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Abstract. We consider in the paper an idea of a soliton and heavy fermion catalysis
for a cold fusion similar to a muon catalysis. This catalysis is achieved via quasi-
chemical bonds for heavy fermions and solitons as well. We consider also a soliton
catalysis (for KP-solutions), which is quite different. This kind of catalysis is similar
to enzymatic catalysis. In the paper we construct a model for a cold fusion reactor
based on Onsager–Prigogine irreversible thermodynamics.

We give examples of several compounds with heavy fermions (heavy electrons)
which are hydrogen storages. Samples of those compounds can be (in principle) cold
fusion reactors if filled with a deuter. It is necessary to do several experiments (de-
scribed in the paper) in order to find a proper compound which will be a base for a
battery device. We consider also a case with cold plasma (e.g. in metals) filled with
a deuter. Solitons in a plasma can catalyse a fusion in two regimes: as quasiparticles
and in enzymatic-like regime.

Key words: solitons, heavy fermions, cold fusion, catalysis, hydrogen storage, low
energy nuclear reactions, chemically assisted nuclear reactions, quasi-chemical bonds,
KdV equation, plasma physics, KP equations, Onsager–Prigogine principle, deuter,
quasiparticles.

1 Introduction

In the paper we consider three types of catalysis for a cold fusion: heavy fermion,
1-soliton and n-soliton.

In the paper we give an idea of a soliton and heavy fermion (heavy electron) catalysis
for a (super)cold fusion. The idea is based on two pillars: muon catalysis (Refs [1]–
[6]) and cold fusion in palladium-hydrogen systems (Refs [7]–[9]) and exact solution of
nonlinear PDE (Partial Differential Equations) in plasma physics (KdV — Korteveg–de
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Vries equation). In this approach we want to use heavy fermions from strongly electron
correlated materials (Refs [10]–[23]) as muons in muon catalysis, in some materials used
for a hydrogen storage (Refs [24]–[28]). In that way we want to get a fusion reaction
catalysed by a heavy fermion and a situation where a density of deuterium is very high
as in a hydrogen storage. Thus we need a material with heavy fermions and with a
high affinity to hydrogen. We consider also solitons in solid state (metals) electron
plasma in order to catalyse (d+ d) fusion.

It is interesting that the idea of heavy fermions and low energy nuclear reactions
appears in Ref. [29].

In the paper we consider a kinetics of low energy nuclear reactions in a condensed
phase. This involves many different domains of physics and chemistry, e.g. chemically
assisted nuclear reactions. This approach can be even extended to biology in a living
cell via biochemistry. On the molecular level there is no difference between biology,
chemistry and physics. In some sense everything is physics. Moreover, there is no
physics and chemistry without mathematics. The catalysis caused by heavy fermions
in a condensed phase connects many aspects of solid state physics, nuclear physics and
chemistry. Some considerations connected to free energy (free enthalpy) production
due using of irreversible chemical thermodynamics can also be inspiring for researchers
not particularly involved in a subject covered by the paper. The paper is primarily of
a theoretical nature. Moreover, we give some ideas of an experimental setup to check
the theory. Summing up, the paper comments many domains of physics, chemistry
and even biology from both theoretical and experimental points of view.

The paper is divided into five sections. In the second we consider heavy fermion
catalysis. In the third thermodynamics of fusion reactor, in the fourth soliton catalysis.
In the fifth we consider a cylindrical sample as an example.

2 Heavy fermion catalysis

In this section we develop a heavy fermion catalysis. We call this idea supercold fusion
for a possibility that such materials can have strongly correlated electrons (coming to
heavy fermion systems) not only in an ambient temperature but even in low tempera-
tures (of liquid helium or liquid nitrogen). (This is possible for some of those materials
are superconductors.) The possibility of heavy fermion systems is very exciting for an
effective mass of a quasiparticle (a quasifermion) can be so high as 1000me (electron
mass). In this way we consider a quasiparticle (a heavy fermion) as a source of a
quasi-chemical bond.

The idea of quasiparticles is a very powerful tool in physics from Hawking radiation
theory (Bogolyubov transformation approach) to condensed matter physics and nuclear
physics or even biophysics. It is very well known that in solid state physics electrons and
holes can form bounded states—excitons. Quite recently we meet also new bounded
states—trions formed from two holes and an electron or two electrons and a hole (see
Ref. [30]). They are analogues of H− or H+

2 states. Some of researchers communicate to

2



discover in experiments condensation of exciton gas to a liquid or even Bose–Einstein
condensation of this gas. Excitons and trions can be considered as quasiparticles as well.

Our idea is to use quasiparticles approach to form more exotic molecules—bounded
systems of two deuterons and one heavy fermion in a hydrogen storage material in
order to proceed a controlled nuclear fusion in ambient temperature (maybe in low
temperatures).

According to an international discussion on a cold fusion in palladium no one was
able to repeat results from Refs [7]–[8]. However some anomalous excesses in a neutron
production have been reported.

Quasiparticles concept is strongly connected to condensed matter physics, e.g. solid
state physics. They are related to highly complicated behaviour in a solid state by an
analogy of a very simple picture, e.g. molecules forming a perfect gas in a container.
Quasiparticles are usually considered as fermions (sometimes as bosons, but in this
case they are usually called collective excitations). One can find very simple physical
concepts of quasiparticles in Ref. [31]. In a solid state even electrons (which are “real”
particles) should be considered as quasiparticles. Quasiparticles can interact. More-
over, the general idea is such that they interact weakly. Quasiparticles can interact
with ordinary “real” particles. A typical example is an interaction (a scattering) of
quasiparticles in a superfluid (a liquid helium 2) with neutrons discovered by L. D. Lan-
dau. The second very well known example is a scattering of photons (real particles)
and phonons (quasiparticles) as a description of Raman effect in solids. Our approach
is to use interactions of quasiparticles in a sample of a solid state material with ordi-
nary particles like deuterons, protons etc. Moreover, there is a different approach (see
Ref. [32]) where real interactions are considered between deuterons induced by a lattice
palladium (Pd H) or Ti lattice Ti H2. In this approach effective potentials between
Pd and H

VPd-H =
22.2

r
eV · Å exp

(
− r

0.42Å

)
(2.1)

and between Ti and H

VTi-H =
31

r
eV · Å

(
exp
(
− r

0.51Å

)
+
( r

1.095Å

)10.57)
exp
(
− r

0.23Å

)
(2.2)

have been derived.
Due to these potentials it is possible to derive effective potentials between H and H

(D and D). These potentials consist of two parts: repulsive and attractive

VH-H(r) = VR(r) + VA(r) (2.3)

VR(r) =
e2

εr

(
exp
(
− r

DS

)
+
( r
rR

)p
exp
(
− r

Di

))
(2.4)

VA(r) = −e
2

εr

( r
rA

)q
exp
(
− r

DA

)
(2.5)
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(ε,DS , rR, rA, DA, p, q are parameters). This approach is known as a dense plasma
approach for a cold fusion. In this approach a tunnel effect is considered in the poten-
tial (2.3) for two deuterons to get a cold fusion.

Our approach is different for we consider “quasichemical bonds” in a sample of a
solid state matter caused by a “heavy fermion”—a quasiparticle. Due to this “qua-
sichemical bond” a quasimolecule of two deuterons is formed and a tunnel effect is
similar as in a muon catalysis. In some sense this description is dual to the effective
potential between two deuterons for a heavy fermion—heavy electron exists due to
lattice interactions with real electrons.

In Ref. [32] the few-particle processes are considered as a cause of a cold fusion
in contradiction to binary processes which are rather typical for a hot fusion. Our
approach is also a few-particle process. Moreover one of the particles is a quasiparti-
cle. Quasiparticle is a collective effect in condensed matter physics. In this paper we
consider also the few-particle processes but with two stages. The first is a quasiparticle
formation process and the second an interaction of a quasiparticle with real particles.
The similarity with muon catalysis is evident and an analogue with chemical bond is
natural. In this way our fusion process is a cold fusion process also in the terminology
of Ref. [32].

Let us consider a hydrogen in heavy fermions (heavy electron) systems. In this way
we consider an ionized hydrogen molecule bound by a heavy fermion (electron). This
is similar to the µ− hydrogen molecule. Let us denote a heavy fermion by F− and let
a mass of the particle be mF . Let us suppose that we have to do with a heavy isotope
of hydrogen D. In this way we have to do with three bodies interactions F−, d+, d+ or
F−, d+, p+, where d+ denotes a deuterium nucleus (deuteron) and p+ is a proton. We
need a bounded system of (d+d+F−)+ or (d+p+F−)+ being an analogue of H+

2 , HD+

or
(
D+

2 , (d
+p+e)+, (d+p+µ−)+, (d+d+µ−)+

)
as in muon catalysis. In general in heavy

fermion systems we have to do with mF & mµ = 207me. In this way aF is an analogue
of a Bohr radius

aF = ε

(
me

mF

)
aB =

(
me
mF
ε

)
aB (2.6)

aB = 0.5292 · 10−10 m, (2.7)

where ε is a dielectric constant of the material. Thus we can apply the theory known as
mesomolecules theory simply putting in the place of mµ (a mass of a muon) an effective
mass (from the point of view of the tunnel effect) of a heavy fermion divided by the
dielectric constant of the material — mF

ε (see Refs [1]–[6]). In this way we can consider
bound states of two deuterons or proton and deuteron bind by a quasiparticle (a heavy
fermion) in a solid state lattice. This bond is very similar to ordinary chemical bond in
H+

2 or (DH)+. Moreover because of a relation (2.6) it is much more tight. Both nuclei
are closer in the quasimolecule. Because of this a tunnel effect (through a Coulomb
barriere), which will cause a nuclear reaction, is much more possible than in the case
of D+

2 or (DH)+. According to Refs [1]–[6] we get using Gamow theory of a tunnel
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effect:

BF ' exp

(
−2

~
(2Me2aF )1/2

)
∼= exp

(
−K

√
Mε

mF

)
(2.8)

(BF is a probability of a tunnel effect), where K ' 3 ÷ 3.3, M is a mass of a nucleus
(d+, p+ or t+) or

BF ' exp

(
−K

√
M

me
·
√
meε

mF

)
=

(
exp

(
−K

√
M

me

))√εme/mF
. (2.9)

It is easy to write (2.9) in terms of Bµ—a probability of a muon catalysed nuclear
fusion

BF ' (Bµ)

√
εmµ
mF . (2.10)

In this way we get a higher probability of a tunnel effect and a higher probability of
a nuclear reaction. However we should take under consideration a different dielectric
constant of a material with heavy fermions. In this way we get something which can be
called a heavy fermion catalysis for low energy nuclear reactions. We can repeat all the
considerations of Refs [1]–[6] concerning muon catalysis. If the mass of a heavy fermion
divided by a dielectric constant of the material is mµ the numerical results are exactly
the same. Moreover we do not need any muon factory and some negative results of
Refs [1]–[6] are not applicable. We need only a heavy fermion system with an affinity
for a hydrogen (a different dielectric constant of this material should be taken into
account). Thus we should consider a material with a high affinity for hydrogen with
heavy electrons. In that material we should have a high density of hydrogen storage.
Thus we consider the following processes

d+ + d+ + F− → (d+d+F−)+

d+ + t+ + F− → (d+t+F−)+

d+ + p+ + F− → (d+p+F−)+.

