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Abstract

The notion is presented that fitting galaxy rotation curves is possible without the invo-
cation of dark matter. Equations of motion similar to those used to describe the internal
motions of terrestrial weather systems are applied to the rotation curves of galaxies. How-
ever, due to the four-dimensional nature of the equations, additional terms arise. One of
these additional terms is particularly useful in matching the rotation curves of galaxies.
The extra term presumably describes internal properties of the central galactic black hole.
It also determines, in part, the galactic rotation curve, just as the motion of winds in a
terrestrial weather system are determined, in part, by the rotation of the Earth.

1 Introduction

The first indication that something was lacking in galactic theory occurred when it was noticed
that stars at the outer regions of galaxies rotated more quickly than expected. The rotational
speeds of these stars was greater than the speeds determined theoretically from the amount of
luminous matter in the galaxy. It was concluded, therefore, that there must be some kind of
unobserved (or dark) matter present in the galaxy in order to account for the extra speed.

Alternative theories have been proposed in an effort to explain this discrepancy. One such
theory, Milgrom’s “Modified Newtonian Dynamics” (MOND) [1], introduces an additional ac-
celeration into Newton’s gravitation theory that results in very nice fits to a large number of
rotation curves. However, it contains the unacceptable (to me) prediction that rotation speeds
remain constant to infinity. Another theory which gives rotation curves comparable to Milgrom’s
is Moffat’s “Scalar-Tensor-Vector Gravity Theory” (STVG or MOG) [2], which unlike Milgrom’s
theory, leads to a falling off of rotation speeds outside of galactic boundaries. Moffat’s theory,
unfortunately, requires a variable Newtonian gravitational constant G and speed of light c.

Here I introduce a model that was inspired by terrestrial atmospheric dynamics. The motion
of air in these systems is well described by Newtonian equations of motion. By extending these
three-dimensional equations to four-dimensions, extra terms appear which turn out to be useful
in describing the motions of the contents of galaxies.
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2 Equations of Motion

I will present the equations of motion using a somewhat unorthodox method starting with the
presentation of two four-vector products [3]. The results of these products are then compared to
the Newtonian equations of motion.

The first of the four-vector products referred to is

~Ω ~X = ~Ω · ~X + ~Ω× ~X + ~Ω : ~X (1)

where ~Ω = (Ω1, Ω2, Ω3, Ω4) is the angular velocity (or frequency) four-vector and ~X = (X1, X2, X3, X4)
is the position four-vector. The components 1, 2, and 3, here, are spatial and the component 4
is temporal.

The second four-vector product is

~Ω ( ~Ω ~X) = ~Ω · ( ~Ω ~X) + ~Ω× ( ~Ω ~X) + ~Ω : ( ~Ω ~X)

= ~Ω · ( ~Ω · ~X + ~Ω× ~X + ~Ω : ~X)

+ ~Ω× ( ~Ω · ~X + ~Ω× ~X + ~Ω : ~X)

+ ~Ω : ( ~Ω · ~X + ~Ω× ~X + ~Ω : ~X)

= ~Ω · ( ~Ω · ~X) + ~Ω · ( ~Ω× ~X) + ~Ω · ( ~Ω : ~X) (2)

+ ~Ω× ( ~Ω · ~X) + ~Ω× ( ~Ω× ~X) + ~Ω× ( ~Ω : ~X)

+ ~Ω : ( ~Ω · ~X) + ~Ω : ( ~Ω× ~X) + ~Ω : ( ~Ω : ~X)

Equations (1) and (2), I propose, are the four-dimensional generalized equations of velocity and
acceleration, respectively.

To show the correspondence between (1) and (2), and Newton’s equations of motion, we need
to ignore the temporal terms, since Newton’s equations contain only spatial terms. Consequently,
we first make the change ~X = (~r, 0), where ~r = (X1, X2, X3). For now, we will keep all of the

components of ~Ω, since the time component appears in the spatial products ~Ω : ( ~Ω × ~X) and
~Ω : ( ~Ω : ~X). After rearranging terms, (1) now becomes

~Ω~r = ~Ω : ~r + ~Ω× ~r (3)

Now compare (3) with the Newtonian equation

~v = ~̇r + ~Ω× ~r (4)

where the dot over ~r indicates the time derivative of ~r.
Comparing (3) and (4), it would seem that ~Ω~r = ~v and

~Ω : =
d

dt
(5)

when the vector being operated on, that is, the vector to the right of the “ : ” symbol, is spatial
(thus making the component of the vector to the left of the symbol temporal). Consequently,
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the time component of ~Ω appears to be interchangeable with the time derivative. The validity
of this claim will become more apparent shortly.

