) for all a; b in S:

Example 98 Consider the AG-groupoid de�ned by the following multipli-
cation table on S = f1; 2; 3g:

� 1 2 3

1 1 1 1
2 1 1 3
3 1 2 1

De�ne a fuzzy subset f on S as follows:

f(x) =

8<: 0:4 if x = 1;
0:41 if x = 2;
0:38 if x = 3:

Then, we have

� f is an (20:2;20:2 _q0:22)-fuzzy right ideal,

� f is not an (2;2 _q0:22)-fuzzy right ideal, because f(2�3) < minff(2); 1�0:222 =
0:39g.

� f is not a fuzzy right ideal because f(2 � 3) < f(2).

Example 99 Let S = f1; 2; 3g and the binary operation � be de�ned on S
as follows:

� 1 2 3
1 2 2 2
2 2 2 2
3 1 2 2

Then (S; �) is an AG-groupoid. De�ne a fuzzy subset f on S as follows:

f(x) =

8<: 0:44 if x = 1;
0:6 if x = 2;
0:7 if x = 3:

Then, we have
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� f is an (20:4;20:4 _q0:45)-fuzzy subgroupoid of S.

� f is not an (20:4;20:4 _q0:45)-fuzzy right ideal of S.

Example 100 Let S = f1; 2; 3g and de�ne the binary operation � on S as
follows:

� 1 2 3
1 1 1 1
2 3 3 3
3 1 1 1

(S; �) is an AG-groupoid. Let us de�ne a fuzzy subset f on S as follows:

f(x) =

8<: 0:6 if x = 1
0:5 if x = 2
0:55 if x = 3

f is an (2
 ;2
 _q�)-fuzzy right ideal of S.

Lemma 101 R is a right ideal of an AG-groupoid S if and only if X�

R is

an (2
 ;2
 _q�)-fuzzy right ideal of S:

Proof. (i) Let x; y 2 R, it means that xy 2 R. Then X�

R(xy) � �,

X�

R(x) � � and X�


R(y) � � but � > 
. Thus

maxfX�

R(xy); 
g = X�


R(xy) and minfX�

R(x); �g = �.

Hence maxfX�

R(xy); 
g � minfX�


R(x); �g:
(ii) Let x =2 R, y 2 R
Case(a): If xy =2 R. Then X�


R(x) � 
; X�

R(y) � � and X�


R(xy) � 
.
Therefore

maxfX�

R(xy); 
g = 
 and minfX�


R(x); �g = X�

R(x).

Hence maxfX�

R(xy); 
g � minfX�


R(x); �g:
Case(b): If xy 2 R: Then X�


R(xy) � �, X�

R(x) � 
 and X�


R(y) � �.
Thus

maxfX�

R(xy); 
g = X�


R(xy) and minfX�

R(x); �g = X�


R(x).

Hence maxfX�

R(xy); 
g > minfX�


R(x); �g:
(iii) Let x 2 R; y =2 R. Then xy 2 R. Thus X�


R(xy) � �, X�

R(y) � 


and X�

R(x) � �. Thus

maxfX�

R(xy); 
g = X�


R(xy) and minfX�

R(x); �g = �.

Hence maxfX�

R(xy); 
g � minfX�


R(x); �g:
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(iv) Let x; y =2 R, then
Case (a) Assume that xy =2 R. Then by de�nition we get X�


R(xy) � 
,
X�

R(y) � 
 and X�


R(x) � 
. Thus

maxfX�

R(xy); 
g = 
 and minfX�


R(x); �g = X�

R(x).

Therefore maxfX�

R(xy); 
g � minfX�


R(x); �g:
Case (b) Assume that xy 2 R. Then by de�nition we get X�


R(xy) � 
,
X�

R(y) � 
 and X�


R(x) � 
. Thus

maxfX�

R(xy); 
g = X�


R(xy) and minfX�

R(x); �g = X�


R(x).

Therefore maxfX�

R(xy); 
g > minfX�


R(x); �g:
Conversely, let rs 2 RS, where r 2 R and s 2 S. By hypothesis

maxfX�

R(rs); 
g � minfX�


R(r); �g. Since r 2 R, thus X�

R(r) � � which

implies that minfX�

R(r); �g = �. Thus

maxfX�

R(rs); 
g � �.

This implies that X�

R(rs) � � which implies that rs 2 R. Hence R is a

right ideal of S.
Here we introduce (2
 ;2
 _q�)-fuzzy semiprime ideals.

De�nition 102 A fuzzy subset f of an AG-groupoid S is called (2
 ;2

_q�)-fuzzy semiprime if x2t 2
 f implies that xt 2
 _q�f for all x 2 S and
t 2 (
; 1]:

Example 103 Consider an AG-groupoid S = f1; 2; 3; 4; 5g with the fol-
lowing multiplication table

: 1 2 3 4 5
1 4 5 1 2 3
2 3 4 5 1 2
3 2 3 4 5 1
4 1 2 3 4 5
5 5 1 2 3 4

Clearly (S, .) is intra-regular because 1 = (3:12):2; 2 = (1:22):5; 3 =
(5:32):2; 4 = (2:42):1; 5 = (3:52):1: De�ne a fuzzy subset f on S as given:

f(x) =

8>>>><>>>>:
0:7 if x = 1;
0:6 if x = 2;
0:68 if x = 3;
0:63 if x = 4;
0:52 if x = 5:

Then f is an (20:4;20:4 _q0:5)-fuzzy semiprime of S.
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Theorem 104 A fuzzy subset f of an AG-groupoid S is (2
 ;2
 _q�)-fuzzy
semiprime if and only if maxff(a); 
g � minff(a2); �g:

Proof. Let f be (2
 ;2
 _q�)-fuzzy semiprime. Assume that there exists
a 2 S and t 2 (
; 1], such that

maxff(a); 
g < t � minff(a2); �g:

Then maxff(a); 
g < t. This implies that f(a) < t > 
. Now since � � t,
so f(a)+ t < 2�. Thus at2
 _q�f . Also since minff(a2); �g � t, so f(a2) �
t > 
. This implies that a2t 2
 f . Thus by de�nition of (2
 ;2
 _q�)-fuzzy
semiprime at 2
 _q�f which is a contradiction to at2
 _q�f . Hence

maxff(a); 
g � minff(a2); �g; for all a 2 S:

Conversely assume that there exist a 2 S and t 2 (
; 1] such that a2t 2
 f ,
then f(a2) � t > 
; thus maxff(a); 
g � minff(a2); �g � minft; �g. We
consider two cases here,
Case(i): if t � �; then f(a) � t > 
; this implies that at 2
 f:
Case(ii) : if t > �; then f(a) + t > 2�. Thus atq�f:
Hence from (i) and (ii) we write at 2
 _q�f: Hence f is (2
 ;2
 _q�)-

fuzzy semiprime:

Theorem 105 For a right ideal R of an AG-groupoid S with a left identity,
the following conditions are equivalent:
(i) R is semiprime.
(ii) X�


R is (2
 ;2
 _q�)-fuzzy semiprime.

Proof. (i)) (ii) Let R be a semiprime ideal of an AG-groupoid S. Let a be
an arbitrary element of S such that a 2 R: Then a2 2 R: Hence X�


R(a) � �
and X�


R(a
2) � � which implies that maxfX�


R(a); 
g � minfX�

R(a

2); �g:
Now let a =2 R. Since R is semiprime, we have a2 =2 R. This im-

plies that X�

R(a) � 
 and X�


R(a
2) � 
. Therefore, maxfX�


R(a); 
g �
minfX�


R(a
2); �g: Hence,maxfX�


R(a); 
g � minfX�

R(a

2); �g for all a 2 S.
(ii) ) (i) Let X�


R be fuzzy semiprime. If a2 2 R; for some a in S,
then X�


R(a
2) � �. Since X�


R is an (2
 ;2
 _q�)-fuzzy semiprime, we have
maxfX�


R(a); 
g � minfX�

R(a

2); �g. Therefore maxfX�

R(a); 
g � �. But

� > 
; so X�

R(a) � �. Thus a 2 R: Hence R is semiprime.

3.2 Intra-Regular AG-groupoids

Theorem 106 Let S be an AG- groupoid with a left identity. Then the
following conditions are equivalent:
(i)S is intra-regular.
(ii)For a right ideal R of an AG-groupoid S, R � R2 and R is semiprime.
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(iii)For an (2
 ;2
 _q�)-fuzzy right ideal f of S, f � _q(
;�)f � f and f
is (2
 ;2
 _q�)-fuzzy semiprime.

Proof. (i) ) (iii) Let f be an (2
 ;2
 _q�)-fuzzy right ideal of an intra-
regular AG-groupoid S with a left identity. Since S is intra-regular, for any
a in S there exist x; y in S such that a = (xa2)y: Now using (1), medial
law, paramedial law and left invertive law, we get

a = (xa2)y = [(x(aa))y] = [(a(xa))y] = [(y(xa))a]

y(xa) = [y(x((xa2)y))] = [y((xa2)(xy))] = [(xa2)(xy2)] = [(y2x)(a2x)]

= [a2((y2x)x)] = [f(a(y2x)g(ax)]:

For any a in S there exist p and q in S such that a = pq: Then

maxf(f � f)(a); 
g = max
( _
a=pq

fff(p) ^ f(q)g; 
g
)

� max
�
minfff(a(y2x)); f(ax)g; 


	
� maxfminff(a(y2x)); f(ax)g; 
g
= minfmaxff(a(y2x)); 
g;maxff(ax); 
gg
� min fminff(a); �g;minff(a); �gg
= minf(f)(a); �g.

Thus f � _q(
;�)f � f: Next we show that f is an (2
 ;2
 _q�)-fuzzy
semiprime. Since S = S2, for each y in S there exist y1; y2 in S such that
y = y1y2. Thus using medial law, paramedial law and (1), we get

a = (xa2)y = (xa2)(y1y2) = (y2y1)(a
2x)

= a2[(y2y1)x] = a
2t, where [(y2y1)x] = t:

Then

maxff(a); 
g = maxff(a2t); 
g
� minff(a2); �g:

(iii)) (ii) Let R be any right ideal of an AG-groupoid S. By (iii), X�

R

is semiprime so R is semiprime. Now using (iii), we get

X�

R = X

�

R\R =(
;�) X

�

R \X�


R � _q(
;�)X�

R �X�


R =(
;�) X
�

R2 .