(2.11)

These three bodies processes can go via two stages

X+ + F− → (X+F−)

(X+F−) +X ′
+ → (X+X ′

+
F−)

(2.12)

where X+, X ′+ = p+, d+, t+.
In those quasimolecular processes we get quasichemical bonds (quasimolecules) of

d+, t+ or p+. Due to this we can expect higher rates of nuclear reactions

d+ + d+ →


t+ + p+ + 4 MeV — 1
3He + n+ 3.3 MeV — 2
4He + γ + 24 MeV — 3

(2.13)
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coming to cold-fusion with heavy fermion catalysis.
Is it possible to realize this idea in practice? In order to realize it we should satisfy

two conditions:

1) We should find a material with heavy fermions (as high mass as possible) and
with a high affinity for hydrogen. Possibly as high as possible i.e. a hydrogen
storage.

2) To find a condition for a work of this system (hydrogen storage + heavy fermion
systems). Probably in a low temperature where we have to do with a high density
of heavy fermions.

What kind of materials have we on the market? First of all we have heavy
fermion superconductors: Ce Cu2Si2, U Pt3, U(Be1−xThx)13 (0 ≤ x ≤ 1), U Pd2Al3,
U Ni2Al3, U Ru2Si2, Ce Cu2Ge2, Ce Rh2Si2, Ce Ni2Ge2, Ce In3, Th Cr2Si2, CeT In3

(T = Co,Rh, Ir), U Ge2, Pu Co Ga5.
Those materials are divided into two classes—the so-called Ce-based compounds

and U-based compounds.
The effective mass of an electron is here several hundred times larger than a mass

of a free electron due to strong electron correlations.
Some of those materials possess ferromagnetic or antiferromagnetic properties. The

heavy fermion (heavy electron quasiparticle) is in general mixture of d-band or f -band
electron with ordinary conduction electron. For example for Ce Cu2Si2 mF ' 220me,
for U Pt3 mF ' 200me, for U Be13 mF ' 192me (see Refs [10]–[23]).

The second group is a heavy fermion semiconductors group: Sm B6, Yb B12,
Ce Bi4Pt3, Ce Ni Sm, Ce Rh Sb, U Ni Sm, Ce3Sb4Pt3, Ce Sb4Au3, Ce Fe4P12, Ce Rh As,
U3Sb4Pt3, U3Sb4Pd3, U Fe4P12, Fe Si.

They also have ferromagnetic properties.
The physical origin of an appearance of a large quasiparticle—a heavy electron—is

the same as for the first group. For example for Fe Si, mF ' 14me (see Refs [10]–[23]).
All of those materials are intermetallic compounds involving lantanides (rare earth

elements) and actinides or Pd (palladium), Pt (platinium). It is very well known that
rare earth elements, actinides, Pd, Pt, Ni and their intermetallic compounds possess
high affinity for hydrogen. For example Y Ni2B2C (see [33]). Some of them are used
as hydrogen storage: Pd (as Pd H0.6), La Ni5 (as La Ni5H6), Mg2Ni (Mg2Ni H2). In
brackets we give formulae for hydrides of those intermetallics (Refs [24]–[28]). For ex-
ample Pd can absorb 0.56 mass% of hydrogen and La Ni5 1.37. The unusual properties
of palladium-hydrogen system has been mentioned (Refs [24]–[28]). The hydrogen ab-
sorption in intermetallic compounds for lantanides and actinides has been reviewed in
Refs [27]–[28]. Thus we should look for such materials among lantanides’ and actinides’
intermetallics (also for Pd and Pt). However in the case Pd H0.6 mF ≈ 2÷3me which is
quite small and maybe because of this cold fusion in palladium-hydrogen system is not
effective. The Palladium Hydride is an ordinary low temperature superconductor with
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a reverse isotope effect (see Refs [34]–[44]). The superconductivity for Pd H system has
been observed by T. Skośkiewicz (see Ref. [45]).

We can consider also different hydrogen-storage compounds Mg H2, Na Al H4,
Li Al H4, Ti Fe H2, Na B H4 (10.8 mass%), Li N H2, Li B H2, Na B H4 (with unknown
properties of an effective mass of an electron) and polymeric C6H10O5, fulleren and its
derivatives, nanotubes and graphen.

Let us notice that quasimolecular processes (2.11) can be described by a very well
developed quantum-mechanical formalism applied for meso-atoms and meso-molecules.
In this formalism we can calculate reaction rates calculating crosssections for those
processes (see Refs [1]–[6]). The interesting point (if this idea works) is to use practically
energy from (2.13). From the third one it would be possible to get it via a cascade
of ionization processes and pair creation. In this way due to pair creation of e+e−

and afterwards electron-hole creation in semiconductors we can try to get an energy
in some kind of a battery device. The same can be said for the first reaction of (2.13).
In the case of the second one we can expect only a heat production.

Eventually we mention the following problem: the existence of a bound state of two
nuclei and a quasiparticle. In the case of muon catalysis this problem has been solved
(see Refs [46]–[50]) and such a bound state really exists. The existence of the state has
been confirmed in experiments (see Refs [46]–[52]). Using the same formalism as in
the approach of Ponomarev et al. we can prove the existence of the bound state in our
case. Thus we get a quasichemical bond of two deuterons and a heavy fermion. The
problem of a stickness of a muon which plagues a muon catalysis does not concern us
for we have to do with many heavy fermions in a material. Thus we have to do with
chemically assisted nuclear reactions.

It is worth to mention that an idea of screening of a Coulomb potential in low
energy nuclear reactions by electrons in metals gives an enhancement of deuteron fusion
reactions (see Refs [53]–[54]). We will consider it later in a context of a soliton catalysis.

Let us consider a fusion process in a hydrogen storage medium. First of all we
should supply this medium with deuterium and tritium mixture (D2 and DT) or with
pure deuterium (D2). In the medium we should determine a rate of d+F− “atom”
production and to find a sign of the existence of those “atoms”. Such an atom according
to QM can be in excited state and emits (for absorbs) an electromagnetic radiation
(a photon) of a frequency

hνnm = Em − En, n < m (2.14)

where

En = −R∞
n2
· 1

1 + mF
MD

(2.15)

R∞ =
mF e

4

32π2ε20~2ε2
(2.16)
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where MD is the mass of a nucleus of deuterium and e an elementary charge. We need
d+F− in a ground state n = 1 and of course for l = 0.

Let us consider Eqs (2.14)–(2.16). One gets

νnm(mF, ε,MD) = νnm(H)
(1 + me

mp
)

(1 + mF
MD

)

(
mF

me

)
1

ε2
(2.17)

or

λnm(mF, ε,MD) = λnm(H)
(1 + mF

MD
)

(1 + me
mp

)

(
me

mF

)
ε2 (2.18)

where νnm(mF, ε,MD) means a frequency of a spectrum of d+F− “atom”, νnm(H) a
frequency of a spectrum of hydrogen atom, λnm(mF, ε,MD) and λnm(H) the corre-
sponding lengths and mp a mass of a proton. Eqs (2.17)–(2.18) can be rewritten:

νnm(mF, ε,MD) = νnm(H)
1.0005446mF

(1 + 2.7233× 10−4mF)ε2
(2.19)

λnm(mF, ε,MD) = λnm(H)
0.999456(1 + 2.7233× 10−4mF)ε2

mF
(2.20)

where now mF is measured in me units and we use values of MD, mp, me from physical
data. It is easy to see that usually λnm(H) > λnm(mF, ε,MD). In this way visual
spectrum of hydrogen corresponds to UV spectrum of our d+F− atom. Thus Paschen
(n = 3) or even Brackett (n = 4), Pfund (n = 5), Humphreys (n = 6) spectral series
correspond to visual or infrared spectral series of d+F− atom. In a future experiment
with a tunable laser radiation we should look for infrared spectral lines of d+F− atom
corresponding to higher spectral series (n ≥ 4). An emission or an absorption process
is of an electric dipole nature, i.e. E1.

Moreover, from a practical point of view we should consider the following strategy.
First of all we should fill our sample of a material with ordinary hydrogen and to look
for the existence of p+F− = H+F− atom. The methodology is exactly the same as for
d+F− atom. We are using a tunable laser for looking for an absorption spectrum of
H+F−. Moreover, the spectrum will be a little different

νnm(mF, ε) = νnm(H)
(1 + me

mp
)

(1 + mF
mp

)

(
mF

me

)
1

ε2
(2.21)

or

λnm(mF, ε) = λnm(H)
(1 + mF

mp
)

(1 + me
mp

)

(
me

mF

)
ε2 (2.22)

where νnm(mF, ε) means a frequency of a spectrum of H+F− “atom”, λnm(mF, ε) the
corresponding length.
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Equations (2.21)–(2.22) can be rewritten:

νnm(mF, ε) = νnm(H)
1

ε2
1.0005446mF

(1 + 5.446× 10−4mF)
(2.23)

λnm(mF, ε) = λnm(H)ε2
0.999456(1 + 5.446× 10−4mF)

mF
(2.24)

where mF is measured in me units.
It is easy to see that

λnm(H) > λnm(mF, ε) > λnm(mF, ε,MD). (2.25)

As in the case of d+F− atom we should look for n > 3 spectral series to be in visual
or infrared region.

Let us notice that in the case of H+F− and d+F− “atoms” we can expect also
so-called Rydbergs atoms as in the case of excitons (as in Cu2O case), i.e. in a very
high quantum number n. The absorption spectrum of those “atoms” would not be
Lorentzian (not symmetric). The spectrum will be distorted due to an overall absorp-
tion and a shape will be described by a Fano curve.

The next step is a formation of an analogue H+
2 (ionized hydrogen molecule), i.e.

p+p+F− = H+H+F−. In the case of muon catalysis there are some resonances which
allow us to form a µ−d+d+ molecule. In our case such resonance can appear for
F−H+H+ or F−d+d+ quasimolecules. Thus we should find some signals for an existence
of such a quasimolecule in a piece of a material of heavy fermion systems filled with
an ordinary hydrogen. This can be achieved only via spectroscopy of such a molecule.

