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Abstract As described in the literature the velocity of a Keplerian orbiter on
a fixed orbit is always the sum of a uniform rotation velocity and a uniform
translation velocity, both coplanar. This property is stated here as a theorem
and demonstrated as true. The consequences are investigated among which
the Newton’s gravitational acceleration appears as its derivative with respect
to time, the classical mechanical energy is deduced, the Galileo’s equivalence
principle is respected. However the Newton’s factor GM appears as a kine-
matics factor, the angular momentum multiplied by the rotation velocity, and
this enables to consider a kinematics reason for the rotation of the galaxies,
with no need for dark matter. Furthermore the kinematics demonstrate that
the gravitational acceleration causes the rotation, but not the attraction, while
the mechanical acceleration can only cause a translation. These two accelera-
tions being thus of different natures, the Einstein’s equivalence principle can
not be correct.

Keywords Kinematics · Laws of Kepler · Gravitation · Newton’s attraction ·
Equivalence principle

1 Introduction

Although the three laws of Kepler are widely known [1], there exists a special
property of the Keplerian motion for a fixed conic that is too often forgot-
ten : the velocity is simply the addition of a uniform circular and a uniform
translation velocities. This kinematics aspect of the motion, fully referenced in
the literature [2–8], is generally quoted by the means of the hodograph plane
representation, although some authors as R.H. Battin state it in a different
way [9]. In all cases this special property is presented as a consequence of the
Newton’s law of gravitation.
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Our aim in this article is to inverse the usual vision of this property by
stating it as a theorem, and then showing its consequences, among which the
Newton’s gravitational acceleration appears as a its trivial derivation with
respect to time, the Galileo’s principle of equivalence is respected and the
classical expression of the mechanical energy emerges. However this theorem
disagree with the Newton’s postulate of attraction and the Einstein’s equiv-
alence principle, althought it leads to a trivial explanation of the rotation of
the galaxies, with no need for dark matter.

In no way at all we will pretend that such a vision of the Keplerian mo-
tion could be a satisfactory gravitation theory that could compete with the
Newton’s or Einstein’s ones. Our purpose is only to perform a pure kinematics
study without any postulate, nor assumption, nor theory.

We will first state and proof the theorem, and second we will investigate
some of its consequences.

2 Stating and proving the theorem

2.1 Statement

Accordingly to what is demonstrated in the literature [2–8] about the mathe-
matical structure of the Keplerian motion, we deduce the possibility of writing
the following theorem :

Theorem 1 The velocity of a Keplerian orbiter on a fixed orbit is always the
sum of a uniform rotation velocity and a uniform translation velocity, both
coplanar.

We do not know why the nature choses to exhibit this behavior, and this
is not the purpose of this paper, but the works of the literature show that it
applies to all Keplerian motions. Our work here will consist to prove that it is
mathematically true, i.e. that it fully describes the three laws of Kepler.

At a kinematics point of view the velocity described by the theorem will
be written as follows :

v = vR + vT (1)

where vR = ω× r is the uniform rotation velocity (its norm is constant), with
ω being the frequency of rotation, r being the vector radius from the focus of
the orbit to the orbiter, and vT is the uniform translation velocity (its norm
and direction are constant).

It is important to remember that the indice R does not stand for radial,
but for rotation, while the indice T does not stand for tangential but for
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Fig. 1 The velocity of a Keplerian orbiter v on a fixed orbit is always the sum of a uniform
rotation velocity vR, perpendicular to the vector radius, and a uniform translation velocity
vT , which direction is always perpendicular to the main axis of the conic. Both are coplanar
and have a constant norm all along the trajectory.

translation. The figure 1 exhibits the velocities at 4 steps of a conic trajectory.
Note that the translation velocity is always perpendicular to the main axis of
the conic.

