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Abstract

In this paper, we explore the possibility that black holes and Space could be the
geometrically Compactified Transverse Slices (”CTS”s) of their higher (+1) dimen-
sional space. Our hypothesis is that we might live somewhere in between partially
compressed regions of space, namely 4dL+R hyperspace compactified to its 3d1

transverse slice, and fully compressed dark regions, i.e. black holes, still containing
all Ld432-1-234dR dimensional fields. This places the DGP, ADD, Kaluza-Klein,
Randall-Sundrum, Holographic and Vanishing Dimensions theories in a different
perspective.

We first postulate that a black hole could be the result of the compactification
(fibration) of a 3d burned up S2 star to its 2d transverse slice; the 2d dimensional
discus itself further spiralling down into a bundle of one-dimensional fibres.

Similarly, Space could be the compactified transverse slice (fibration) of its higher
4dL+R S3 hyper-sphere to its 3d transverse slice, the latter adopting the topology
of a closed and flat left+right handed trefoil knot. By further extending these two
ideas, we might consider that the Universe in its initial state was a ”Matroska”
4dL+R hyperspace compactified, in cascading order, to a bundle of one-dimensional
fibres. The Big Bang could be an explosion from within that broke the cascadingly
compressed Universe open.

∗frederik.vantomme@gmail.com
1As we shall only consider spatial dimensions and leave the time dimension out, ordinary 3d+1t

spacetime will be reduced to ’3d’ space; 4d+1t spacetime will be denoted ’4d’ space, etc.
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1 Introduction

Bekenstein-Hawking entropy indicates that a black hole could be the 2d geometrically
Compactified Transverse Slice (”CTS”) of its higher 3d dimension.

Existing papers and recent data from the WMAP and Planck satellites, on the
other hand, might indicate that ’ordinary’ 3d space could itself be the geometrically
Compactified Transverse Slice of its higher 4dL+R hyperspace.

By further extending these two ideas, we might consider that Space in its initial state
was a ”Matroska” 4dL+R hyperspace compactified, in cascading order, to a collection of
one-dimensional fibres.

The postulate is made that the Big Bang could be an explosion from within that
broke the cascadingly compactified Space open.

From the initial compactified or ”zipped” point of view, we say that the Universe
started as a 4dL+R hypersphere compactified into (3d+1) Minkowski space which, as
a ”Matroska”, was further compactified (collapsed compressed) into a 2d brane finally
resulting in a bundle of 1d dimensional fibres in which time behaved as another direction
in space.

Uncompressing or ”unzipping”, we then say that the Big Bang is the unfolding of the
compactified 1d bundle of fibres within a less compactified 2d sheet that immediately
thereafter inflated to the 3d space we live in. Our 3d space is itself the Compactified
Transverse Slice of its higher 4dL+R hypersphere.

Black holes might well be reminiscences of the original compactified state that still
include all dimensional fields, from 4dL+R to 1d included. Black holes are places where
the compactified Space did not open, or opened when it was hot, but, when cooling
down, collapsed again to their original state. Formulated in a different way, a black
hole might be a 4dL+R(x,y,z,w) coordinate system collapsed and compactified to its
3d(x,y,z) transverse slice coordinate system, spiralling down into a 2d(x,y) transverse
slice coordinate system, spiralling down into a bundle of 1d fibres. To be consistent with
our approach, it would be better to describe black holes, apart from transverse slices,
as Bose-Einstein condensates, but that is a different story for later[1].

We might thus live in between partially compactified regions of 3d space embedded
into 4dL+R and dark regions or black holes still containing all compactified dimen-
sions (i.e. 4dL+R, 3d, 2d and 1d). This places the Dvali-Gabadadze-Porrati (DGP)[2],
Arkani-Hamed, Dimopoulos and Dvali (ADD)[3], Kaluza-Klein[4], Randall-Sundrum[5],
Holographic and Vanishing Dimensions[6] theories in a different perspective.

2 Black holes as the geometrically Compactified Trans-
verse Slice of a 2-sphere S2

2.1 The Bekenstein-Hawking entropy of a Schwarzschild black hole

Between 1916 and 1917, K. Schwarzschild[7, 8], but also J. Droste[9], H. Weyl[10] and
D. Hilbert[11], found, based on Einstein’s 1915 publication of his General Relativity
Theory, what was later called the ”Schwarzschild radius”[12].
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Figure 1: Top 2D view from within. We might live in between original dark regions or black
holes still containing all compactified dimensions 4dL32-1-23R4d and partially compactified - or
partially opened - regions containing 34dL+R dimensions. Thus, not only Space gets contracted
but - more importantly - the dimensions themselves are being contracted.

Figure 2: Schematic front 2D view. 4dL+R hyperspace is everywhere compactified to its 3d
tranverse slice and in punctual black hole regions even further compactified to 4dL32-1-23R4d
space. These are singularities with a surrounding 2d discus embedded in 34dL+R space.
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An object with a mass M that under its own gravitational forces is compactified to
fit into a certain critical radius, shall form a black hole within which the Newtonian
escape velocity equals the speed of light. This critical radius is called the Schwarzschild
radius and is given by the well-known equation:

rSch =
2GM

c2
(1)

The minimum mass M for a stellar black hole to form is now set at about 2 to 3
solar masses. Let us, by way of example, take 3 solar masses and mould them together
to create one bigger sun with a mass of 3 x 1.988435.1030 kg. At the end of this 3M�
star’s life, when almost all nuclear fuel has burned up and gravity overcomes the nuclear
forces, the dying star will undergo a supernova explosion and collapse to form a black
hole. The above equation states that this black hole shall have a radius of about 8,859
km.

In 1972, J. Bekenstein[13], later complemented by S. Hawking[14], discovered that it
is possible to calculate the entropy of the interior region of such a Schwarzschild black
hole. The Bekenstein-Hawking entropy is given by:

SBH =
kBA

4l2p
(2)

whereby A = 4πr2 and l2p = G~
c3

SBH =
kB(4πr2)c3

4~G
(3)

In our example, this results in a SBH of about 1.303 x 1055 J/K (note2).