Let us sketch some properties of such a molecule from the point of view of QM
(Quantum Mechanics). A Schrödinger equation for such a three body system is as
follows

Hψ = Eψ (2.26)

where

H = − ~2

2mF

~∇2 +
q2

4πε0ε

(ZA
ra

+
ZB
rb

)
. (2.27)

Usually we suppose ZA = ZB. In this approach we neglect a motion of nuclei and
consider a motion of heavy electron in a two-fixed-center potential. In atomic units
Eq. (2.26) can be rewritten

(
~∇2 + 2

( Z̃A
ra

+
Z̃B
rb

)
+ 2Ẽ

)
ψ = 0 (2.28)

where
Z̃A =

mF

ε
· ZA, Z̃B =

mF

ε
· ZB, Ẽ = mFE. (2.29)

mF is measured in me units. ra and rb are distances of an heavy electron for two nuclei.
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According to Ref. [55], Eq. (2.28) can be separated in prolate-spheroidal coordinates

ξ = (ra + rb)/R, 1 ≤ ξ ≤ ∞,
η = (ra − rb)/R, − 1 ≤ η ≤ 1,

(2.30)

Q1 = R(Z̃A − Z̃B)

Q2 = R(Z̃A + Z̃B)
(2.31)

0 ≤ ϕ ≤ 2π. (2.32)

ϕ is an azimuth angle, R is the distance between nuclei,

ψ(ξ, η, ϕ) = Λ(ξ)M(η, ϕ) = Λ(ξ)G(η)e±imϕ (2.33)

(see Ref. [55]).
One gets [ ∂

∂η

(
(1− η2) ∂

∂η

)
− m2

1− η2
− p2η2 −Q1η −A

]
M(η, ϕ) = 0 (2.34)[ ∂

∂ξ

(
(ξ2 − 1)

∂

∂ξ

)
− m2

ξ2 − 1
− p2ξ2 −Q2ξ +A

]
Λ(ξ) = 0, (2.35)

A is a separation constant. Thus we reduce the problem H+H+F− to the ordinary H+
2

problem with some rescaling. If we denote a solution of Eq. (2.28) by Ψ
Z̃A,Z̃B ,Ẽ

(ξ, η, ϕ)

we get for H+H+F−, ΨmF,mF,mFE(ξ, η, ϕ), where E is an eigenvalue of an energy for
H+H+F− molecule. According to Ref. [55] the solution of Eq. (2.34) should be ex-
panded into spherical harmonics

M(η, ϕ) =
∞∑
k=m

fkmY
m
k (η, ϕ) (2.36)

Λ(ξ) = e−p(ξ−1)[p(ξ − 1)]m/2
∞∑

n=m/2

Cn−(m/2)Lmn−(m/2)[2p(ξ − 1)]. (2.37)

For A and p2 we have
lim
R→0

A = −l(l + 1), lim
R→0

p2 = 0 (2.38)

(a united atom limit), Lmk (x) are Laguerre polynomials.
Quantum numbers n, l,m are good quantum numbers only in the limit of a united

atom (we are using them). In general only m is a good quantum number

Ẽ = Ẽelec = −2
p2

R2
, (2.39)

p2 depends also on Z̃A and Z̃B. In our case Z̃A = Z̃B = mF. There are a lot of
computer programs which can solve equations for any Z̃A = Z̃B = mF getting Ẽ which
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is equal to electron energy (see Ref. [55] and references therein). Moreover, we should
add an energy of nuclei equal to 1

εR and calculate the minimum with respect to R.
This gives us a ground state energy. We should remember that we have to do with
symmetric and antisymmetric states. The ground state of H+

2 is denoted by X 2Σ+
g or

1sσg and is symmetric. The first excited state A 2Σ+
u or 2pσu is antisymmetric. Thus

we can expect similar states for H+H+F− molecule but rescaled (also 2Πu or 2Πg) by
mF and ε. This means we should look for more energetic spectrum using a tunable
laser method in order to prove the existence of H+H+F−.

Afterwards we should consider a d+F−d+ or d+F−t+ molecule formation. The most
important feature is an interaction between an atom d+F− (dF) and d+ or t+. We
can suppose it is a harmonic potential or a Morse potential and similarly as in muon
catalyzed fusion we expect (ddF)+ for K = 1, v = 1, where K is an angular momentum
quantum number for a molecule and v is a vibrational number (see Ref. [56]). In the
case of (dFt)+ we can employ similar mechanism based on E1 transition. We need
(dFd)+ and (dFt)+ in a ground state. In the ground state a tunnel effect causes a
fusion very efficiently. For a muon catalyzed fusion we have 10−12 s for a nuclear
fusion. Using formulas (2.9) and (2.10) we get

10
−12

√
mF
εmµ s

which is smaller than 10−12 s (for a muon catalyzed fusion) if mF
ε > mµ. Let us estimate

a rate of a fusion in our hydrogen storage medium per a unit of volume.
One gets

Y = ϕ · λ(dF)λ(dFd)+BF · ρH (2.40)

where ϕ is a density of D in a hydrogen storage normalized to the density of a liquid
hydrogen (ρH is a density of a liquid hydrogen measured in atoms on cm3, ρH =
4.25× 1022 atoms/cm3). This value can be greater than one.

λ(dF), λ(dFd)+ are respectively probabilities of an atom (dF) formation in a ground
state and quasi-molecules formation (dFd)+. BF is a probability of a tunnel effect (see
similar formulas for a muon catalyzed fusion Ref. [57]). We neglect an existence of
tritium in a sample.

Let us apply Eq. (2.17) in the case of reactions (2.13). One gets

ei = ϕλ(dF)λ(dFd)+BFρHBiEi, i = 1, 2, 3, (2.41)

where ei is an energy production in one second per the unit of volume for three reactions
in (2.13). Ei is an energy for a reaction number i, E1 = 4 MeV, E2 = 3.3 MeV,
E3 = 24 MeV. Bi, i = 1, 2, 3, are branching ratios of these reactions: B1 ' B2 ' 50%
and B3 is very small, i.e. B3 ' 10−6. From practical point of view 1 and 3 are very
important for they are “aneutronic” reactions. They produce charged particles and for
this they can be a source of an electrical energy without conversion from thermal to
electrical energy. For the process of an energy conversion is more efficient.
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One can criticize our approach to cold fusion, i.e. a presence of a strong “heavy
electron” screening of the Coulomb barrier which would prevent cold fusion. One
argues the physical basis of the claim of strong electron screening on a length scale
much less than an angström is false.

This claim is based on the following reasoning. In the crystal with “heavy electron”
band we have periodic band energy

E(~k) = E0 −
∑
~M 6=0

H( ~M) cos(~k · ~M) (2.42)

where H( ~M) is the Hamiltonian for the electron to go from one crystal cell to another,
where ~M is a lattice vector connecting two cells. If matrix elements of the Hamiltonian
|H( ~M)| � 1 eV the electron behaves as heavy for its velocity is small

~v(~k) =
1

~

(∂E
∂~k

)
=

1

~
∑
~M 6=0

~MH( ~M) sin(~k ~M). (2.43)

Those electrons are trapped in a localized Wannier state which can have wide spatial
dispersion. In this way the bound deuteron–deuteron–electron wave function can be
of order ∼ 1 Å size as in the vacuum which makes impossible to screen the Coulomb
barrier and afterwards a bigger probability of a tunnel effect.

Moreover, we can make a localized Wannier state narrower making “heavy electron”
band localized, which is possible in some mentioned materials, i.e. in materials which
are superconductors (heavy fermion superconductors). Some boundaries of a sample
can help to get localized heavy electron states (surface states). In this way we have to
do with so-called CMNS (condensed matter nuclear science).

Thus the mentioned mechanism can work and only the experiment can settle the
controversy.

How to design an experiment? First of all we should choose a hydrogen storage
with heavy fermions and afterwards fill it with deuterium. (It is reasonable first to
fill a sample of a hydrogen storage with heavy fermion material with an ordinary
hydrogen H, in order to find which of them (i.e. materials) are able to form quasi-
atoms H+F−. This can be achieved by spectroscopic methods using a tunable laser.
Only such materials should be filled afterwards with deuterium.) Then we should look
for an absorption spectrum of (d+F−) (see Eqs (2.14)–(2.16)) to be sure that in our
piece of material filled with D2 there is an interaction between d+ and F−. This is a
first step of the experiment. If we confirm this step we can go to the second step of the
experiment. Now we should look for some products of low energy nuclear reactions, i.e.
for p+ (protons), γ—photons and n (neutrons). If we detect them on the level higher
than the background radiation we can be sure that the mechanism works. We should
work with several materials by trial and error method.

Thus we should use a tunable laser to obtain the required frequency of light (Eqs
(2.14)–(2.15)) to observe an absorption and emission of photons and detectors of pho-
tons. According to a common practice for such an experiment we are required to put
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a device with deuterium inside a calorimeter (e.g. flow-type calorimeter—SRI Interna-
tional flow calorimeter) in order to measure heat production. The energetic particles
can be detected by CR-39, a plastic that suffers local damage by passage of charge
particles or neutrons being a track detectors (solid-state nuclear track detectors). We
can also observe tracks on X-ray films. The detectors should record the history of
nuclear emission from an experiment and signal-to-noise ratios. The important point
is to keep out of a possible chemical reaction heat sources, first of all to keep out of a
possible reaction 2D2 + O2 → 2D2O which could be a source of undesired heat. For
we have to do with many intermetallic materials, we should also keep out of phase
transitions among several phases which can be a source or sink of heat.

3 Thermodynamical description of a fusion reactor
(a battery device)

The interesting point in these investigations is a problem of thermodynamical descrip-
tion of a device: 1) a piece of material with heavy fermion system, 2) a flow of deu-
terium in the calorimeter. It seems that we should use non-equilibrium thermodynam-
ics. Moreover, it is natural to consider non-equilibrium (irreversible) thermodynamics
close to equilibrium. Such thermodynamics uses Onsager relations and a principle of
minimal entropy production. Thus we should identify flows and thermodynamic forces
and consider a possible free energy (enthalpy) production locally. In our case we have
to do with chemical-like reactions as in Eq. (2.13). Considering Eq. (2.13) as a chemical
reaction we get

Ji =
ϕ

NA
λ(dF)λ(dFd)+BFρHBi

we should also add an additional reaction

d+ + d+ → d+ + d+ (3.1)

and
J4 =

ϕ

NA

(
1− λ(dF)λ(dFd)+BF

)
ρH. (3.2)

Thus we define functions of a progress of reactions Jj , j = 1, 2, 3, 4. NA is the Avogadro
number.

Let us define

A1 → d+, A2 → d+, A3 → t+, A4 → p+,

A5 → 3He, A6 → n, A7 → 4He, A8 → γ.

Thus we have 8 components in four reactions.
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We define stechiometric coefficients a j component of i reaction ξij . We get

ξij =


−1 −1 1 1 0 0 0 0
−1 −1 0 0 1 1 0 0
−1 −1 0 0 0 0 1 1
0 0 0 0 0 0 0 0

 (3.3)

We have
8∑
i=1

ξijAi = 0, j = 1, 2, 3, 4. (3.4)

Let us denote by Mi a moll mass of the component Ai. Thus we have

M1 = M2 = Md+ , M3 = Mt+ , M4 = Mp+ ,

M5 = M3He, M6 = Mn, M7 = M4He, M8 = Mγ .

