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We study the relation between hidden variables theories and quantum computation. We discuss
an inconsistency between a hidden variables theory and controllability of quantum computation. To
derive the inconsistency, we use the maximum value of the square of an expected value. We propose
a solution of the problem by using new hidden variables theory. Also we discuss an inconsistency
between hidden variables theories and the double-slit experiment as the most basic experiment in
quantum mechanics. This experiment can be an easy detector to Pauli observable. We cannot
accept hidden variables theories to simulate the double-slit experiment in a specific case. Hidden
variables theories may not depicture quantum detector. This is a quantum measurement theoretical
profound problem.

PACS numbers: 03.67.Lx, 03.67.-a, 03.65.Ud

I. INTRODUCTION

Quantum mechanics (cf. [1—6]) gives approximate
and at times remarkably accurate numerical predictions.
Much experimental data approximately fits to the quan-
tum predictions for the past some 100 years. We do not
doubt the correctness of quantum mechanics. Quantum
mechanics also says new science with respect to informa-
tion theory. The science is called the quantum informa-
tion theory [6]. Therefore, quantum mechanics gives us
very useful another theory in order to create new infor-
mation science and to explain the handling of raw exper-
imental data in our physical world.

As for the foundations of quantum mechanics, Leggett-
type non-local variables theory [7] is experimentally in-
vestigated [8—10]. The experiments report that quantum
mechanics does not accept Leggett-type non-local vari-
ables interpretation. As for the applications of quantum
mechanics, implementation of a quantum algorithm to
solve Deutsch’s problem [11] on a nuclear magnetic res-
onance quantum computer is reported firstly [12]. Im-
plementation of the Deutsch-Jozsa algorithm on an ion-
trap quantum computer is also reported [13]. There are
several attempts to use single-photon two-qubit states
for quantum computing. Oliveira et al. implement
Deutsch’s algorithm with polarization and transverse
spatial modes of the electromagnetic field as qubits [14].
Single-photon Bell states are prepared and measured [15].
Also the decoherence-free implementation of Deutsch’s
algorithm is reported by using such single-photon and
by using two logical qubits [16]. More recently, a one-
way based experimental implementation of Deutsch’s al-
gorithm is reported [17].

Given the fundamental studies and the application re-
ports, we consider why quantum computer is faster than
classical counterpart. It is essential to study the rela-
tion between hidden variables theory (classical theory)

and quantum mechanics to investigate the quantum com-
putation problem. So we address studying the relation
between hidden variables theories and quantum compu-
tation.

We study the relation between hidden variables the-
ories and quantum computation. The possible values of
the pre-determined result of measurements are±1 (in �/2
unit) in the original hidden variables theory. The refer-
ence frames are necessary to control a quantum state.
We need controllability of quantum computation.

Let us consider controllability of quantum computa-
tion. We derive quantum proposition concerning a quan-
tum expected value under an assumption about the exis-
tence of the orientation of reference frames in N spin-1/2
systems. However, the original hidden variables theory
violates the proposition with a magnitude that grows
exponentially with the number of particles. To derive
the inconsistency, we rely on the maximum value of the
square of an hidden variables theoretical expected value.
Therefore, we have to give up either the existence of the
reference frames or the original hidden variables theory.
The original hidden variables theory does not depicture
physical phenomena using reference frames with a viola-
tion factor that grows exponentially with the number of
particles.

The double-slit experiment is an illustration of wave-
particle duality. In it, a beam of particles (such as pho-
tons) travels through a barrier with two slits removed. If
one puts a detector screen on the other side, the pattern
of detected particles shows interference fringes charac-
teristic of waves; however, the detector screen responds
to particles. The system exhibits the behaviour of both
waves (interference patterns) and particles (dots on the
screen).