Using (5), we find that (3) becomes

~v = ~̇r + ~Ω× ~r (6)

which is the same as (4). Note that, here, ~̇r is in the direction of r, since the term ~Ω : ~r is in the
direction of r. Thus, (6) may be thought of as the vector sum of the time rate of change of ~r in

the direction of ~r, or ~̇r‖, and the time rate of change of ~r perpendicular to ~r and ~Ω, or ~̇r⊥. In

other words, ~v = ~v‖ + ~v⊥, where ~v‖ = ~̇r‖ = ~̇r and ~v⊥ = ~̇r⊥ = ~Ω× ~r.
We now alter (2) in the same way we altered (1), that is, we start by ignoring the (first three)

temporal terms. We then drop the term ~Ω × ( ~Ω · ~X) since ~Ω · ~X is temporal and, therefore,

incompatible with the cross product. However, we keep the term ~Ω : ( ~Ω · ~X), since it is spatial,

despite ~Ω · ~X being temporal. After substituting (5) and ~X = (~r, 0) into (2), we end up with

~Ω ( ~Ω~r ) = ~Ω× ( ~Ω× ~r ) + ~Ω× ~̇r + ~Ω : ( ~Ω · ~r ) +
d

dt
( ~Ω× ~r ) +

d

dt

(
d

dt
~r

)
(7)

Noting that
d

dt
( ~Ω× ~r ) = ~̇Ω× ~r + ~Ω× ~̇r (8)

and
d

dt

(
d

dt
~r

)
= ~̈r (9)

we insert (8) and (9) into (7) which, after rearranging and combining terms, becomes

~Ω ( ~Ω~r ) = ~̈r + ~̇Ω× ~r + 2 ~Ω× ~̇r + ~Ω× ( ~Ω× ~r ) + ~Ω : ( ~Ω · ~r ) (10)

Newton’s equation for the acceleration ~a is

~a = ~̈r + ~̇Ω× ~r + 2 ~Ω× ~̇r + ~Ω× ( ~Ω× ~r ) (11)

We notice that all the terms on the right-hand side of (10), except the last one, appear on the
right-hand side of (11), providing further reason to accept the validity of (5). We see that this

extra term, ~Ω : ( ~Ω · ~r ) is in the direction of the spatial part of Ω, since the term in parentheses

is temporal. If we make the substitution ~a = ~Ω ( ~Ω~r ), we can write (10) as

~a = ~̈r + ~̇Ω× ~r + 2 ~Ω× ~̇r + ~Ω× ( ~Ω× ~r ) + ~Ω : ( ~Ω · ~r ) (12)

I will adopt (12) as my equation of motion in the attempt to fit the galaxy rotation curves.

3 The Data

The galaxy rotation curve data used here are from the sample of disk galaxies collected by Sanders
& McGaugh (2002) [4], as trimmed for quality by McGaugh (2005) [5]. The actual rotation curve
data used in the figures is retrievable elsewhere.1 Contained in the data sets are values for r,
vstars, vgas and vobserved. The values for vstars and vgas were not observed, but derived from the
observed distribution of surface brightness.

1please see http://astroweb.case.edu/ssm/data/galaxy_massmodels.dat
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4 Determination of Radial Mass

It will be assumed that test particles follow concentric circular paths in a common plane in a
static spherically symmetric gravitational field. To find the radial mass distribution, I started
with the Newtonian equation of motion for circular orbits

v2
Newton

r
=

GM

r2
(13)

where G is the Newtonian gravitational constant, vNewton is the magnitude of the Newtonian
rotational velocity and M = M(r) is the total mass within r.2 I then solved (13) for M , resulting
in

M =
v2

Newtonr

G
(14)

Since the total mass within r is the linear sum of the stellar and gaseous masses M = Mstars+Mgas

and Mstars = v2
starsr/G and Mgas = v2

gasr/G, the Newtonian velocity is obtained by summing
stellar and gaseous velocities (from the data) in quadrature

v2
Newton = v2

stars + v2
gas (15)

After substituting (15) into (14), we get the total mass within r. However, the resulting values
for M , since they were derived from the velocity data points, are also in the form of data points.
Therefore, in order to use these values for M in the fitting process, it was necessary to convert
the data points to a smooth curve. To accomplish this, I fit a seventh-degree polynomial to the
data points for M . The resulting polynomial for M = M(r) was then used to represent the radial
mass distribution of each galaxy.

5 Fitting the Rotation Curves

The rotational velocity v(r) of a test particle is determined classically, as usual, from

v2(r)

r
= a(r) (16)

where a(r) is the radial acceleration of the test particle. The Newtonian gravitational acceleration
is

a(r) =
GM

r2
(17)

If we insert (17) into (16), we get the Newtonian equation of motion (13). However, this equation
has been shown to be inadequate for describing the rotational velocities of stars in galaxies,
outside the inner regions. Let us, instead, try (12) as a starting point to find a replacement for
(17).

Referring to (12), since the gravitational field is assumed to be static, ~Ω is constant in time,

thus ~̇Ω = 0. Also, I make the assumption here, for phenomenological reasons, that the spatial

part of Ω is parallel to r and ~̇r. Therefore, ~̇Ω× ~r = ~Ω× ~̇r = ~Ω× ( ~Ω× ~r ) = 0 and (12) becomes

~a = ~̈r + ~Ω : ( ~Ω · ~r ) (18)

2From here on, to avoid clutter, I will refer to the magnitude of the velocity and the magnitude of the
acceleration as the velocity and acceleration, respectively.
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Also for phenomenological reasons I set the magnitude of ~Ω to |~Ω| = Ω0 exp(− r/r0), where Ω0,
the angular velocity (or frequency) at r = 0, and r0, the scale factor, are free parameters.