Strangely, the Bekenstein-Hawking entropy of the black hole horizon’s interior region
is related to the surface area 4πr2 of our previous 3M� stellar 2-sphere S2 (this is a
normal 3-dimensional sphere) and thus not to the volume 4

3πr
3 of our collapsed 3M�

star.
Even more remarkably, the Bekenstein-Hawking entropy, measured in Planck areas,

is reduced to 1
4 of the 2-sphere’s surface, which is the same as the two dimensional

transverse slice area of S2, namely (πr2). This points out that a black hole horizon’s
interior region could well be a genuine two-dimensional discus.

2.2 Dimensional compactification

Actually, various authors have already pointed out that a black hole could well be a de
facto two-dimensional discus. Others have called our attention to the fact that the 2d
discus might be further reducible by spiralling it down into a collection of 1d fibres. It
is important to note that this, as far as we can see, differs from the current mainstream

2For the sake of clarity, we consider hereby only the black hole’s interior Bekenstein-Hawking entropy,
i.e. within the event horizon, not its exterior entropy outside the event horizon.
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4πr2
πr2

Figure 3: The surface area of a 2-sphere S2 equals 4πr2. The transverse slice area equals πr2.
You notice that the horizontal slice of S2 are two D2 disks glued together, which correspond in S3

to two solid tori glued together along their boundaries.

thought that a black hole collapses directly from 3d to a single 1d singularity, i.e. without
first passing through the 2d discus.

G. ’t Hooft[15, 1999, The Holographic principle: Opening lecture] proposed the idea
that particles close to a black hole’s horizon can be accurately described by a 2d func-
tion instead of a 3d function (we will call this the ’limited holographic principle’). He
then added that this holographic description of particles could well have a universal
validity and might apply for more than only particles entering into a black hole. This
extended idea that the entire Universe might be two-dimensional was further expanded
by, amongst others, L. Susskind[16, 1994, The world as a hologram] (we will call this
the ’extended holographic principle’).

The limited holographic principle is, in our view, a correct but partial description
of reality, while, on the other hand, the extended holographic principle needs to be
reconsidered and put into a different perspective.

In a paper from 1992, Bañados, Teitelboim and Zanelli (BTZ)[17] showed that a
black hole solution can be given that consists of two-dimensional fields. In 1995, S.
Carlip[18, 1995, The (2+1)-dimensional black hole] pointed out that such a BTZ black
hole has different characteristics than a ’normal’ Schwarzschild or Kerr black hole: (1)
the BTZ metric has constant negative curvature, any point in the black hole space
time has a neighbourhood isometric to Anti-de Sitter space and (2) it has no curvature
singularity at the origin. But the BTZ black hole still has two interesting characteristics
that are similar to an ’ordinary’ black hole: it appears as the final state of collapsing
matter and it has thermodynamic properties much like those of a 3d black hole.

Continuing in this line of reasoning, there are recent hints that the dimensional fields
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near the black hole’s horizon can be even further reduced to a set of two-dimensional
fields (sheets or branes) spiralling down into a bundle of one-dimensional fibres[19, 20,
J.D. Bekenstein and A.E. Mayo (2001), Black holes are one-dimensional ]. The dimen-
sional fields (3d+1), (2d+1) and (1d+1) seem thus to converge near the black hole’s
horizon[21, S. Carlip (2012), Spontaneous dimensional reduction? ]. Thus, not only
Space itself gets contracted but - more importantly - the dimensions themselves are
being contracted.

We will now argue that Space we live in might be, in an equivalent way, the geo-
metrically Compactified Transverse Slice (”CTS”) of its higher (+1) dimensional space,
being the 4-dimensionalL+R hypersphere.

3 Space as the geometrically Compactified Transverse Slice
of a 3-sphere S3

Proceeding one step further, we now pose the question how Space would look like if Space
itself was a Schwarzschild black hole or, in line with our hypothesis, better expressed as
the geometrically Compactified Transverse Slice of a 3-sphere S3.

3.1 The Transverse Slice of a 3-sphere S3: the Clifford torus

As already mentioned above, the transverse slice that is formed once our almost burned
out 3M� stellar 2-sphere S2 collapses under its own gravity, is equal to the area of a
simple circle in the plane (i.e. a 1-sphere S1) with area πr2.

This is 1
4 of the surface area of S2 (4πr2). S2 is a two-dimensional manifold folded

into a 3d ball. The unit 2-sphere S2 is given by the following equation:

S2 =
{

(x, y, z) : x2 + y2 + z2 = 1
}

(4)

Per analogy, S3 is a 3-dimensional manifold folded into a 4-dimensional hypersphere.
The unit 3-sphere S3 is given by one additional dimension (w):

S3 =
{

(x, y, z, w) : x2 + y2 + z2 + w2 = 1
}

(5)

Equally per analogy, the (complex) transverse slice of S3 is equal to 4
4 of its surface area,

or, the hyper-surface area itself.

Now, the equation for the hyper-surface area of the hypersphere is not so easily found
by analogy, as H.S.M. Coxeter nicely described in his book ”Regular Polytopes”[22]:
”For instance, seeing that the circumference of a circle is 2πr, while the surface of a
sphere is 4πr2, we might be tempted to expect the hyper-surface of a hyper-sphere to
be 6πr3 or 8πr3. It is unlikely that the use of analogy, unaided by computation, would
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ever lead us to the correct expression, 2π2r3”. Contrary to the hyper-surface area, the
hyper-volume of S3 is given by 1

2π
2r4.

Note that the equation 2π2r3 for the hyper-surface area of the hypersphere is exactly
the same as the equation for the interior volume of a torus, which is 2π2Rr2, always on
condition that R = r, i.e. this torus must be formed by the product of circles with the
same radii. Such a torus formed by the product of constantly equal radii is a flat and
equatorial Clifford torus.