A typical conservation law known in chemistry (a conservation of substance) can be
written only as

8∑
i=1

ξijMi ≈ 0 (3.5)

for we have an energy production and this has an influence on the total mass.
We get a source term due to chemical reactions

Mi

∑
j

ξijJj . (3.6)

Let us define a balance equation for the i-th component

∂ρj
∂t

= −div(ρj~vi)− div~j +Mi

∑
i

ξjiJi, (3.7)

where ρj , ~vj and ~j are density, velocity and diffusion flux of the j-th component. It is
easy to see that for j = 1, 2 we have the same balance of deuterium, for j = 8 ~vj = 0.

One can derive the following equation for an internal energy density

ρ
du

dt
= −div(ρu~v)− pdiv~v +

ρ

NA

3∑
i=1

ei. (3.8)

For a density of an entropy one gets

ρ
ds

dt
= −div

( 1

T

(
ρu~v −

8∑
i=1
i 6=2

µi~i

))
− ρu

T 2
~v · ~∇T −

8∑
i=1
i 6=2

~i · ~∇
(µi
T

)
+

1

T

4∑
j=1

AjJj . (3.9)
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where

Aj =

8∑
i=1
i 6=2

µiξijMi

and µi is a chemical potential of the i-th component. This is basically a thermody-
namics of our system.

Moreover, we are interested in a free energy production. One gets for f

ρf = ρ(u− Ts) (3.10)

ρ
df

dt
= −div(ρu~v) + T div

( 1

T

(
ρu~v −

8∑
i=1
i 6=2

µi~i

))
+
ρu

T
~v · ~∇T

+ T

8∑
i=1
i 6=2

~i~∇
(µi
T

)
−

4∑
j=1

AjJj − p div~v +
ρ

NA

3∑
i=1

ei. (3.11)

We can also consider a density of a free enthalpy production:

g = u− Ts+
pV

ρ
(3.12)

getting

ρ
dg

dt
= ρ

df

dt
+ ρ

d

dt

(pV
ρ

)
(3.13)

where p is a pressure, V—a volume, ~v—a velocity, T—a temperature, ρ—density, ~i—a
diffusion flux, Aj—a chemical affinity.

Let us notice that g is important for isothermo-isobaric processes and f for iso-
thermo-isochoric processes

~i = −Di
~∇Ci (3.14)

where Di is a diffusion constant and ci are concentration.
Eventually let us define two important functions Φ and Ψ:

Φ = ρu~v · ~∇
( 1

T

)
−

8∑
j=1
j 6=2

~j · ~∇
(µj
T

)
+

1

T

4∑
j=1

AjJj (3.15)

Ψ = TΦ (3.16)

Phi is an entropy production function and Ψ is a dissipation function. We neglect a
heat conduction in a sample supposing it is small in size.
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Let us consider Eq. (3.15) in more details. One gets

Φ = ρu~v · ~∇
(

1

T

)
+Dd+

~∇Cd+ ~∇
(µd+
T

)
+Dt+

~∇Ct+ · ~∇
(µt+
T

)
+Dp+

~∇Cp+ · ~∇
(µp+
T

)
+D3He

~∇C3He
~∇
(µ3He

T

)
+Dn

~∇Cn · ~∇
(µn
T

)
+D4He

~∇C4He
~∇
(µ4He

T

)
+Dγ

~∇Cγ · ~∇
(µγ
T

)
+
ϕBFρHλ(dF )λ(dFd)+

TNA

·
[
B1

(
µt+Mt+ + µp+Mp+

)
+B2

(
µ3HeM3He + µnMn

)
+B3

(
µ4HeM4He + µγMγ

)
− 2µd+Md+

]
(3.17)

where µ,M,D,C are respectively chemical potentials, moll mass, coefficients of diffu-
sion and concentrations of all components, i.e. d+, t+, p+, n, 3He, 4He and γ.

The general principle of a nonequilibrium thermodynamics, formulated by Onsager
and Prigogine, consists in a minimal entropy production

∫ ∫ ∫
V Φ dv = min. This is

satisfied in a stationary case. In this way we go to the variational principle

δ

∫ ∫ ∫
V

Φ dv = 0 (3.18)

where a variation is taken with respect to all mechanical, thermodynamical and chem-
ical quantities. In particular with respect to T, ρ, ~v, u, Cd+ , µd+ , Ct+ , µt+ , Cp+ , µp+ ,
C3He, µ3He, Cn, µn, C4He, µ4He, Cγ , µγ , ϕ established stationary boundary conditions for
all quantities.

The variational problem can be written in a form of a system of partial differential
equations for every function in the following way:

~∇ ∂Φ

∂~∇( 1
T )
− ∂Φ

∂( 1
T )

= 0 ~∇ ∂Φ

∂~∇µ
− ∂Φ

∂µ
= 0

~∇ ∂Φ

∂~∇C
− ∂Φ

∂C
= 0 ~∇ ∂Φ

∂~∇ρ
− ∂Φ

∂ρ
= 0

~∇ ∂Φ

∂~∇u
− ∂Φ

∂u
= 0 etc.

(3.19)

~∇(ρu~v) + div
(
Dd+

~∇Cd+µd+ +Dt+
~∇Ct+µt+ +Dp+

~∇Cp+µp+

+D3He
~∇C3Heµ3He +Dn

~∇Cnµn +D4He
~∇C4Heµ4He +Dγ

~∇Cγµγ
)

−
(
Dd+

~∇Cd+ · ~∇µd+ +Dt+
~∇Ct+ · ~∇µt+ +Dp+

~∇Cp+ · ~∇µp+

+D3He
~∇C3He · ~∇µ3He +Dn

~∇Cn · ~∇µn +D4He
~∇C4He · ~∇µ4He

+Dγ
~∇Cγ · ~∇µγ

)
−
ϕBFρHλ(dF )λ(dFd)+

NA
·
[
B1

(
µt+Mt+ + µp+Mp+

)
+B2

(
µ3HeM3He + µnMn

)
+B3

(
µ4HeM4He + µγMγ

)
− 2µd+Md+

]
= 0

(3.20)
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~∇ ∂Φ

∂~∇µd+
− ∂Φ

∂µd+
= 0 (3.21)

div
(Dd+

T
~∇Cd+

)
−Dd+

~∇
(

1

T

)
~∇Cd+ +

2Md+ϕBFρHλ(dF )λ(dFd)+

TNA
= 0 (3.22)

and for remaining concentrations

div

(
Dt+

T
~∇Ct+

)
−Dt+

~∇
(

1

T

)
~∇Ct+ −

B1Mt+ϕBFρHλ(dF )λ(dFd)+

TNA
= 0 (3.23)

div

(
Dp+

T
~∇Cp+

)
−Dp+

~∇
(

1

T

)
~∇Cp+ −

B1Mp+ϕBFρHλ(dF )λ(dFd)+

TNA
= 0 (3.24)

div

(
D3He

T
~∇CD3He

)
−D3He

~∇
(

1

T

)
~∇C3He −

B2M3HeϕBFρHλ(dF )λ(dFd)+

TNA
= 0

(3.25)

div

(
D4He

T
~∇CD4He

)
−D4He

~∇
(

1

T

)
~∇C4He −

B3M4HeϕBFρHλ(dF )λ(dFd)+

TNA
= 0

(3.26)

div

(
Dn

T
~∇Cn

)
−Dn

~∇
(

1

T

)
~∇Cn −

B2MnϕBFρHλ(dF )λ(dFd)+

TNA
= 0 (3.27)

div

(
Dγ

T
~∇Cγ

)
−Dγ

~∇
(

1

T

)
~∇Cγ −

B3MγϕBFρHλ(dF )λ(dFd)+

TNA
= 0. (3.28)

For chemical potentials one gets

div
(
Dd+

~∇
(µd+
T

))
= 0 (3.29)

div
(
Dt+

~∇
(µt+
T

))
= 0 (3.30)

div
(
Dp+

~∇
(µp+
T

))
= 0 (3.31)

div
(
D3He

~∇
(µ3He

T

))
= 0 (3.32)

div
(
Dn

~∇
(µn
T

))
= 0 (3.33)

div
(
D4He

~∇
(µ4He

T

))
= 0 (3.34)

div
(
Dγ

~∇
(µγ
T

))
= 0, (3.35)

for a velocity one gets

ρu~∇
(

1

T

)
= 0. (3.36)

It means T = const. For a parameter ϕ one gets

B1

(
µt+Mt+ + µp+Mp+

)
+B2

(
µ3HeM3He + µnMn

)
+B3

(
µ4HeM4He + µγMγ

)
= 2µd+Md+ , (3.37)
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which is a constraint for chemical potentials.
Variations with respect to ρ and u do not give us any equations. They are satisfied

identically for T = const.
We should supply all the equations with boundary data on a boundary of a sam-

ple V . This depends on the shape of the sample.
For concentrations one gets after some simplifications

Dd+
~∇2Cd+ +

2Md+ϕBFρHλ(dF )λ(dFd)+

NA
= 0 (3.38)

Dt+
~∇2Ct+ −

B1Mt+ϕBFρHλ(dF )λ(dFd)+

NA
= 0 (3.39)

Dp+
~∇2Cp+ −

B1Mp+ϕBFρHλ(dF )λ(dFd)+

NA
= 0 (3.40)

D3He
~∇2C3He −

B2M3HeϕBFρHλ(dF )λ(dFd)+

NA
= 0 (3.41)

D4He
~∇2C4He −

B3M4HeϕBFρHλ(dF )λ(dFd)+

NA
= 0 (3.42)

Dn
~∇2Cn −

B2MnϕBFρHλ(dF )λ(dFd)+

NA
= 0 (3.43)

Dγ
~∇2Cγ −

B3MγϕBFρHλ(dF )λ(dFd)+

NA
= 0. (3.44)

For chemical potentials simply

~∇2µd+ = ~∇2µt+ = ~∇2µp+ = ~∇2µ3He = ~∇2µn = ~∇2µ4He = ~∇2µγ = 0. (3.45)

Eqs (3.38)–(3.44) can be simply written as

~∇2Ci = κKi (3.46)

where

κ =
ϕBFρHλ(dF )λ(dFd)+

NA
(3.47)
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and i = d+, t+, p+, 3He, 4He, n, γ,

Kd+ = −2Md+

Dd+
(3.48)

Kt+ =
B1Mt+

Dt+
(3.49)

Kp+ =
B1Mp+

Dp+
(3.50)

K3He =
B2M3He

D3He
(3.51)

K4He =
B3M4He

D4He
(3.52)

Kn =
B2Mn

Dn
(3.53)

Kγ =
B3Mγ

Dγ
(3.54)

We suppose that Di are constant (coefficients of diffusion).
For chemical potentials satisfy Laplace equations the constraint (3.37) really means

a constraint on a boundary data for those equations.
We put a solution of a variation problem to the equation (3.11) to get a free energy

production. The important point is to calculate the second variation in order to check
if we have to do with a minimum.

