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Abstract. 
  The Lagrange equations of motion are familiar to anyone who has worked in physics. 
However, their range of validity is rarely, if ever, a topic for discussion. Following on an 
earlier examination of the consequences for these equations if the mass is not assumed 
constant, this note will look carefully at the other assumptions made and consider any further 
consequences resulting. The form of the equations applicable in electromagnetism will also 
be reviewed in the light of these discussions. 

 

 

The Lagrange Equations of Motion. 

 

  To follow the basic outline in Synge and Griffith [1], suppose (x, y, z) are the Cartesian 

coordinates of a typical particle of a system and suppose we have a holonomic system of n 

degrees of freedom described by generalised coordinates qi, i = 1, 2,…., n. Then, 

𝑑𝑥 =  ∑
𝜕𝑥

𝜕𝑞𝑖
𝑑𝑞𝑖

𝑛
𝑖=1 ,   𝑥̇ = ∑

𝜕𝑥

𝜕𝑞1
𝑞𝑖̇

𝑛
𝑖=1  

with similar equations for both 𝑦̇ and 𝑧̇.  
From the second equation, it is seen immediately that 

𝜕𝑥̇

𝜕𝑞̇𝑖
=

𝜕𝑥

𝜕𝑞𝑖
. 

It is straightforward to show that the operators 
𝑑

𝑑𝑡
 and 

𝜕

𝜕𝑞𝑖
 commute. Then 

𝑑

𝑑𝑡

𝜕

𝜕𝑞̇𝑖
(

1

2
𝑥̇2) =

𝑑

𝑑𝑡
(𝑥̇

𝜕𝑥̇

𝜕𝑞̇𝑖
) = 𝑥̈

𝜕𝑥̇

𝜕𝑞𝑖̇
+ 𝑥̇

𝑑

𝑑𝑡
(

𝜕𝑥̇

𝜕𝑞̇𝑖
) 

= 𝑥̈
𝜕𝑥

𝜕𝑞𝑖
+ 𝑥̇

𝑑

𝑑𝑡
(

𝜕𝑥

𝜕𝑞𝑖
) = 𝑥̈

𝜕𝑥

𝜕𝑞𝑖
+ 𝑥̇

𝜕

𝜕𝑞𝑖

(𝑥̇) 

= 𝑥̈
𝜕𝑥

𝜕𝑞𝑖
+

𝜕

𝜕𝑞𝑖
(

1

2
𝑥̇2) 

That is 

                                                        
𝑑

𝑑𝑡

𝜕

𝜕𝑞̇𝑖
(

1

2
𝑥̇2) −

𝜕

𝜕𝑞𝑖
(

1

2
𝑥̇2) = 𝑥̈

𝜕𝑥

𝜕𝑞𝑖
                                                           

with similar equations for y and z. 

 The next step is to multiply these equations by m, sum over all particles of the system and 

add the three resulting equations together to give 

𝑑

𝑑𝑡

𝜕

𝜕𝑞𝑖
{∑

1

2
𝑃

𝑚(𝑥̇2 + 𝑦̇2 + 𝑧̇2)} −
𝜕

𝜕𝑞𝑖
{∑

1

2
𝑚(𝑥̇2 + 𝑦̇2 + 𝑧̇2)

𝑃

}

= ∑ 𝑚 {𝑥̈
𝜕𝑥

𝜕𝑞𝑖
+ 𝑦̈

𝜕𝑦

𝜕𝑞𝑖
+ 𝑧̈

𝜕𝑧

𝜕𝑞𝑖
}

𝑃

 

that is 
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𝑑

 𝑑𝑡

𝜕𝑇

𝜕𝑞𝑖̇
−

𝜕𝑇

𝜕𝑞𝑖
= ∑ 𝑚 {𝑥̈

𝜕𝑥

𝜕𝑞𝑖
+ 𝑦̈

𝜕𝑦

𝜕𝑞𝑖
+ 𝑧̈

𝜕𝑧

𝜕𝑞𝑖
} = ∑ {𝑋

𝜕𝑥

𝜕𝑞𝑖
+ 𝑌

𝜕𝑦

𝜕𝑞𝑖
+ 𝑍

𝜕𝑧

𝜕𝑞𝑖
}

𝑃𝑃

 

where P indicates a sum over all the particles of the system, (X, Y, Z) are the components of 
the external forces acting on particle P and, if  

𝑄𝑖 = ∑ {𝑋
𝜕𝑥

𝜕𝑞𝑖
+ 𝑌

𝜕𝑦

𝜕𝑞𝑖
+ 𝑍

𝜕𝑧

𝜕𝑞𝑖
} ,

𝑃

 

Qi may be seen to be the coefficient of dqi in the equation for virtual work. 

