
Unifying the Galilei and the special relativity: the

Galilei electrodynamics

Marcelo Carvalho∗†

Universidade Federal de Santa Catarina

Departamento de Matemática
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Abstract

Using the concept of absolute time introduced in a previous work [7] we define two coordi-

nate systems for spacetime, the Galilean and the Lorentzian systems. The relation between

those systems allows us to develop a tensor calculus that transfer the Maxwell electrody-

namics to the Galilean system. Then, by using a suitable Galilean limit, we show how

this transformed Maxwell theory in the Galilei system results in the Galilei electrodynamics

formulated by Levy Leblond and Le Bellac.

PACS: 03.30.+p; 03.50.De

1 Introduction

The Galilean Electrodynamics developed by J.-M. Levy Leblond and M. Le Bellac [1] constitutes

a consistent non-relativistic limit for the Maxwell’s equations. In their work they showed this

non-relativistic limit is not concerned with simply taking c → ∞ in the Maxwell’s equations

since the explicit presence of the light speed c in these equations depends on the choice of the

system of units being used. In fact, in their attempt to solve those subtleties, Levy Leblond and

Le Bellac argued on the convenience of the SI system in order to set a correct non-relativistic

limit for the Maxwell’s equations together with some restrictions on the electric and magnetic

fields that encompasses two distint models, the so-called electric and magnetic limits (in fact,

there is also a third model, the General Galilean Electromagnetism).
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One of the interests on studying the Galilean limit of the Maxwell’s equations is to provide

a criteria to understand which electromagnetic effects can be reasonably described by a nonrel-

ativistic theory and then to exhibit such a theory, and which ones have their description only

in a relativistic context [1]. It also sets a suitable Galilean transformation for the electromag-

netic fields that corrects some low-velocity formulas given in some textbooks. Besides that, as a

natural development of these ideas, some authors have continued the study of the Galilean elec-

trodynamics considering other aspects, for instance, some applications in quantum mechanics

and superconductivity [2]; the form of the electromagnetic potentials and the gauge conditions

in these Galilean limits [2], [3], [4], and so on. Recently, some developments [5], [6] brought

new insight into the original work of [1], where the authors considered other ways to obtain the

electric and the magnetic limits. Our present work falls into this category as we intend to show

how the electric, the magnetic, and the general Galilean electrodynamics obtained in [1] follow

as a natural consequence of a recent scheme we proposed to unify the Galilei and the special

relativity as we now describe.

In a previous work [7] we presented a method for unifying the Galilei and the special relativity

into a single model. This unification was performed through the introduction of an absolute time

τ that plays the role of the time variable of the Galilei relativity, together with the local time

t, which is the ordinary time of the special relativity. In terms of these time variables there are

two views one can employ to describe events, each one being adapted to the particularities of

either the Galilei or the special relativity. Thus, events described within the realm of the Galilei

relativity are defined by a coordinate set {τ, ~x}, while special relativity considers for set {t, ~x}
(we assume the space coordinates to be the same in both views). As we have shown in [7], in

order to combine the Galilei and the special relativity into one single model we first need to

extend the previous variables set to {τ, t, ~x}. Then, given two inertial frames S, S ′ moving with

relative velocity ~v we assume between the respective sets {τ, t, ~x}, {τ ′, t′, ~x ′} the relations

τ ′ = τ

~x ′ = ~x− ~vτ (1)

c2t′2 − ~x ′2 = c2t2 − ~x2 .

As a result, assuming a linear relation between the variables’ set {τ, t, ~x}, {τ ′, t′, ~x ′}, we obtained

τ = (1− |a|)~x · ~v
v2

+
√
a2 − 1

c

v
t = (1− |a|)~x

′ · (−~v)

v2
+
√
a2 − 1

c

v
t′ = τ ′ (2)

which provides a relation between the absolute and the local time, with a being an arbitrary

parameter.

