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Abstract    A new relativistic quantum wave equation has been derived by applying the 

quantum prescription to the momentum and the kinetic energy rather than to the 

momentum and the total energy, since after all it is the kinetic energy that generates the 

momentum.  The resulting equation reduces to the Schrödinger equation in the 

nonrelativistic limit and to the Klein-Gordon equation for “massless particles” in the 

relativistic limit, i.e., if the velocity of the particle approaches that of light, c.  For 

massive particles in general, the new equation deviates from the Klein-Gordon equation.  

The same equation is shown to decouple according to the Dirac formalism, yielding a 

modified form of Dirac equation.  When applied to a rest particle, the modified Dirac 

equation is shown to avoid a negative energy solution and instead include a constant 

solution.  The other, the time-dependent particle solution of the modified Dirac equation, 

has the characteristic frequency Mc
2
/(ћ/2) , i.e., twice those of the Dirac solutions, Mc

2
/ћ.     
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1.  Introduction 

It is well known that neither of the Klein-Gordon equation and Dirac equation, the 

relativistic quantum wave equations, reduces to the non-relativistic Schrödinger equation 

in the low velocity, non-relativistic limit.  As an example, the energy levels for a 

hydrogen-like atom calculated by either Klein-Gordon or Dirac equation, when higher 

order fine structure terms are ignored, differ from those calculated by the Schrodinger 

equation by the amount of Mc
2
, where M is the mass of the atom and c is the speed of 

light [1].  In this paper, we show a new relativistic quantum wave equation emerges by 

requiring that it reduce to the latter.  We begin with the familiar energy momentum 

relation for a particle [2-9],  

 42222
cMcPE += . (1) 
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If we define 
2

Mc≡E , the internal energy (many authors call this the rest energy,) we 

can then write Eγγ =≡ 2
McE  to be the relativistic total energy, υM≡P  to be the non-

relativistic momentum, and Pγυγ == MP  to be the relativistic momentum where 

2

2

11
c

υ
γ −= and v is the velocity of the particle.  The energy momentum relation, Eq. 

(1), may then be written,  

 
42

2

222 1
cMc

γ
+=PE . (2) 

When we work with the boosted energy and momentum, E and P as in Eq. (1), we will 

say we work in the relativistic γ-space, that is we work within 

 ∞<≤ γ1 .  

When we work with unboosted energy and momentum E and P as in Eq. (2), we will 

say in the following we work in the relativistic 1/γ-space, that is we work within 

 110 ≤≤ γ/ .  

An advantage of working in the 1/γ-space is that as the velocity of the particle 

approaches the speed of light, we avoid infinity (γ � ∞ when v ���� c) but work with zero 

(1/γ � 0 when v � c) instead.  Another advantage is conceptual; if the particle velocity is 

c, we no longer have to say the mass is zero but instead simply the effect of mass is zero.  

The γ appears in the equation as parameter; for instance each of the electron’s orbits in an 

atom has a particular angular velocity and radius hence a characteristic γ and 1/γ values.  

It, therefore, provides us with crucial information for the behavior of particles as will be 

demonstrated below. 

2. Schrödinger Equation in the Low Velocity, Nonrelativistic Limit 

We will first show the Schrödinger equation may be obtained in the low velocity, 

nonrelativistic limit both in γ-space and 1/γ-space. We will then extend the same method 

to derive a fully relativistic form of the quantum wave equation.  We will discuss how the 

new equation compares with the well-tested Klein-Gordon and Dirac equations [1] [10-

15].   

In γ-Space, we rearrange Eq. (1) to get 

 ( )( ) 2222
cPMcEMcE =+−  (3) 

and note that for v << c, 
2222 2McMcMcMcE ≅+=+ γ .  Hence for the low velocity 

end, we get 

 
M

P
T

2

2

≅  (4) 

where 
2222

2

1
MυMcMcMcET ≅−=−= γ is the relativistic kinetic energy of the 

particle. 

Substituting T by 
t

i
∂

∂
h , P by ∇hi , and operating on a function ψ, we obtain the 

Schrödinger equation in the free field, 
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 Ψ∇−=
∂

Ψ∂ 2
2

2Mt
i

h
h . (5) 

In 1/γ-Space, we use the same method as in the above to rearrange Eq. (2), and note that 

for v << c, 2
2

2Mc
Mc

≅+
γ

E .  Hence for the low velocity end, we obtain 

 
M2

2
P

≈T  (6) 

where 2
2

2

1
υ

γγ
M

McT
≅−=≡ ET .  Substituting T by 

t
i

∂

∂
h and P  by ∇hi and operating on a 

function ψ, we again obtain the Schrödinger equation in the free field, Eq. (5). 