Hence we get R � R2.
(ii) ) (i) Since Sa2 is a right ideal containing a2, using (ii) we get

a 2 Sa2 � (Sa2)2 = (Sa2)(Sa2) � (Sa2)S. Hence S is intra-regular.
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Theorem 107 Let S be an AG- groupoid with a left identity. Then the
following conditions equivalent:
(i) S is intra-regular.
(ii) For any right ideal R and any subset A of S, R \A � RA and R is

a semiprime ideal.
(iii) For any (2
 ;2
 _q�) fuzzy right ideal f and any (2
 ;2
 _q�)-fuzzy

subset g, f \ g � _q(
;�)(f � g) and f is an (2
 ;2
 _q�)-fuzzy semiprime.

Proof. (i) ) (iii) Let f be an (2
 ;2
 _q�)-fuzzy right ideal and g be
an (2
 ;2
 _q�)-fuzzy subset of an intra regular AG-groupoid S. Since S is
intra-regular, then for any a in S there exist x; y in S such that a = (xa2)y:
Now using (1), medial law, paramedial law and left invertive law, we get

a = (xa2)y = [(x(aa))y] = [(a(xa))y] = [y(xa)]a:

y(xa) = [yfx((xa2)y)g] = [yf(xa2)(xy)g] = [(xa2)(xy2)]
= [(y2x)(a2x)] = [a2(y2x2)]:

Thus a = (a2t)a; where (y2x2) = t:

maxf(f � g)(a); 
g = max
( _
a=bc

ff(b) ^ g(c)g; 

)

� maxfminff(a2t); g(a)g; 
g
= minfmaxff(a2t); 
g;maxfg(a); 
gg
� minfminff(a); �g;minfg(a); �gg
= minf(f \ g)(a); �g:

Thus f \ g � _q(
;�)f � g. The rest of proof is similar as in Theorem 106.
(iii)) (ii) Let R be an right ideal and A be a subset of S. By (iii), we

get

X�

(R\A) =(
;�) X

�

R \X�


A � _q(
;�)X�

R �X�


A =(
;�) X
�

RA.

Thus R \A � RA: The rest of the proof is similar as in Theorem 106.
(ii) ) (i) Sa2 is a right ideal containing a2. By (ii), it is semiprime.

Therefore a 2 Sa2 \ Sa � (Sa2)(Sa) � (Sa2)S. Hence S is intra-regular.

Theorem 108 Let S be an AG- groupoid with a left identity. Then the
following conditions equivalent:
(i) S is intra regular.
(ii) For any right ideal R and any subset A of S, R \A � AR and R is

a semiprime ideal.
(iii) For any (2
 ;2
 _q�)-fuzzy right ideal f and any (2
 ;2
 _q�)-fuzzy

subset g, f \ g � _q(
;�)(g � f) and f is an (2
 ;2
 _q�)-fuzzy semiprime.
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Proof. (i) ) (iii) Let f be an (2
 ;2
 _q�)-fuzzy right ideal and g be
an (2
 ;2
 _q�)-fuzzy subset of an intra-regular AG-groupoid S. Since S is
intra-regular, then for any a in S there exist x; y in S such that a = (xa2)y:
Now using left invertive law, we get

a = (xa2)y = (xa2)(y1y2) = (y2y1)(a
2x) = a2[(y2y1)x] = [x(y2y1)]a

2

= a[fx(y2y1)ga] = a[fx(y2y1)gf(xa2)yg] = a[(xa2)[fx(y2y1)gy]]
= a[[yfx(y2y1)g](a2x)] = a[a2([yfx(y2y1)g]x)] = a[(x[yfx(y2y1)g])a2]
= a[(x[yfx(y2y1)g])(aa)] = a[a((x[yfx(y2y1)g])a)]
= a(au), where u = (x[yfx(y2y1)g])a.

maxf(f � g)(a); 
g = max
( _
a=bc

fg(b) ^ f(c)g; 

)

� maxfminfg(a); f(au)g; 
g
= min[maxfg(a); 
g;maxff(au); 
g]
� min[minfg(a); �g;minff(a); �g]
= min[g(a); f(a); �g]
= minf(f \ g)(a); �g:

Then we have f \ g � _q(
;�)g � f . The rest of the proof is similar as in
Theorem 106.
(iii) ) (ii) Let R be a right ideal and A be a subset of S. By (iii), we

get

X�

(R\A) = X

�

(A\R) =(
;�) X

�

A \X�


R � _q(
;�)X�

A �X�


R =(
;�) X
�

AR.

By Lemma 92, R\A � AR: The rest of the proof is similar as in Theorem
106.
(ii) ) (i) Sa2 is a right ideal containing a2. By (ii), it is semiprime.

Therefore

a 2 Sa2 \ Sa � (Sa)(Sa2) = (a2S)(aS) = [(aa)(SS)](aS)
= [(SS)(aa)](aS) � (Sa2)S:

Hence S is intra-regular.

Theorem 109 Let S be an AG- groupoid with a left identity. Then the
following conditions equivalent:
(i) S is intra-regular.
(ii) For any subset A and any right ideal R of S, A \R � AR and R is

a semiprime.
(iii) For any (2
 ;2
 _q�) fuzzy subset f and any (2
 ;2
 _q�)-fuzzy

right ideal g of S; f \ g � _q(
;�)(f � g) and g is an (2
 ;2
 _q�)-fuzzy
semiprime ideal.
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Proof. (i) ) (iii) Let f be an (2
 ;2
 _q�)-fuzzy subset and g be an
(2
 ;2
 _q�)-fuzzy right ideal of an intra-regular AG-groupoid S. Since S
is intra-regular it follows that for any a in S there exist x; y in S such that
a = (xa2)y: Now using medial law, paramedial law and (1), we get

a = (xa2)y = [(xa2)(y1y2)] = [(y2y1)(a
2x)]

= [a2((y2y1)x)] = [(x(y2y1))(aa)] = [af(x(y2y1))ag]
= a(ta); where x(y2y1) = t; and

ta = t[(xa2)y] = (xa2)(ty) = (yt)(a2x) = a2[(yt)x]:

Thus a = a(a2v), where (yt)x = v and x(y2y1) = t:
For any a in S there exist s and t in S such that a = st: Then

maxf(f � g)(a); 
g = max
( _
a=st

ff(s) ^ g(t)g; 

)

� maxfminff(a); g(a2v)g; 
g
= minfmaxff(a); 
g;maxfg(a2v); 
gg
� minfminff(a); �g;minfg(a); �gg
= minf(f \ g)(a); �g:

Thus f \ g � _q(
;�)f � g: The rest of the proof is similar as in Theorem
106.
(iii) ) (ii) Let R be a right ideal and A be a subset of S. By (iii), we

get

X�

(A\R) =(
;�) X

�

A \X�


R � _q(
;�)X�

A �X�


R =(
;�) X
�

AR.

Thus A \R � AR. The rest of the proof is similar as in Theorem 106.
(ii) ) (i) Sa2 is a right ideal containing a2. By (ii), it is semiprime.

Therefore

a 2 Sa \ Sa2 � (Sa)(Sa2) = (a2S)(aS) � (a2S)S
= [a2(SS)]S = [(SS)a2]S = (Sa2)S.

Hence S is intra-regular.

Theorem 110 Let S be an AG- groupoid with a left identity. Then the
following conditions equivalent:
(i) S is intra-regular.
(ii) For any subsets A; B and for any right ideal R of S, A \ B \ R �

(AB)R and R is a semiprime ideal.
(iii) For any (2
 ;2
 _q�)-fuzzy subsets f; g and any (2
 ;2
 _q�)-fuzzy

right ideal h; f \ g \ h � _q(
;�)((f � g) � h) and h is an (2
 ;2
 _q�)-fuzzy
semiprime ideal of S.
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Proof. (i) ) (iii) Let f; g be (2
 ;2
 _q�)-fuzzy subsets and h be an
(2
 ;2
 _q�)-fuzzy right ideal of an intra-regular AG-groupoid S. Since S
is intra-regular then for any a in S there exist x; y in S such that a = (xa2)y:
Now using medial, paramedial laws and (1); we get

a = (xa2)y = (y2y1)(a
2x) = a2[(y2y1)x] = [x(y2y1)]a

2

= a[fx(y2y1)ga] = a(pa); where x(y2y1) = p and
pa = p[(xa2)y] = (xa2)(py) = [(yp)(a2x)]

= a2[(yp)x] = [x(yp)](aa) = a[fx(yp)ga]
= [a(qa)]; where x(yp) = q; and

qa = q[(xa2)y] = (xa2)(qy) = (yq)(a2x) = a2[(yq)x].

Thus a = a[a(a2c)] = a[a2(ac)] = a2[a(ac)]; where (yq)x = c and x(yp) = q
and (y2y1) = p.
For any a in S there exist b and c in S such that a = bc: Then

maxf((f � g) � h)(a); 
g = max
( _
a=bc

f(f � g)(b) ^ h(c)g; 

)

� maxfminf(f � g)(aa); h(a(ac))g; 
g

= max

( _
aa=pq

fff(p) ^ g(q)g; h(a(ac))g; 

)

� max[minff(a); g(a); h(a(ac))g; 
]
= min[maxff(a); 
g;maxfg(a); 
g;maxfh(a(ac)); 
]
� min[minff(a); �g;minfg(a); �g;minfh(a); �g]
= min[minff(a); g(a); h(a)g; �]
= minf(f \ g \ h)(a); �g:

Thus (f \ g) \ h � _q(
;�)(f � g) � h: The rest of the proof is similar as
in Theorem 106.
(iii) ) (ii) Let R be a right ideal and A;B be any subsets of S. Then

by (iii), we get

X�

(A\B)\R =(
;�) X

�

A\X�


B\X�

R � _q(
;�)(X�


A�X�

B)�X�


R =(
;�) X
�

(AB)R.

Then we get (A \ B) \ R � (AB)R: The rest of the proof is similar as
in Theorem 106.
(ii) ) (i) Sa2 is a right-ideal of an AG-groupoid S containing a2. By

(ii), it is semiprime. Thus (ii), we get

Sa \ Sa \ Sa2 � [(Sa)(Sa)](Sa2) = [(SS)(aa)](Sa2) � (Sa2)S.

