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Abstract 
Consider the structure of the wire with constant current. 
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1. Introduction  
In [1] it was shown that constant current in a wire has complex 

structure, and this serves as a base for assertions about the fact that the 
flow of electromagnetic energy:  

 is directed along the wire axis, 

 propagates along the wire axis, 

 spreads inside the wire, 

 compensates the heat losses of the current's axis component  
Below we shall consider the constant current structure in a stricter way. 

 

2. Mathematical Model 
Current in the wire is usually regarded as the average flow of 

electrons. Mechanical interaction of electrons with atoms are considered 
equivalent to electrical resistance. In modeling the current we shall use 

cylindrical coordinates zr ,,  . The Maxwell equations for magnetic 

intensity and currents in stationary magnetic field have the form  

  0div H ,      (1) 

Jrot(H) ,      (2) 

or 
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The model is based on the following facts:  

1. the main electric intensities 
oE  is directed along the wire axis , 

2. it creates the main electric current 
oJ  – the vertical flow of 

charges, 

3. vertical current 
oJ  forms an annular magnetic field with intensity 

H  and radial magnetic field 
rH  - see (6), 

4. magnetic field 
H  deflects by the Lorentz forces charges vertical 

flow in the radial direction, creating a radial flow of charges - 

radial current 
rJ , 

5. magnetic field 
H  deflects by the Lorentz forces the charges of 

radial flow perpendicularly to the radii, thus creating an vertical 

current 
zJ  (in addition to current 

oJ ),  

6. magnetic field 
rH  by the aid of the Lorentz forces deflects the 

charges of vertical flow perpendicularly to the radii, thus creating 
an annular current 

J , 

7. magnetic field 
rH  by the aid of the Lorentz forces deflects the 

charges of annular flow along radii, thus creating vertical current 

zJ  (in addition to current 
oJ ), 

8. current 
rJ  forms a vertical magnetic field 

zH  and annular 

magnetic field 
H  - see (4), 

9. current 
J  form a vertical magnetic field 

zH  and radial magnetic 

field 
rH  - see (5), 

10. current 
zJ  form a annular magnetic field 

H  and radial magnetic 

field 
rH  - see (6), 

11. the currents correspond to the same name electric intensities, i.e. 

JE   ,       (7) 

where   is the electrical resistance. 
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Thus, the main electric current 
oJ  creates additional currents 

zr JJJ ,,   and magnetic fields zr HHH ,,  . They should satisfy the 

Maxwell equations (3-6). Besides, the currents should satisfy the 
condition of continuity  

0)(div J .       (8) 

First of all we must prove that the solution of system (3-8) exists 

for non-zero currents .,, zr JJJ   

 

3. Solution of the Equations 
From physical considerations it is clear that the field must be 

uniform along the vertical axis, i.e., derivatives with respect to argument z 
should be absent, and therefore the equation (3-6, 8) should be rewritten 
as: 
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The solution of equation is given in appendix, where it is shown that for 

given 
 hj ,  the following equations are determined 

)sin(
2

. 


rhH r  ,     (14) 

2
)cos(.

rJ
rhH o  ,     (15) 

)sin(
2

1 2 rjH z  ,     (16) 

)cos(
2
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rjJ r  ,     (17) 

)sin(.  rjJ  ,      (18) 

       sincos21 2  hJJ oz
.  (19) 
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4. The Currents Structure 
Based on equations (17-19) let us consider the distribution of 

currents in the volume of cylindrical wire. All the examples are shown 

for 50,10,1,1  Rhj 
. 

zrJ 

rJ

rJ
J

zĴ





r

 
Fig. 0. 

 

Fig. 0 shows the vectors of currents zr JJJ ,,  . This figure shows 

for fixed value of   also the vector rJ  (equal to the sum of vectors   

rJ  and J ), and vector zrJ   (equal to the sum of vectors rJ  and
oJ ). 