If we modify this experiment so that one slit is closed,
no interference pattern is observed. Thus, the state of
both slits affects the final results. We can also arrange
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to have a minimally invasive detector at one of the slits
to detect which slit the particle went through. When
we do that, the interference pattern disappears. An
analysis of a two-atom double-slit experiment based on
environment-induced measurements is reported [18].
We assume an implementation of the double-slit ex-

periment. There is a detector just after each slit. Thus
interference figure does not appear, and we do not con-
sider such a pattern. The possible values of the result of
measurements are ±1 (in �/2 unit). If a particle passes
one side slit, then the value of the result of measurement
is +1. If a particle passes through another slit, then the
value of the result of measurement is −1. This model is
an easy detector model to Pauli observable.
We consider whether hidden variables theories meet an

easy detector model to Pauli observable. We assume an
implementation of the double-slit experiment. There is a
detector just after each slit. We assume that a source of
spin-carrying particles emits them in a state, which can
be described as an eigenvector of Pauli observable σz.
We consider a single expected value of Pauli observable
σx in the double-slit experiment. A wave function anal-
ysis says that the quantum expected value of it is zero.
However, hidden variables theories can predict different
value to the expected value of �σx� = 0. To derive the
inconsistency, we use the maximum value of the square
of an expected value. Hence, hidden variables theories
do not meet the easy detector model as the whole.
Our paper is organized as follows.
In Sec. II, we argue a hidden variables theory does not

meet the reference frames.
In Sec. III, we give a solution of the problem of the

hidden variables theory. We find new hidden variables
theory meets the reference frames.
In Sec. IV, we review the Deutsch-Jozsa algorithm us-

ing new hidden variables theory.
In Sec. V, we discuss the relation between the double-

slit experiment and hidden variables theories.
Section VI concludes this paper.

II. A HIDDEN VARIABLES THEORY DOES

NOT MEET THE REFERENCE FRAMES

Assume that we have a set of N spins 1
2 . Each of them

is a spin-1/2 pure state lying in the x-y plane. Let us
assume that one source of N uncorrelated spin-carrying
particles emits them in a state, which can be described
as a multi spin-1/2 pure uncorrelated state. Let us pa-
rameterize the settings of the jth observer with a unit
vector �nj (its direction along which the spin component
is measured) with j = 1, . . . , N . One can introduce the
‘hidden variables’ correlation function, which is the aver-
age of the product of the hidden results of measurement

EHV(�n1, �n2, . . . , �nN ) = �r(�n1, �n2, . . . , �nN )�avg, (1)

where r is the hidden result. We assume the value of r
is ±1 (in (�/2)N unit), which is obtained if the measure-

ment directions are set at �n1, �n2, . . . , �nN .
Also one can introduce a quantum correlation function

with the system in such a pure uncorrelated state

EQM(�n1, �n2, . . . , �nN ) = tr[ρ�n1 · �σ ⊗ �n2 · �σ ⊗ · · · ⊗ �nN · �σ]
(2)

where ⊗ denotes the tensor product, · the scalar product
in R2, �σ = (σx, σy) is a vector of two Pauli operators,
and ρ is the pure uncorrelated state,

ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN (3)

with ρj = |Ψj��Ψj | and |Ψj� is a spin-1/2 pure state lying
in the x-y plane.
One can write the observable (unit) vector �nj in a plane

coordinate system as follows:

�nj(θ
kj
j ) = cos θ

kj
j �x

(1)
j + sin θ

kj
j �x

(2)
j , (4)

where �x
(1)
j = �x and �x

(2)
j = �y are the Cartesian axes.

Here, the angle θ
kj
j takes two values (two-setting model):

θ1j = 0, θ2j =
π

2
. (5)

We derive a necessary condition to be satisfied by the
quantum correlation function with the system in a pure
uncorrelated state given in (2). In more detail, we de-
rive the maximum value of the product of the quantum
correlation function, EQM given in (2), i.e., �EQM�2max.
We use the decomposition (4). We introduce simplified
notations as

Ti1i2...iN = tr[ρ�x
(i1)
1 · �σ ⊗ �x(i2)2 · �σ ⊗ · · · ⊗ �x(iN )N · �σ] (6)

and

�cj = (c1j , c
2
j ) = (cos θ

kj
j , sin θ

kj
j ). (7)