Thus one gets

ρ
df

dt
= −div(ρu~v)

+ T div
( 1

T

(
ρu~v + µd+Dd+

~∇Cd+ + µt+Dt+
~∇Ct+ + µp+Dp+

~∇Cp+

+ µ3HeD3He
~∇C3He + µnDn

~∇Cn + µ4HeD4He
~∇C4He + µγDγ

~∇Cγ
))

+
ρu

T
~v · ~∇T

− T
(
Dd+

~∇Cd+ ~∇
(µd+
T

)
+Dt+

~∇Ct+ ~∇
(µt+
T

)
+Dp+

~∇Cp+ ~∇
(µp+
T

)
+D3He

~∇C3He
~∇
(µ3He

T

)
+Dn

~∇Cn~∇
(µn
T

)
+D4He

~∇C4He
~∇
(µ4He

T

)
+Dγ

~∇Cγ ~∇
(µγ
T

))
− ϕ

NA
ρHBFλ(dF )λ(dFd)+

(
B1

(
µt+Mt+ + µp+Mp+

)
+B2

(
µ3HeM3He + µnMn

)
+B3

(
µ4HeM4He + µγMγ

)
− 2µd+Md+

)
− p div~v +

ρ

NA
ϕλ(dF )λ(dFd)+BFρH(B1E1 +B2E2 +B3E3). (3.55)
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In this formula Ei, i = 1, 2, 3, are measured in joules. The total free energy production
is given by the formula

F̃ =

∫ ∫ ∫
V

df

dt
dv (3.56)

where all quantities are solutions of variational problem.
Using some results from our investigations, especially T = const, one gets for df

dt

df

dt
=

1

ρ

(
div(ρu~v) + div

(
µd+Dd+

~∇Cd+ + µt+Dt+
~∇Ct+ + µp+Dp+

~∇Cp+

+ µ3HeD3He
~∇C3He + µnDn

~∇Cn + µ4HeD4He
~∇C4He + µγDγ

~∇Cγ
)

−
(
Dd+

~∇Cd+ ~∇µd+ +Dt+
~∇Ct+ ~∇µt+ +Dp+

~∇Cp+ ~∇µp+

+D3He
~∇C3He

~∇µ3He +Dn
~∇Cn~∇µn +D4He

~∇C4He
~∇µ4He +Dγ

~∇Cγ ~∇µγ
)

−
ϕρHBFλ(dF )λ(dFd)+

NA

(
B1

(
µt+Mt+ + µp+Mp+

)
+B2

(
µ3HeM3He + µnMn

)
+B3

(
µ4HeM4He + µγMγ

)
− 2µd+Md+

)
− p div~v

)
+

1

NA
ϕλ(dF )λ(dFd)+BFρH(B1E1 +B2E2 +B3E3). (3.57)

Let us denote by V ⊂ R3 a set of a shape of a sample and by ∂V its boundary. Let
us notice that V means also a volume of a sample. Moreover, it does not result in any
misunderstanding. Let us define boundary conditions of our set of elliptic equations
(3.38)–(3.44), (3.45) and (3.46) with (3.47), Eqs (3.48)–(3.54), i.e.

ci|∂V = c̃i (3.58)

µi|∂V = µ̃i (3.59)

where the functions c̃i and µ̃i are defined on ∂V . One also gets

B1

(
µ̃t+Mt+ + µ̃p+Mp+

)
+B2

(
µ̃3HeM3He + µ̃nMn

)
+B3

(
µ̃4HeM4He + µ̃γMγ

)
= 2µ̃d+Md+ . (3.60)

Solutions of Laplace equations can be obtained via elementary analytical or numerical
methods. Afterwards we should consider Eqs (3.38)–(3.44). The best way to solve
these equations is to use a Green function method. The Green function for V with ∂V
is defined as follows:

~∇2G = −δ(x− ξ, y − η, z − ζ) (3.61)

if (x, y, z) ∈ V and G = 0 if (x, y, z) ∈ ∂V , where G(x, y, z, ξ, η, ζ) is a function of
6 variables singular if

x→ ξ or y → η or z → ζ.
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The solutions for Eqs (3.45) are given by

µi(ξ, η, ζ) =

∫ ∫
∂V

∂G

∂n
µ̃i ds (3.62)

where ∂G
∂n is the normal derivative of G on ∂V .

For Eq. (3.46) one gets

Ci(ξ, η, ζ) = κKi

∫ ∫ ∫
V

Gdv +

∫ ∫
∂V

∂G

∂n
c̃i ds. (3.63)

Moreover, we need Ci also as a function of ϕ

Ci(ϕ, ξ, η, ζ) = ϕK̃i

∫ ∫ ∫
V

Gdv +

∫ ∫
∂V

∂G

∂n
c̃i ds, (3.64)

where

K̃i =
BFρHλ(dF )λ(dFd)+

NA
Ki. (3.65)

We solve Eqs (3.38)–(3.44) for various values of ϕ and put all the solutions to
Eq. (3.20) in order to get equations for

ρu~v = ~w (3.66)

div ~w = f̃(~r) (3.67)

~r = (x, y, z) ∈ V ⊂ R3

One easily gets

f̃(~r) = −ϕ
[
Dd+K̃d+

2Md+

∫ ∫
∂V

ds
∂G

∂n

(
B1

(
µ̃t+Mt+ + µ̃p+Mp+

)
+B2

(
µ̃3HeM3He + µ̃nMn

)
+B3

(
µ̃4HeM4He + µ̃γMγ

))
+Dp+K̃p+

∫ ∫
∂V

ds
∂G

∂n
µ̃p+

+D3HeK̃3He

∫ ∫
∂V

ds
∂G

∂n
µ̃3He +DnK̃n

∫ ∫
∂V

ds
∂G

∂n
µ̃n +Dt+K̃t+

∫ ∫
∂V

ds
∂G

∂n
µ̃t+

+D4HeK̃4He

∫ ∫
∂V

ds
∂G

∂n
µ̃4He +DγK̃γ

∫ ∫
∂V

ds
∂G

∂n
µ̃γ

]
(3.68)

We suppose a potential flow
~v = ~∇R, (3.69)

where R is a velocity potential.
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Thus one gets
div(ρu~∇R) = f̃(~r). (3.70)

Simultaneously we have a continuity equation

div(ρ~v) = 0 (3.71)

or div(ρ~∇R) = 0. (3.72)

Supposing equation
u = u(T, ρ) (3.73)

one eventually gets {
ρ ∂u∂ρ

~∇ρ~∇R = f̃(~r)

~∇ρ~∇R+ ~∇2R = 0.
(3.74)

We can solve system Eqs (3.74) under boundary conditions

R|∂V = R̃, ρ|∂V = ρ̃

where R̃ and ρ̃ are functions defined on ∂V . Afterwards we put solutions and Eq. (3.74)
to Eq. (3.57) with several values of ϕ getting from Eq. (3.56) a total free energy
production, F̃ . We suppose

p = p(T, ρ). (3.75)

From Eq. (3.57) one easily gets

df

dt
= −p

ρ
~∇2R+

1

NA
ϕλ(dF )λ(dFd)+BFρH(B1E1 +B2E2 +B3E3). (3.76)

Using Eq. (3.68) one easily gets

df

dt
= ϕ

{
1

NA
λ(dF )λ(dFd)+BFρH(B1E1 +B2E2 +B3E3)

−
∫ ∫
∂V

ds
∂G

∂n

[
Dd+K̃d+

2Md+
·
(
B1

(
µ̃t+Mt+ + µ̃p+Mp+

)
+B2

(
µ̃3HeM3He + µ̃nMn

)
+B3

(
µ̃4HeM4He + µ̃γMγ

))
+Dp+K̃p+ µ̃p+ +D3HeK̃3Heµ̃3He +DnK̃nµ̃n

+Dt+K̃t+ µ̃t+ +D4HeK̃4Heµ̃4He +DγK̃γµ̃γ

]}
. (3.77)

Eqs (3.56), (3.73), (3.74), (3.75), (3.77) give us a simple theory of our cold fusion reactor
(together with all boundary conditions). The system of Eqs (3.74) forms a nonlinear
system of pde. In this way even if it is elliptic we can expect some interesting phenom-
ena for F̃ connecting to soliton-like solutions. This demands more investigations and
will be done elsewhere.
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For a total free energy production in a second one gets from Eq. (3.56) and Eq. (3.77)

F̃ =

∫ ∫ ∫
V

dv ϕ

{
1

NA
λ(dF )λ(dFd)+BFρH(B1E1 +B2E2 +B3E3)

−
∫ ∫
∂V

ds
∂G

∂n

[
Dd+K̃d+

2Md+
·
(
B1

(
µ̃t+Mt+ + µ̃p+Mp+

)
+B2

(
µ̃3HeM3He + µ̃nMn

)
+B3

(
µ̃4HeM4He + µ̃γMγ

))
+Dp+K̃p+ µ̃p+ +D3HeK̃3Heµ̃3He +DnK̃nµ̃n

+Dt+K̃t+ µ̃t+ +D4HeK̃4Heµ̃4He +DγK̃γµ̃γ

]}
. (3.78)

Functions u and p depend on the material of a sample and can be obtained from
physico-chemical tables.

Let us notice that we can consider also a bound system of deuteron–deuteron–
quasiparticle in such a case where a charge quasiparticle is screening a Coulomb barrier.
In this way a tunnel effect has higher probability. The mentioned quasiparticle could
have a different statistics than Fermi–Dirac statistics, i.e. Böse–Einstein statistics.
This situation is similar to π−-atoms and π−-molecules. (We should prevent π-meson
to interact strongly with nuclei.) There are also some interests in hardonic atoms (see
Refs [58]–[62]). One can also try to design 2-dimensional systems interacting with
deuterons. In this case we can have to do with anyons as the third particle in three-
bodies interacting bound system. The important point is to find such materials where
such charged quasiparticles are heavy and their states are narrow. They should screen
the Coulomb barriers to make a tunnel effect more probable.

There is also a possibility to employ negatively charged solitons known in solid
state physics in order to lower a Coulomb barrier in a three bodies interactions (i.e.
deuteron–deuteron–soliton). In superconducting materials such solitons are possible
to exist. In calculation of binding energy of such quasimolecules we can follow e.g.
Ref. [63].

4 Soliton catalysis for LENR (Low Energy Nuclear Reac-
tions)

Quasiparticles can be also considered as solutions (solitons) of some PDEs. A soliton
in physics is a model of an individuum. In plasma in solid material (e.g. metal) KdV
equation can be applied. This is for a collisionless plasma composed by cold ions and
warm electrons (see Ref. [64]). They are ion acoustic solitons in a plasma.
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Let us give some details. The basic equations are as follows

∂n

∂t̄
+
∂(nū)

∂x̄
= 0 (4.1)

∂ū

∂t̄
+ ū

∂ū

∂x̄
= −∂ψ

∂x̄
(4.2)

∂2ψ

∂x̄2
= ne − n (4.3)

ne = expψ (4.4)

where

n =
ñi
n0

, ne =
ñe
n0

, ū = ũ(kTe/m)−1/2 (4.5)

are the dimensionless ion number density, electron number density, ion velocity and
electro-static potential, respectively. (m is an ion mass and Te an electron gas tem-
perature.) Dimensionless space-time variable are measured by the Debye distance
(kTe/4πe

2n0)
1/2, and the ion plasma frequency is (4πe2n0/m)1/2 (see Refs [65]–[68]).