Hence S is intra-regular.
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Theorem 111 Let S be an AG- groupoid with a left identity. Then the
following conditions equivalent:
(i) S is intra-regular.
(ii) For any subsets A;B and for any right ideal R of S, A \ R \ B �

(AR)B and R is a semiprime.
(iii) For any (2
 ;2
 _q�)-fuzzy subsets f; h and any (2
 ;2
 _q�)-fuzzy

right ideal g; f \ g \ h � _q(
;�)((f � g) � h) and g is an (2
 ;2
 _q�)-fuzzy
semiprime ideal of S.

Proof. (i) ) (iii) Let f; h be (2
 ;2
 _q�)-fuzzy subsets and g be an
(2
 ;2
 _q�)-fuzzy right ideal of an intra-regular AG-groupoid S. Now since
S is intra-regular it follows that for any a in S there exist x; y in S such
that a = (xa2)y: Now using medial, paramedial laws and (1); we get

a = [(x(aa))y] = [(a(xa))y] = [(y(xa))a];

y(xa) = y[x((xa2)y)] = y[(xa2)(yx)] = [(xa2)(xy2)] = (y2x)(a2x)

= a2(y2x2) = (aa)(y2x2) = (x2y2)(aa) = a[(x2y2)a];

(x2y2)a = (x2y2)[(xa2)y] = (xa2)[(x2y2)y] = [y(y2x2)](a2x) = a2[f(y(y2x2)gx]

Thus a = [a(a2v)]a; where fy(y2x2)gx = v:
For any a in S there exist p and q in S such that a = pq: Then

maxf((f � g) � h)(a); 
g = max
( _
a=pq

f(f � g)(p) ^ h(q)g; 

)

� maxfminf(f � g)(a(a2v)); h(a)g; 
g

= max

8<: _
a(a2v)=cd

fff(c) ^ g(d)g; h(a)g; 


9=;
� max[minff(a); g(a2v); h(a)g; 
]
= min[maxff(a); 
g;maxfg(a2v); 
g;maxfh(a); 
g]
� min[minff(a); �g;minfg(a); �g;minfh(a); �g]
= min[minff(a); g(a); h(a)g; �]
= minf(f \ g \ h)(a); �g:

Thus (f \ g) \ h � _q(
;�)(f � g) � h: The rest of the proof is same as in
Theorem 106.
(iii) ) (ii) Let R be a right ideal and A;B be any subsets of S. Then

by (iii), we get

X�

(A\R)\B =(
;�) X

�

A\X�


R\X�

B � _q(
;�)(X�


A�X�

R)�X�


B =(
;�) X
�

(AR)B .

Hence we get (A \R) \B � (AR)B: The rest of the proof is same as in
Theorem 106.
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(ii) ) (i) Sa2 is a right-ideal of an AG-groupoid S containing a2. By
(ii), it is semiprime. Thus (ii), we get

a 2 Sa \ Sa2 \ Sa � [(Sa)(Sa2)](Sa) � [S(Sa2)]S
= [S(Sa2)](SS) = (SS)[(Sa2)S]

= S[(Sa2)S] = (Sa2)(SS) = (Sa2)S.

Hence S is intra-regular.

Theorem 112 Let S be an AG- groupoid with a left identity. Then the
following conditions equivalent:
(i) S is intra-regular.
(ii) For any subsets A;B and for any right ideal R of S, R \ A \ B �

(RA)B and R is a semiprime.
(iii) For any (2
 ;2
 _q�)-fuzzy right ideal f and any (2
 ;2
 _q�)-fuzzy

subsets g; h; f \ g \ h � _q(
;�)((f � g) � h) and f is an (2
 ;2
 _q�)-fuzzy
semiprime ideal of S.

Proof. (i) ) (iii) Let f be an (2
 ;2
 _q�)-fuzzy right ideal and g; h be
(2
 ;2
 _q�)-fuzzy subsets of an intra-regular AG-groupoid S. Now since
S is intra-regular it follows that for any a in S there exist x; y in S such
that a = (xa2)y: Now using medial, paramedial laws and (1); we get

a = (x(aa))y = (a(xa))y = (y(xa))a;

y(xa) = y[xf(xa2)yg] = y[(xa2)(yx)] = (xa2)(xy2)
= (y2x)(a2x) = a2[(y2x)x] = [(x2y2)a]a and

(x2y2)a = (x2y2)[(xa2)y] = (xa2)[(x2y2)y] = [y(y2x2)](a2x)

= a2[fy(y2x)gx] = a2v.

Thus a = [(a2v)a]a; where [y(y2x)]x = v:
For any a in S there exist b and c in S such that a = bc: Then

maxf((f � g) � h)(a); 
g = max
( _
a=bc

f(f � g)(b) ^ h(c)g; 

)

� maxfminf(f � g)((a2v)a); h(a)g; 
g

= max

8<: _
(a2v)a=pq

fff(p) ^ g(q)g; h(a)g; 


9=;
� max[minff(a2v); g(a); h(a)g; 
]
= min

�
maxff(a2v); 
g;maxfg(a); 
g;maxfh(a); 
g

	
� minfminff(a); �g;minfg(a); �g;minfh(a); �gg
= minfminff(a); g(a); h(a)g; �g
= minf(f \ g \ h)(a); �g:
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Thus (f \ g) \ h � _q(
;�)(f � g) � h: The rest of the proof is similar as
in Theorem 106.
(iii) ) (ii) Let R be a right ideal and A;B be any subsets of S. Then

by (iii), we get

X�

(R\A)\B =(
;�) X

�

R\X�


A\X�

B � _q(
;�)(X�


R�X�

A)�X�


B =(
;�) X
�

(RA)B .

Hence we get (R \ A) \ B � (RA)B: The rest of the proof is similar as
in theorem 106.
(ii) ) (i) Sa2 is a right-ideal of an AG-groupoid S containing a2. By

(ii), it is semiprime. Thus (ii), we get

a 2 Sa2 \ Sa \ Sa � [(Sa2)(Sa)](Sa) � [(Sa2)S]S
= (SS)(Sa2) = (SS)[(SS)(aa)] = (SS)[(aa)(SS)]

= (SS)(a2S) = (Sa2)(SS) = (Sa2)S.

Hence S is intra-regular.



4

Generalized Fuzzy Quasi-ideals
of Abel Grassmann�s
Groupoids
In this chapter, we introduce the concept of (2
 ;2
 _q�)-fuzzy quasi-ideals
in AG-groupoids. We characterize intra-regular AG-groupoids by the prop-
erties of these ideals.

De�nition 113 A fuzzy subset f of an AG- groupoid S is called an (2

;2
 _q�) fuzzy-quasi ideal of S. if it satis�es, maxff(x); 
g � minf(f �
S)(x); (S � f)(x); �g; for all x 2 S; 
; � 2 [0; 1], by S we mean X�


S, where

 = 0 and � = 1:

Example 114 Consider an AG-groupoid S = f1; 2; 3g in the following
multiplication table.

� 1 2 3
1 1 1 1
2 1 1 3
3 1 2 1

De�ne a fuzzy subset f on S as follows:

f(x) =

8<: 0:41 if x = 1
0:44 if x = 2
0:42 if x = 3:

Then, we have

� f is an (20:1;20:1 _q0:11)-fuzzy quasi-ideal,

� f is not an (2;2 _q0:11)-fuzzy quasi-ideal.

Lemma 115 If Q is a quasi-ideal of an AG-groupoid S if and only if the
fuzzy subset X�


Q is an (2
 ;2
 _q�) fuzzy quasi-ideal of S:

Proof. Suppose that Q is a quasi-ideal of an AG-groupoid S. Let X�

Q be

the fuzzy subset of Q. Suppose that x 2 S.
Case(a):
If x =2 Q, then x =2 SQ or x =2 QS:
(i) If x =2 SQ, then by de�nition X�


Q(x) � 
 and (S � X�

Q)(x) � 
.

Thus,
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maxfX�

Q(a); 
g = 
 and minf(S � X�


Q)(x); �g = (S � X�

Q)(x). This

clearly implies that maxfX�

Q(a); 
g � minf(S �X�


Q)(x); �g but minf(S �
X�

Q)(x); �g � minf(S �X�


Q)(x); (X
�

Q � S)(x); �g. Therefore,

maxfX�

Q(a); 
g � minf(S �X�


Q)(x); (X
�

Q � S)(x); �g:

(ii) Similarly, if x =2 QS, then by above procedure we can prove the
required result.
Case(b):
If x 2 Q, then x 2 SQ \QS or x =2 SQ \QS:
(i) If x 2 SQ \ QS that is x 2 SQ and x 2 QS. Then, by de�nition

X�

Q(x) � � and (S �X�


Q)(x) � � and (X�

Q � S) � �. Thus,

maxfX�

Q(a); 
g � minf(S �X�


Q)(x); (X
�

Q � S)(x); �g:

(ii) Similarly, we can prove the result for x =2 SQ \QS:
Conversely, assume that X�


Q is an (2
 ;2
 _q�)-fuzzy-quasi ideal of S:
Then,

maxfX�

Q(a); 
g � minf(X�


Q � S)(x); (S �X�

Q)(x); �g

= minf(X�

Q �X1

0S)(x); (X
1
0S �X�


Q)(x); �g
= minfX�


QS(x); X
�

SQ(x); �g

= minfX�

QS\SQ(x); �g

� minfX�

QS\SQ(x); �g; for all x 2 S:

If x 2 SQ \ QS: Then, maxfX�

Q(a); 
g � minfX�


QS\SQ(x); �g = �:

Thus, X�

Q(x) � �; which implies that x 2 Q: Hence, Q is a quasi-ideal of

S.

De�nition 116 A fuzzy subset f of an AG-groupoid S is called an (2

;2
 _q�)-fuzzy left (right) ideal of S if it satis�es yt 2
 f; (xy)t 2
 _q�f
(xt 2
 f implies that (xy)t 2
 _q�f); for all t; s 2 (0; 1]; and 
; � 2 [0; 1]:

Theorem 117 A fuzzy subset f of an AG-groupoid S is called (2
 ;2

_q�)-fuzzy left (respt. right) ideal if and only if maxff(ab); 
g � minff(b); �g;
(respt. maxff(ab); 
g � minff(a); �g) for all a; b 2 S:

Proof. It is easy.