Here, in our current work, we will show how relation (2) allows us to introduce two sets

of coordinates, Xµ
G, Xµ

L, which define the Galilei and the Lorentz systems, each one encoding

respectively the transformation properties that are common either to the Galilei or to the special

relativity. We then assume the Maxwell’s equations as naturally described with respect to the

Lorentz system. Then, using ∂Xµ
G/∂X

ν
L as transformations coefficients we transfer all fields and
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the Maxwell’s equations to the Galilei system. In this way we introduce from the electric and the

magnetic fields of the standard Maxwell theory, e.g. ~EL, ~BL (thought as components of a tensor

FLµν or FµνL ) the corresponding Galilean analogues, ~EG, ~BG, and, in an similar way, we set

the Galilean transformations of ~EG, ~BG from the Lorentz transformation of ~EL, ~BL. Therefore,

the equations satisfied by the Galilean fields are obtained directly from the Maxwell equations

by replacing ~EL, ~BL by their expressions in terms of ~EG, ~BG together with the transformation

expressing the derivatives relative to XLµ in terms of the derivatives relative to XGµ. Once

this is performed, we are ready to show how the electric and the magnetic limits of [1] arise

from our corresponding Galilean form of the Maxwell equations when we take a suitable limit

case. This indicates that the unification of the Galilei and the special relativity exhibited in our

previous work [7], and based on the fundamental relation betwen τ, t expressed by (2), extends

beyond the kinematical aspects of both relativities, reproducing the correct Galilean limit of the

relativistic Maxwell electrodynamics as discovered by Levy Leblond and Le Bellac.

Our work is organized as follows. In section 2 we set our notations and review the basics

aspects of the Maxwell electrodynamics that we will refer to in the subsequent sections. In section

3 we review the main elements of [7] that we will need in our work. We base our analysis on a class

of transformations parameterized by a real parameter a, with |a| > 1, that we call Generalized

Lorentz Transformations (GLT) and that follows from the conditions given in (1). The GLT

includes the ordinary Lorentz transformation. Then, we formulate Maxwell electrodynamics as

having the GLT as its invariance. This brings a modification to the form of the transformations

of the electromagnetic fields but doesn’t change the form of the Maxwell equations. In section 4

we explain how to perform the Galilean limit of our model. Here, contrarily to the approach of

Leblond and Le Bellac, it is a characteristic of the GLT transformation that this limit doesn’t

require any extra condition to be imposed on the electric and the magnetic fields as it is assumed

in [1], for instance, c|ρ| � |~| and | ~E| � c| ~B| in the magnetic limit, and c|ρ| � |~| and | ~E| � c| ~B|
in the electric limit. Our limit is obtained as a condition that is established only on the parameter

a. In section 5 we develop the Galilei electrodynamics employing the “tensor calculus” from

the transformations between the two coordinate systems Xµ
G and Xµ

L. Then, we show how the

three Galilean models of [1] arise by applying the Galilean limit of section 4. In particular, we

pay a special attention to the third model of [1], the general Galilean electromagnetism, that is

formulated in terms of the four fields ~EL, ~BL, ~DL, ~HL. After defining the corresponding Galilei

fields ~EG, ~BG, ~DG, ~HG we show that it is possible to derive appropriate constitutive relations

among the Galilean fields that preserve the Galilei invariance, a feature that is not possible in

the treatment of Leblond and Le Bellac.

In our work we will use both the CGS and the SI systems of units. The former will be used

in sections 2, and 3 to review the Maxwell theory and to define the Galilei fields corresponding

to the electric and the magnetic fields of the standard Maxwell theory. The need for that is

because we take the electric and magnetic fields as components of tensors Fµν , Fµν which is

suitably introduced within the CGS system. Then, after obtaining these Galilei analogues of the

electric and magnetic fields we convert them to their usual expression in the SI system, where
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we consider the Maxwell’s equations.

2 Maxwell electrodynamics

In order to fix our notation, we will recall briefly some aspects of the standard Maxwell elec-

trodynamics [8]. Spacetime is endowed with a metric tensor ηµν = diag(+,−,−,−) and have

coordinates xµ ≡ (x0, xi) := (ct, ~x), with c being the speed of ligth in vacuum. We also write

xµ := ηµνx
ν = (ct,−~x). The electric and magnetic fields are accomodated as components of two

antisymmetric tensors Fµν , Fµν according to

Bi = −1
2 εijkFjk = −1

2 εijkF
jk

Ei = F0i = −F0i
(3)

and in terms of which the Maxwell equations in vacuo become

∂µFνλ + ∂νFλµ + ∂λFµν = 0

∂µFµν = 4π
c J

ν

Jµ = (cρ,~)





~∇× ~E + 1

c∂t
~B = 0

~∇ · ~B = 0
~∇ · ~E = 4πρ
~∇× ~B − 1

c∂t
~E = 4π

c ~ .