After some manipulations and simplifications we get KdV equation

∂ζ

∂τ
+

1

2

∂3ζ

∂ξ3
+ ζ

∂ζ

∂ξ
= 0, (4.6)

where

ξ = ε1/2(x̄− t̄)
τ = ε3/2t̄

are so-called stretched variables, ε is an expansion parameter which is used for basic
equation such that

n = 1 + εn(1) + . . .

u = εu(1) + . . .

ψ = εζ

(4.7)

We are supposing boundary conditions

n = 1, ψ = 0, ū = 1 if |x̄| → ∞. (4.8)

For first order expansion one gets

ζ = n(1) = u(1) = n(1)e (4.9)

and KdV equation.
Let us consider the following transformations:

ζ = 3
3
√

4u, τ = t, ξ =
1
3
√

2
x. (4.10)
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After these transformations our equation will be in a canonical form

ut + uxxx + 6uux = 0. (4.11)

This equation has an important solution

u =
2κ2

cosh2(κ(x− 4κ2t− x0))
. (4.12)

This solution is known as one-soliton solution (κ is a constant). The solution can be
considered as the third particle interacting with two deuterons forming quasi-chemical
bond between them. Due to electrostatic interaction a soliton is screening Coulomb
interaction between deuterons to lower a Coulomb barrier. This is a one-dimensional
model (in one dimension there are no fermions). Moreover, in higher dimensions, e.g.
in 3-dimensional space, we can consider such an interaction as a quasi-chemical bond
and an effect of this as a soliton catalysis.

We have also different equations: Boussinesq equation, Benjamin–Bona–Mahony
equation, KdV–Burgers equation (KdV equation with dissipation). We can also con-
sider spherical and cylindrical solitons. Some of mentioned equations are strictly con-
nected. These equations have multiple soliton solutions (also infinite soliton solutions,
so-called cn-waves). Moreover, we are interested only in one-soliton solutions. It hap-
pens that someone observed enhancement of deuterons-fusion reactions in metals (see
Refs [53]–[54]). These results cannot be explained by the Debye–Hückel model that
has been proposed to explain the influence of the electron screening on nuclear reac-
tions. It seems that nonlinear effects coming to soliton solutions and an application
of this idea to three bodies interactions (quasi-chemical bonds) can explain these re-
sults. Let us notice that a mass of a soliton is an energy of the soliton (as it can be
calculated in a field theory of u). Thus all our calculations concerning a tunnel effect
(a Gamow formula) are valid in the case of a soliton catalysis. Simultaneously all for-
mulas obtained for heavy fermion catalysis are also valid for a soliton catalysis. (I mean
free energy (enthalpy) production with application of Onsager–Prigogine irreversible
thermodynamics). Let us consider KdV as a toy model.

In order to do this let us consider two important characterizations of a soliton
charge and an energy (mass). A change is simply equal to

Q =

∫ +∞

−∞
u dx. (4.13)

A mass
E(u)

c2
=

1

c2

∫ +∞

−∞

[u2x
2
− u3

]
dx (4.14)

where c is the velocity of light and E(u) is an energy of a soliton obtained from the
Hamiltonian

H =

∫ x

−x

[u2x
2
− u3

]
dx. (4.15)
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One easily gets

msol = −112κ

5c2
3
√

2n20 (4.16)

and
Qsol = 12κ

3
√

4n0e. (4.17)

(e is an elementary charge). For Qsol < 0 (negatively charged) κ < 0 and

msol = −112κ

5c2
9
√

2n0 > 0.

In this way in our toy model for a Gamow formula one gets

Bsol ' exp
(
−2

h

(
2msolQ

2
solasol

)1/2)
(4.18)

where asol is a Bohr radius analogue for a soliton,

asol =
4πεε0~2

msolQ
2
sol

. (4.19)

Moreover, in order to consider a realistic 3-dimensional model we should consider the
KP (Kadomtsev–Petviashvili) equation

∂

∂x
(ut + 6uux + uxxx) = −3β2∆⊥u (4.20)

where

∆⊥ =
∂2

∂y2
+

∂2

∂z2
. (4.21)

This equation possesses soliton solutions, β is a constant.
A Hamiltonian for KP equation looks like

HKP =

∫ x

−x

∫ y

−y

∫ z

−z

(u2x
2
− 3β2

2
(~∇⊥w)2 − u3

)
dV (4.22)

in such a way that

wx = u (4.23)

~∇⊥ =
( ∂
∂y
,
∂

∂z

)
. (4.24)

One considers multisoliton solutions in order to get an enhancement of nuclear reac-
tions. Moreover, an analogy of a catalysis breaks down. The screening of Coulomb
interaction between deuterons and lowering a Coulomb barrier by multisoliton solutions
of KP equations will be very important in metals filled with deuterons.

We can still use a Gamow formula, moreover, now an analogy of biding deuterons
together cannot be maintained. Moreover, it seems that one can consider more general
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configuration of ions surrounded by electron plasma governed by KP equations. This
problem demands more investigations. In this way a Hamiltonian approach to soliton
theory has been applied to cold fusion problem (see Ref. [69]).

Eventually one can calculate a ratio
∣∣Qsol
msol

∣∣ for our toy model with KdV equation∣∣∣Qsol

msol

∣∣∣ =
15 3
√

2 c2e

28n0
. (4.25)

We can translate a probability of a tunnel effect from Gamow formula to a cross-
section of a scattering of two deuterons. It follows that solitons can cause some kind
of resonance effects.

In the case of soliton catalysis in cold plasma with solitons one gets similarly

df

dt
= ϕ

{
1

NA
σd+d+ρH(B1E1 +B2E2 +B3E3)

−
∫ ∫
∂V

ds
∂G

∂n

[
Dd+K̃d+

2Md+
·
(
B1

(
µ̃t+Mt+ + µ̃p+Mp+

)
+B2

(
µ̃3HeM3He + µ̃nMn

)
+B3

(
µ̃4HeM4He + µ̃γMγ

))
+Dp+K̃p+ µ̃p+ +D3HeK̃3Heµ̃3He +DnK̃nµ̃n

+Dt+K̃t+ µ̃t+ +D4HeK̃4Heµ̃4He +DγK̃γµ̃γ

]}
. (4.26)

Eqs (3.56), (3.73), (3.74), (3.75), (4.26) give us a simple theory of our plasma cold
fusion (soliton catalysis) reactor (together with all boundary conditions, which are the
same as in the heavy fermion case). The system of Eqs (3.74) forms a nonlinear system
of PDE. In this way even if it is elliptic we can expect some interesting phenomena for
F̃ connecting to soliton-like solutions. This demands more investigations and will be
done elsewhere. (Those solitons have nothing to do with solitons of KdV or KP.)

For a total free energy production in a second one gets (similarly as in heavy
fermions case)

F̃ =

∫ ∫ ∫
V

dv ϕ

{
1

NA
σd+d+ρH(B1E1 +B2E2 +B3E3)

−
∫ ∫
∂V

ds
∂G

∂n

[
Dd+K̃d+

2Md+
+
(
B1

(
µ̃t+Mt+ + µ̃p+Mp+

)
+B2

(
µ̃3HeM3He + µ̃nMn

)
+B3

(
µ̃4HeM4He + µ̃γMγ

))
+Dp+K̃p+ µ̃p+ +D3HeK̃3Heµ̃3He +DnK̃nµ̃n

+Dt+K̃t+ µ̃t+ +D4HeK̃4Heµ̃4He +DγK̃γµ̃γ

]}
. (4.27)

We can introduce a total cross-section for deuteron scattering in two cases:

σd+d+ = λ(dF )λ(dFd)+BF (4.28)
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for heavy fermion catalysis and

σd+d+ = λ(dS)λ(dSd)Bsol (4.29)

in a soliton catalysis, where Bsol is given by the formula (4.18) and λ(dS) and λ(dSd) are
probabilities of formations of a bound system soliton deuteron and deuteron soliton
deuteron. The last quasi-molecule should be formed from dS and a deuteron by an
electrostatic attraction. We should also remember that we can get soliton solutions
also in the case of a crystal lattice (for more recent results see Ref. [70]).

Moreover, we can calculate σd+d+ in a cold plasma filled with deuterons in the
following way. In the case of 3-dimensional KP-equation we get a potential between
two deuterons screening by a soliton solution of KP-equation

V (X,Y, Z, t) =
e

4πε0ε

(
1√

X2 + Y 2 + Z2

− 3
3
√

4n0

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

dx dy dz
u(x, y, z, t)√

(X − x)2 + (Y − y)2 + (Z − z)2

)
(4.30)

where u(x, y, z, t) = U(~k · ~r − ωt) is a one-soliton solution of KP-equations.
In two-dimensional case

V (x, y, t) =
1

2
a2 sech2

(1

2
a(x− by − ω t

a
− x0) (4.31)

and also

u(x, y, t) = 4
−(x+ ay + 3(a2 − b2)t)2 + b2(y + 6at)2 + 1

b2[
(x+ ay + 2(a2 − b2)t)2 + b2(y + 6at)2 + 1

b2

] (4.32)

which is a so-called lump solution (also a two-dimensional solitary wave).
A transmission coefficient (a transition probability) for a deuteron (a quantum

tunneling) is:

P (E) ∼= exp

(
−2

∫ ∫ ∫
V0(t)

√
2MD

~
(V (~r, t)− E) d3~r

)
(4.33)

where E is an energy of a deuteron. Moreover, E ' 0 and we get

σd+d+ = P (0) ∼= exp

(
−2
√

2

√
MD

~

∫ ∫ ∫
V0(t)

√
V (~r, t) d3~r

)
. (4.34)

The integral is over a potential barrier (V0(t)) which depends on a time. In this way we
get (even in multisoliton solutions for KdV or KP equations) something which is similar
to catalysis. Multisoliton solutions (n-soliton solutions or even cn-like waves) can lower
a Coulomb barrier between two deuterons resulting in higher rates of low energy nuclear
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reactions. These phenomena can be called a “soliton catalysis”. We have not here any
analogue to muon catalysis. This analogy breaks down as we mention above. There is
no analogy also to heavy fermion catalysis or even to one-soliton catalysis. Moreover,
we call this possible enhancement of nuclear reaction rates a soliton catalysis. This
catalysis is similar to enzymatic catalysis in biochemistry.

This seems to be a promising approach. Moreover, we should fill a sample of
metal (maybe a metal foil) with a deuter. This could be done using low energy beams
of deuterons. Simultaneously the metal involved here should be a hydrogen storage
(a high affinity to hydrogen). We can of course try Al, C, Ta, Zr or metal oxides (as
mentioned in Refs [53]–[54]).

Recently there is an interest in some exotic molecules with some different particles
than electrons and nuclei. It means molecules with µ+ particles in place of protons and
also with positrons e+ except very well known mesoatoms (see Refs [71]–[72]). Our
approach to nuclear fusion is based on similar ideas. Moreover, we consider molecules
with quasiparticles in solid state physics coupled to ordinary nuclei.