The 3-sphere S3 is given by:

S3 =
{

(x, y, z, w) : x2 + y2 + z2 + w2 = 1
}

(6)

The Clifford torus is given by:{
(x, y, z, w) ∈ S3 : x2 + y2 = z2 + w2 =

1

2

}
(7)

One Clifford torus within S3 is:

x2 + y2 =
1

2
(8)

The other Clifford torus within S3 is:

z2 + w2 =
1

2
(9)

The Clifford torus thus slices S3 into two completely identical solid (Clifford) tori glued
together along their boundaries with the latitudes of one pasted to the longitudes of the
other[23, 24].

M. Dehn[25], looking at this from a different view angle, noted that the middle torus
laying at the equatorial transverse slice of S3 could be cut out, removed from S3 and
sewn in back differently (later named ’Dehn surgery’ )[26]. Now, such a torus removed
from the equatorial transverse slice is in itself a Clifford torus. The same was observed
by P. Heegaard. He too saw, from yet another viewpoint, that the standard genus 1
splitting (or Heegaard splitting) of S3 similarly results in a Clifford torus. Otherwise
said, the boundary where the two solid Clifford tori meet, this is the (hyper-)equatorial
transverse slice of S3, is equally another, third, middle Clifford torus. It is hereby to be
noted that the Lawson Conjecture, proven in 2012 by S. Brendle[27], states that nothing
but the Clifford torus is the embedded minimal surface in S3 of genus 1[28].

3.2 The Compactification of a 3-sphere S3 through the Hopf Fibration

We shall now explain how we could approach the compactification of S3 to its trans-
verse slice. In 1931, H. Hopf invented a way of mapping - in mathematics known as a
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submersion - the higher dimensional space S3 to a lower dimensional space S2, the so-
called Hopf Fibration or Hopf Map[29]. We shall use this continuous map (or continuous
function): π : S1 → S3 → S2 to describe the compression of S3 to S2.

The Hopf Fibration has already been broadly described in mathematical and physics
literature[30]. We shall therefore only give a recapitulation which we will then comple-
ment with some distinct insights. It is hereby worthy to note that during recent years,
the idea has re-emerged that the purely mathematical idea of the (Hopf) Fibration
might correspond to a true physical reality, a.o. as a possible technique to describe the
quantum states of a single qubit and the entanglement between two qubits[31, 32].

A Fibration, in general, consists of three components: a base space (B), a fibre (F)
and a total space (E), all together completed with a continuous map π : F → E → B.
The base space (B) is made of points b ∈ B. Every point b has an open neighbourhood
(U). The inverse pre-image of all points b and U, notated, respectively, as π−1(b) and
π−1(U), is a fibre (F). The Fibration tool lets us represent the higher dimensional total
space (E) on a lower dimensional space (B) with each point b ∈ B having a one-to-one
corresponding fibre (F) attached to it, for b ∈ B, Fb := π−1(b) is called the fibre over b.

A Fibration can be trivial or non-trivial. A trivial Fibration exists when the total
space E = B x F. Euclidean space R3 is an example of a trivial Fibration because the
total space R3

(E) = R1
(B) x R2

(F ) or R2
(B) x R1

(F ) whereby, in the first case, the fibres (F)
are 2-dimensional parallel planes and, in the second case, the fibres are one-dimensional
parallel lines.

The Hopf Fibration is an example of a non-trivial Fibration because S3 6= S2 x S1

and, being a specific type of Fibration, it can similarly be written as
π : S1

(F ) → S3
(E) → S2

(B). The base space S2 is made of particle-points b ∈ B.

The inverse pre-image of all compressed particle-points b ∈ S2, which is obtained by
uncompressing these points b from S2 to R3 and then by doing an inverse stereographic
projection to S3, is a one-dimensional Hopf circle that in itself is made of points p ∈ S1

(F ).

We can consider the link between S3 and S2 therefore even better as a many-to-one
relationship because many points p on the fibre circle S1 embedded in S3 correspond to
one single point b ∈ S2. N. Johnson published a nice video on the internet[33] (around
minute 39 and further) that helps to visualize this concept: every point in S2 corresponds
to a Hopf circle embedded in S3. Two points in S2 correspond to a Hopf link in S3.
Moving on, an arc (this is a part of a circle) corresponds to a Hopf band. A complete
circle corresponds to an empty torus (T 2) and a disk D2 in base space S2 corresponds
to a solid torus (D2 x S1). The transverse slice of S2 are two D2 disks glued together,
which correspond in S3 to two solid tori glued together along their boundaries.

We visualize the Bloch sphere[34] - or, better said, the Bloch ”hyper-” sphere - as
an imagery shell in S3, its surface through which the S1 Hopf circle freely rotates. The
possible states of a single qubit can be represented by any point p on the S1 Hopf circle
(F). Given that point p is only allowed to move along the one-dimensional surface of S1

and S1 is in itself confined to a two-dimensional plane, this plane embedded within the
Bloch S3 hyper-sphere, point p must be described by 4 coordinates x2+y2+z2+w2 = 1
or as a pair of two complex numbers z = x + iy and w = z + iw whereby S3 =
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{
(z, w) ∈ C2 | |z|2 + |w|2 = 1

}
. The Hopf Fibration gives us a technique to represent

points p ∈ S1 ∈ S3 (4 coordinates) as points b ∈ S2 (3 coordinates):

2(xy + zw) = x
2(xw − yz) = y
(x2 + z2)− (y2 + w2) = z

Formulated in the more familiar linear superposition of the basis states |0〉 and |1〉,
the possible states where one can find point p within the quantum qubit space in S3

is given by: |ψ〉 : α|0〉 + β|1〉 whereby α and β are complex probability amplitudes
that are trapped within the equation

{
(α, β) ∈ C2 | |α|2 + |β|2 = 1

}
which is equal to

S3 =
{

(z, w) ∈ C2 | |z|2 + |w|2 = 1
}

. The below table gives a schematic résumé:

Total	space	ሺEሻ	 	

	
Compactified	to	

Base	space	ሺBሻ	

S1	embedded	in	S3	ሺ4dሻ	 S2 ሺ3dሻ

Pre‐image	in	S3	 Image	in	S2

S1	Hopf	circle	rotating	within	the	
Bloch	hyper‐sphere

1	point‐like	particle			

S1	x	S1	Hopf	link	 2	point‐like	particles	

Locations	are	defined	by	x,	y,	z,	w	
4‐tuples	ሺor	quadruplesሻ	or	as	a	
pair	of	two	complex	numbers		
z	ൌ	x		iy	and	w	ൌ	z		iw	