3. Relativistic Quantum Wave Equation 

The derivation of the Schrödinger equation in the above from the relativistic energy 

momentum relations both in γ-space and 1/γ-space presents a way of naturally extending 

the same method to fully relativistic cases.  In addition to the momentum, we note that it 

is the kinetic energy that we apply the quantum prescription to, not the total energy, since 

after all it is the kinetic energy that generates the momentum.  

3.1 Relativistic Extension of the Schrödinger Equation in γ-Space  

We further rearrange Eq. (1) to read 

 ( )( ) 22222 2 cPMcMcEMcE =+−− . (7) 

By denoting the fully relativistic kinetic energy, 
2

McET −≡ and substituting T by 

t
i

∂

∂
h , P by ∇hi and operating on a function Φ, we obtain 

 Φ∇−=Φ














∂

∂
+

∂

∂
− 22

2

2

2

2

2 hh
h

t
Mi

tc
 (8) 

or in the tensor notation with the metric (+˗ ˗ ˗), 

 Φ∂=Φ∂∂ 02
h

Mc
i

µ
µ ; µ = 0, 1, 2, 3. (9) 

3.2 Relativistic Extension of the Schrödinger Equation in 1/γ-Space  

 We further rearrange Eq. (2) in the same manner as Eq. (7), substitute T = T/γ by 
t

i
∂

∂
h

and P = P/γ by ∇hi , and operate on a function Φ to obtain   

 Φ∇−=Φ














∂

∂
+

∂

∂
− 22

2

2

2

2

2 hh
h

t

M
i

tc γ  (10) 

or 

 Φ∂=Φ∂∂ 02
γ

µ
µ

h

Mc
i . (11) 
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In the following, we shall refer to the above as the Min equation in the 1/γ-space or 

simply the Min equation.  (The author proposes to use his own name not for fame but for 

accountability, at least until it is proven to deserve the name Schrödinger, as in 

“Relativistic Schrödinger Equation.”)  The γ-space equation, Eq. (9), may be transformed 

to the above simply by replacing the mass term M with M/γ.   

The above reduces to the Schrödinger equation if the second term in the bracket of Eq. 

(10) dominates.  This would be the case if ћγ/(Mc
2
t)<< 1, i.e., if v << c (then γ ≈1) and 

ћω = hν << Mc
2
 where ω is the angular velocity; for example, for the electrons in most 

bound-states.  In the opposite extreme, i.e., if v ≈ c (then 1/γ ≈ 0) and ћω = hν >> Mc
2
, 

the above reduces to the Klein-Gordon equation for “massless particles;” for example, for 

the photons or the electromagnetic waves. For massive particles in general, the above 

equation deviates from the Klein-Gordon equation.  The above is a new relativistic 

quantum wave equation for massive particles that reduces to the Schrödinger equation in 

the nonrelativistic limit. 

We define a unit four vector 

 µµµµµ
3210 IIIII +++=  (12) 

where  

 





















=





















=





















=





















=





















=

1

0

0

0

  ,

0

1

0

0

  ,

0

0

1

0

  ,

0

0

0

1

  ,

1

1

1

1

3210
µµµµµ

IIIII
. 

(13) 

When applied to the four derivative, it is understood that  

 
etc.  ;  ; 1100

3210

−∂=∂∂=∂

∂−∂−∂−∂=∂

µ
µ

µ
µ

µ
µ

II

I

 (14) 

This allows the above Min equation to be rewritten in a more maneuverable form,  

 Φ∂=Φ∂∂ µ
µµ

µ
γ

02 I
Mc

i
h

. (15) 

We see the left hand side term of the above in both the Maxwell’s equations and the 

Klein-Gordon equation and the right hand side time derivative term in both the 

Schrödinger equation and the Dirac equation. 

The above Min equation may be decoupled into the bispinor equations by deploying the 

Dirac formalism as following. 