More advanced quantum chemistry treatment of exotic molecules appropriate for
further studies can be found in Ref. [73].

Low Energy Nuclear Reactions (LENR) sometimes called Chemically Assisted Nu-
clear Reactions are still under investigations all around the world (see Refs [74]–[79]).

5 Example (a cylindrical cold fusion reactor)

Let us consider a sample in a shape of a cylinder with radius ρ0 and height h (see
Fig. 1). The Green function for such a set is a solution to the following equation

~∇2G =

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂ϕ2
+

∂2

∂z2

)
G = −δ(ρ− ρ

′)

ρ
δ(ϕ− ϕ′)δ(z − z′) (5.1)

with boundary conditions

G = 0 for ρ = ρ0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ h and z = 0, 0 ≤ ρ ≤ ρ0, 0 ≤ ϕ < 2π,

z = h, 0 ≤ ρ ≤ ρ0, 0 ≤ ϕ < 2π, (5.2)

where ρ, ϕ and z are ordinary cylindrical coordinates. δ is the one-dimensional Dirac
delta distribution.

One can find the following solution to this Dirichlet problem (see Ref. [80]).

G(ρ, ρ′, ϕ, ϕ′, z, z′)

=
1

πρ20

m=+∞∑
m=−∞

∞∑
n=1

Jm(xmnρρ0
)Jm(xmnρ

′

ρ0
)(z + z′ − |z − z′|) cos(m(ϕ− ϕ′))
J2
m+1(xmn)

. (5.3)

Jm is the Bessel function of the m-th order and xmn is the n-th root of the Bessel
function of the m-th order.
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y

z

x

ρ0

h

Fig. 1. A cylindrical sample

One gets ∫ ∫ ∫
V
Gdv = 0 (5.4)

and

Ci =

∫ ∫
∂V

∂G

∂n
µ̃i ds =

z

πρ20

m=+∞∑
m=−∞

∞∑
n=1

Jm(xmnρρ0
)

J2
m+1(xmn)

∫ 2π

0
dϕ′

∫ ρ0

0
ρ′ dρ′

× Jm
(
xmnρ

′

ρ0

)
cos(m(ϕ− ϕ′))

(
C̃i|z′=0 − C̃i|z′=h

)
+

1

πρ0

m=+∞∑
m=−∞

∞∑
n=1

dJm
dx

(xmn)
Jm(xmnρρ0

)

J2
m+1(xmn)

∫ 2π

0
dϕ′

∫ h

0
dz′

× (z + z′ − |z − z′|) cos(m(ϕ− ϕ′))C̃i|ρ′=ρ0 . (5.5)

µi =

∫ ∫
∂V

∂G

∂n
c̃i ds =

z

πρ20

m=+∞∑
m=−∞

∞∑
n=1

Jm(xmnρρ0
)

J2
m+1(xmn)

∫ 2π

0
dϕ′

∫ ρ0

0
ρ′ dρ′

× Jm
(
xmnρ

′

ρ0

)
cos(m(ϕ− ϕ′)) (µ̃i|z′=0 − µ̃i|z′=h)
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+
1

πρ0

m=+∞∑
m=−∞

∞∑
n=1

dJm
dx

(xmn)
Jm(xmnρρ0

)

J2
m+1(xmn)

∫ 2π

0
dϕ′

∫ h

0
dz′

× (z + z′ − |z − z′|) cos(m(ϕ− ϕ′))µ̃i|ρ′=ρ0 . (5.6)

Let us notice the following fact: the Green function derived here is continuous with
respect to every variable, ρ, ρ′, ϕ, ϕ′, z, z′. Moreover, it has a singularity if ρ → ρ′,
ϕ → ϕ′, z → z′. The function has the first and second derivative with respect to
ρ, ρ′, ϕ, ϕ′. However it is not differentiable with respect to z and z′ andG(ρ, ρ′, ϕ, ϕ′, z, z′) =
G(ρ, ρ′, ϕ, ϕ′, z′, z). This means the function is a generalized solution of the differen-
tial equation and the derivatives with respect to z and z′ should be considered in the
distributional sense.

In this way we get Eqs (3.62)–(3.64), (3.77)–(3.78), (4.26)–(4.27) for a cylindrical
sample substituting Eq. (5.6). Let us notice that formulas (5.5)–(5.6) have been derived
for ∂V consisting of three pieces for z = 0 or h, 0 ≤ ρ ≤ ρ0, ρ = ρ0, 0 ≤ z ≤ h, C̃i|z′=0,
C̃i|z′=h, C̃i|ρ=ρ0 are boundary (Dirichlet) conditions on these pieces and should be
consistent on borders between them, i.e.

C̃i|z′=0 = C̃1
i (ρ
′, ϕ′)

C̃i|z′=h = C̃2
i (ρ
′, ϕ′)

C̃i|ρ′=ρ0 = C̃3
i (ϕ
′, z′).

(5.7)

C̃1
i (ρ0, ϕ

′) = C̃3
i (ϕ′, 0), ϕ′ ∈ 〈0, 2π)

C̃2
i (ρ0, ϕ

′) = C̃3
i (ϕ′, h), ϕ′ ∈ 〈0, 2π).

(5.8)

The same we have for µ̃i:

µ̃i|z′=0 = µ̃1i (ρ
′, ϕ′)

µ̃i|z′=h = µ̃2i (ρ
′, ϕ′)

µ̃i|ρ′=ρ0 = µ̃3i (ϕ
′, z′)

µ̃1i (ρ0, ϕ
′) = µ̃3i (ϕ

′, 0), ϕ′ ∈ 〈0, 2π)

µ̃2i (ρ0, ϕ
′) = µ̃3i (ϕ

′, h), ϕ′ ∈ 〈0, 2π),

(5.9)

where i = p+, d+, t+, 3He, 4He, n, γ.
We rewrite Eqs (3.74) in cylindrical coordinates

P
∂u

∂P

(
∂R

∂ρ

∂P

∂ρ
+

1

ρ2
∂R

∂ϕ

∂P

∂ϕ
+
∂R

∂z

∂P

∂z

)
= f̃(ρ, ϕ, z)

∂R

∂ρ

∂P

∂ρ
+

1

ρ2
∂R

∂ϕ

∂P

∂ϕ
+
∂R

∂z

∂P

∂z
+

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂ρ2
+

∂2

∂z2

)
R = 0

(5.10)

where f̃(ρ, ϕ, z) is given by Eq. (3.68) in cylindrical coordinates and ϕ in Eq. (3.68)
should be changed to ϕ1 in order to avoid misunderstanding. Let us notice a change
in notation. Now the density is denoted by P (capital Greek ρ).
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One easily gets from Eq. (3.77) using Eq. (5.6):

df

dt
= ϕ1

{
1

NA
σd+d+ρH(B1E1 +B2E2 +B3E3)−

1

πρ0

m=+∞∑
m=−∞

∞∑
n=1{

Jm(xmnρρ0
)

J2
m+1(xmn)

(
z

ρ0

)∫ 2π

0
dϕ′

∫ ρ0

0
ρ′ dρ′Jm

(
xmnρ

′

ρ0

)
cos(m(ϕ− ϕ′))

[
Dd+K̃d+

2Md+

×
(
B1

((
µ̃1t+(ρ′, ϕ′)− µ̃2t+(ρ′, ϕ′)

)
Mt+ +

(
µ̃1p+(ρ′, ϕ′)− µ̃2p+(ρ′, ϕ′)

)
Mp+

)
+B2

((
µ̃13He(ρ

′, ϕ′)− µ̃23He(ρ
′, ϕ′)

)
M3He +

(
µ̃1n(ρ′, ϕ′)− µ̃2n(ρ′, ϕ′)

)
Mn

)
+B3

((
µ̃14He(ρ

′, ϕ′)− µ̃24He(ρ
′, ϕ′)

)
M4He +

(
µ̃1γ(ρ′, ϕ′)− µ̃2γ(ρ′, ϕ′)

)
Mγ

))
+Dp+K̃p+

(
µ̃1p+(ρ′, ϕ′)− µ̃2p+(ρ′, ϕ′)

)
+D3HeK̃3He

(
µ̃13He(ρ

′, ϕ′)− µ̃23He(ρ
′, ϕ′)

)
+DnK̃n

(
µ̃1n(ρ′, ϕ′)− µ̃2n(ρ′, ϕ′)

)
+Dt+K̃t+

(
µ̃1t+(ρ′, ϕ′)− µ̃2t+(ρ′, ϕ′)

)
+D4HeK̃4He

(
µ̃14He(ρ

′, ϕ′)− µ̃24He(ρ
′, ϕ′)

)
+DγK̃γ

(
µ̃1γ(ρ′, ϕ′)− µ̃2γ(ρ′, ϕ′)

)]
+
dJm
dx

(xmn)
Jm(xmnρρ0

)

J2
m+1(xmn)

∫ 2π

0
dϕ′

∫ h

0
dz′ (z + z′ − |z − z′|) cos(m(ϕ− ϕ′))

[
Dd+K̃d+

2Md+(
B1

(
µ̃3t+(ϕ′, z′)Mt+ + µ̃3p+(ϕ′, z′)Mp+

)
+B2

(
µ̃33He(ϕ

′, z′)M3He + µ̃3n(ϕ′, z′)Mn

)
+B3

(
µ̃34He(ϕ

′, z′)M4He

))
+Dp+K̃p+ µ̃

3
p+(ϕ′, z′) +D3HeK̃3Heµ̃

3
3He(ϕ

′, z′) +DnK̃nµ̃
3
n(ϕ′, z′)

+Dt+K̃t+ µ̃
3
t+(ϕ′, z′) +D4HeK̃4Heµ̃

3
4He(ϕ

′, z′) +DγK̃γµ̃
3
g(ϕ
′, z′)

]}}
(5.11)

For the total energy production in one second one gets:

F̃ =

∫ ∫ ∫
V

df

dt
dv =

∫ 2π

0

∫ h

0
dz

∫ ρ0

0
ρ dρ{

ϕ1

{
1

NA
σd+d+ρH(B1E1 +B2E2 +B3E3)−

1

πρ0

m=+∞∑
m=−∞

∞∑
n=1{

Jm(xmnρρ0
)

J2
m+1(xmn)

(
z

ρ0

)∫ 2π

0
dϕ′

∫ ρ0

0
ρ′ dρ′Jm

(
xmnρ

′

ρ0

)
cos(m(ϕ− ϕ′))

[
Dd+K̃d+

2Md+

×
(
B1

((
µ̃1t+(ρ′, ϕ′)− µ̃2t+(ρ′, ϕ′)

)
Mt+ +

(
µ̃1p+(ρ′, ϕ′)− µ̃2p+(ρ′, ϕ′)

)
Mp+

)
+B2

((
µ̃13He(ρ

′, ϕ′)− µ̃23He(ρ
′, ϕ′)

)
M3He +

(
µ̃1n(ρ′, ϕ′)− µ̃2n(ρ′, ϕ′)