(4)

In the presence of a material medium the previous Maxwell equations in vacuo must be

changed due to extra contributions to the density of charge and current produced by the medium.

Now, in addition to the electric and magnetic fields ~E, ~B, we have the fields ~D, ~H that are

accomodated as components of another antisymmetric tensor Hµν according to

Hi = −1
2 εijkHjk = −1

2 εijkH
jk

Di = H0i = −H0i .
(5)

Here, Maxwell’s equation in the presence of a medium becomes [8]

∂µFνλ + ∂νFλµ + ∂λFµν = 0

∂µHµν = 4π
c J

ν

Jµ = (cρ,~)





~∇× ~E + 1

c∂t
~B = 0

~∇ · ~B = 0
~∇ · ~D = 4πρ
~∇× ~H − 1

c∂t
~D = 4π

c
~j .

(6)

In most cases the fields ~D, ~H relate to the fields ~E, ~B through the polarization and magnetization

vectors, ~P ~M by the constitutive relations

~D := ~E + 4π ~P

~H := ~B − 4π ~M .

3 An overview of some previous results

Here, we briefly recall some of the concepts introduced in [7], which we refer the reader for

details. Let S and S ′ be two inertial frames moving with relative velocity ~v. Let P be an event.
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According to the Galilei relativity let us assume both observers record this event as (τ, ~x) and

(τ, ~x ′). The relation between their readings is

~x ′ = ~x− ~vτ . (7)

In order to relate the Galilei relativity with the framework of special relativity we assume the

existence of another time variable, the local time of the special relativity, denoted by t. Now,

let us assume that in terms of these coordinates each observer has recorded the event P as (t, ~x)

and (t′, ~x ′). Here, the fundamental relation one imposes between these variables is that

c2t2 − ~x2 = c2t′2 − ~x ′ 2 . (8)

Now, if we assume a linear relation between t and t′ as

t′ = at+ b~v · ~x (9)

with a and b arbitrary real coefficients, the fulfillment of equations (7, 8) by the set {τ, ~x, ~x ′, t, t′}
and the assumptions stated in [7] gives

b =
√
a2 − 1

1

vc
(10)

and

τ = (1− |a|)~x · ~v
v2

+
√
a2 − 1

c

v
t = (1− |a|)~x

′ · (−~v)

v2
+
√
a2 − 1

c

v
t′ = τ ′ (11)

together with the so-called Generalized Lorentz Transformation (GLT){
~x ′ = ~x− (1− |a|) 1

v2
~x · ~v ~v −

√
a2 − 1 1

v c t~v

t′ = |a|t−
√
a2 − 1 1

vc ~x · ~v
(12)

which represents a family of transformations parameterized by a real parameter a that is assumed

to depend on the relative speed v between the frames and to satisfy |a| > 1.

Since we are considering the absolute time τ and the physical time t we must distinguish

between two relative velocities

~v =
d~xSS ′

dτ
, ~̃v =

d~xSS ′

dt

that are related by

~̃v = ~v

√
a2 − 1

|a|
c

v
(13)

with ~xSS′ denoting the position of the origin of the frame S ′ as seen by frame S. In terms of ṽ

the transformation given in (12) is rewritten in the form

~x ′ = ~x− (1− γṽ)
~x · ~̃v
ṽ2

~̃v − γṽt~̃v
(14)

t′ = γṽ

(
t− ~x · ~̃v

c2

)
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with γṽ = 1√
1− ṽ2

c2

. This is the usual Lorentz transformation.

Under the transformation (12) the electromagnetic fields and the four-current transform as ~E′ = |a| ~E + (1− |a|) 1
v2
~v · ~E ~v +

√
a2 − 1 1

v ~v × ~B

~B′ = |a| ~B + (1− |a|) 1
v2
~v · ~B ~v −

√
a2 − 1 1

v ~v × ~E
(15)

 ~D′ = |a| ~D + (1− |a|) 1
v2
~v · ~D~v +

√
a2 − 1 1

v ~v × ~H

~H ′ = |a| ~H + (1− |a|) 1
v2
~v · ~H ~v −

√
a2 − 1 1

v ~v × ~D .
(16)

 ρ′ = |a|ρ−
√
a2 − 1 1

cv~v · ~

~ ′ = ~+
(
−
√
a2 − 1 cvρ− (1− |a|) 1

v2
~v · ~

)
~v .