Locations	are	defined	by	x,	y,	z	
triples

 

Just out of curiosity, we would like to mention the remarkable achievement made in
2013 by a research team from the Technischen Universität Darmstadt[35] in Germany.
The researchers were able to trap photons inside a crystal atom that was previously
cooled down with lasers to form a Bose-Einstein condensate, thus extracting all motion-
energy from the crystal atoms, only leaving their rest mass m0. In terms of the foregoing,
a possible interpretation of this phenomenon could be as follows. At room temperature,
the S1 Hopf circles rotate very fast along the surfaces of their corresponding Bloch hyper-
spheres. The fundamental particles that make up the crystal atom (quarks, gluons,
electrons, etc.) can all be considered points b ∈ S2 with to each of them a S1 Hopf
circle attached. When the temperature of the crystal atoms reach absolute zero (kelvin)
and form a Bose-Einstein condensate, the S1 Hopf circles freeze to a standstill. At that
moment, the photons, which are also Hopf circles in S3, are beamed into the outer ”open”
crystal atom fundamental particles’ Hopf circles. When the laser cooling is taken away
and the crystal atom’s Hopf circles start rotating again, the heavily bouncing photons
are trapped inside the outer-shell S1 Hopf circles and the photon’s motion-energy is
given of throughout the chain of crystal atoms.

Another curiosity is that for every point p on the Hopf circle S1 =
{

(x, y) : x2 + y2 = 1
}

,
there exists a corresponding fibre over p that can be written as another type of Hopf
Fibration π : S0 → S1 → S1, whereby the fibre S0 =

{
(x) ∈ R1 : x2 = 1

}
. The basis
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states of a qubit might then be represented as the collapse of S1 to its transverse slice
S0. The points x on S0 can only have the value of x2, namely -1 or 1, laying at the
”West pole” and ”East Pole” of the X axis, or at the ”North pole” and ”South pole” of
the Z axis.

3.3 The 120-cell meets both criteria

We will now look for a geometric shape that fits both criteria 3.1 (Transverse Slice) and
3.2 (Compactification).

3.3.1 Criterium 3.1: Clifford Tori

Section 3.1 requires that the figure sought must be formed by two solid Clifford tori
and that the boundary where these two tori meet, this is at the (hyper-)equatorial
transverse slice of S3, must equally be another, third, middle Clifford torus. Section 3.2
requires that the figure be a collapse-compression and, ideally, a fibration to represent
the dimensional reduction.

At first view, the best candidate for this position seems to be the 120-cell. In the
interest of brevity and to avoid repeating what already exists in literature, we refer to
Chapter 9 of H.S.M. Coxeter’s book Twisted Honeycombs[36] and we found an even
more visually appealing description in the book of G. Toth Glimpses of Algebra and
Geometry, Second Edition[37], on page 386:

”The explicit construction of the 120-cell is technical. There is an easy way, however,
to see how these 120 dodecahedra fit together in S3, and it is based on the fact that, up to
adjustment by an isometry, the centroids of the dodecahedral cells can be considered as the
120 elements of the binary icosahedral group I* in S3 discussed in Section 23. Recall that
in terms of the Clifford decomposition of S3, I* is made up of the vertices of two regular
decagons inscribed in the orthogonal circles C±1, and the rest appear (in two groups of 50)
in the Clifford tori C±1/

√
5 (Figure 23.5). In view of this, the 120-cell can be constructed

as follows. First make a necklace of 10 (spherical) dodecahedra such that the centroids of
the dodecahedra are the 10 elements of I* on C1. It turns out that these dodecahedra have
dihedral angle 120◦ as above. A pair of consecutive dodecahedra in the necklace are pasted
together at a common pentagonal face. Each of the 5 edges of this common face is the
shared edge of two other pentagonal faces, one from each of the consecutive dodecahedra.
These two faces meet at a dihedral angle of 120◦, so that another dodecahedron can be
pasted in. Since we have five edges (of the common pentagonal face), we can paste in 5
extra dodecahedra around the two consecutive dodecahedra in the necklace. This cluster
of 5 dodecahedra makes a bulge in the necklace. Since the necklace has 10 places (of
consecutive dodecahedra) for this construction, we can add 10 bulges to the necklace,
a total of 10 5 dodecahedra. These, along with the original 10 dodecahedra, use up
60 dodecahedra, and give a bumpy polyhedral Clifford torus in S3. As computation
shows, the centroids of the dodecahedra in the bulges make up the 50 elements of I* in
C1/
√
5. Finally, the entire construction can be repeated for C−1 and C−1/

√
5, and the two
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bumpy Clifford tori fit together to form the 120-cell. (This visualization of the 120-cell
also reveals that the faces of each dodecahedral cell are contained in the perpendicular
bisectors of the line segments connecting the centroid (in I*) of the cell and the 2+5+5
nearby elements in I*.)”

and further on page 313:

”Removing the middle torus C0 from S3, we see that S3 falls into the disjoint union
of two solid tori. Going backward, we reach the inevitable conclusion: The 3-sphere is
obtained from two solid tori by pasting them together along their boundaries!”

Thus, one ring-shaped complex of 60 dodecahedra forms a Clifford torus, as do
the other 60 dodecahedra. The two interlocking 60 dodecahedra (Clifford tori) form
a 120-cell which in itself is a Clifford torus. What is more, the 120-cell comes with a
bonus because just as 12 pentagons tile the surface of a 2-sphere S2, 120 dodecahedra
tile the hyper-surface of a 3-sphere S3. However, to do the trick, one must inflate the
dihedral angles of each of the 120 dodecahedral cells by nearly 4◦ degrees. In ordinary
3d Euclidean space, the dihedral angles of a dodecahedron are about 116◦,34′, while in
4d hyperspace the angles are bended to 120◦. These 120 ”round balloon cells” tessellate
the hyper-surface 2π2r3 of the hyper-sphere S3. As we shall see in Section 3.4 below,
this inflation exists for a well-deserved reason.