Then, we have

�EQM�2

=

2�

k1=1

· · ·
2�

kN=1




2�

i1,... ,iN=1

Ti1...iN c
i1
1 · · · ciNN





2

=

2�

i1,... ,iN=1

T 2i1...iN ≤ 1, (8)

where we use the orthogonality relation
�2

kj=1
cαj c

β
j =

δα,β. The value of
�2

i1,... ,iN=1
T 2i1...iN is bounded as

�2
i1,... ,iN=1

T 2i1...iN ≤ 1. We have

N�

j=1

2�

ij=1

(tr[ρj�x
(ij)
j · �σ])2 ≤ 1. (9)

From the convex argument, all quantum separable states
must satisfy the inequality (8). Therefore, it is a sepa-
rability inequality. It is important that the separability
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inequality (8) is saturated iff ρ is a multi spin-1/2 pure
uncorrelated state such that, for every j, |Ψj� is a spin-
1/2 pure state lying in the x-y plane. The reason of the
inequality (8) is due to the following quantum inequality

2�

ij=1

(tr[ρj�x
(ij)
j · �σ])2 ≤ 1. (10)

The inequality (10) is saturated iff ρj = |Ψj��Ψj | and
|Ψj� is a spin-1/2 pure state lying in the x-y plane. The
inequality (8) is saturated iff the inequality (10) is satu-
rated for every j. Thus we have the maximum possible
value of the scalar product as a quantum proposition con-
cerning the reference frames

�EQM�2max = 1 (11)

when the system is in such a multi spin-1/2 pure uncor-
related state.

On the other hand, a correlation function satisfies the
hidden variables theory if it can be written as

EHV(�n1, �n2, . . . , �nN ) = lim
m→∞

�m

l=1 r(�n1, �n2, . . . , �nN , l)

m
(12)

where l denotes some hidden variable and r is the hid-
den result of measurement of the dichotomic observables
parameterized by the directions of �n1, �n2, . . . , �nN .

Assume the quantum correlation function with the sys-
tem in a pure uncorrelated state given in (2) admits the
hidden variables theory. One has the following proposi-
tion concerning the hidden variables theory

EQM(�n1, �n2, . . . , �nN) = lim
m→∞

�m

l=1 r(�n1, �n2, . . . , �nN , l)

m
.

(13)

In what follows, we show that we cannot assign the
truth value “1” for the proposition (13) concerning the
hidden variables theory. We rely on the maximum value
of the square of an expected value. Assume the proposi-
tion (13) is true. By changing the hidden variable l into
l′, we have the same quantum expected value as follows

EQM(�n1, �n2, . . . , �nN ) = lim
m→∞

�m

l′=1 r(�n1, �n2, . . . , �nN , l
′)

m
.

(14)

An important note here is that the value of the right-
hand-side of (13) is equal to the value of the right-hand-
side of (14) because we only change the hidden variable.

We abbreviate r(�n1, �n2, . . . , �nN , l) to r(l) and
r(�n1, �n2, . . . , �nN , l

′) to r(l′).

We have

�EQM�2

=

2�

k1=1

· · ·
2�

kN=1�
lim
m→∞

�m

l=1 r(l)

m
× lim
m→∞

�m

l′=1 r(l
′)

m

	

≤
2�

k1=1

· · ·
2�

kN=1�
lim
m→∞

�m

l=1

m
× lim
m→∞

�m

l′=1

m
|r(l)r(l′)|

	

=

2�

k1=1

· · ·
2�

kN=1�
lim
m→∞

�m

l=1

m
× lim
m→∞

�m

l′=1

m

	
= 2N . (15)

Here we use the fact

|r(l)r(l′)| = 1 (16)

since the possible values of r(l) are ±1. The above in-
equality can be saturated because we have

{l|r(l) = 1} = {l′|r(l′) = 1}
{l|r(l) = −1} = {l′|r(l′) = −1}. (17)

Hence we derive the following proposition if we assign the
truth value “1” for a hidden variables theory

�EQM�2max = 2N . (18)

Clearly, we cannot assign the truth value “1” for two
propositions (11) (concerning the reference frames) and
(18) (concerning the hidden variables theory), simultane-
ously, when the system is in a multiparticle pure uncor-
related state. Of course, each of them is a spin-1/2 pure
state lying in the x-y plane. Therefore, we are in the
contradiction when the system is in such a multiparti-
cle pure uncorrelated state. Thus, we cannot accept the
validity of the proposition (13) (concerning the hidden
variables theory) if we assign the truth value “1” for the
proposition (11) (concerning the reference frames). In
other words, the hidden variables theory does not reveal
physical phenomena using reference frames. The refer-
ence frames are necessary to control a quantum state.
Thus, the hidden variables theory does not reveal physi-
cal phenomena controlling a quantum state.