(17)

Maxwell equations (4), (6) are invariant under the transformations of the coordinates (12), fields

(15), (16), and 4-current (17).

In terms of the velocity ~̃v given in (13) the previous transformations become the usual

transformations for the fields and 4-current under a Lorentz transformation

~E′ = γ ~E + (1− γ)
1

ṽ2
~̃v · ~E ~̃v +

1

c
γ ~̃v × ~B

~B′ = γ ~B + (1− γ)
1

ṽ2
~̃v · ~B ~̃v − 1

c
γ~̃v × ~E .

~D′ = γ ~D + (1− γ)
1

ṽ2
~̃v · ~D~̃v +

1

c
γ ~̃v × ~H

~H ′ = γ ~H + (1− γ)
1

ṽ2
~̃v · ~H ~̃v − 1

c
γ~̃v × ~D .

ρ′ = γ
(
ρ− 1

c2
~̃v · ~

)
~ ′ = ~− (1− γ)

1

ṽ2
~̃v · ~ ~̃v − γρ~̃v

Remark: In particular, using (7, 12) into (11) we obtain

t+ t′ = τ
v(1 + |a|)
c
√
a2 − 1

(18)

which provides an operational definition for τ in terms of the local times t and t′ and without

recourse to the space coordinate of the event. Since the relation between the local times t, t′

and the absolute time τ given in equation (18) depends on the relative speed of the frames

this suggests the local time of the special relativity is a quantity defined only with respect to

a pair of frames (in order to explicitly indicate this we could have written t and t′ as tSS ′ ,

t′SS ′). As a consequence of this interpretation the local time doesn’t attain the meaning of an

intrinsic quantity defined uniquely with respect to a single frame. This view also follows from

the idealized form on how the local time is established. In fact, the instants t and t′ are recorded

by clocks that are placed in the positions where the event occurred. Since these clocks are all

synchronized and arranged in such way as to mark t = t′ = 0 when the origins of the reference

systems coincide, their functioning is somehow adjusted to the peculiarities of the relative motion

6



between the frames. A more complete discussion on this issue is given by Horwitz, Arshansky

and Elitzur in [11] (pg. 1163), which we refer the reader for details.

The absolute time τ , nonetheless, may be seen as an intrinsic quantity that is set indepen-

dently for each frame in the sense that it doesn’t need a pair of frames to be defined and, in

particular, it has the property that each frame registers the same value for the absolute time

associated to the occurrence of an event (which is indicated by the equation τ = τ ′).

It is also possible to choose the parameter a in such way that we can eliminate the dependence

on the relative speed v in equation (18). In fact from (18) let us introduce a function f(v) :=
v(1+|a|)
c
√
a2−1

, where a ≡ a(v). Then, let us impose that df
dv = 0, which gives v dadv = a2 − 1 or

a =
1 + k2v2

|1− k2v2|

with k ∈ R an arbitrary constant. For this choice of a we have

t+ t′ =
1

kc
τ

that eliminates any dependence of the local and the absolute time with respect to the relative

speed v.

4 The Galilean limit

In the standard treatment, special relativity is based on the Lorentz transformation (14). In the

limit c→∞ it assumes the common form of the Galilei transformation

~x ′ = ~x− ~̃vt
(19)

t′ = t ,

which differs from the form we have assumed for the Galilei transformation (7), as in this equation

the time variable corresponds to the absolute time τ , which is not identified with t = t′, and

also in the difference it exists between ~v and ~̃v (see (13)).

In our work, instead of considering the usual Lorentz transformation, we take the GLT (12)

as the basic transformation and we seek the conditions under which the Galilei transformation

(7) arises as the limit case. First, we notice that (13) allows us to express a(v) in terms of ṽ as

a =
1√

1− ṽ2

c2

= 1 +
1

2

ṽ2

c2
+ . . . (20)
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therefore, neglecting terms of order ≥ 1
c2

, we obtain

t′ = |a|t−
√
a2 − 1

1

vc
~x · ~v =

(
1 +

1

2

ṽ2

c2
+ . . .