J.P. Luminet[38, 39, 40], J. Stillwell[41] and J. Weeks[42, 43] are amongst the
researchers[44, 45, 46] that are testing this Poincaré Dodecahedral Space model against
the data obtained from the NASA WMAP (Wilkinson Microwave Anisotropy Probe)
and ESA Planck satellites that image the extremely tiny anisotropies in the Cosmic
Background Radiation Field or CMB (Cosmic Microwave Background). Given that the
120-cell is a complex geometric figure, in his paper ”Plato, Poincaré and the Enchanted
Dodecahedron”, the mathematician L. Brenton[47] naturally asks the question whether
we are visiting many different (dodecahedral-cell) rooms or the same room over and over
again? We shall now see that the 120-cell is not the end of the story, which favours the
”many different rooms” hypothesis.

3.3.2 Criterium 3.2: Compactification through fibration

Next in line is the compactification through fibration. Although it is not the same as the
Hopf Fibration described under Section 3.2, we say that the 120-cell forms a Hopf-like
Fibration because the 120-cell can be partitioned into 12 intertwined rings of 10-cell
rings. Furthermore, the dual of the 600-cell is the 120-cell. A dual polytope means that
the vertices of one polytope touch the faces of the other at one single coordinate in space.
The centres of the 120 dodecahedral cells are the 120 vertices of its dual, the 600-cell, as
can bee seen from their Schläfi symbols (120-cell: {5, 5, 3} and for the 600-cell {3, 3, 5}).

In any case, the puzzle of the compactification through fibration of the 120◦ 120-cell
falls better in place when we now come to the conclusion that the Poincaré Dodecahedral
Space is nothing more than the expression of the underlying closed left+right-handed
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trefoil knot.

3.4 The underlying concept: the closed left+right-handed trefoil knot
as the transverse slice of S3

There exists an intimate relationship between Poincaré Dodecahedral Space and the
trefoil knot. To present things in a more visually understandable way, let us represent
S3 as an apricot that we will cut in two halfs (see Figure 4 on the next page).

As we need to cut 4d space, we will use a knife with a special surface: the complex
surface z2 + w3 = 0 (z and w being complex numbers) which follows the pattern of
a trefoil knot but - behold - is different from the trefoil knot. The trefoil knot is the
inner-stone or kernel that is obtained by slicing the S3 apricot open. For an apricot
to be able to be sliced, you must have a left- and a right-half. As seen above, S3 can
be written as a pair of complex numbers S3 =

{
(z, w) ∈ C2 | |z|2 + |w|2 = 1

}
. If we

now intersect our apricot S3 with the complex surface knife (z2 + w3 = 0) we obtain a
left-handed trefoil laying on the ”left” Clifford torus x2 + y2 = 1

2 (see (8) above) and a,
mirrored, right-handed trefoil laying on the ”right” Clifford torus z2 + w2 = 1

2 (see (9)
above) within S3 that, glued together, form the total kernel.

To put it differently, when the left-handed trefoil, laying on the x2 + y2 = 1
2 torus,

and the right-handed trefoil, laying on the z2 +w2 = 1
2 torus, are merged (compactified)

into a third middle torus, then there will be coordinates in space where the two trefoils
will cross and touch (see Figure 5 below). If, after the merger, the middle-torus is further
compressed and finally taken away, the ”left-over” will be a left+right handed trefoil
knot glued together - now not only at their cross-touching coordinates, but - along their
entire boundaries. In other words, with the help of the complex surface knife, we have
been able to transverse slice or cut a closed left+right-handed trefoil out of S3.

Dodecahedral space, given by the equation z2 + w3 + p5 = 0, and thus very closely
related to our complex surface knife (z2 +w3 = 0), can be seen in Figure 4 as it were the
outer-stone that falls of when S3 is sliced in two by the complex surface knife leaving
the left+right-handed trefoil kernel visible. If you punch a hole in the center of two
opposite pentagonal faces of each of the 120 dodecahedral cells and connect this 5-fold
axis all the way long, the axis will become the inner-axis of a trefoil knot. If you then
reflect many points on symmetrically opposite sides of this 5-fold axis mirror, that is the
trefoil knot kernel, you will obtain the Poincaré Dodecahedral Space as ”outer-stone”,
the latter being merely a reflection of the underlying inner trefoil kernel.
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S3

5-fold axis

Dodecahedral space 116º,34´

Slightly inflated
Dodecahedral space 120º

S2 Kernel:
Closed left+right-handed Trefoil Knot

 z 2 + w 3= 0

F. Vantomme 2013

Figure 4: To visualize that Dodecahedral space is merely the symmetrical reflection of the
underlying closed left+right-handed trefoil S2 kernel, we have drawn the 120◦ Dodecahedral space
a little removed and in parallel to the kernel but, in reality, the Dodecahedral space must be
removed. Also, the outer S3 is visible but is actually compressed into the S2 kernel.

Figure 5: The (a) left-handed trefoil - (3,2) torus knot - laying on the left Clifford torus C−1 and
(b) the right-handed trefoil laying on the, mirrored, right Clifford torus C1, are merged into one
(c) third middle Clifford torus C0 that (d) further compresses and finally disappears. What is left
is a closed left+right handed trefoil knot loop.
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We can now finally answer the question of how Space might look like if Space itself
was a Schwarzschild black hole or, in line with our hypothesis, the Compactified Trans-
verse Slice of S3: a left- and right-handed trefoil glued together along their boundaries
forming one closed trefoil. This answers why we favour the ”many different rooms”
hypothesis: the trefoil forms a closed loop in which part of the light emitted in front of
you will come back and hit you in the back. Lastly, contrary to the 120-cell, the trefoil
is a fibred knot that is susceptible to fibration (read ”dimensional compactification”)
via the Milnor map.