III. SOLUTION OF THE PROBLEM OF THE

HIDDEN VARIABLES THEORY

In this section, we solve the contradiction presented
in the previous section. We have the maximum possible
value of the product as a quantum proposition concerning
the reference frames

�EQM�2max = 1 (19)
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when the system is in such a multi spin-1/2 pure uncor-
related state. On the other hand, one has the following
proposition concerning the hidden variables theory

�EQM�2max = 2N . (20)

We cannot assign the truth value “1” for two propositions
(19) (concerning the reference frames) and (20) (concern-
ing the hidden variables theory), simultaneously, when
the system is in a multiparticle pure uncorrelated state.
Of course, each of them is a spin-1/2 pure state lying
in the x-y plane. Therefore, we are in the contradiction
when the system is in such a multiparticle pure uncorre-
lated state.
We introduce the following hypothesis:
Hypothesis: We assume the value of r is ± 1√

2N
(in

(�/2)N unit), which is obtained if the measurement di-
rections are set at �n1, �n2, . . . , �nN .
When we accept this hypothesis, the proposition (20)

(concerning the hidden variables theory) becomes the fol-
lowing new proposition concerning other hidden variables
theory (two-setting model)

�EQM�2max = 1. (21)

We can assign the truth value “1” for both two propo-
sitions (19) (concerning the reference frames) and (21)
(concerning other hidden variables theory), simultane-
ously, when the system is in a multiparticle pure uncor-
related state. Of course, each of them is a spin-1/2 pure
state lying in the x-y plane. Therefore, we are not in the
contradiction when the system is in such a multiparticle
pure uncorrelated state. Hence, we solve the contradic-
tion presented in the previous section by changing the
value of the result of pre-determined measurements. Our
solution is equivalent to changing Planck’s constant (�)

to the new constant (�/
√
2).

IV. THE DEUTSCH-JOZSA ALGORITHM

USING NEW HIDDEN VARIABLES THEORY

The earliest quantum algorithm, the Deutsch-Jozsa al-
gorithm, is representative to show that quantum compu-
tation is faster than classical counterpart with a magni-
tude that grows exponentially with the number of qubits.
Let us follow the argumentation presented in [6]. –

– The application, known as Deutsch’s problem, may be
described as the following game. Alice, in Amsterdam,
selects a number x from 0 to 2N − 1, and mails it in
a letter to Bob, in Boston. Bob calculates the value of
some function

f : {0, . . . , 2N − 1} → {0, 1} (22)

and replies with the result, which is either 0 or 1. Now,
Bob has promised to use a function f which is of one
of two kinds; either the value of f(x) is constant for all
values of x, or else the value of f(x) is balanced, that is,
equal to 1 for exactly half of all the possible x, and 0 for

the other half. Alice’s goal is to determine with certainty
whether Bob has chosen a constant or a balanced func-
tion, corresponding with him as little as possible. How
fast can she succeed?
In the classical case, Alice may only send Bob one value

of x in each letter. At worst, Alice will need to query Bob
at least

2N/2 + 1 (23)

times, since she may receive 2N/2 0s before finally getting
a 1, telling her that Bob’s function is balanced. The best
deterministic classical algorithm she can use therefore re-
quires 2N/2 + 1 queries. Note that in each letter, Alice
sends Bob N bits of information. Furthermore, in this
example, physical distance is being used to artificially el-
evate the cost of calculating f(x), but this is not needed
in the general problem, where f(x) may be inherently
difficult to calculate.
If Bob and Alice were able to exchange qubits, in-

stead of just classical bits, and if Bob agreed to calculate
f(x) using a unitary transformation Uf , then Alice could
achieve her goal in just one correspondence with Bob,
using the following algorithm.
Alice has an N qubit register to store her query in, and

a single qubit register which she will give to Bob, to store
the answer in. She begins by preparing both her query
and answer registers in a superposition state. Bob will
evaluate f(x) using quantum parallelism and leave the
result in the answer register. Alice then interferes states
in the superposition using a Hadamard transformation
(a unitary transformation),