Theorem 118 Every (2
 ;2
 _q�)-fuzzy left ideal of an AG-groupoid S is
an (2
 ;2
 _q�)-fuzzy-quasi ideal of S:

Proof. Let f be an (2
 ;2
 _q�)-fuzzy left ideal of an AG-groupoid S:
Suppose that x 2 S: If for any x in S there exist y and z in S such that
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x = yz; then

minf(S � f)(x); �g = min

( _
x=yz

fS(y) ^ f(z)g; �
)

= minf
_
x=yz

minfS(y); f(z)g; �g

= minf
_
x=yz

minf1; f(z)g; �g

=
_
x=yz

minff(z); �g

�
_
x=yz

fmaxff(yz); 
gg

=
_
x=yz

fmaxff(x); 
gg

= maxff(x); 
g:

Hence,maxff(x); 
g � minf(S�f)(x); �g � minf(S�f)(x); (f�S)(x); �g:
Thus, f is an (2
 ;2
 _q�)-fuzzy quasi-ideal of an AG-groupoid S.

Theorem 119 Every (2
 ;2
 _q�)-fuzzy right ideal of S is an (2
 ;2

_q�)-fuzzy-quasi ideal of S:

Proof. Let g be an (2
 ;2
 _q�)-fuzzy right ideal of an AG-groupoid S:
Let a 2 S: If for any a in S there exist b and c in S such that a = bc; then

minf(g � S)(a); �g = min

( _
a=bc

fg(b) ^ S(c)g; �
)

=
_
a=bc

minfminfg(b); S(c); �gg

=
_
a=bc

minfg(b); �g

�
_
a=bc

maxfg(bc); 
g

= maxfg(a); 
g:

Thus, maxfg(a); 
g � minf(g �S)(a); �g � minf(g �S)(a); (S � g)(a); �g:
Hence, g is an (2
 ;2
 _q�)-fuzzy quasi-ideal of an AG-groupoid S.
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4.1 (2
;2
 _q�)-fuzzy Quasi-ideals of Intra-regular
AG-groupoids

Example 120 Consider an AG-groupoid S = f1; 2; 3g in the following
multiplication table.

� 1 2 3

1 3 1 2
2 2 3 1
3 1 2 3

De�ne a fuzzy subset f on S as follows:

f(x) =

8<: 0:7 if x = 1
0:64 if x = 2
0:51 if x = 3:

Then, f is an (20:2;20:2 _q0:3)-fuzzy quasi-ideal.

Theorem 121 For an (2
 ;2
 _q�)-fuzzy AG-subgroupoid f of an intra
regular AG- groupoid S with left identity, we have f � _q(
;�)S � f .
Proof. Let f be an (2
 ;2
 _q�)-fuzzy AG-subgroupoid of an intra regular
AG-groupoid S with left identity. Then, for any a in S, there exists x and
y in S such that

a = (xa2)y = (x(aa))y = (a(xa))y = (y(xa))a = �xa;where y(xa) = �x:

If for any a in S there exist b and c in S such that a = bc; then

minf(S � f)(a); �g = min

( _
a=bc

f(S(b) ^ f(c)); �g
)

=
_
a=bc

min fminfS(�x); f(a)g; �g

=
_
a=bc

min fminf1; f(a)g; �g

=
_
a=bc

min ff(a); �g

= min ff(a); �g
� maxf(f(a); 
):

Hence f � _q(
;�)S � f .

Theorem 122 For an (2
 ;2
 _q�)-fuzzy AG-subgroupoid g of an intra
regular AG- groupoid S with left identity, we have g � _q(
;�)g � S.
Proof. Let g be an (2
 ;2
 _q�)-fuzzy AG-subgroupoid of an intra regular
AG-groupoid S with left identity. Then, for any x in S, there exist y and
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z in S such that

a = (xa2)y = (x(aa))y = (a(xa))y = (y(xa))a:

y(xa) = y(x((xa2)y))) = y((xa2)(xy)) = (xa2)(xy2) = (y2x)(a2x)

= a2(y2xx) = (aa)(y2x2) = a[(y2x2)a] = at, where [(y2x2)a] = t:

If for any a in S there exist p and q in S such that a = pq; then

minf(g � S)(a); �g = min

( _
a=pq

f(g(p) ^ S(q)); �g
)

= min

( _
a=pq

minfg(a); S(t)g; �
)

=
_
a=pq

min fminfg(a); 1g; �g

=
_
a=pq

minf(g(a); �)

= minf(g(a); �)
� maxfg(a); 
g.

Hence g � _q(
;�)g � S.

Theorem 123 Let S be an AG- groupoid with left identity. Then, the fol-
lowing conditions are equivalent.
(i) S is intra regular.
(ii) For every quasi ideal Q of S, Q � Q2.
(iii) For every (2
 ;2
 _q�) fuzzy quasi ideal f of S, f � _q(
;�)f � f .

Proof. (i) ) (iii) Let f be an (2
 ;2
 _q�)-fuzzy quasi ideal of an intra
regular AG-groupoid S with left identity. Since S is intra regular therefore
for any a in S there exist x; y in S such that a = (xa2)y: Now, by using
(1), para medial law, medial law we obtain

a = (xa2)y = (x(aa))y = (a(xa))y = (y(xa))a:

y(xa) = y(x((xa2)y)) = y((xa2)(xy)) = (xa2)(xy2) = (y2x)(a2x);

(aa)(y2x2) = [(x2y2)a]a, so

a = [f(x2y2)aga]a = (ua)a; where (x2y2)a = u:
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If for any a in S there exist p and q in S such that a = pq; then

maxf(f � f)(a); 
g = max

( _
a=pq

ff(p) ^ f(q)g; 

)

� max[minff(ua); f(a)g; 
]
= min[maxff(ua); 
g;maxff(a); 
g]
� min[minfS � f(ua); �g;minff(a); �g
= min[minf

_
ua=xy

S(x) ^ f(y); �g;minff(a); �g

� min[minfS(u) ^ f(a); �g;minff(a); �g
= min fminff(a); �g;minff(a); �gg
= minff(a); �g.

Thus f � _q(
;�)f � f:
(iii)) (ii) Suppose that Q is a quasi-ideal of S. Then, by (iii), we get

X�

Q = X

�

Q\Q =(
;�) X

�

Q \X�


Q � _q(
;�)X�

Q �X�


Q =(
;�) _q(
;�)X�

Q2 .

Hence we get Q � Q2:
(ii)) (i) Since S be an AG-groupoid. Therefore, a 2 Sa \ Sa = Sa2 =

(Sa2)S. Hence, S is intra regular.

Example 124 In example 2, S is obviously intra-regular because 3 = (3 �
32) � 3, 2 = (1 � 22) � 1 and 1 = (2 � 12) � 2. Now we will satisfy maxf(f �
f)(a); 
g � minff(a); �g for intra-regularity as given in theorem 123, where
f is an (20:2;20:2 _q0:3)-fuzzy quasi-ideal as de�ned in this example. Ob-
viously

(f � f)(a) = maxf(f � f)(a); 0:2g > minff(a); 0:3g = 0:3:

Clearly (f � f)(a) > 0:3, for all a in S.

Theorem 125 Let S be an AG- groupoid with left identity. Then, the fol-
lowing conditions are equivalent .
(i) S is intra regular.
(ii) For every quasi ideal Q and any subset A of S, Q \A � QA.
(iii) For every (2
 ;2
 _q�) fuzzy quasi ideal and any (2
 ;2
 _q�)-fuzzy

subset g, we have f \ g � _q(
;�)(f � g).

Proof. (i)) (iii) Let f be an (2
 ;2
 _q�)-fuzzy quasi ideal and g be any
(2
 ;2
 _q�)-fuzzy subset of an intra regular AG-groupoid S. Since S is
intra regular, then for any a in S there exist x; y in S such that a = (xa2)y:
Now, by using medial, para medial laws and (1), we obtain

a = (xa2)y = (x(aa))y = (a(xa))y = (y(xa))a:
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y(xa) = y(x((xa2)y)) = y((xa2)(xy)) = (xa2)(xy2)

= (y2x)(a2x) = a2(y2x2) = (aa)(y2x2) = ((y2x2)a)a:

Thus,
a = [((y2x2)a)a]a = (ta)a; where, (y2x2)a = t:

If for any a in S there exist b and c in S such that a = bc; then

maxf(f � g)(a); 
g = max

( _
a=bc

ff(b) ^ g(c)g; 

)

� maxfminff(ta); g(a)g; 
g
= min[maxff(ta); 
g;maxfg(a); 
g]
� min[minf(S � f)(ta); �g; fg(a); �g]
= min[minf

_
ta=xy

(S(x) ^ f(y); �g; fg(a); �g]

� min[minf(S(t) ^ f(a); �g; fg(a); �g]
= minfminff(a); �g;minfg(a); �gg
= minf(f \ g)(a); �g:

Thus we have f \ g � _q(
;�)f � g:
(iii) ) (ii) Let Q be an quasi ideal and A any subset of S. Then, by

(iii), we get

X�

(Q\A) =(
;�) X

�

Q \X�


A � _q(
;�)X�

Q �X�


A =(
;�) _q(
;�)X�

QA.

Hence we get Q \A � QA:
(ii) ) (i) Since Sa is a quasi ideal containing a. Therefore, a 2 Sa �

(Sa)(Sa) = Sa2 = (Sa2)S. Hence, S is intra regular.

Example 126 Consider f as de�ned in example 2, where S is intra-regular.
Now let us de�ne g as follows:

g(x) =

8<: 0:8 if x = 1
0:7 if x = 2
0:6 if x = 3:

Then clearly g is (20:2;20:2 _q0:3)-fuzzy subset of S because

g(a) = maxfg(a); 0:2g > minfg(a); 0:3g = 0:3, for a in S.

Now we will satisfy the condition maxf(f �g)(a); 
g � minf(f\g)(a); �g.
Clearly

(f � g)(a) = maxf(f � g)(a); 0:2g > minf(f \ g)(a); 0:3g = 0:3.

Obviously (f � g)(a) > 0:3 for all a of S.
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Theorem 127 Let S be an AG- groupoid with left identity. Then, the fol-
lowing conditions are equivalent .
(i) S is intra regular.
(ii) For any subset A and for every quasi ideal Q of S, we have A\Q �

AQ.
(iii) For any (2
 ;2
 _q�) fuzzy subset f and for every (2
 ;2
 _q�)-quasi

ideal g of S, we have f \ g � _q(
;�)(f � g).