4 Further Reflections

The following is a series of thoughts and reflections:

Cosmic exponential inflation and homogeneity. The CTS ”Matroska” model
of Space may solve both the exponential inflation and homogeneity problem. We pos-
tulate that the Big Bang could be an explosion from within that broke the cascadingly
compactified or ”zipped” Space open. Although Figure 6 here below is not perfect be-
cause it presents a one-handed trefoil only, viewed from the outside, it gives a feeling of
the explosion from within.

Looking at phases 2 and 3, you see immediately that the inflation from 234d to
34d is exponential. Similarly, you notice that the homogeneity on large scales can be
better explained because the matter of Space, everything and all already present at the
moment of the Big Bang, must have been in a state of closest contact and therefore
highest possible order. The multiverse does not fit in that picture.

	

Phase	1:	all	dimensions	
and	 existing	 matter	 collapsed‐
compressed	 to	a	bundle	of	one‐
dimensional	 fibreሺsሻ	 in	 which	
time	 behaves	 as	 another	
direction	in	Space.	

Phase	 2: explosion	 from	
within	 that	 breaks	 one‐dimensional	
ሺ1234d1ሻ	 space‐time	 open	 to	
ሺ234d1ሻ.	This	appears	as	a	closed	
2‐dimensional	trefoil	knot.

Phase	 3: exponential	
inflation	 from	 ሺ234d1ሻ to	
ሺ34d1ሻ	space.	This	appears	as	
a	 closed	 3‐dimensional	 trefoil	
knot.

Phase	 4: cooling	 down.	
Some	 regions	 collapse	 back	 to	
their	 original	 fully	 compressed	
state	

	
	
Figure 6: The above pictures are an approximation of the cosmic exponential inflation which
corresponds to the pattern of an Evolving Trefoil. For a better understanding, the outside observer
should imagine himself at the inside of the trefoil. It can be helpful to have a look at the Evolving
Trefoil sculpture from C. Séquin and B. Collins at the Missouri Western State University[48].
However, in order to obtain a more accurate image, one needs to replace the empty spaces with
fully compressed 1234dL+R space and most of the intertwining filaments should be blown up to
34dL+R space.
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Kaluza-Klein. Our model seems to revindicate Kaluza-Klein theory[49, 50]. Each
particle point b ∈ S2 living in 3d space has as pre-image a corresponding Hopf circle S1

embedded in S3 4dL+R attached to it.

AdS/CFT and Chern-Simons. The hypothesis that we live in between partially
compactified regions of space and dark regions still containing all compactified dimen-
sions is in consonance with the AdS/CFT correspondence[51, 52, 53] or Maldacena
duality[54] as well as, and at the same time, with Chern-Simons theory. Gravitational
equations in n+1 dimensions can be completely equivalently written in non-gravitational
equations in n dimensions.

Beyond the Standard Model. The proposed CTS model may lead us to yet
another possible but still very speculative route to unification. There exists an intriguing
parallelism between the proposed geometry of Space as a closed left+right handed trefoil
knot (transverse surface slice) and a variation on the SU(2)L x SU(2)R x SU(4) Pati-
Salam model.

As shown in Figure 7 below, each point-like particle in ordinary 3d Base Space has
as pre-image a compactified S1 Hopf circle which symmetries are represented by the
U(1) gauge group and which corresponds with the interactions of the electromagnetic
force.

The fast rotating one-dimensional Hopf circle S1, confined to a two-dimensional
complex (because it is compactified and therefore partially imaginary) plane is itself
embedded within an imaginary compactified S3 4d hypersphere which symmetries are
represented by the SU(2) gauge group and which corresponds with the interactions of
the weak force[55].

S3 is then compactified to S2 which equals SO(3) or the rotational symmetry of
the ordinary sphere. The fact that SU(2) is compactified to SO(3) makes that their
symmetries are very similar but not exactly equal.

It might be important to note that the CTS model is left-right symmetric and thus
doubled. As a first impression, the following variation on Pati-Salam emerges: [ (U(1)L
x SU(2)L) + (U(1)R x SU(2)R) ] x SU(4). Note that U(1)L is unbroken (or still
compactified) while SU(2)L) is broken (or opened up) . To preserve the beauty of the
symmetry, the right-hand trefoil could also be partially broken but just in the opposite
way namely U(1)R broken (or opened up) and SU(2)R) still compactified. Recall then
that according to the Goldstone-Nambu theorem, to each broken symmetry generator
corresponds one Goldstone boson (massless field).

The Standard Model Brout-Englert-Higgs (BEH) sector should then, for the sake of
symmetry, likewise be extended with a duplicate BEH sector (these are the so called
2HDM or Two Higgs Doublet Models).

At first sight, it might be tempting to consider the 4dL and 4dR as a hypersphere in 8
dimensions but it is perhaps safer to consider the left-handedness and right-handedness
as two ’sub-dimensions’ of a single 4d hypersphere.
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U(1)L  Hopf �ibre (F) pre-image

SU(2)L  Total Space (E)

1d unit circle S1 in ℂ = ℝ2
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Electromagnetic
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Unbroken = still compacti�ied vector �ield

Broken = opened up vector �ield
600-cellL

U(1)R  Hopf �ibre (F) pre-image

SU(2)R  Total Space (E)

1d unit circle S1 in ℂ = ℝ2

4dR hypersphere S3 in ℂ2 = ℝ4

Electromagnetic
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600-cellR

Unbroken = still compacti�ied vector �ield
φ1 + iφ2 φ3 + iφ4 

1�2
φ5 + iφ6 φ7 + iφ8 

1�2

Two doublet complex scalar �ield
120-cell 3d Base space (B) S2

Standard Model Extended ModelBEH Sector

Electroweak sector

point-like particleclosed left+right handed trefoil knot
Figure 7: The closed left+right handed trefoil knot might appear as a variation on Pati-Salam:
[ (U(1)L x SU(2)L) + (U(1)R x SU(2)R) ] x SU(4).

5 Testing

In conclusion, we will explore a couple of ways in which the theory could be tested
(verified or falsified) against empirical evidence.