   The Lagrange equations of motion may then be written in the form 
𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞𝑖̇
−

𝜕𝑇

𝜕𝑞𝑖
= 𝑄𝑖 

 

In this manipulation the mass of each particle is assumed constant and that is why the symbol 

m may be taken inside the differentiation signs. Also, it is important to realise that it has been 

assumed that the kinetic energy, T, is of the specific form 
1

2
𝑚𝑣2. 

    Of course, in the special case of a conservative system, a potential energy, V, which will be 

a function purely of position, may be introduced and is seen to satisfy the relation 
𝜕𝑉

𝜕𝑞𝑖
= −𝑄𝑖 

Hence, in this special case, Lagrange’s eqxu1ations of motion assume the form 
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞𝑖̇
−

𝜕𝐿

𝜕𝑞𝑖
= 0 

where L = T – V is the Lagrangian function.  

   There is nothing new in what has been written here so far except possibly the pointing out 

of the fact that the kinetic energy is assumed to possess a very specific form in order for the 

derivation of the final form of these equations of motion to proceed. It has been pointed out 

previously [2] that, if the mass is not assumed constant, other changes occur in the derivation 

and the form of the final equations of motion in that case will rely crucially on the variables 

on which the said mass depends. Finally, note that the Lagrangian function is introduced here 

under both these assumptions. In other words, the Lagrangian function as introduced here is 

dependent on the mass being a constant and, crucially, on the kinetic energy being of the 

form 
1

2
𝑚𝑣2. 

 

Another Approach. 
 

A variation on the above method appears in the book by Leech [3] and is worth reproducing 

here both for the sake of comparison and, possibly more importantly, because it leads to 

further useful insight into the topic as a whole. Leech begins his discussion by examining a 

conservative system composed of n particles under no constraints. He also confines himself 

initially to restricting himself to a Cartesian system. For such a system, he takes the kinetic 

energy to be defined by 

𝑇 = ∑
1

2
𝑚𝑖𝑣𝑖

2

𝑖

= ∑
1

2
𝑚𝑖𝑥𝑖̇

2

𝑖

 

where i may take all values from 1 to 3n.  

Also, the equations of motion are 

𝐹𝑖 =
𝑑

𝑑𝑡
(𝑚𝑖𝑥𝑖̇) 

Combining these two equations gives 



𝐹𝑖 =
𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑥𝑖̇
 

 

However, for a conservative system, a potential energy, which depends only on position, may 

be defined by 

𝐹𝑖 = −
𝜕𝑉

𝜕𝑥𝑖
 

and these final two equations may be combined to give 
𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑥𝑖̇
= −

𝜕𝑉

𝜕𝑥𝑖
 

As noted already though, this equation holds for Cartesian coordinates only. Ideally, an 

equation in terms of generalised coordinates would be desirable. Hence consider such a 

system with the generalised coordinate qi given by 

𝑞𝑖 = 𝑞𝑖(𝑥𝑖 , 𝑡) 
where the t dependence is included since moving coordinate systems are then covered in what 

follows. It may be assumed that an inverse relation 

𝑥𝑖 = 𝑥𝑖(𝑞𝑖 , 𝑡) 
exists. Such an assumption is found to hold true in examples of physical interest but it must 

be remembered always that it is still an assumption. It follows that 

𝑥𝑗̇ =
𝑑𝑥𝑗

𝑑𝑡
= ∑

𝜕𝑥𝑗

𝜕𝑞𝑖
𝑖

𝑞𝑖̇ +
𝜕𝑥𝑗

𝜕𝑡
 

from which it follows that 
𝜕𝑥𝑗̇

𝜕𝑞𝑖̇
=

𝜕𝑥𝑗

𝜕𝑞𝑖
. 

The above expression for the kinetic energy then leads to 
𝜕𝑇

𝜕𝑞𝑖̇
= ∑ 𝑚𝑗𝑥𝑗̇

𝜕𝑥𝑗̇

𝜕𝑞𝑖̇
𝑗

= ∑ 𝑚𝑗𝑥𝑗̇

𝜕𝑥𝑗

𝜕𝑞𝑖
𝑗

 

using the previous result. 