)(
t− ṽ2

c2
~x · ~̃v + . . .

)
' t

~x ′ = ~x−

(
− 1

2
ṽ2

c2
+ . . .

)(
1 + 1

2
ṽ2

c2
+ . . .

)
(
ṽ2

c2
+ . . .

)
c2

~x · ~̃v ~̃v −
(

1 +
1

2

ṽ2

c2
+ . . .

)
t~̃v

' ~x− ~̃vt

τ = (1− |a|) 1

v2
~x · ~v +

√
a2 − 1

c

v
t =

(
− 1

2
ṽ2

c2
+ . . .

)(
1 + 1

2
ṽ2

c2
+ . . .

)
(
ṽ
c + . . .

)
c

1

v
~x · ~̃v +

ṽ

v
t

' ṽ

v
t .

In order to have τ = t we must assume that in the Galilean limit

ṽ ' v

which is compatible with the Galilei limit of (13).

In order to pursue the aforementioned Galilean limit of the Maxwell equations we also need

the following prescription to change from the CGS to the SI system [8]

CGS SI

c 1√
ε0µ0

~E
√

4πε0 ~E

~B
√

4π
µ0
~B

~D
√

4π
ε0
~D

~H
√

4πµ0
~H

ρ 1√
4πε0

ρ

~ 1√
4πε0

~

(21)

The reason for using the SI system in connection to the Galilei limit is because in our work the

Galilei limit consists on neglecting terms of an order higher or equal than 1
c2

that arise from

the parameter a as given in the expansion (20). Therefore, since the Maxwell equations in the

SI system don’t contain the light speed c, which is replaced by 1√
ε0µ0

, there is no possibility

to confuse the origin of the light speed in the equations when we take the limit 1
c2
→ 0. In

sections 5.2, 5.2, in order to indicate the passage from the CGS to the SI system, we will write

the electric and magnetic fields in the SI system as ~̌E and ~̌B.
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5 Galilei electrodynamics

5.1 The Galilean description of spacetime

Given a reference frame S we describe spacetime by means of two coordinate systems that we

call the Galilei and the Lorentz systems. These systems are endowed with coordinates defined

respectively by

Xµ
G ≡ (X0

G, X
i
G) := (cτ, ~x), Xµ

L ≡ (X0
L, X

i
L) := (ct, ~x) (22)

with c being the speed of light, considered here as a mere factor that allows us to have all

coordinates Xµ with the same dimension. We have then the following diagram relating the

several transformations defined so far

(X0
G, X

i
G) := (cτ, ~x)

G−−−−→ (X ′0G , X
′i
G) := (cτ ′, ~x ′)yh yh′

(X0
L, X

i
L) := (ct, ~x)

L−−−−→ (X ′0L , X
′i
L) := (ct′, ~x ′)

(23)

with

h :

{
X0
L = v√

a2−1

{
1
cX

0
G − (1− |a|) 1

v2
~XG · ~v

}
~XL = ~XG

(24)

h′ :

{
X ′0L = v√

a2−1

{
1
cX
′0
G + (1− |a|) 1

v2
~X ′G · ~v

}
~X ′L = ~X ′G

(25)

G :

{
1
cX
′0
G = 1

cX
0
G

~X ′G = ~XG − 1
cX

0
G~v

(26)

L :

{
X ′0L = |a|X0

L −
√
a2 − 1 1

v
~XL · ~v

~X ′L = ~XL − (1− |a|) 1
v2

~XL · ~v ~v −
√
a2 − 1 1

vX
0
L~v .

(27)

It is immediate to check the diagram (23) is commutative, e.g.

h′ ◦G = L ◦ h .

The transformation h written in (24) relates two coordinates systems within the same frame

S, therefore instead of the velocity ~v we can conceive the transformation h in terms of an

arbitrary parameter ~β. The same applies to the transformation h′ defined in (25) that relates

two coordinates systems within the same frame S′ that can be defined in terms of another

parameter ~β′. Here, among all choices of parameters ~β, ~β′ it is the one with ~β = ~v = −~β′ that

determines the Lorentz transformation between two frames moving with relative velocity ~v as

having the form L = h ◦G ◦ h−1, or equivalently, that makes the diagram (23) commutative.