Proof. (i) ) (iii) Let f be any (2
 ;2
 _q�)-fuzzy subset and g be any
(2
 ;2
 _q�)-fuzzy quasi ideal of an intra regular AG-groupoid S. Since S is
intra regular, then for any a in S there exist x; y in S such that a = (xa2)y:
Now, by using medial, para medial laws, (1), we obtain

(xa2)y = (x(aa))y = (a(xa))y = (y(xa))a:

y(xa) = y[xf(xa2)yg] = y[(xa2)(xy)] = (xa2)(xy2)
= (y2x)(a2x) = a2(y2x2) = a2u, where u = y2x2

Thus,

a = (a2u)a = (au)(aa) = a[(au)a]

= a(ta), where t = au and u = y2x2.

If for any a in S there exist p and q in S such that a = pq; then

maxf(f � g)(a); 
g = max

( _
a=pq

ff(p) ^ g(q)g; 

)

� maxfminff(a); g(ta)g; 
g
= min[maxff(a); 
g;maxfg(ta); 
g]
� min[minff(a); �g;minf(S � g)(ta); �g]
= min[minff(a); �g;min

_
ta=rs

fS(r) ^ g(s)gg; �]

� min[minff(a); �g;minfS(t) ^ g(a)gg; �]
= min[minff(a); �g;minfg(a); �g]
= minff(a); g(a); �gg
= minf(f \ g)(a); �g:

Thus f \ g � _q(
;�)f � g:
(iii)) (ii) Let A be any subset and Q be a quasi ideal of S. Then (iii),

we get

X�

(A\Q) =(
;�) X

�

A \X�


Q � _q(
;�)X�

A �X�


Q =(
;�) _q(
;�)X�

AQ.
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Hence we get A \Q � AQ:
(ii) ) (i) Since Sa is a quasi ideal containing a. Therefore, a 2 Sa �

(Sa)(Sa) = Sa2 = (Sa2)S. Hence, S is intra regular.

Theorem 128 Let S be an AG- groupoid with left identity. Then, the fol-
lowing conditions are equivalent .
(i) S is intra regular.
(ii) For any subsets A;B and quasi ideal Q of S, we have Q \ A \B �

(QA)B.
(iii) For any (2
 ;2
 _q�)-fuzzy subsets g; h and any (2
 ;2
 _q�)-fuzzy

quasi ideal f; we have f \ g \ h � _q(
;�)(f � S � f).

Proof. (i)) (iii) Let f; g be an (2
 ;2
 _q�)-fuzzy any subsets and h be
an (2
 ;2
 _q�)-fuzzy quasi ideal of intra regular AG-groupoid S with left
identity. Since S is intra regular, then for any a in S there exist x; y in S
such that a = (xa2)y: Now, by using medial law, left inversive law, para
medial law, (1) we get

a = a(ta) = [a(ta)](ta) = (at)[(ta)a] = (at)(a2t) = [(a2t)t]a

= (t2a2)a = (a2t2)a = [(t2a)a]a:

If for any a in S there exist b and c in S such that a = bc; then

maxf((f � g) � h)(a); 
g = max

( _
a=bc

f(f � g)(b) ^ h(c)g; 

)

� maxfminf(f � g)((t2a)a); h(a)g; 
g
= maxfminf

_
(t2a)a=rs

f(r) ^ g(s); h(a)g; 
g

� maxfminff(t2a) ^ g(a); h(a)g; 
g
= maxfminff(t2a); g(a); h(a)g; 
g
= min[maxff(t2a); 
g;maxfg(a); 
g;maxfh(a); 
g]
� min[minfS � f(t2a); �g;minfg(a); �g;minfh(a); �g]
= min[minf

_
t2a=rs

S(r) ^ f(s); �g;minfg(a); �g;minfh(a); �g]

� min[minfS(t2) ^ f(a); �g;minfg(a); �g;minfh(a); �g]
= min[minff(a); �g;minfg(a); �g;minfh(a); �g]
= min[minff(a); g(a); h(a)g; �]
= minf(f \ g \ h)(a); �g:

Thus we have f \ g \ h � _q(
;�)(f � g) � h:
(iii)) (ii) Let Q be an quasi-ideal and A;B be any subsets of S. Then

(iii), we get

X�

Q\A\B =(
;�) X

�

Q\X�


A\X�

B � _q(
;�)X�


Q�X�

A�X�


B =(
;�) _q(
;�)X�

(QA)B .
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Hence we get Q \A \B � (QA)B:
(ii)) (i) We know Sa is a quasi-ideal of an AG-groupoid S containing

a. Therefore, a 2 Sa \ Sa = ((Sa)(Sa))Sa = (Sa2)(Sa) � (Sa2)S. Hence,
S is intra regular.

Theorem 129 Let S be an AG- groupoid with left identity. Then, the fol-
lowing conditions are equivalent.
(i) S is intra regular.
(ii) For any subsets A;B and quasi ideal Q of S, we have A \Q \B �

(AQ)B.
(iii) For any (2
 ;2
 _q�)-fuzzy subsets f; h and any (2
 ;2
 _q�)-fuzzy

quasi ideal g; we have f \ g \ h � _q(
;�)(f � S � f).

Proof. (i)) (iii) Let f; h be an (2
 ;2
 _q�)-fuzzy any subsets and g be
an (2
 ;2
 _q�)-fuzzy quasi ideal of intra regular AG-groupoid S with left
identity. Since S is intra regular, so for any a in S there exist x; y in S such
that a = (xa2)y: Now, by using medial law, para medial law, (1) we get

a = (t2a2)a = [t2(aa)]a = [a(t2a)]a:

If for any a in S there exist p and q in S such that a = pq; then

maxf(f � g � h)(a); 
g = max

( _
a=pq

f(f � g)(p) ^ h(q)g; 

)

� max[minf(f � g)(a(t2a)); h(a)g; 
]
= max[minf

_
a(t2a)=rs

f(r) ^ g(s); h(a); 
]

� max[minff(a) ^ g(t2a)g; h(a); 
]
= max[minff(a); g(t2a)g; h(a)g; 
]
= min[maxff(a); 
g;maxfg(t2a); 
g;maxfh(a); 
g]
� min[minff(a); �g;minfS � g(t2a); �g;minfh(a); �g]
= min[minff(a); �g;minf

_
(t2a)=vw

S(v) ^ g(w); �g;minfh(a); �g]

� min[minff(a); �g;minfS(t2) ^ g(a); �g;minfh(a); �g]
= min[minff(a); �g;minfg(a); �g;minfh(a); �g]
= minfminff(a); g(a); h(a)g; �g
= minf(f \ g \ h)(a); �g:

Thus we have f \ g \ h � _q(
;�)(f � g) � h:
(iii) ) (ii) Let A;B be any subsets and Q be a quasi-ideal of S. Then

(iii), we get

X�

A\Q\B = (
;�)X

�

A \X�


Q \X�

B � _q(
;�)X�


A �X�

Q �X�


B

= (
;�) _ q(
;�)X�

(AQ)B .
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Hence we get A \Q \B � (AQ)B:
(ii) ) (i) Since Sa is a quasi-ideal of an AG-groupoid S containing a,

so a 2 Sa \ Sa = ((Sa)(Sa))Sa = (Sa2)(Sa) � (Sa2)S. Hence, S is intra
regular.

Theorem 130 Let S be an AG- groupoid with left identity. Then, the fol-
lowing conditions are equivalent.
(i) S is intra regular.
(ii) For a quasi-ideal Q and any subsets A;B of S, we have A\B\Q �

(AB)Q.
(iii) For an (2
 ;2
 _q�)-fuzzy quasi-ideal f and any (2
 ;2
 _q�)-fuzzy

subsets g and h; we have f \ g \ h � _q(
;�)((f � g) � h).

Proof. (i) ) (iii) Let f be an (2
 ;2
 _q�)-fuzzy-quasi ideal and g; h be
any (2
 ;2
 _q�)-fuzzy subsets of intra regular AG-groupoid S with left
identity. Since S is intra regular, so for any a in S there exist x; y in S such
that a = (xa2)y: Now, by using medial, paramedial laws, (1) we get

a = (a2t2)a = (at2)a2 = a2(t2a):

If for any a in S there exist p and q in S such that a = pq; then

maxf((f � g) � h)(a); 
g = max

( _
a=pq

f(f � g)(p) ^ h(q)g; 

)

� maxfminf(f � g)(aa); h(t2a)g; 
g

= max

( _
aa=rs

fff(r) ^ g(s)g; h(t2a)g; 

)

� max[minff(a); g(a); h(t2a)g; 
]
= min[maxff(a); 
g;maxfg(a); 
g;maxfh(t2a); 
g]
� min[minff(a); �g;minfg(a); �g;minfS � h(t2a); �g]
= min[minff(a); �g;minfg(a); �g;minf

_
t2a=cd

S(c) ^ h(d); �g]

� min[minff(a); �g;minfg(a); �g;minfS(t2) ^ h(a); �g]
= min[minff(a); �g;minfg(a); �g;minfh(a); �g]
= min[minff(a); g(a); h(a)g; �]
= min[(f \ g \ h)(a); �]:

Thus we obtain f \ g \ h � _q(
;�)(f � g) � h:
(iii) ) (ii) Let A;B be any subsets and Q be a quasi-ideal of S. Then

(iii), we get

X�

A\B\Q = (
;�)X

�

A \X�


B \X�

Q � _q(
;�)X�


A �X�

B �X�


Q

= (
;�) _ q(
;�)X�

(AB)Q.
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Hence we get A \B \Q � (AB)Q:
(ii) ) (i) Since Sa is a quasi-ideal of an AG-groupoid S containing a.

Therefore, a 2 Sa \ Sa = ((Sa)(Sa))Sa = (Sa2)(Sa) � (Sa2)S. Hence, S
is intra regular.



5

Generalized Fuzzy Prime and
Semiprime Ideals of Abel
Grassmann Groupoids
In this chapter we introduce (2
 ;2
 _q�)-fuzzy prime (semiprime) ideals
in AG-groupoids. We characterize intra regular AG-groupoids using the
properties of (2
 ;2
 _q�)-fuzzy semiprime ideals.

Lemma 131 If A is an ideal of an AG-groupoid S if and only if X�

A is

(2
 ;2
 _q�)-fuzzy ideal of S:

Proof. (i) Let x; y 2 A which implies that xy 2 A. Then by de�nition we
get X�


A(xy) � �, X�

A(x) � � and X�


A(y) � � but � > 
. Thus

maxfX�

A(xy); 
g = X�


A(xy) and

minfX�

A(x); X

�

A(y); �g = minfX�


A(x); X
�

A(y)g = �.