Neutrinos. It is an odd story that a neutrino kicked out with a certain energy (E)
begins its journey through space as a particular weak-type neutrino (να), e.g. a (νµ)
emitted from a supernova, the (νµ) being a superposition of the mass-type neutrinos
(ν1, ν2 and/or ν3), and may during its journey through interstellar space oscillate and
transform into a different weak-type neutrino (νe or ντ ) which are themselves different
superposition-compositions of the mass-type neutrinos. The longer the distance (L),
the higher the probability that oscillation will occur. Furthermore, it is bizarre that
the oscillations seem to affect all neutrinos synchronously because they arrive at the
detector at nearly the same time after having travelled enormous distances. One can
wonder how that can be possible.

As already considered by some physicists[56, 57], neutrinos could well be travelling
through different dimensional fields with different particles associated to them. Going
back to our example and keeping the Matroska model at the back of our minds, we
see emerge an alternative way to explain neutrino oscillations. The muon-neutrinos
emitted from the 234dL+R supernova field are blown into ordinary 34dL+R space, turning
them all together into νe, then bump into a 1234dL+R black hole converting them
instantaneously to tau-neutrinos, leave the black hole after them and change back into
νe, etc.

We support the hypothesis that the neutrino is a single particle that is affected
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by different superposition-compositions of dimensional fields it travels through. The
superposition-composition of a 234dL+R field has a different mass mixture than a 34dL+R
dimensional field with only (ν1, ν2) mixture, as will have a single 4dL+R field that
will make that the affected neutrino obtains a unique ν1 mass. If a neutrino passes
from 34dL+R to 234dL+R space, its mass will increase because it is affected by more
superposed dimensional fields. Conversely, if a neutrino passes from 34dL+R to 4dL+R
space, its mass should decrease. If its initial energy is high, the neutrino will be able to
cross 234dL+R compactified fields. If, however, its initial energy is lower, the neutrino
will not be able to penetrate the high density compactified fields and will be confined
to the 34dL+R lower density compactified fields.

The Orbital Angular Momentum (OAM) of light. Since around 1990, various
research groups have been exploring the OAM of electromagnetic waves, the possible
applications for data transfer and the effects Kerr Black Holes (KBH) may have on the
OAM of light waves passing nearby. The 1234dL+R dimensional field lines converging in
the region of a KBH could have a measurable impact on the shape of the wavefront of the
EM waves in the vicinity of such KBH but also on the quantity of photon superposition
states that should increase with the electromagnetic waves approaching the KBH. The
authors welcome any suggestions for accurate testing.

The flat Universe, by Planck. The 2013 Planck results[58, 59, 60] give a total
density parameter Ωtot of 0.9995 ±0.0034, which is close to the Ωtot 1.0027 ±0.0039
previously obtained by WMAP-9. These data are consistent with a geometrically flat
Universe. H.B. Lawson, Jr. proved in 1969[61] that the only flat minimal torus in S3

is the Clifford torus. Then, in 2012, S. Brendle proved the Lawson conjecture[27]. The
Lawson conjecture states that any embedded minimal torus in S3 is congruent to the
Clifford torus; the latter - as thus already proven in 1969 by Lawson Jr. - being a flat
torus embedded in S3. The middle Clifford torus C0 that spans the transverse slice of
S3 is geometrically flat, also because this torus is formed by the product of two unit
circles S1( 1√

2
) x S1( 1√

2
)[28]. As can be seen in Figure 5d above, our hypothesis is that

the left-handed trefoil knot (Fig. 5a) and the right-handed trefoil knot (Fig. 5b) are
glued along their boundaries and compactified within the span of the flat middle Clifford
torus C0 (Fig. 5c) that further squeezes together and finally ’dissolves’ (for the sake of
clarity, these Clifford tori are imaginary shells) leaving a (nearly) flat closed left+right
handed trefoil knot (Fig. 5d) as the remainder. What is more, the mirrored trefoils tend
to collapse[62] within a flat area.

Aside from a flat geometry, Planck also confirmed the existence of a cold spot and
an asymmetry in the average temperature fluctuations of the CMB radiation emitted
roughly 380,000 years after the Big Bang, with a slightly colder northern hemisphere
and a slightly warmer southern hemisphere. Finishing this paper, we stumbled over a
picture drawn back in 1985 by U. Pinkall (Figure 8, a and b)[63] which shows the inverse
stereographic projection π−1 of a curve γ (or Villarceau circle), laying over a S2 Clifford
torus, onto R3.
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The similarity between the wave pattern found in this drawing and in the Planck
data seems purely accidental but it would be interesting to see how this model behaves
in a high performance computer simulation, the results of which could then be tested
against the topological models examined by Planck[60], in particular the T3 Cubic Torus
and the Dodecahedral space.

Figure 8: At the left, U. Pinkall’s drawing from 1985. At the right, the ESA Planck enhanced
anomalies data image dated 2013.

6 Conclusion

The Matroska Compactified Transverse Slice (MCTS) model that we propose is based
on already existing ideas but it is the link between them that is totally new. If found
to be generally true, it would add a new mathematical and geometrical layer to the
apparent chaotic Universe. We have postulated that (1) a black hole could be the
result of the collapse-compactification (fibration) of a 3d burned up S2 star to its two-
dimensional transverse slice; the two-dimensional discus itself further spiralling down
into a bundle of one-dimensional fibres. Similarly, (2) Space might be the collapsed-
compactified (fibration) of its higher 4dL+R S3 hyper-sphere to its 3d transverse slice,
this surface adopting the topology of a closed and flat left+right handed trefoil knot.
By further extending these two ideas, we might consider that Space in its initial state
was a ”Matroska” 4dL+R hyperspace collapsed compactified, in cascading order, to a
bundle of one-dimensional fibres. The Big Bang could be an explosion from within
that broke the cascadingly compressed Space open. This idea turns our conception of
the cosmos somehow upside down for the reason that we might be living in between
partially compactified 34dL+R regions of space and fully compactified dark regions still
containing all 1234dL+R dimensional fields. We welcome any suggestions for testing to
allow the proposed topology to be tested (verified or falsified) against empirical data
and mathematical reasoning.