Of course the rotation velocity being uniform, and the frequency of rotation
being perpendicular to the velocity/radius plane, we must verify :

vR = ‖vR‖ = ‖ω × r‖ = ωr = constant (2)

Derivating this last relationship with report to time we get a trivial but im-
portant expression :

ω̇r + ωṙ = 0 (3)

The scalar ω̇ shall correspond to a vector ω̇ which is collinear to the vector ω.
Finally because the translation velocity is also uniform we can write

vT = ‖vT ‖ = constant (4)

This being stated, we are now going to give the proof of this theorem.

2.2 Proof

2.2.1 The angular momentum and its constancy

We define the angular momentum L as follows :

L = r× v (5)
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This angular momentum does not refer to the mass as it is only a kinematics
vector. R.H. Battin called it the massless angular momentum [10]. It is trivial
to see that its derivation with respect to time, by including the relation 3, is
null, thus the angular momentum is constant as expected for a central field
motion.

2.2.2 First law of Kepler

The vector cross product of the rotation velocity by the momentum leads to

vR × L = v2R

(
1 +

vR.vT
v2R

)
r (6)

Therefore the scalar version of this expression is

L

vR
=

(
1 +

vT
vR

cos θ

)
r or p = (1 + e cos θ) r (7)

This last equation is the one of a conic where p = L/vR is the semilatus rectum,
e = vT /vR is the eccentricity and θ is the angle between the directions of the
rotation and the translation velocity, i.e. the true anomaly. We see that both
p and e are constant and therefore the equation 7 is nothing else but the first
law of Kepler [1].

The theorem 1 also provides an elegant way to describe the eccentricity
vector, thus the direction of the periapsis, by the means of the translation
velocity :

e =
v × L

k
− r

r
=

vT × L

k
with k = LvR (8)

2.2.3 Second law of Kepler

The second Kepler’s law derives simply from the constancy of the angular
momentum. As explained by L. Landau and E. Lifchitz [1], the momentum
can also be written as a function of the position and the derivative of the true
anomaly with respect to time :

L = r2θ̇ (9)

In this expression we see that the angular momentum is twice the areal velocity.
The first being constant, the second will also be, which is the second law of
Kepler.

From the equation 7 it is trivial to relate the angular frequency of rotation
to the derivative of the true anomaly with respect to time :

θ̇ = ω(1 + e cos θ) = ω
p

r
(10)
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2.2.4 Third law of Kepler

The third Kepler’s law also derives simply from the constancy of the angular
momentum [1]. Indeed the integration with respect to time of the relation 9 ,
over a complete period T of revolution, gives

LT =

∫ 2π

0

r2 dθ (11)

For the case where the trajectory is an ellipse, the right side of this equation is
worth 2πa b, where a is the semi-major axis and b the semi-minor one. Knowing
that a = p/(1 − e2) and b = 1/

√
1− e2, and remembering the definition of

the semilatus rectum p given by the equations 7, it is easy to finally get the
following relation :

L vR = 4π2a3/T 2 (12)

Because L and vR are constants, this last expression is nothing else but the
third law of Kepler stating that the square of the period of revolution is pro-
portional to the cube of the semi-major axis [1].

3 Consequences

3.1 Newton’s law of gravitation

When we derive the equation 1 with respect to time, we get the acceleration
a of a Keplerian orbiter : a = ω̇× r+ω×v. Now including the equation 3 we
can write a = −(ω/r2)× [r× (r× v)], and finally

a = −LvR
r3

r (13)

This is the expression of the Newton’s gravitational acceleration if

LvR = GM (14)

where G is the constant of gravitation and M is the mass at the focus of the
orbit. We can also notice that the equation 14 is consistent with the expression
12 of the third Kepler’s law when compared to the one of the literature [1].

As we see here the kinematics does agree with the mathematical structure
of the Newton’s acceleration, but this last is not any more a prior to the
existence of the velocity. As explained by the theorem 1, it only becomes a
trivial consequence, the centripetal acceleration due to the rotation velocity.
We can say that, from a kinematics point of view, the gravitation law is not a
law of attraction, but a law of rotation.