Hence maxfX�

A(xy); 
g � minfX�


A(x); X
�

A(y); �g:

(ii) Let x =2 A and y 2 A, which implies that xy =2 A. Then by de�nition
X�

A(x) � 
; X�


R(y) � � and X�

R(xy) � 
. Therefore

maxfX�

A(xy); 
g = 
 and

minfX�

A(x); X

�

A(y); �g = X�


A(x).

Hence maxfX�

A(xy); 
g � minfX�


A(x); X
�

A(y); �g:

(iii) Let x 2 A; y =2 A which implies that xy =2 A. Then by de�nition, we
get X�


A(xy) � 
, X�

A(y) � 
 and X�


A(x) � �. Thus

maxfX�

A(xy); 
g = 
 and

minfX�

A(x); X

�

A(y); �g = X�


A(y).

Hence maxfX�

A(xy); 
g � minfX�


A(x); X
�

A(y); �g:

(iv) Let x; y =2 A which implies that xy =2 A. Then by de�nition we get
such that X�


A(xy) � 
, X�

A(y) � 
 and X�


A(x) � 
. Thus

maxfX�

A(xy); 
g = 
 and

minfX�

A(x); X

�

A(y); �g = fX�


A(x); X
�

R(y)g = 
.
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Hence maxfX�

A(xy); 
g � minfX�


A(x); X
�

A(y); �g:

Converse, let (xy) 2 AS where x 2 A and y 2 S, and (xy) 2 SA where
y 2 A and x 2 S. Now by hypothesismaxfX�


A(xy); 
g � minfX�

B(x); X

�

B(y); �g.

Since x 2 A, therefore X�

A(x) � �; and y 2 A therefore X�


A(y) � � which
implies that minfX�


A(x); X
�

A(y); �g = �. Thus

maxfX�

A(xy); 
g � �.

This clearly implies that X�

A(xy) � �. Therefore xy 2 A. Hence A is an

ideal of S.

Example 132 Let S = f1; 2; 3g, and the binary operation ��� be de�ned
on S as follows.

� 1 2 3
1 1 1 1
2 1 1 1
3 1 2 1

Then (S; �) is an AG-groupoid. De�ne a fuzzy subset f : S ! [0; 1] as
follows.

f(x) =

8<: 0:31 for x = 1
0:32 for x = 2
0:30 for x = 3

Then clearly

� f is an (20:2;20:2 _q0:3)-fuzzy ideal of S,

� f is not an (2;2 _q0:3)-fuzzy ideal of S, because f(1�2) < f(2)^ 1�0:32 ,

� f is not a fuzzy ideal of S, because f(1 � 2) < f(2).

De�nition 133 A fuzzy subset f of an AG-groupoid S is called an (2

;2
 _q�)-fuzzy bi-ideal of S if for all x; y and z 2 S and t; s 2 (
; 1], the
following conditions holds.
(1) if xt 2
 f and ys 2
 f implies that (xy)minft;sg 2
 _q�f:
(2) if xt 2
 f and zs 2
 f implies that ((xy)z)minft;sg 2
 _q�f:

Theorem 134 A fuzzy subset f of an AG-groupoid S is (2
 ;2
 _q�)-fuzzy
bi-ideal of S if and only if
(I)maxff(xy); 
g � minff(x); f(y); �g:
(II)maxff((xy)z); 
g � minff(x); f(z); �g:

Proof. (1), (I) is the same as theorem 95.
(2)) (II): Assume that x; y 2 S and t; s 2 (
; 1] such that

maxff((xy)z); 
g < t � minff(x); f(z); �g:

Then maxff((xy)z); 
g < t which implies that f((xy)z) < t � 
 this
implies that ((xy)z)t�2
f which further implies that ((xy)z)t2
 _q�f . Also
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minff(x); f(z); �g � t > 
; this implies that f(x) � t > 
, f(z) � t > 

implies that xt 2
 f , zt 2
 f but ((xy)z)t2
 _q�f; a contradiction. Hence

maxff((xy)z); 
g � minff(x); f(z); �g:

(II) ) (2) Assume that x; y; z in S and t; s 2 (
; 1]; such that xt 2

f; zs 2
 f by de�nition we can write f(x) � t > 
; f(z) � s > 
;
then maxff((xy)z); �g � minff(x); f(y); �g this implies that f((xy)z) �
minft; s; �g: We consider two cases here,
Case(i): If ft; sg � � then f((xy)z) � minft; sg > 
 this implies that

((xy)z)minft;sg 2
 f:
Case(ii): If ft; sg > � then f((xy)z) + ft; sg > 2� this implies that

((xy)z)minft;sgq�f:
From both cases we write ((xy)z)minft;sg 2
 _q�f for all x; y; z in S:

Lemma 135 A subset B of an AG-groupoid S is a bi-ideal if and only if
X�

B is an (2
 ;2
 _q�)-fuzzy bi-ideal of S:

Proof. (i) Let B be a bi-ideal and assume that x; y 2 B then for any a in S
we have (xa)y 2 B, thus X�


B((xa)y) � �. Now since x; y 2 B so X�

B(x) �

�; X�

B(y) � � which clearly implies that min{X�


B(x); X
�

B(y)g � �. Thus

maxfX�

B((xa)y); 
g = X�


B((xa)y) and

minfX�

B(x); X

�

B(y); �g = �.

Hence maxfX�

B((xa)y); 
g � minfX�


B(x); X
�

B(y); �g:

(ii) Let x 2 B; y =2 B, then (xa)y =2 B, for all a in S. This implies that
X�

B((xa)y) � 
, X�


B(x) � � and X�

B(y) < 
. Therefore

maxfX�

B((xa)y); 
g = 
 and

minfX�

B(x); X

�

B(y); �g = X�


B(y).

Hence maxfX�

B((xa)y); 
g � minfX�


B(x); X
�

B(y); �g:

(iii) Let x =2 B; y 2 B implies that (xa)y =2 B, for all a in S. This implies
that X�


B((xa)y) � 
; X�

B(x) � 
; X�


B(y) � � then

maxfX�

B((xa)y); 
g = 
; and

minfX�

B(x); X

�

B(y); �g = X�


B(x)

Therefore

maxfX�

B((xa)y); 
g � minfX�


B(x); X
�

B(y); �g:

(iv) Let x; y =2 B which implies that (xa)y =2 B, for all a in S. This
implies that minfX�


B(x); X
�

B(y)g � 
, X�


B((xa)y) � 
. Thus

maxfX�

B((xa)y); 
g = 
 and

minfX�

B(x); X

�

B(y); �g = minfX�


B(x); X
�

B(y)g � 
.
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Hence maxfX�

B((xa)y); 
g � minfX�


B(x); X
�

B(y); �g.

If (xa)y 2 B, then minfX�

B(x); X

�

B(y)g � �, X�


B((xa)y) � �. Thus

maxfX�

B((xa)y); 
g = X�


B((xa)y) and

minfX�

B(x); X

�

B(y); �g = �.

Hence maxfX�

B((xa)y); 
g � minfX�


B(x); X
�

B(y); �g.

Converse, let (b1s)b2 2 (BS)B, where b1; b2 2 B and s 2 S. Now
by hypothesis maxfX�


B((b1s)b2); 
g � minfX�

B(b1); X

�

B(b2); �g. Since

b1; b2 2 B, therefore X�

B(b1) � � and X�


B(b2) � � which implies that
minfX�


B(b1); X
�

B(b2); �g = �. Thus

maxfX�

B((b1s)b2); 
g � �.

This clearly implies that X�

B((b1s)b2) � �. Therefore (b1s)b2 2 B. Hence

B is a bi-ideal of S.

De�nition 136 A fuzzy AG-subgroupoid f of an AG-groupoid S is called
an (2
 ;2
 _q�)-fuzzy interior ideal of S if for all x; y; z 2 S and t; r 2 (
; 1]
the following conditions holds.
(I) xt 2
 f; ys 2
 f implies that (xy)minft;sg 2
 _q�f .
(II) yt 2
 f implies ((xy)z)t 2
 _q�f .

Lemma 137 A fuzzy subset f of S is an (2
 ;2
 _q�)-fuzzy interior ideal
of an AG-groupoid S if and only if it satis�es the following conditions.
(III) maxff (xy) ; 
g � min ff (x) ; f (y) ; �g for all x; y 2 S and 
; � 2

[0; 1].
(IV ) maxff (xyz) ; 
g � min ff (y) ; �g for all x; y; z 2 S and 
; � 2

[0; 1].

Proof. (I)) (III) Let f be an (2
 ;2
 _q�)-fuzzy interior ideal of S. Let
(I) holds. Let us consider on contrary. If there exists x; y 2 S and t 2 (
; 1]
such that

maxff(xy); 
g < t � minff(x); f(y); �g:
Then maxff(xy); 
g < t � 
 this implies that (xy)t�2
f again implies that
(xy)t2
 _q�f . As minff(x); f(y); �g � t > 
 this implies that f(x) � t > 

and f(y) � t > 
 implies that xt 2
 f and yt 2
 f .
But (xy)t2
 _q�f a contradiction .Thus

maxff(xy); 
g � minff(x); f(y); �g:

(III) ) (I) Assume that x; y; in S and t; s 2 (
; 1] such that xt 2

f and ys 2
 f . Then f(x) � t > 
; f(y) � t > 
; maxff(xy); 
g �
minff(x); f(y); �g � minft; s; �g: We consider two cases here,
Case(1): If ft; sg � � then maxff(xy); 
g � minft; sg > 
 this implies

that (xy)minft;sg 2
 f:
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Case(2): If ft; sg > � then f(xy) + minft; sg > 2� this implies that
(xy)minft;sgq�f:
Hence xt 2
 f , ys 2
 f implies that (xy)minft;sg 2
 _q�f:
(II)) (IV ) Let f be an (2
 ;2
 _q�)-fuzzy interior ideal of S. Let (II)

holds. Let us consider on contrary. If there exists x; y 2 S and t 2 (
; 1]
such that

maxff((xy)z); 
g < t � minff(y); �g:
Then maxff((xy)z); 
g < t � 
 this implies that ((xy)z)t�2
f further
implies that ((xy)z)t2
 _q�f . As minff(y); �g � t > 
 this implies that
f(y) � t > 
 implies that yt 2
 f . But (xyz)t2
 _q�f a contradiction
according to de�nition. Thus (IV ) is valid

maxff((xy)z); 
g � minff(y); �g

(IV )) (II) Assume that x; y; z in S and t; s 2 (
; 1] such that yt 2
 f .
Then f(y) � t > 
; by (IV ) we write maxff((xy)z); 
g � minff(y); �g �
minft; �g: We consider two cases here,
Case(i): If t � � then f((xy)z) � t > 
 this implies that ((xy)z)t 2
 f:
Case(ii): If t > � then f((xy)z) + t > 2� this implies that ((xy)z)q�f:
From both cases ((xy)z)t 2
 _q�f . Hence f be an (2
 ;2
 _q�)-fuzzy

interior ideal of S.