18



Note and Acknowledgements

This paper was first presented on the 8th of November 2013 to the Intellectual Property
Register of the Community of Madrid with solicitation reference M-8654/2013 and was
accepted for registration on the 20th of December 2013 with number 16/2013/8704
and references Exp.: 09-RTPI-08956.1/2013, Doc.: 09/200171.5/13. Recent findings in
Cosmology and Astrophysics (a.o [64], [65], [66]) seem to gently corroborate the idea
and this led to a renewed interest in the subject and the partial rewriting of this paper.

I thank my children for being so wonderful and making me laugh.

References

[1] G. Dvali and C. Gomez, “Black Holes as Critical Point of Quantum Phase
Transition,” arXiv:1207.4059 [hep-th].

[2] G. Dvali, G. Gabadadze, and M. Porrati, “4D gravity on a brane in 5D Minkowski
space,” Physics Letters B 485 (2000) no. 1, 208–214.
http://www.sciencedirect.com/science/article/pii/S0370269300006699.

[3] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, “The Hierarchy problem and
new dimensions at a millimeter,” Phys.Lett. B429 (1998) 263–272,
arXiv:hep-ph/9803315 [hep-ph].

[4] A. Salam and J. Strathdee, “On kaluza-klein theory,” Annals of Physics 141
(1982) no. 2, 316–352.
http://www.sciencedirect.com/science/article/pii/0003491682902913.

[5] L. Randall and R. Sundrum, “Large mass hierarchy from a small extra
dimension,” Physical Review Letters 83 (1999) no. 17, 3370.
http://prl.aps.org/abstract/PRL/v83/i17/p3370_1.

[6] L. Anchordoqui, D. C. Dai, M. Fairbairn, G. Landsberg, and D. Stojkovic,
“Vanishing dimensions and planar events at the LHC,” Modern Physics Letters A
27 (2012) no. 04, .
http://www.worldscientific.com/doi/abs/10.1142/S0217732312500216.
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[26] J. Stillwell, “Poincaré and the early history of 3-manifolds,” Bulletin of the
American Mathematical Society 49 (2012) no. 4, 555–576.
http://www.ams.org/journals/bull/0000-000-00/

S0273-0979-2012-01385-X/S0273-0979-2012-01385-X.pdf.

[27] S. Brendle, “Embedded minimal tori in S3 and the Lawson conjecture,” arXiv
preprint arXiv:1203.6597 (2012) .

[28] P. Norbury, “The 12th problem,” Gazette of the Australian Mathematical Society
32 (2005) 244–246.
http://www.austms.org.au/Publ/Gazette/2005/Sep05/millennium.pdf.

[29] Z. Treisman, “A Young Person’s Guide to the Hopf Fibration,” arXiv preprint
arXiv:0908.1205 (2009) .

[30] D. W. Lyons, “An elementary introduction to the Hopf fibration,” Mathematics
magazine 76 (2003) no. 2, 87–98.
http://www.jstor.org/stable/10.2307/3219300.

[31] T. Kitagawa, “Physical Interpretation of Hopf Fibration.”
http://www.learningace.com/doc/1620000/

df1ae1fee6122d02ff5ef50b469105e1/physical_hopf.

[32] H. Liu, “Hopf Fibration,”. http:
//www.nilesjohnson.net/hopf-articles/Hongwan_Liu-Hopf_fibration.pdf.

[33] N. Johnson, “Visualizations of the Hopf fibration,” 2011.
http://www.youtube.com/watch?v=QXDQsmL-8Us. As from minute 39.

[34] R. Mosseri and R. Dandoloff, “Geometry of entangled states, Bloch spheres and
Hopf fibrations,” Journal of Physics A: Mathematical and General 34 (2001)
no. 47, 10243. http://iopscience.iop.org/0305-4470/34/47/324.

[35] G. Heinze, C. Hubrich, and T. Halfmann, “Stopped Light and Image Storage by
Electromagnetically Induced Transparency up to the Regime of One Minute,”
Physical review letters 111 (2013) no. 3, 033601.
http://prl.aps.org/abstract/PRL/v111/i3/e033601.

[36] H. H. S. M. Coxeter, Twisted honeycombs, vol. 4. AMS Bookstore, 1970.

[37] G. Toth, Glimpses of algebra and geometry. Springer, 2002.

[38] J.-P. Luminet, “A cosmic hall of mirrors,” arXiv preprint physics/0509171 (2005)
. http://arxiv.org/abs/physics/0509171.

21

http://www.ams.org/journals/bull/0000-000-00/S0273-0979-2012-01385-X/S0273-0979-2012-01385-X.pdf
http://www.ams.org/journals/bull/0000-000-00/S0273-0979-2012-01385-X/S0273-0979-2012-01385-X.pdf
http://www.austms.org.au/Publ/Gazette/2005/Sep05/millennium.pdf
http://www.jstor.org/stable/10.2307/3219300
http://www.learningace.com/doc/1620000/df1ae1fee6122d02ff5ef50b469105e1/physical_hopf
http://www.learningace.com/doc/1620000/df1ae1fee6122d02ff5ef50b469105e1/physical_hopf
http://www.nilesjohnson.net/hopf-articles/Hongwan_Liu-Hopf_fibration.pdf
http://www.nilesjohnson.net/hopf-articles/Hongwan_Liu-Hopf_fibration.pdf
http://www.youtube.com/watch?v=QXDQsmL-8Us
http://iopscience.iop.org/0305-4470/34/47/324
http://prl.aps.org/abstract/PRL/v111/i3/e033601
http://arxiv.org/abs/physics/0509171


[39] J.-P. Luminet, “Geometry and topology in relativistic cosmology,” arXiv preprint
arXiv:0704.3374 (2007) . http://arxiv.org/abs/0704.3374.

[40] J.-P. Luminet, “The shape and topology of the universe,” arXiv preprint
arXiv:0802.2236 (2008) . http://arxiv.org/abs/0802.2236.

[41] J. Stillwell, “The story of the 120-cell,” Notices of the AMS 48 (2001) no. 1, .
http://www.ams.org/notices/200101/fea-stillwell.pdf.
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