H = (σx + σz)/
√
2, (24)

on the query register, and finishes by performing a suit-
able measurement to determine whether f was constant
or balanced.
Let us follow the quantum states through this algo-

rithm. The input state is

|ψ0� = |0�⊗N |1�. (25)

Here the query register describes the state of N qubits
all prepared in the

|0� (26)

state. After the Hadamard transformation on the query
register and the Hadamard gate on the answer register
we have

|ψ1� =
�

x∈{0,1}N

|x�√
2N


 |0� − |1�√
2

�
. (27)

The query register is now a superposition of all values,
and the answer register is in an evenly weighted super-
position of

|0� (28)

and

|1�. (29)
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Next, the function f is evaluated (by Bob) using

Uf : |x, y� → |x, y ⊕ f(x)�, (30)

giving

|ψ2� = ±
�

x

(−1)f(x)|x�√
2N


 |0� − |1�√
2

�
. (31)

Here

y ⊕ f(x) (32)

is the bitwise XOR (exclusive OR) of y and f(x). Alice
now has a set of qubits in which the result of Bob’s func-
tion evaluation is stored in the amplitude of the qubit
superposition state. She now interferes terms in the
superposition using a Hadamard transformation on the
query register. To determine the result of the Hadamard
transformation it helps to first calculate the effect of the
Hadamard transformation on a state

|x�. (33)

By checking the cases x = 0 and x = 1 separately we see
that for a single qubit

H |x� =
�

z

(−1)xz |z�/
√
2. (34)

Thus

H⊗N |x1, . . . , xN �

=

�
z1,... ,zN

(−1)x1z1+···+xNzN |z1, . . . , zN �√
2N

. (35)

This can be summarized more succinctly in the very use-
ful equation

H⊗N |x� =
�

z(−1)x·z|z�√
2N

, (36)

where

x · z (37)

is the bitwise inner product of x and z, modulo 2. Using
this equation and (31) we can now evaluate |ψ3�,

|ψ3� = ±
�

z

�

x

(−1)x·z+f(x)|z�√
2N


 |0� − |1�√
2

�
. (38)

Alice now observes the query register. Note that the
absolute value of the amplitude for the state

|0�⊗N (39)

is
�

x

(−1)f(x)/2N . (40)

Let’s look at the two possible cases – f constant and f
balanced – to discern what happens. In the case where
f is constant the absolute value of the amplitude for

|0�⊗N (41)

is +1. Because

|ψ3� (42)

is of unit length it follows that all the other amplitudes
must be zero, and an observation will yield

(+
1√
2
) (43)

times for all N qubits in the query register. Thus, global
measurement outcome is

(+
1√
2N

). (44)

If f is balanced then the positive and negative contribu-
tions to the absolute value of the amplitude for

|0�⊗N (45)

cancel, leaving an amplitude of zero, and a measurement
must yield a result other than

+
1√
2
, (46)

that is,

− 1√
2
, (47)

on at least one qubit in the query register. Summarizing,
if Alice measures all (+ 1√

2
)s and global measurement out-

come is (+ 1√
2N

) the function is constant; otherwise the

function is balanced.
We notice that the difference between + 1√

2N
and

− 1√
2N

is approximately zero when N ≫ 1. We ques-

tion if the Deutsch-Jozsa algorithm in the macroscopic
scale is possible or not. This question is open problem.
We see the measurement outcome is predetermined.

This is classical situation. We can see the result of the
Deutsch-Jozsa algorithm classically. And an input state
violates non local realism [19]. This is quantum theoreti-
cal situation. The Deutsch-Jozsa algorithm is performed
in the arrow of time. The arrow of time goes from quan-
tum theory to classical theory. This physical situation
is similar to the quantum decoherence. We may say the
Deutsch-Jozsa algorithm is physical.