Lemma 138 If I is a interior ideal of an AG-groupoid S if and only if
X�

I be an (2
 ;2
 _q�) fuzzy interior ideal of S:

Proof. (i) Let x; a; y 2 I which implies that (xa)y 2 I. Then by de�nition
we get X�


I((xa)y) � � and X�

I(a) � �; but � > 
. Thus

maxfX�

I((xa)y); 
g = X�


I((xa)y) and

minfX�

I(a); �g = �.

Hence maxf X�

I((xa)y); 
g � minfX�


I(a); �g:
(ii) Let x =2 I, y =2 I and a 2 I, which implies that (xa)y 2 I. Then by

de�nition X�

I((xa)y) � � and X�


I(a) � �. Therefore

maxfX�

I((xa)y); 
g = X�


I((xa)y); and

minfX�

I(a); �g = �.

Hence maxfX�

I((xa)y); 
g � minfX�


I(a); �g:
(iii) Let x 2 I; y 2 I and a =2 I which implies that (xa)y =2 I. Then by

de�nition, we get X�

I((xa)y) � 
, X�


I(a) � 
. Thus

maxfX�

I((xa)y); 
g = 
 and

minfX�

I(a); �g = X�


I(a).
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Hence maxfX�

I((xa)y); 
g � minfX�


I(a); �g:
(iv) Let x; a, y =2 I which implies that (xa)y =2 I. Then by de�nition we

get such that X�

I((xa)y) � 
, X�


I(a) � 
. Thus

maxfX�

I((xa)y); 
g = 
 and

minfX�

I(a); �g = X�


I(a).

Hence maxfX�

I((xa)y); 
g � minfX�


I(a); �g:
Conversely, let (xa)y 2 (SI)S, where a 2 I and x; y 2 S. Now by

hypothesis maxfX�

I((xa)y); 
g � minfX�


I(a); �g. Since a 2 I, therefore
X�

I(a) � � which implies that minfX�


I(a); �g = �. Thus

maxfX�

I((xa)y); 
g � �.

This clearly implies that X�

I((xa)y) � �. Therefore (xa)y 2 I. Hence I is

an interior ideal of S.

Example 139 Consider an AG-groupoid S = f1; 2; 3g in the following
multiplication table.

� 1 2 3
1 1 1 1
2 1 1 3
3 1 2 1

De�ne a fuzzy subset f on S as follows:

f(x) =

8<: 0:41 if x = 1;
0:44 if x = 2;
0:42 if x = 3:

Then, we have

� f is an (20:1;20:1 _q0:11)-fuzzy quasi-ideal,

� f is not an (2;2 _q0:11)-fuzzy quasi-ideal.

De�nition 140 An (2
 ;2
 _q�)-fuzzy subset f of an AG-groupoid S is
said to be prime if for all a; b in S and t 2 (
; 1]: It satis�es,
(1)(ab)t 2
 f implies that (a)t 2
 _q�f or (b)t 2
 _q�f:

Theorem 141 An (2
 ;2
 _q�)-fuzzy prime ideal f of an AG-groupoid S
if for all a; b in S; and t 2 (
; 1]:It satis�es
(2) maxff(a); f(b); 
g � minff(ab); �g:

Proof. Let f be an (2
 ;2
 _q�)-fuzzy prime ideal of an AG-groupoid
S. If there exists a; b in S and t 2 (
; 1], such that maxff(a); f(b); 
g <
t � minff(ab); �g then minff(ab); �g � t implies that f(ab) � t > 
 and
minff(a); f(b); 
g < t this implies that f(a) < t � 
 or f(b) < t � 
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again implies that (a)t�2
f or (b)t�2
f i.e. (ab)t 2
 f but (a)t2
 _q�f or
(b)t2
 _q�f; which is a contradiction. Hence (2) is valid.
Conversely, assume that (2) is holds. Let (ab)t 2
 f: Then f(ab) � t > 


and by (2) we have maxff(a); f(b); 
g � minff(ab); �g � minft; �g: We
consider two cases here,
Case(a): If t � �; then f(a) � t > 
 or f(b) � t > 
 this implies that

(a)t 2
 f or (b)t 2
 f:
Case(b): If t > �; then f(a) + t > 2� or f(b) + t > 2� this implies that

(a)tq�f or (b)tq�f: Hence f is prime.

Theorem 142 Let I be an non empty subset of an AG-groupoid S with
left identity. Then
(i) I is a prime ideal.
(ii) ��
I is an (2
 ;2
 _q�)-fuzzy prime ideal of S.

Proof. (i)) (ii): Let I be a prime ideal of an AG-groupoid S: Let (ab) 2 I
then ��
I(ab) � �; this implies that so ab 2 I and I is prime, so a 2 I or
b 2 I; by de�nition we can get ��
I(a) � � or ��
I(b) � �; therefore

minf��
I(ab); �g = � and

maxf��
I(a); ��
I(b); 
g = maxf��
I(a); ��
I(b)g � �:

which implies that maxf��
I(a); ��
I(b); 
g � minf��
I(ab); �g. Hence ��
I is
an (2
 ;2
 _q�)-fuzzy prime ideal of S.
(ii)) (i): Assume that ��
I is a prime (2
 ;2
 _q�)-fuzzy ideal of S; then

I is prime. Let (ab) 2 I by de�nition we can write ��
I(ab) � �; therefore,by
given condition we have maxf��
I(a); ��
I(b); 
g � minf��
I(ab); �g = �:

this implies that ��
I(a) � � or ��
I(b) � � this implies that a 2 I or b 2 I:
Hence I is prime.

Example 143 Let S = f1; 2; 3g, and the binary operation ��� be de�ned
on S as follows.

� 1 2 3

1 1 2 3
2 3 1 2
3 2 3 1

Then (S; �) is an intra-regular AG-groupoid with left identity 1. De�ne a
fuzzy subset f : S ! [0; 1] as follows.

f(x) =

8<: 0:34 for x = 1
0:36 for x = 2
0:35 for x = 3

Then clearly

� f is an (20:2;20:2 _q0:22)-fuzzy prime ideal,

� f is not an (2;2 _q0:22)-fuzzy prime ideal,
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� f is not fuzzy prime ideal.

Theorem 144 An (2
 ;2
 _q�)-fuzzy subset f of an AG-groupoid S is
prime if and only if U(f; t) is prime in AG-groupoid S, for all 0 < t � �:

Proof. Let us consider an (2
 ;2
 _q�)-fuzzy subset f of an AG-groupoid S
is prime and 0 < t � �: Let (ab) 2
 U(f; t) this implies that f(ab) � t > 
:
Then by theorem 141 maxff(a); f(b); 
g � minff(ab); �g � minft; �g = t;
so f(a) � t > 
 or f(b) � t > 
; which implies that a 2
 U(f; t) or
b 2
 U(f; t): Therefore U(f; t) is prime in AG-groupoid S, for all 0 < t � �:
Conversely, assume that U(f; t) is prime in AG-groupoid S; for all 0 <

t � �: Let (ab)t 2
 f implies that ab 2
 U(f; t); and U(f; t) is prime, so
a 2
 U(f; t) or b 2
 U(f; t); that is at 2
 f or bt 2
 f: Thus at 2
 _q�f
or bt 2
 _q�f . Therefore f must be an (2
 ;2
 _q�)-fuzzy prime in AG-
groupoid S.

De�nition 145 A fuzzy subset f of an AG-groupoid S is said to be (2

;2
 _q�)-fuzzy semiprime for all s; t 2 (
; 1] and a 2 S: it satis�es

(1) a2t 2
 f implies that at 2
 _q�f:

Theorem 146 A fuzzy subset f of an AG-groupoid S is an (2
 ;2
 _q�)-
fuzzy semiprime if and only if it satis�es

(2) maxff(a); 
g � minff(a2); �g for all a 2 S:
Proof. (1) ) (2) Let f be a fuzzy subset of an AG-groupoid S which is
(2
 ;2
 _q�)-fuzzy semiprime of S. Assume that there exists a 2 S and t
2 (
; 1], such that

maxff(a); 
g < t � minff(a2); �g:

Then maxff(a); 
g < t this implies that f(a) < t � 
, implies that ;
f(a) + t < 2t � 2� this implies that at2
 _q�f and minff(a2); �g � t this
implies that f(a2) � t > 
; further implies that a2t 2
 f but at2
 _q�f a
contradiction to the de�nition. Hence (2) is valid,

maxff(a); 
g � minff(a2); �g; for all a 2 S:

(2)) (1). Assume that there exist a 2 S and t 2 (
; 1] such that a2t 2
 f ,
then f(a2) � t > 
; thus by (2); we have maxff(a); 
g � minff(a2); �g �
minft; �g. We consider two cases here,
Case(i): if t � �; then f(a) � t > 
; this implies that at 2
 f:
Case(ii) : if t > �; then f(a) + t > 2�; that is atq�f: From (i) and (ii)

we write at 2
 _q�f: Hence f is semiprime for all a 2 S:

Theorem 147 For a non empty subset I of an AG-groupoid S with left
identity the following conditions are equivalent.
(i) I is semiprime.
(ii) ��
I is an (2
 ;2
 _q�)-fuzzy semiprime.
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Proof. (i)) (ii) Let I is semiprime of an AG-groupoid S.
Case(a): Let a be any element of S such that a2 2 I: Then I is semiprime,

so a 2 I: Hence ��
I(a2) � � and ��
I(a) � �. Therefore

maxf��
I(a); 
g = ��
I(a) and

minf��
I(a2); �g = �:

which implies that maxf��
I(a); 
g � minf��
I(a2); �g:
Case(b): Let a =2 I; since I is semiprime therefore a2 =2 I. This implies

that ��
I(a) � 
 and ��
I(a2) � 
; such that

maxf��
I(a); 
g = 
 and

minf��
I(a2); �g = ��
I(a
2):

Therefore maxf��
I(a); 
g � minf��
I(a2); �g: Hence in both cases

maxf��
I(a); 
g � minf��
I(a2); �gforallainS:

(ii) ) (i) Let ��
I be an (2
 ;2
 _q�)-fuzzy semiprime. Let a2 2 I for
some a in S. Then ��
I(a

2) � �: Thereforemaxf��
I(a); 
g � minf��
I(a2); �g =
� this implies that ��
I(a) � � again this implies that a 2 I: Hence I is
semiprime.