3.3 A Modified Dirac Equation 

We will rewrite the energy-momentum equation, Eq. (1), in a tensor form,   

 022 =− cMPP µ
µ

 (16) 

where μ = 0, 1, 2, 3, and 

 ),/(),(),,,( 03210 ii PcEPPPPPPP ===µ
 (17) 

where i = 1,2,3.  Following Dirac [11, 12, 15], the above may be factored into two 4x4 

linear algebraic matrix equations 

 )McP)(McP(cMPP −+=− κ
κ

κ
κ

µ
µ γγ22

 (18) 
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where the Dirac matrices, γ
µ
, are defined 

 ),(),,,( 03210 iγγγγγγγ µ ==  (19) 

with 

 










−
=









−
=

0

0
  ,

0

00

i

i
i

I

I

σ

σ
γγ . (20) 

We note 
c

Mc

cc

E
P

2
0 γγ

===
E

 and denote PPPP
r

≡),,( 321  and PPPP
r

≡),,( 321 , hence 

P
rr

γ=P ,  

I (or simply 1) is a 2x2 unit matrix, and σ
i
 are 2 x 2 Pauli matrices.  From Eq. (16) and 

(18), we get a factored equation  

 0=− McPκ
κγ  (21) 

and 

 0=+ McPκ
κγ . (22) 

From the first set of the factored equations, Eq. (21), we get 

 02 =−− ∑
i

iicc
M

PE
0 γ

γ
γ  (23) 

which may be further rearranged 

 0
0

0

10

01 2 =










−
−−









− ∑
i

i

i

i

cc
M

PE
σ

σ

γ
, (24) 

and finally to 

 ∑ 










−
=



















−−−

−

i

i

i

i

c

c
M

)c
M

(

c
M

P

E

E

0

0

20

0

22

2

σ

σ

γγ

γ
. (25) 

Substituting T ≡ E – Mc
2
/γ = T/γ by ti ∂h and P = P/γ by ∇hi  where ,

t
t

∂

∂
≡∂ and 

operating on spinors ψA and ψB, defined by 

 








Ψ

Ψ
≡Ψ









Ψ

Ψ
≡Ψ









Ψ

Ψ
=





















Ψ

Ψ

Ψ

Ψ

≡Ψ
4

3

2

1
A

B

A

4

3

2

1

 , ; B  (26) 

we obtain, 

 ∑
=










Ψ

Ψ
∂










−
=









Ψ

Ψ

















−∂−

∂

321

2
0

0

20

0

,,i B

A
ii

i

B

A

t

t

ic
c

M
i

i

σ

σ

γ

h
h

h

 (27) 

By using the first of the following relationships: ,
00

01
21 and  

10

00
21 00




























=+

−
=− γγ  

the above may be written, 
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 ( ) 010 =−+∂ Ψ
γ

Mc
γΨγi μ

μ
h . (28) 

In the following, we will call the above the Modified Dirac equation. In a decoupled 

form, it reads from Eq (27), 

 

 
Ai

i
B

Bi
i

A

ΨσΨ
γ

Mc
i

ΨσΨ

∂=







−∂

∂=∂

h
20

0

 (29) 

The first is a massless, electromagnetic interaction between the spinors ΨA and ΨB.  The 

second is a massive interaction between the two as long as 1/γ > 0.  If v = c, then 1/γ = 0, 

and both are massless interactions.  Massless in the latter means not M = 0, but 1/γ = 0. 

From the second set of factored equations, Eq. (22), we get 

 ( ) 010 =++∂ Ψ
γ

Mc
γΨγi μ

μ
h . (30) 

We then get the exact same set of equations as Eq. (29) except ΨA and ΨB are 

interchanged. 

Hence, the modified Dirac equation, Eq. (28), is derived from the Min equation which 

reduces to the Schrödinger equation in the low velocity, non-relativistic limit.  

Conversely, we can easily show the modified Dirac spinors ΨA and ΨB satisfy Min 

equation when combined.  We can say that the Modified Dirac equation describes the 

interaction of two spinor functions, one electromagnetically and the other through mass. 

This compares with the Dirac equation 

 0=−∂ McΨΨγi μ
μ

h  (31) 

which may be decoupled to 

 

Ai
i

B

Bi
i

A

ΨσΨ
Mc

i

ΨσΨ
Mc

i

∂=







−∂

∂=







+∂

h

h

0

0

. (32) 

Both in the pair of the above decoupled Dirac equations describe the interaction of the 

two spinors though mass, compared to Eq. (29) where one of the pair is a massless 

interaction. 