Taking the time derivative of this expression leads to 
𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞𝑖̇
= ∑ {𝑚𝑗𝑥𝑗̈

𝜕𝑥𝑗

𝜕𝑞𝑖
+ 𝑚𝑗𝑥𝑗̇

𝑑

𝑑𝑡

𝜕𝑥𝑗

𝜕𝑞𝑖
}

𝑗

 

However, it may be noted that 

𝑑

𝑑𝑡

𝜕𝑥𝑗

𝜕𝑞𝑖
= ∑

𝜕

𝜕𝑞𝑘
(

𝜕𝑥𝑗

𝜕𝑞𝑖
)

𝑘

𝑞𝑘̇ +
𝜕

𝜕𝑡
(

𝜕𝑥𝑗

𝜕𝑞𝑖
) =

𝜕

𝜕𝑞𝑖
(∑

𝜕𝑥𝑗

𝜕𝑞𝑘
𝑞𝑘̇ +

𝜕𝑥𝑗

𝜕𝑡
𝑘

) =
𝜕𝑥𝑗̇

𝜕𝑞𝑖
 

Combining these latter two equations leads to 
𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞𝑖̇
= ∑ {𝐹𝑗

𝜕𝑥𝑗

𝜕𝑞𝑖
+

𝜕

𝜕𝑞𝑖
(

1

2
𝑚𝑗𝑥𝑗̇

2)} = 𝑄𝑖 +
𝜕𝑇

𝜕𝑞𝑖
𝑗

 

where the  𝑄𝑖 = ∑ 𝐹𝑗
𝜕𝑥𝑗

𝜕𝑞𝑖
𝑗  may be termed the components of generalised force. If the system is 

conservative though then 

 

𝑄𝑖 = − ∑
𝜕𝑉

𝜕𝑥𝑗

𝜕𝑥𝑗

𝜕𝑞𝑖
= −

𝜕𝑉

𝜕𝑞𝑖
𝑗 . 

and the equation becomes 
𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞𝑖̇
=

𝜕𝑇

𝜕𝑞𝑖
−

𝜕𝑉

𝜕𝑞𝑖
, 

the normal form of the Lagrange equations of motion. 



    Hence the introduction of generalised coordinates has introduced an additional term, 
𝜕𝑇

𝜕𝑞𝑖
, 

when this equation is compared with that for the situation involving Cartesian coordinates 

specifically. As Leech points out, this is the generalised form of such terms as centrifugal and 

Coriolis forces. It might be noted also that this approach shows just how Mandelker [4] 

reasons as he does but here the full background becomes apparent and the reliance of the first 

set of results in this section on Cartesian coordinates is completely clear. 

 

An Electromagnetic Example. 
 

   It seems of interest to consider the case of a moving point charge of constant mass m. The 

total force acting on such a charge is 

𝑒 (𝑬 +
1

𝑐
𝒗𝑥𝑯) 

where e is the charge on the particle, E the electric field, and H the magnetic field. 

    Following Ferraro [5], the Lagrangian may then be found as is now shown. Denote the 

usual scalar and vector potentials by  and A respectively, where   will be a function of 
position only. Further, since 

𝑬 = −
1

𝑐

𝜕𝑨

𝜕𝑡
− ∇𝜙,   𝑯 = ∇𝑥𝑨, 

the equation of motion of the charge may be written 

𝑚
𝜕2𝑥𝛼

𝜕𝑡2
= −

1

𝑐

𝜕𝐴𝛼

𝜕𝑡
−

𝜕𝜙

𝜕𝑥𝛼
−

1

 𝑐
(∑

𝜕𝑥𝛽

𝜕𝑡

3

𝛽=1

𝜕

𝜕𝑥𝛽
) 𝐴𝛼 +

1

𝑐
∑

𝜕𝑥𝛽

𝜕𝑡

3

𝛽=1

𝜕𝐴𝛼

𝜕𝑥𝛽
, 

where 𝐴𝛼 are the components of A. 
   Now 

𝑑

𝑑𝑡
=

𝜕

𝜕𝑡
+ ∑

𝜕𝑥𝛽

𝜕𝑡𝛽
𝜕

𝜕𝑥𝛽
, 

and so, the above equation of motion may be written in the form 

q𝑖
𝑑

𝑑𝑡
(

𝑚

𝑒

𝑑𝑥𝛼

𝑑𝑡
+

1

𝑐
𝐴𝛼) = −

𝜕𝜙

𝜕𝑥𝛼
+

1

𝑐
∑

𝜕𝑥𝛽

𝜕𝑡

𝜕𝐴𝛼

𝜕𝑥𝛽
𝛽 , 

where ,,  = 1, 2, 3.  
   Now consider the function 

𝐿 =
1

2
𝑚 {(

𝑑𝑥1

𝑑𝑡
)

2

+ (
𝑑𝑥2

𝑑𝑡
)

2

+ (
𝑑𝑥3

𝑑𝑡
)

2
} − 𝑒𝜙 +

𝑒

𝑐
(𝐴1

𝑑𝐴1

𝑑𝑡
+ 𝐴2

𝑑𝐴2

𝑑𝑡
+ 𝐴3

𝑑𝐴3

𝑑𝑡
). 