)
Mn

)
+B3

((
µ̃14He(ρ

′, ϕ′)− µ̃24He(ρ
′, ϕ′)

)
M4He +

(
µ̃1γ(ρ′, ϕ′)− µ̃2γ(ρ′, ϕ′)

)
Mγ

))
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+Dp+K̃p+

(
µ̃1p+(ρ′, ϕ′)− µ̃2p+(ρ′, ϕ′)

)
+D3HeK̃3He

(
µ̃13He(ρ

′, ϕ′)− µ̃23He(ρ
′, ϕ′)

)
+DnK̃n

(
µ̃1n(ρ′, ϕ′)− µ̃2n(ρ′, ϕ′)

)
+Dt+K̃t+

(
µ̃1t+(ρ′, ϕ′)− µ̃2t+(ρ′, ϕ′)

)
+D4HeK̃4He

(
µ̃14He(ρ

′, ϕ′)− µ̃24He(ρ
′, ϕ′)

)
+DγK̃γ

(
µ̃1γ(ρ′, ϕ′)− µ̃2γ(ρ′, ϕ′)

)]
+
dJm
dx

(xmn)
Jm(xmnρρ0

)

J2
m+1(xmn)

∫ 2π

0
dϕ′

∫ h

0
dz′ (z + z′ − |z − z′|) cos(m(ϕ− ϕ′))

[
Dd+K̃d+

2Md+(
B1

(
µ̃3t+(ϕ′, z′)Mt+ + µ̃3p+(ϕ′, z′)Mp+

)
+B2

(
µ̃33He(ϕ

′, z′)M3He + µ̃3n(ϕ′, z′)Mn

)
+B3

(
µ̃34He(ϕ

′, z′)M4He

))
+Dp+K̃p+ µ̃

3
p+(ϕ′, z′) +D3HeK̃3Heµ̃

3
3He(ϕ

′, z′) +DnK̃nµ̃
3
n(ϕ′, z′)

+Dt+K̃t+ µ̃
3
t+(ϕ′, z′) +D4HeK̃4Heµ̃

3
4He(ϕ

′, z′) +DγK̃γµ̃
3
g(ϕ
′, z′)

]}}}
(5.12)

To complete an example we write

~v = ~∇R =

(
∂R

∂ρ
~eρ +

1

ρ

∂R

∂ϕ
~eϕ +

∂R

∂z
~ez

)
. (5.13)

(~eρ, ~eϕ and ~ez are coordinate line versors) and boundary conditions for R and P
(a density)

R̃|z=0, R̃|z=h, R̃|ρ=ρ0 , P̃ |z=0, P̃ |z=h, P̃ |ρ=ρ0 . (5.14)

One gets

R̃|z=0 = R̃1(ρ, ϕ), 0 ≤ ϕ < 2π, 0 ≤ ρ ≤ ρ0,

R̃|z=h = R̃2(ρ, ϕ),

P̃ |z=0 = P̃ 1(ρ, ϕ),

P̃ |z=h = P̃ 2(ρ, ϕ),

R̃|ρ=ρ0 = R̃3(ϕ, z), 0 ≤ ϕ < 2π, 0 ≤ z ≤ h,

P̃ |ρ=ρ0 = P̃ 3(ϕ, z)

(5.15)

and consistency conditions

R̃1(ρ0, ϕ) = R̃3(ϕ, 0), 0 ≤ ϕ < 2π,

R̃2(ρ0, ϕ) = R̃3(ϕ, h),

P̃ 1(ρ0, ϕ) = P̃ 3(ϕ, 0), 0 ≤ ϕ < 2π,

P̃ 2(ρ0, ϕ) = P̃ 3(ϕ, h).

(5.16)

We should also derive a function

f̃(~r) = f̃(ρ, ϕ, z) (5.17)
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getting the result

f̃(ρ, ϕ, z) = −ϕ1
1

πρ0

m=+∞∑
m=∞

∞∑
n=1{

Jm(xmnρρ0
)

J2
m+1(xmn)

(
z

ρ0

)∫ 2π

0
dϕ′

∫ ρ0

0
ρ′ dρ′Jm

(
xmnρ

′

ρ0

)
cos(m(ϕ− ϕ′))

[
Dd+K̃d+

2Md+

×
(
B1

((
µ̃1t+(ρ′, ϕ′)− µ̃2t+(ρ′, ϕ′)

)
Mt+ +

(
µ̃1p+(ρ′, ϕ′)− µ̃2p+(ρ′, ϕ′)

)
Mp+

)
+B2

((
µ̃13He(ρ

′, ϕ′)− µ̃23He(ρ
′, ϕ′)

)
M3He +

(
µ̃1n(ρ′, ϕ′)− µ̃2n(ρ′, ϕ′)

)
Mn

)
+B3

((
µ̃14He(ρ

′, ϕ′)− µ̃24He(ρ
′, ϕ′)

)
M4He +

(
µ̃1γ(ρ′, ϕ′)− µ̃2γ(ρ′, ϕ′)

)
Mγ

))
+Dp+K̃p+

(
µ̃1p+(ρ′, ϕ′)− µ̃2p+(ρ′, ϕ′)

)
+D3HeK̃3He

(
µ̃13He(ρ

′, ϕ′)− µ̃23He(ρ
′, ϕ′)

)
+DnK̃n

(
µ̃1n(ρ′, ϕ′)− µ̃2n(ρ′, ϕ′)

)
+Dt+K̃t+

(
µ̃1t+(ρ′, ϕ′)− µ̃2t+(ρ′, ϕ′)

)
+D4HeK̃4He

(
µ̃14He(ρ

′, ϕ′)− µ̃24He(ρ
′, ϕ′)

)
+DγK̃γ

(
µ̃1γ(ρ′, ϕ′)− µ̃2γ(ρ′, ϕ′)

)]
+
dJm
dx

(xmn)
Jm(xmnρρ0

)

J2
m+1(xmn)

∫ 2π

0
dϕ′

∫ h

0
dz′ (z + z′ − |z − z′|) cos(m(ϕ− ϕ′))

[
Dd+K̃d+

2Md+(
B1

(
µ̃3t+(ϕ′, z′)Mt+ + µ̃3p+(ϕ′, z′)Mp+

)
+B2

(
µ̃33He(ϕ

′, z′)M3He + µ̃3n(ϕ′, z′)Mn

)
+B3

(
µ̃34He(ϕ

′, z′)M4He

))
+Dp+K̃p+ µ̃

3
p+(ϕ′, z′) +D3HeK̃3Heµ̃

3
3He(ϕ

′, z′) +DnK̃nµ̃
3
n(ϕ′, z′)

+Dt+K̃t+ µ̃
3
t+(ϕ′, z′) +D4HeK̃4Heµ̃

3
4He(ϕ

′, z′) +DγK̃γµ̃
3
g(ϕ
′, z′)

]}
(5.18)

6 Conclusions and remarks

An effective interaction between hydrogen atoms (deuterium atoms) in a solid can be
intuitively described as quasichemical bonds in quasimolecules. These quasimolecules
involve quasiparticles and ordinary particles. In particular, heavy fermions in solids
and hydrogen or deuterium nuclei. Such an approach is similar to muon catalysis in
cold fusion and we can use some intuition from the approach. The heavy fermion
catalysis paradigm can help us to find some materials where such a cold fusion is very
probable and to check them for further investigations. This is the aim of the paper.
Simultaneously it is a chemical topic and a mathematical chemistry topic.

To be honest, we add also kinetic equations of our Low Energy Nuclear Reactions.
They are called reaction-diffusion equations and they are nonlinear partial differential

34



equations. They look as follows.

∂Ct+

∂t
= B1σd+d+C

2
d+ +Dt+

~∇2Ct+ (6.1)

∂Cp+

∂t
= B1σd+d+C

2
d+ +Dp+

~∇2Cp+ , (6.2)

∂C3He

∂t
= B2σd+d+C

2
d+ +D3He

~∇2C3He (6.3)

∂Cn
∂t

= B2σd+d+C
2
d+ +Dn

~∇2Cn (6.4)

∂C4He

∂t
= B3σd+d+C

2
d+ +D4He

~∇2C4He (6.5)

∂Cγ
∂t

= B3σd+d+C
2
d+ +Dγ

~∇2Cγ (6.6)

Ci = Ci(x, y, z, t), i = 4He, 3He, γ, n, t+, p+, σd+d+ is given by formulas (4.28) (heavy
fermion catalysis), (4.29) (one soliton catalysis), and (4.34) (n-soliton or cn-like waves
catalysis). Eqs (6.1)–(6.6) are master equations for our cold fusion. Moreover, in our
way to get reactor equation for an energy production it is better to use our approach
from Section 4. This approach treats nuclear reactions as chemical reactions.

Summing up. In the paper we consider three types of a possible catalysis for a
cold fusion (d + d or d + t). They are: 1) heavy fermion (heavy electron) catalysis in
a solid state sample filled with deuterons, 2) 1-soliton catalysis in an electron plasma
of a metal filled with a deuter (KdV or KP equations, 1-soliton solutions), 3) soliton
catalysis in an electron plasma of metal filled with a deuter (KdV or KP equations —
n-soliton solutions or cn-like waves). The difference between 2) and 3) is such that in
the case of 2) we follow an analogy of 1), i.e. we treat a soliton as a quasiparticle in
a quasi-chemical bond. But in case 3) we consider n-soliton solutions or cn-waves as
configurations of negative charge lowering a Coulomb barrier between two deuterons.

Let us notice the following fact. According to the S. Arhenius theory of chemical
reactions it is necessary for reacting molecules (or atoms) to get a sufficient kinetic
energy to go over an energetic barrier. A catalysator (or an enzyme) can lower this
barrier. In our case of a soliton catalysis a Coulomb barrier can be lowered by a soliton.
Moreover, an energy of deuteron is very low and we need a tunnel effect to complete a
reaction. This can be said also for a heavy fermion catalysis.

We consider also thermodynamical properties of a fusion reactor. In particular, we
consider in details a cylindrical fusion reactor.

Let us give the following remark. Quasiparticles approach in condensed matter
physics is now very popular. We have to do with some kind of “standard model”
of quasiparticles. Except heavy electrons, light holes and heavy holes and composed
quasiparticles as exciton, charged excitons, trions, Cooper pairs we have to do also with
dressed and double dressed quasiparticles. We have to do with magnetic monopoles,
skyrmions (see Refs [81]–[82]) and Majorana fermions in 2D systems. We have also
the so-called spin-charge separation (see Refs [83]–[84]) and spin-orbital separation (see
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Ref. [85]). Due to this effects we have new quasiparticles: spinos, holons, orbitons. All
of them can (in principle) form bound system with two deuterons going to additional
catalysis of Low Energy Nuclear Reactions (LENR) and cold fusion. We can also
consider as quasiparticles exact solutions of nonlinear PDE of unified field theory of
electromagnetic and gravitational interactions (see Refs [86]–[87]). They are some kind
of “interference effects” of electromagnetic and gravitational interaction being particle-
like solutions. Moreover, a strict connection to a cold fusion problem is not known.
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