The Newton’s postulate proposing that GM should be the numerator of
expression 13 can not be reached, nor discussed, by the kinematics that de-
scribe it rather as LvR, both factors being however accordingly constant.
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3.2 Galileo’s equivalence principle

Galileo has shown in the early 17th century that the motion in a gravitational
field is mass independent. This is quite consistent with the kinematics structure
of the Keplerian motion because the equation 1 is also mass independent.

However the gravitation being a matter of rotation, but not of attraction
as we saw formerly, a body will fall on a conic, but not on a straight line.
Indeed if you hold an object in your hand, its velocity is null but it must
nonetheless respect the theorem of the Keplerian kinematics, so we must verify
vR + vT = 0. The velocity vR is caused by the gravitation as we saw formely,
and the translation velocity vT is the result of all the constraints that disable
the orbitation. If you let the ball fall, you will decrease the constraints applied
to the ball, thus you will decrease the translation velocity, and the eccentricity
e = vT /vR will be close but lower to 1. This describes a sharp ellipse, wich focus
is nearly at the center of the earth. At such a scale, the trajectory between
your hand and the floor can be approximated to a straight line, but this is not
actually a straight line but the part of a conic.

3.3 Mechanical energy

If we develop the square of the equation 1, and include the result 7, it is trivial
to define the massless mechanical energy EM as follows :

EM =
1

2
v2 − LvR

r
=

1

2
v2R(e2 − 1) (15)

This expression is interesting because it describes the classical mechanical
energy (divided by the mass of the orbiter) made of the addition of the usual
kinetic and potential parts. It also shows, with its right member, that this
energy is a constant for a fixed conic. Therefore the kinematics does agree
with the classical physics of the gravitation [1], as far as, once again, the
relation 14 is true.

3.4 Orbit determination alternative

If we know r and v at a single time t, we can trivially calculate the angular mo-
mentum L, and thus get directly the rotation velocity vR by the means of the
equation 14. Now the direction of the rotation velocity must be perpendicular
to the vector radius, then we can calculate the vector vR, so the translation
velocity from equation 1 with vT = v−vR. At this point we are able to calcu-
late the eccentricity, the semilatus rectum, and the true anomaly by the means
of the equation 7, i.e. e = vT /vR, p = L/vR and θ = arccos[(1/e)(p/r − 1)].
We then get all the characteristics needed to draw the complete conic of the
orbiter, including the direction of the periapsis given by the equation 8.
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Of course once we have the former information it is easy to calculate the
velocity of the mobile at any other position on the conic, and this is useful to
resolve other problems as space rendezvous, which are usually handled by the
means of the Lambert’s problem [17]. This subject deserves a complete article
to be fully discussed from the present kinematics point of view.

3.5 Accelerating an orbiter with a mechanical thrust

If an orbiter has a null translation velocity, it will only possess the uniform
rotation velocity that is well described in the literature [1], i.e. v = vR =√
GM/r, which is consistent with the equations 7 and 14, and the eccentricity

of the conic is of course null. This velocity is due to the gravitation and we
can not get rid of it, as far as the central mass exists.

Let us now apply a very tiny thrust during a very short time, so we provide
an impulsional momentum to the body, thus a translation velocity, in a specific
direction. The consequence is a change of eccentricity (see the definition of
the eccentricity in equation 7), and the orbiter can not stay on its initial
circular orbit, whatever the direction of vT , thus of the thrust, is. This result
is consistent with what is described in the literature when either a tangential
or a radial thrust is applied to an orbiter [11,12].

Generalizing this, we know that the the acceleration equation for any
thrusted trajectory of an orbiter is [13–15] :

a = −GM
r3

r +
F

m
(16)

where F is the thrusting force applied to the orbiter, and m its mass. Straight
forward integrating this expression with respect to time, regarding the para-
graph 3.1, we must get back the velocity described by the theorem 1 :

v = vR +

∫ t

t0

F

m
dt = vR + vT (17)

While vR is the rotation velocity due to the gravitation, the integral in the
right hand of this equation is of course nothing else but vT , and we find back
the equation 1. This expression is a new way to represent the velocity of a
thrusted orbiter.