From this expression, it follows that 
𝜕𝐿

𝜕𝑥𝛼̇
= 𝑚𝑥𝛼 +

𝑒

𝑐
𝐴𝛼,̇    

𝜕𝐿

𝜕𝑥𝛼
= −𝑒

𝜕𝜙

𝜕𝑥𝛼
+

𝑒

𝑐
∑ 𝑥𝛽̇

𝜕𝐴𝛽

𝜕𝑥𝛼
𝛽  , 

and the above equation of motion may then be written in the form 
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑥𝛼̇
−

𝜕𝐿

𝜕𝑥𝛼
= 0. 

Therefore, the Lagrangian for the charged particle is seen to be given by 

𝐿 =
1

2
𝑚𝑣2 − 𝑒𝜙 +

𝑒

𝑐
(𝒗. 𝑨). 

It might be noted that, in accordance with the assumptions outlined above, the kinetic energy 

is of the form 
1

2
𝑚𝑣2and, although it hasn’t been stated explicitly, the mass m is assumed 

constant. Hence, here is a case outside normal Newtonian mechanics where an acceptable 

Lagrangian is found which does conform to the restrictions imposed during the original basic 

derivation within fundamental Newtonian mechanical ideas. 

   It might be noted that Leech[3]  also considers this case but takes a slightly different 

approach. 

 



An Alternative Derivation of the Lagrange Equations. 
 

    Recourse to the methods of the Variational Calculus provides an alternative method for 

deriving the Lagrange equations of motion when it is realised that those very equations, 
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞𝑖̇
−

𝜕𝐿

𝜕𝑞𝑖
= 0,  

are actually the condition for the integral 

∫ 𝐿𝑑𝑡 

to possess a stationary value or, in the language of variational calculus, the Lagrange 

equations imply 

𝛿 ∫ 𝐿𝑑𝑡 = 0. 

This final expression is a statement of Hamilton’s principle.  As is pointed out by Leech [3], 

in the usual derivation this ultimately represents a deduction from Newton’s laws but an 

alternative is to regard it as a basic principle. If such is the case then Lagrange’s equations 

and the remainder of mechanics might be thought to stem from it. However, is this alternative 

view really valid?  The crucial question to be considered at this point relates to the meaning 

of the symbol L, the so-called Lagrangian. In the straightforward derivation of Lagrange’s 

equations from more fundamental Newtonian mechanics, it is seen – as noted above – that the 

Lagrangian function is the difference between the kinetic and potential energies where the 

kinetic energy is specifically of the form 
1

2
𝑚𝑣2. When approached via Hamilton’s principle 

alone, it is difficult to see how the actual mechanical content is introduced. It might be noted, 

for example, that simply assuming L = T – V is not really adequate since such an assumption 

might be felt to imply that any expression for the kinetic energy is acceptable but, as seen 

already, such is not the case.  

 

Conclusions. 

 

Nothing in the above is new. In fact, everything included is summarising what has been 

known for many years. However, what is new is the emphasis on noting what has been 

assumed in these derivations. It is crucial to note all assumptions so that, in future, when it is 

desired to consider specific physical examples, it will be clear whether or not the seemingly 

general results discussed here really are applicable. The specific important assumptions made 

here are: 

(i) the mass is assumed constant, 

(ii) the kinetic energy is assumed of the specific form 
1

2
𝑚𝑣2, 

(iii) in the alternative approach, it is assumed that the relation linking the Cartesian 

coordinates with the generalised coordinates may be inverted. 

All these assumptions are apparently very basic and simple and, as such, it is often forgotten 

that they are, in fact, assumptions. However, it is important here, as in other areas of physics, 

to remember all assumptions made in the theory as they can be important and ignoring or 

forgetting them can often lead to errors. This is, indeed, one of the problems with 

mathematical theory. Often the assumptions made of necessity in a piece of theory are 

forgotten, if they are even noted. The above provides a good example and should be noted.    
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