Example 148 Let S = f1; 2; 3g, and the binary operation ��� be de�ned
on S as follows.

� 1 2 3

1 3 2 3
2 3 3 3
3 3 3 3

Then (S; �) is an AG-groupoid. De�ne a fuzzy subset f : S ! [0; 1] as
follows.

f(x) =

8<: 0:41 for x = 1
0:39 for x = 2
0:42 for x = 3

Then clearly

� f is (20:1;20:1 _q0:2)-fuzzy semiprime,

� f is not (2;2 _q0:2)-fuzzy semiprime,

� f is not fuzzy semiprime.
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5.1 (2
;2
 _q�)-Fuzzy semiprime Ideals of
Intra-regular AG-groupoids

Lemma 149 If f is a (2
 ;2
 _q�)-fuzzy ideal of an intra-regular AG-
groupoid S, then f is an (2
 ;2
 _q�)-fuzzy semiprime in S.

Proof. Let S be a intra regular AG-groupoid. Then for any a 2 S there
exists some x; y 2 S such that a = (xa2)y: Now

maxff(a); 
g = maxff(xa2)y; 
g � minff(a2); �g:

Hence f is a (2
 ;2
 _q�)-fuzzy semiprime in S.

Theorem 150 Let S be an AG- groupoid then the following conditions are
equivalent.
(i) S is intra regular.
(ii) For every ideal A of S, A � A2 and A is semiprime.
(iii) For every (2
 ;2
 _q�) fuzzy ideal f of S, f � _q(
;�)f � f; and f

is fuzzy semiprime.

Proof. (i)) (iii): Let f be an (2
 ;2
 _q�)-fuzzy ideal of an intra regular
AG-groupoid S with left identity. Now since S is intra regular therefore for
any a in S there exist x; y in S such that a = (xa2)y: Now using paramedial
law, medial law and left invertive law, we get

a = (xa2)y = (x(aa))y = (a(xa))y = (y(xa))a:

Let for any a in S there exist p and q in S such that a = pq; then

maxf(f � f)(a); 
g = max

( _
a=pq

fff(p) ^ f(q)g; 
g
)

� maxfminff(y(xa)); f(a)g; 
g
� maxfminff(y(xa)); f(a)g; 
g
= minfmaxff(y(xa)); 
g;maxff(a); 
gg
� min fminff(a); �g;minff(a); �gg
= minff(a); �g.

Thus f � _q(
;�)f � f:
Now we show that f is a fuzzy semiprime ideal of intra-regular AG-

groupoid S; Since S is intra-regular therefore for any a in S there exist x; y
in S such that a = (xa2)y. Then

maxff(a); 
g = maxff((xa2)y); 
g
� minff(a2); �g:
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(iii)) (ii): Suppose A be any ideal of S. Then by (iii), we get

��
A = �
�

A\A = �

�

A \ ��
A � _q(
;�)��
A � ��
A =(
;�) X�


A2 .

Hence we get A � A2: Now we show that A is semiprime. Let A is an
ideal then (��
A) be an (2
 ;2
 _q�)-fuzzy ideal of S: Let a2 2 A; then
since ��
A be any (2
 ;2
 _q�)-fuzzy ideal of an AG-groupoid S; hence by
(iii);maxf��
A(a); 
g � minf��
A(a2); �g = � this implies that ��
A(a) � �:
Thus a 2 A: This implies that A is semiprime.
(ii) ) (i): Assume that every ideal is semiprime of S. Since Sa2 is a

ideal of an AG-groupoid S generated by a2. Therefore

a 2 (Sa2) � (SS)a2 � (a2S)S = ((aa)(SS))S = ((SS)(aa))S = (Sa2)S:

Hence S is intra regular.

Lemma 151 Every (2
 ;2
 _q�)-fuzzy ideal of an AG-groupoid S, is (2

;2
 _q�)-fuzzy interior ideal of S.

Proof. Let S be an AG-groupoid then for any a; x; y 2 S and f is an
(2
 ;2
 _q�)-fuzzy ideal. Now

maxff((xa)y); 
g � maxff(xa); 
g
� minff(a); �g:

Hence f is a (2
 ;2
 _q�)-fuzzy interior ideal of S.

Theorem 152 For an AG-groupoid S with left identity the following are
equivalent.
(i) S is intra regular.
(ii) Every two sided ideal is semiprime.
(iii) Every (2
 ;2
 _q�)-fuzzy two sided ideal f of S is fuzzy semiprime.
(iv) Every (2
 ;2
 _q�)-fuzzy interior ideal f of S is fuzzy semiprime.
(v) Every (2
 ;2
 _q�)-fuzzy generalized interior ideal f of S is semi-

prime.

Proof. (i)) (v) Let S be an intra-regular and f be an (2
 ;2
 _q�)-fuzzy
generalized interior ideal of an AG-groupoid S. Then for all a 2 S there
exists x; y in S such that a = (xa2)y. We have

maxff(a); 
g = maxff((xa2)y); 
g
� minff(a2); �g:

(v)) (iv is obvious.
(iv)) (iii) it is obvious by lemma 151.
(iii) ) (ii): Let A be a two sided ideal of an AG-groupoid S, then

by theorem 131, (��
A) is an (2
 ;2
 _q�)-fuzzy two sided ideal of S. Let
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a2 2 A; then since ��
A is an (2
 ;2
 _q�)-fuzzy two sided ideal therefore
��
A(a

2) � �; thus by (iii) maxf��
A(a); 
g � minf��
A(a2); �g = � this
implies that ��
A(a) � �: Thus a 2 A: Hence A is semiprime.
(ii)) (i): Assume that every two sided ideal is semiprime and since Sa2

is a two sided ideal contain a2. Thus

a 2 (Sa2) � (SS)a2 � (a2S)S = ((aa)(SS))S = ((SS)(aa))S = (Sa2)S:

Hence S is an intra-regular.

Theorem 153 Let S be an AG-groupoid with left identity, then the fol-
lowing conditions equivalent
(i) S is intra-regular.
(ii) Every ideal of S is semiprime.
(iii) Every bi-ideal of S is semiprime.
(iv) Every (2
 ;2
 _q�)-fuzzy bi-ideal f of S is semiprime.
(v) Every (2
 ;2
 _q�)-fuzzy generalized bi-ideal f of S is semiprime.

Proof. (i) ) (v): Let S be an intra-regular and f be an (2
 ;2
 _q�)-
generalized bi-ideal of S. Then for all a 2 S there exists x; y in S such that
a = (xa2)y.

a = (xa2)y = (x(aa))y = (a(xa))y = (y(xa))a

= fy(x((xa2)y)))ga = fx(y((xa2)y))ga = fx((xa2)y2))ga
= f(xa2)(xy2)ga = fx2(a2y2)ga = fa2(x2y2)ga = fa(x2y2)ga2

= f((xa2)y)(x2y2)ga2 = f(y2y)(x2(xa2))ga2 = f(y2x2)(y(xa2))ga2

= f(y2x2)((y1y2)(xa2))ga2 = f(y2x2)((a2y2)(xy1))ga2 = f(y2x2)((a2x)(y2y1))ga2

= f(y2x2)(((y2y1)x)(aa))ga2 = f(y2x2)(a2(x(y2y1)))ga2 = f(aa)(x((x2y2))(y2y1))ga2

= fa2f(x(x2y2)(y2y1))gga2 = (a2t)a2;where t = (x(x2y2)(y2y1)):

we have
maxff(a); 
g = maxff(a2t)a2; 
g � maxfminff(a2); f(a2)g; �g = minff(a2); �g:
Therefore maxff(a); 
g � minff(a2); �g:
(v)) (iv) is obvious.
(iv) ) (iii): Let B is a bi-ideal of S, then ��
B is an (2
 ;2
 _q�)-fuzzy

bi-ideal of an AG-groupoid S. let a2 2 B then since ��
B is an (2
 ;2

_q�)-fuzzy bi-ideal therefore ��
B(a2) � �; thus by (iv); maxf��
B(a); 
g �
minf��
B(a2); �g = � this implies that ��
B(a) � �: Thus a 2 B: Hence B
is semiprime.
(iii)) (ii) is obvious.
(ii)) (i) Assume that every ideal of S is semiprime and since Sa2 is an

ideal containing a: Thus

a 2 (Sa2) � (SS)a2 � (a2S)S = ((aa)(SS))S = ((SS)(aa))S = (Sa2)S:

Hence S is an intra-regular.
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Theorem 154 Let S be an AG-groupoid with left identity, then the fol-
lowing conditions equivalent
(i) S is intra-regular.
(ii) Every ideal of S is semiprime.
(iii) Every quasi-ideal of S is semiprime.
(iv) Every (2
 ;2
 _q�)-fuzzy quasi-ideal f of S is semiprime.

Proof. (i)) (iv): Let S be an intra-regular AG-groupoid with left identity
and f be an (2
 ;2
 _q�)-fuzzy quasi ideal of S. Then for all a 2 S there
exists x; y in S such that a = (xa2)y. Now using left invertive law and
medial law, then

a = (xa2)(y1y2) = (y2y1)(a
2x) = a2((y2y1)x) = a

2t, where t = (y2y1)x:

we have
maxff(a); 
g = maxff(a2t); 
g � minff(a2); �g:
Therefore maxff(a); 
g � minff(a2); �g:
(iv) ) (iii): let Q be an quasi ideal of S, then ��
Q is an (2
 ;2
 _q�)-

fuzzy quasi ideal of an AG-groupoid S. let a2 2 Q then since ��
Q is
an (2
 ;2
 _q�)-fuzzy quasi ideal as then ��
Q(a2) � � therefore by (iv);
maxf��
Q(a); 
g � minf��
Q(a2); �g = � this implies that ��
Q(a) � �: Thus
a 2 Q: Hence Q is semiprime.
(iii)) (ii) is obvious.
(ii)) (i) Assume that every ideal of S is semiprime and since Sa2 is an

ideal containing a2: Thus

a 2 (Sa2) � (Sa)(Sa) = (SS)(aa) = (a2S)S = (Sa2)S:

Hence S is an intra-regular.
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