A very interesting question here is can we produce an acceleration with a
mechanical thrust that would cause a rotation around the gravitational axis
of rotation. A force must have a physical connection to the axis of rotation to
cause a rotation, but the force of a mechanical thrust applied to an orbiter has
no physical connection to the central body of the Kepleran motion. Therefore a
mechanical thrust can not cause any rotation around the gravitational center,
but only a translation. At the contrary the gravitatinal force on the orbiter has



8 Herve Le Cornec

a physical connection to the central body, the gravitation itself, and therefore
can cause the rotation.

A series of micro-thrusts set to simulate a perfect rotation will only be a
succession of rectilinear thrusts, changing the translation velocity vT of the
equation 1, therefore changing the eccentricity, and the direction of the main
axis, at each micro-thrust, as short as it could be. If the direction of the thrust
changes with the time, vT will consequently change, and thus the character-
istics of the conic. We then typically get a low-thrust trajectory structure,
well known by the space engineers placing satellites into orbit [13–15]. The ex-
periment shows therefore that a mechanical acceleration is not equivalent to a
gravitational acceleration. The gravitation provides the pure rotation vR while
the mechanical acceleration can only provide the translation vT , accordingly
to the equations 1 and 17.

4 More consequences

4.1 Dark matter

The experimental measurements have shown that the rotation velocities of
galaxies are not consistent with the Newton’s postulate of gravitation [18].
Indeed, considering the trajectories of the stars as nearly circular in the galactic
disk, the kepler’s third law indicates that the rotation velocity of a star must
be proportional to the inverse of the square root of the distance to the central
body (see equations 12 and 14). Mathematically we must verify : v =

√
k/r,

where k is the newton’s factor GM , G being the gravitation constant and M
the mass of the central body. Obvioulsy k can not depend upon the distance
r to the center of the galaxy, because whatever this distance is, G and M will
not vary, and therefore the velocity should decrease with the distance. However
this is not what is observed [18], the velocity tending to be a constant for all
the stars of the disk, whatever their distance. It looks like k is proportional
to the distance r. Such an observation leads trivially to consider two possible
solutions to this problem : either the Newton’s postulate is fully right, and
then we must add a new postulate (existence of a dark matter, existence of a
new force at long range, ...) to explain the observations, either Newton is not
fully right.

Let us now look at what the kinematics say about this. For them k = LvR
(see equation 12), so the rotation velocity verifies v =

√
LvR/r =

√
Lω, where

L is the angular momentum and ω the frequency of rotation. Therefore the
velocity v will be constant independently of the distance if the following term,
which has the dimension of a massless energy, is the same constant for all the
stars of a given galaxy :

E0 = Lω (18)
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This last expression is well known in sub-atomic physics, this is the Plank-
Eintein’s relation, where the Plank’s constant h has been replaced by L, both
having the same dimension. Accepting such an analogy leads us to consider
that the energy E0 is an energy level of the galaxy, like energy levels also exist
in the atoms. Consequently the stars are populating this energy level as the
electrons do in an atomic orbital.

This is how the kinematics explain the observed rotation of galaxies. No
current nor passed theory of the gravitation has however expected that the
gravitation could be driven by the same fundamental laws as those encountered
in the atomic physics. Actually this is even one of the most difficult problem
of the physics : the unification of the macroscopic and microscopic physics
is still to discover. We then take this result of the kinematics as a track for
such a unification. Any theory of the gravitation should consider embedding
the notion of energy level to be consistent with both the kinematics and the
experiment. Such a theory does not exist yet, and the only kinematics can not
replace it, so this track must be investigated.

4.2 Einstein’s equivalence principle

We demonstrated that the mechanical force is of a different nature than the
gravitational force, the first one providing the translation only, the second
one the rotation. This former conclusion leads to a problem : the Einstein’s
equivalence principle, stating the exact contrary, can not be correct. As a con-
sequence the kinematics forecast an other description of Einstein’s thought
experiment of the observer letting fall a ball inside an elevator. As we men-
tioned above about the Galileo’s equivalence principle, the observer will be
able to figure out if he is at the surface of a planet or thrusted mechanically :
in the first case the ball will fall on a conic while in the second case it will fall
on a straight line.