Vector rJ  makes an angle   with the radius. One can see that vector 

zrJ   is directed at a certain angle   to the cylinder axis.  
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Figures 1, 2, 3, 4 show the values of JJ r , , rJ    on the section 

plane  ,r . Fig. 5 shows the lines of currents JJ r ,  on this plane 

for 8 . It is important to note that on the lines of current rJ  the 

current 0J . It can be seen that the continuity of current lines is still 

being observed – see (13). 

rJ

J

 
Fig. 5. 

Similarly, he tension lines HHr ,  are represented similarly on the 

section plane  ,r . The difference lies in the fact that on the tension 

lines rH  tension 2. rJH o  - see (15). It can be seen that the 

continuity of force lines is still being observed – see (9).  
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It is important to know that on the circumference of the outer 

radius R  the tension  H  is not constant, it is determined from (15) and 

has the form: 

2)cos(. RJRhH oR       (20) 

Fig. 6 shows value zJ  on the section plane  ,r . Figures 7, 8 

show values zrJ  ,   on the section plane  ,r  for 500oJ . 

Evidently, the current lines zrJ   are always inclined to the cylinder axis. 

This fact was the main argument in justifying these conclusions that were 
indicated in the introduction of the paper [1]  

 
Let us note that there are cases when the angle   is constant. For 

example, the Figures 9, 10 show the values zrJ  ,   for 2 . 
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5. The Power 
Let us find the power of the heat loss density, denoting by R - the 

outer radius of the wire, L - length of wire,  - electrical resistance. 

The current 
rJ  flows though the section dLr   on the length dr . 

So the power of losses due to these currents is equal to the following 
integral:  
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The current J  flows through the section drL   on the 

length dr  . So the power of losses due to these currents is equal to the 

following integral:  
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The current zJ  flows through the section drdr    on the 

length L . So the power of losses due to these currents is equal to the 
following integral: 
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or 
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and 

    41164/1 4222222    hJRjLRPPPP ozr  (25) 

In electrical circuits of constant current, the principle of minimum 
heat loss is observed. For the first time such a property of electrical 
circuits was noticed by Maxwell [2], who found that in circuits with 
resistors the currents minimize heat loss power. Minimum of power (25) 
is observed for:  

     min41164/1 42222    hRj   (26) 

From this it follows: 

   41164/1 42222    hRj   

or 

Rhj   .      (27) 

where 

   414 24   ,     (28) 

i.e. 

     41164/1 422222    hJLRP o  

or 

  164/1 4222    hJLRP o    (29) 

The energy expended by the Lorentz forces to create additional currents 

zr JJJ ,,  , is delivered by the main current oJ . Hence, the creation of 

additional currents is equivalent to an increase of resistance by some 

amount  . This fact can be written as follows: 

  PLJR o  22 .     (30) 

From (25, 27, 30) it follows that 
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Example 
All calculations will be performed in CI system. Let us find maximal 
currents and tensions from (14-19): 
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Let in the formula (31) be 01.0  . Then 1601.0 422 hJo  , or 

204.0  oJh  .       (33) 

Let also 2 , .001.0R  Then in (33, 28, 27) we find oJh 01.0 , 

10 , oJj 100 , and from (32) find: 

or JJ 1.0.  , oJJ 1.0.  ,   oz JJ 02.01 .   (34) 

Thus, there exist such conditions in which the considered current 
structure is possible.  

 

Appendix 
Let us consider the solution of equations (9-13). From physical 

considerations it is clear that the field must be homogenous along the 
vertical axis, i.e. the derivatives with respect to argument z , and, 
consequently, the equations (9-13) from the main section must be 
rewritten as follows:  
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Let us assume that 
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From (1, 6, 7) follows: 
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From (9, 10) follows: 

      zr Jhhh    cossin ,   

or 

       sincos21 2  hJ z
.   (11) 

Now let us assume that:  
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)sin(.  rjJ  .      (13) 

From (5, 11, 12) follows: 
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From (2, 12) we find 
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From (15, 16) it follows that 
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From (3, 13) we find 
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From (18) it follows that 

)sin(
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Formula (17, 19) are identical, indicating that the correct solutions. 
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