V. THE DOUBLE-SLIT EXPERIMENT AND

HIDDEN VARIABLES THEORIES

In this section, we consider the relation between the
double-slit experiment and the original hidden variables
theory. We assume an implementation of the double-
slit experiment. There is a detector just after each slit.
Thus interference figure does not appear, and we do not
consider such a pattern. The possible values of the result
of measurements are ±1 (in �/2 unit). If a particle passes
one side slit, then the value of the result of measurement
is +1. If a particle passes through another slit, then the
value of the result of measurement is −1.
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A. A wave function analysis

Let (σz , σx) be Pauli vector. We assume that a source
of spin-carrying particles emits them in a state |ψ�, which
can be described as an eigenvector of Pauli observable σz.
We consider a quantum expected value �σx� as

�σx� = �ψ|σx|ψ� = 0. (48)

The above quantum expected value is zero if we consider
only a wave function analysis.
We derive a necessary condition for the quantum ex-

pected value for the system in the pure spin-1/2 state |ψ�
given in (48). We derive the possible value of the product
�σx�× �σx� = �σx�2. �σx� is the quantum expected value
given in (48). We have

�σx�2 = 0. (49)

Thus,

�σx�2 ≤ 0. (50)

We derive the following proposition

(�σx�2)max = 0. (51)

B. The original hidden variables theory

On the other hand, a mean value E admits the hidden
variables theory if it can be written as

E =

�m

l=1 rl(σx)

m
(52)

where l denotes some hidden variable and r is the hidden
result of measurement of the Pauli observable σx. We
assume the value of r is ±1 (in �/2 unit).
Assume the quantum mean value with the system in

an eigenvector (|ψ�) of Pauli observable σz given in (48)
admits the hidden variables theory. One has the following
proposition concerning the hidden variables theory

�σx�(m) =

�m

l=1 rl(σx)

m
. (53)

We can assume as follows by Strong Law of Large Num-
bers,

�σx�(+∞) = �σx� = �ψ|σx|ψ�. (54)

In what follows, we show that we cannot assign the truth
value “1” for the proposition (53) concerning the hidden
variables theory. We rely on the maximum value of the
square of a mean value.
Assume the proposition (53) is true. By changing the

hidden variable l into l′, we have the same quantum mean
value as follows

�σx�(m) =

�m

l′=1 rl′(σx)

m
. (55)

An important note here is that the value of the right-
hand-side of (53) is equal to the value of the right-hand-
side of (55) because we only change the hidden variable.
We have

�σx�(m)× �σx�(m)

=

�m

l=1 rl(σx)

m
×
�m

l′=1 rl′(σx)

m

≤
�m

l=1

m
×
�m

l′=1

m
|rl(σx)rl′(σx)|

=

�m

l=1

m
×
�m

l′=1

m
= 1. (56)

Here we use the fact

|rl(σx)rl′(σx)| = 1 (57)

since the possible values of rl(σx) are ±1. The above
inequality can be saturated because we have

{l|rl(σx) = 1} = {l′|rl′(σx) = 1}
{l|rl(σx) = −1} = {l′|rl′(σx) = −1}. (58)

Hence we derive the following proposition if we assign the
truth value “1” for a hidden variables theory

(�σx�(m)× �σx�(m))max = 1. (59)

From Strong Law of Large Numbers, we have

(�σx� × �σx�)max = 1. (60)

Hence we derive the following proposition concerning the
hidden variables theory

(�σx�2)max = 1. (61)

We do not assign the truth value “1” for two proposi-
tions (51) (concerning a wave function analysis) and (61)
(concerning the hidden variables theory), simultaneously.
We are in the contradiction.
We cannot accept the validity of the proposition (53)

(concerning the hidden variables theory) if we assign the
truth value “1” for the proposition (51) (concerning a
wave function analysis). In other words, we cannot ac-
cept the hidden variables theory to simulate the detector
model for spin observable σx.