3.4 Simple Solutions for the Modified Dirac Equation 

3.4.1 A Particle at Rest 

If Ψ is independent of position, we get 

 0=
∂

Ψ∂
=

∂

Ψ∂
=

∂

Ψ∂

zyx
 (33) 

i.e., Px = Py = Pz = 0, or zero momentum and zero velocity with 1/γ=1.  The Modified 

Dirac equation, Eq. (28), then reduces to  

 ( ) 0100 =−+
∂

∂
McΨγ

t

Ψ
γ

c

ih
 (34) 
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or  

 0
20

00

10

01 2

=
















−
−



















∂

∂
∂

∂










− B

A

B

A

Ψ

ΨMc
i

t

Ψ
t

Ψ

h
. (35) 

We then get 

 

B
B

A

Ψ
Mc

i
t

Ψ

t

Ψ

h

22

0

=
∂

∂

=
∂

∂

 (36) 

or 

 
)0(

constant

2/

2

B

t
Mc

i

B

A

ΨeΨ

Ψ

h=

=

 (37) 

The solutions of ΨA and ΨB may be interchanged due to the second set of equations, Eq. 

(30).  The above pair of particles-at-rest solutions compare with those of Dirac equation 

which reads [15],  

 

).0(

)0(
2

2

B

t
Mc

i

B

A

t
Mc

i

A

ΨeΨ

ΨeΨ

h

h

=

=
−

 (38) 

One of the above Dirac pair is a negative energy solution representing antiparticles.  The 

modified pair, Eq. (37), avoids a negative energy solution and instead contains a constant 

solution.  This constant solution does not exist in the Dirac solutions, Eq. (38).  The 

constant solution may be viewed as being consistent with the idea of Dirac Sea, 

representing the vacuum state.  The other, the time-dependent particle solution, has the 

characteristic frequency Mc
2
/(ћ/2) in the modified Dirac solution, i.e., twice that of the 

Dirac solutions where it is ±Mc
2
/ћ.   

3.4.2 Plane Wave Solutions 

For the Modified Dirac equations, Eq. (28), we now look for the plane wave solution of 

the type 

 

 )()( κκ uaexΨ xi ⋅±=  (39) 

Note that 

 )()( xixΨ Ψ±=∂ µµ κ   

Note also 

 












−⋅

⋅−
=⋅−=

0

0
00

κσκ

σκκ
κγκκµ rr

rr
rr

γγ
μ

. (40) 

The Modified Dirac equation, Eq. (28), becomes 



 

Brian B.K. Min  Relativistic Quantum Wave Equation 

 

 8

 ( ) 010 =







−+ u

γ

Mc
γγμ µκhm  (41) 

or  

 0
20

0

=
























−±⋅

⋅±

B

A

u

u

γ

Mc
κσκ

σκκ

h
rr

hm

rr
hhm

, (42) 

so we get, 

 
AB

BA

u

γ

Mc
u

uu

)2/(

0

0

h
m

rr

rr

κ

σκ
κ

σκ

⋅
=

⋅
=

. (43) 

In the above, uA and uB may be interchanged owing to Eq. (30).  By the use of the 

relationship P
µ
 = γP

 µ  
= γћκ

µ
 ≡ ћk

µ
, and P 

0
 = E/c = Mc, we then get 

 
AB

BA

u
Mc

u

uu

γ

σ

σ

20

0

m

r

r

P

P

P

P

⋅
=

⋅
=

. (44) 

We can carry the above further to obtain canonical expressions for uA and uB, which, 

however, we will not pursue here.  It suffices to note that the two bispinors uA and uB 

interact in the purely electromagnetic manner on one hand and through mass on the other 

and for the limiting case v = c or 1/γ = 0, both are electromagnetic interactions. 

4. Conclusion 

It is shown that the Min equation is a relativized Schrödinger equation in the sense that 

the equation reduces to the latter in the low velocity, non-relativistic limit.  When the 

relativistic effect dominates, the equation approaches the Klein-Gordon equation for 

massless particles.  The same equation is shown to decouple into a modified form of the 

Dirac equation describing spin one-half particles.   

The new equation is the result of applying the quantum prescription to the momentum 

and the kinetic energy rather than to the momentum and the total energy.  This is justified 

since after all it is the kinetic energy that generates the momentum.  The equation is 

written in both the relativistic γ-space as well as the 1/γ-space with the latter shown to 

give us an advantage of avoiding infinity as the velocity of the particle approaches c and 

in addition provide us with crucial information for the behavior of particles. 

When applied to a rest particle, the modified Dirac equation avoids a negative energy 

solution and instead includes a constant solution.  This constant solution does not exist in 

the Dirac solutions.  The other, the time-dependent particle solution, has the characteristic 

frequency Mc
2
/(ћ/2) in the modified Dirac solution, i.e., twice that of the Dirac solutions 

where it is Mc
2
/ћ.  The plane wave solutions show the bispinors in the modified Dirac 
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equation interact through mass on the one hand and in the purely electromagnetic manner 

on the other.     
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