The magnitude of the term ~̈r I take to be the Newtonian acceleration |~̈r | = GM/r2. Since

the spatial part of ~Ω and ~r are parallel, the magnitude of ~Ω:( ~Ω · ~r ) is |~Ω:( ~Ω · ~r )| = |~Ω||~Ω||~r | =
Ω2

0 r exp(−2 r/r0). Consequently, the radial acceleration, from (18), now becomes

a(r) =
GM

r2
+ Ω2

0 r exp(−2 r/r0) (19)

Equation (19) will replace (17). Substituting (19) into (16), we get

v2(r)

r
=

GM

r2
+ Ω2

0 r exp(−2 r/r0) (20)

Multiplying both sides of (20) by r and taking the square root, we have

v(r) =

√
GM

r
+ Ω2

0 r2 exp(−2 r/r0) (21)

Equation (21) will be used to fit the rotation curves. For small r and r � r0 (that is, at distances
much greater than the galaxy boundary), this reduces to the Newtonian equation.

The fitting of (21) to the rotation curve data sets, with free parameters Ω0 and r0, was done
using the program Gnuplot. The data sets included in the fitting process were limited to those
with 8 or more data points due to the degree of the polynomial used to represent the mass
distribution. A good fit to the data was obtained for 32 of the 35 galaxies in the reduced sample.
The galaxies for which a less than good fit resulted were NGC 1003, NGC 3726, and UGC 2885.
The results are presented in Fig. 1 . The best-fit values for the free parameters Ω0 and r0, for
each galaxy, are shown in Table 1 .

6 Conclusions

In the introduction I stated that the inspiration for this model came from terrestrial weather
systems. It seems that equation (20) is analogous to the gradient flow momentum equations
of atmospheric dynamics [6], with GM/r2 replacing the pressure term and Ω2

0 r exp(−2 r/r0)
replacing the Coriolis term. It is important to note, however, that GM/r2 is not a pressure term
and Ω2

0 r exp(−2 r/r0) is not a Coriolis term.
Initially, I was hoping that Ω0 would be a constant among all galaxies, but it appears to vary

from one galaxy to the next. My original intention was to show that the universe is rotating or
oscillating at a constant rate Ω0, contributing to the rotation of galaxies much as the rotation
of the earth contributes to the rotation of weather systems. However, since it varies between
galaxies, Ω0 may instead be a characteristic of the central mass or black hole of each galaxy.

The need to invoke dark matter to account for the rotation curves of galaxies is eliminated
due to the ability to fit them well with equation (21) alone.
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Table 1: Free Parameters

Galaxy Ω0 r0

(1) (2) (3)

DDO 154 76.24 5.14
NGC 55 69.40 9.97
NGC 247 87.53 7.62
NGC 300 66.20 11.24
NGC 801 44.06 38.20
NGC 1003 40.80 22.48
NGC 1560 72.83 8.19
NGC 2403 61.24 16.14
NGC 2903 52.00 24.19
NGC 2998 47.27 32.35
NGC 3109 54.19 10.94
NGC 3726 63.28 16.12
NGC 3877 95.16 8.42
NGC 3917 85.24 10.46
NGC 3992 34.37 52.41
NGC 4013 42.09 31.96
NGC 4088 60.59 18.40
NGC 4100 64.63 16.40
NGC 4157 52.91 23.34
NGC 4183 70.23 11.90
NGC 4217 60.60 19.20
NGC 5033 52.02 25.71
NGC 5371 49.87 29.00
NGC 5533 39.83 46.40
NGC 5585 76.05 9.45
NGC 5907 41.23 36.95
NGC 6674 37.61 48.84
NGC 6946 58.46 20.56
NGC 7331 35.80 46.80
UGC 1230 40.41 26.56
UGC 2885 31.56 65.49
UGC 5005 56.34 20.01
UGC 6983 84.25 8.98
IC 2574 42.50 15.53
M33 96.96 7.51

Explanation of Columns in Table 1:

(1) Galaxy name.

(2) Frequency/angular speed at r = 0
in units of 10−17 s−1.

(3) Scale factor in units of kpc.
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Figure 1:
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Figure 1: Continued.
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Figure 1: Fits to the observed rotation curve data of Sanders & McGaugh (2002)/McGaugh
(2005). The horizontal axis is the radial distance from the center of the galaxy in kiloparsecs. The
vertical axis is the rotational velocity in kilometers/sec. The dotted and dashed lines represent
the Newtonian stellar disk and gaseous rotation curves, respectively. The red dots show the
observed rotation curve data points, while the solid line represents the fit of (21) to the observed
rotation curve.
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