The Einstein’s equivalence principle being false, it does not mean that all
the General Relativity should be ignored from now on. We all know the very
nice agreement of the GR with the experiment, therefore the present results
leads to think that the GR could rely on other bases than the equivalence
principle. Far from detroying the GR the above results of the kinematics could
lead to a better statement and understanding of the GR.

4.3 Beyond Newton

We mentioned above that te kinematics agree with the Newton’s postulate of
gravitation if LvR = GM = k = constant (see equation 14). This expression
shows that the definition of k is less restrictive for the kinematics than it is for
the Newton’s postulate that can only apply to the gravitation. For instance the
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kinematics definition of k can suite to explain the force of Coulomb, which has
the same mathematical structure as the Newton’s force but with a different k.
Nothing is mathematically opposed to this.

Furthermore it is important to note that the acceleration coming from
the derivative of the equation 1 is also compliant with the foundation of the
electromagnetism. Indeed we can write

a = (ω̇ × r) + v × (−ω) = E + v ×H (19)

In this expression E is similar to an electric field and H is similar to a magnetic
field, both divided by the mass of the orbiter. We then obtain the mathematical
formulation of the Lorentz’s acceleration [19].

All these mathematical facts can not be ignored and have to be inves-
tigated. Such a study could demonstrate that the kinematics can unify the
gravitation and the electromagnetism.

5 Conclusion

The aim of this article was to state a very well known property of the Keplerian
motion, fully described in the literature, not any more as a consequence of the
Newton’s law of gravitation, but as a standalone kinematics theorem. With this
new perspective we show that the three laws of Kepler are satisfied, as well as
the Newton’s gravitational acceleration, the Galileo’s principle of equivalence
and the structure of the classical mechanical energy. We then demonstrated
that the pure kinematics, with no help of any postulate, is consistent with all
the experimental observations.

However it also shown that some famous human postulates are not fully
correct. Although the kinematics forecast the mathematical structure of the
Newton’s acceleration, it describes the constant GM rather as the kinematics
term LvR, which is mathematically less restrictive than the Newton’s postu-
late. This enables to explain the rotation of galaxies without postulate, but
with an extension of the Plank-Einstein relation at a macroscopic scale. This
also opens the door to an explanation of the Coulomb’s force which has the
same mathematical structure as the Newton’s force, but with a different factor
than GM . Concerning the Einstein’s principle of equivalence, the kinematics
are more straight forward : it can not be correct, because the gravitational
acceleration causes the rotation while the mechanical acceleration can only
provide the translation. They are then of different natures.

We must insist on the fact that we do not pretend that Newton and Einstein
are partially wrong, but we report that the kinematics demonstrate it. We used
no postulate to get this result, but only the logic of the kinematics. We used
a theorem not a theory, and then you can easily refuse it : just demonstrate
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that the theorem is false. You can do the same with any theorem, the one
of Pythagoras for instance : if you disagree with it, just demonstrate that it
is false. This is the beauty of theorems with regards to theories, they can be
proven as false, while a postulate can not be proven neither true nor false. But
if you can not prove that a theorem is false, you must admit it as far as you
are a scientist, whatever your human opinion about it. Let us remind that the
ultimate aim of the science is the interpretation of the universe without any
human postulate, whoever the pure genius stating it.

Of course such a theorem alone can not pretend to be a complete alternate
gravitational theory, competing with those of Newton and Einstein. For in-
stance a central question remains unexplained by the kinematics : why is the
mass causing the gravitation ? The theorem just shows the geometric char-
acteristics of the Keplerian motion that any theory of the gravitation must
at least respect, but not more. We demonstrate that the gravitation is not a
matter of attraction, but of rotation, the Newton’s acceleration being only the
consequence of the rotation velocity induced by the gravitation. However the
only kinematics do not tell us why the nature is working so. A lonely theorem
is therefore insufficient to explain the whole gravitation, but it is very useful
to guide us towards a better understanding, and finally a better overall theory.
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