C. New hidden variables theory

A mean value E admits new hidden variables theory if
it can be written as

E =

�m

l=1 rl(σx)

m
(62)

where l denotes some hidden variable and r is the hidden
result of measurement of the Pauli observable σx. We
assume the value of r is ±1/

√
2 (in �/2 unit).
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Assume the quantum mean value with the system in an
eigenvector (|ψ�) of Pauli observable σz given in (48) ad-
mits new hidden variables theory. One has the following
proposition concerning new hidden variables theory

�σx�(m) =

�m

l=1 rl(σx)

m
. (63)

We can assume as follows by Strong Law of Large Num-
bers,

�σx�(+∞) = �σx� = �ψ|σx|ψ�. (64)

In what follows, we show that we cannot assign the truth
value “1” for the proposition (63) concerning new hidden
variables theory. We rely on the maximum value of the
square of a mean value.
Assume the proposition (63) is true. By changing the

hidden variable l into l′, we have the same quantum mean
value as follows

�σx�(m) =

�m

l′=1 rl′(σx)

m
. (65)

An important note here is that the value of the right-
hand-side of (63) is equal to the value of the right-hand-
side of (65) because we only change the hidden variable.
We have

�σx�(m)× �σx�(m)

=

�m

l=1 rl(σx)

m
×
�m

l′=1 rl′(σx)

m

≤
�m

l=1

m
×
�m

l′=1

m
|rl(σx)rl′(σx)|

=

�m

l=1

m
×
�m

l′=1

m
(1/2) = 1/2. (66)

Here we use the fact

|rl(σx)rl′(σx)| = 1/2 (67)

since the possible values of rl(σx) are ±1/
√
2. The above

inequality can be saturated because we have

{l|rl(σx) = 1/
√
2} = {l′|rl′(σx) = 1/

√
2}

{l|rl(σx) = −1/
√
2} = {l′|rl′(σx) = −1/

√
2}. (68)

Hence we derive the following proposition if we assign the
truth value “1” for new hidden variables theory

(�σx�(m)× �σx�(m))max = 1/2. (69)

From Strong Law of Large Numbers, we have

(�σx� × �σx�)max = 1/2. (70)

Hence we derive the following proposition concerning new
hidden variables theory

(�σx�2)max = 1/2. (71)

We do not assign the truth value “1” for two propo-
sitions (51) (concerning a wave function analysis) and
(71) (concerning new hidden variables theory), simulta-
neously. We are in the contradiction.

We cannot accept the validity of the proposition (63)
(concerning new hidden variables theory) if we assign the
truth value “1” for the proposition (51) (concerning a
wave function analysis). In other words, we cannot ac-
cept new hidden variables theory to simulate the detector
model for spin observable σx.

VI. CONCLUSIONS

In conclusion, we have studied the relation between a
hidden variables theory and quantum computation. The
possible values of the pre-determined result of measure-
ments have been ±1 (in �/2 unit). The reference frames
have been necessary to control a quantum state.

We have derived some proposition concerning a quan-
tum expected value under an assumption about the ex-
istence of the orientation of reference frames in N spin-
1/2 systems. However, the hidden variables theory has
violated the proposition with a magnitude that grows ex-
ponentially with the number of particles. Therefore, we
have had to give up either the existence of the reference
frames or the hidden variables theory. The hidden vari-
ables theory does not have depictured physical phenom-
ena using reference frames with a violation factor that
grows exponentially with the number of particles.

We have proposed a solution of the problem. Our so-
lution has been equivalent to changing Planck’s constant
(�) to a new constant (�/

√
2). The Deutsch-Jozsa al-

gorithm has been performed in the arrow of time. The
arrow of time has gone from quantum theory to classical
theory. This physical situation had been similar to the
quantum decoherence.

We may have said the Deutsch-Jozsa algorithm is phys-
ical. Also we have discussed the fact that both the orig-
inal hidden variables theory and new hidden variables
theory do not meet an easy detector model to a single
Pauli observable. Hidden variables theories may not de-
picture quantum detector. This is a quantum measure-
ment theoretical profound problem.
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