We will now establish the transformation properties that arises from the use of one and

another of those systems taking for our starting point equation (24).
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In the Lorentzian system let FLµν and FµνL be the electromagnetic field strengths with ~E

and ~B given as in (3). In the Galilean system we introduce the corresponding field strengths

FGµν , FµνG by the relations

FµνG =
∂xµG
∂xαL

∂xνG

∂xβL
FαβL FGµν =

∂xαL
∂xµG

∂xβL
∂xνG

FLαβ

whose components are

F0i
G = −

√
a2 − 1

c

v
ELi + (1− |a|) c

v2
(~v × ~BL)i (28)

F ijG = −εijkBLk (29)

FG0i =
1√

a2 − 1

v

c
ELi (30)

FGij = −(1− |a|)√
a2 − 1

1

v
(viELj − vjELi)− εijkBLk . (31)

Contrarily to the Lorentzian case, here we have F0i
G 6= −FG0i, F ijG 6= FGij , which doesn’t provide

a unique way to identify the Galilean counterpart of the electric and magnetic fields as it was

done in (3).

In the Lorentz system the contravariant four current is defined as JµL ≡ (J0
L, J

i
L) := (cρL,~L),

and we denote the corresponding Galilean contravariant four-current as JµG ≡ (J0
G, J

i
G) ≡

(cρG,~G), which is defined as

JµG :=
∂Xµ

G

∂Xα
L

JαL (32)

and whose components are

J0
G :=

√
a2 − 1

c

v
J0
L + (1− |a|) c

v2
viJ

i
L

(33)
J iG := J iL .

In the same Lorentz system the covariant four-current is defined as JLµ ≡ (JL0, JLi) := (cρL,−~L),

and we denote the corresponding covariant four-current in the Galilei system as JGµ ≡ (JG0, JGi) ≡
(cρG,−~G) which is defined as

JGµ :=
∂Xα

L

∂Xµ
G

JLα (34)

and whose components are

JG0 =
1√

a2 − 1

v

c
JL0

(35)

JGi = −(1− |a|)√
a2 − 1

1

v
viJL0 + JLi .
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5.2 The covariant model and the magnetic limit

This model is defined by taking the covariant tensor FGµν and the covariant four-current JGµ

as the main element of analysis. Here, we define the electric and magnetic fields as

( ~EG; ~BG) := (FG0i;−
1

2
εijkFGjk) . (36)

From (30, 31) we have

~EG =
1√

a2 − 1

v

c
~EL

(37)
~BG =

(1− |a|)√
a2 − 1

1

v
~v × ~EL + ~BL .

The covariant four-current JGµ = (cρG,−~G) is given by (35) and it assumes the form

ρG =
1√

a2 − 1

v

c
ρL

(38)

~G =
(1− |a|)√
a2 − 1

c

v
ρL~v + ~L .

The transformation of the Galilei fields and the four-current is obtained from

F ′Gµν =
∂Xα

G

∂X ′µG

∂Xβ
G

∂X ′νG
FGαβ

(39)
J ′Gµ =

∂Xα
G

∂X ′µG
JGα ,

which gives

CGS SI

~E′G = ~EG + 1
c~v × ~BG ~̌E′G = ~̌EG + ~v × ~̌BG

~B′G = ~BG ~̌B′G = ~̌BG

ρ′G = ρG − 1
c2
~v · ~G ρ̌′G = ρ̌G − ε0µ0~v · ~̌G

~ ′G = ~G ~̌ ′G = ~̌G .

(40)

From (37), expressing ~EL, ~BL in terms of ~EG, ~BG, and from (38) expressing ρL, ~L in terms of

ρG,~G and replacing them all in (4) and converting to the SI system we obtain the Maxwell’s

equations in the Galilean system

~∇G × ~̌EG + ∂τ ~̌BG = 0

~∇G · ~̌BG = 0
(41)

~∇G · ~̌EG + (1− |a|) 1

v2
~v · ∂τ ~̌EG =

1

ε0
ρ̌G

~∇G × ~̌BG − (1− |a|) 1

v2
~∇G(~v · ~̌EG) + 2(1− |a|) 1

v2
(~v · ~∇G) ~̌EG + 2(1− |a|) 1

v2
∂τ ~̌EG = µ0~̌G .
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The equations in (41) assume an awkward form due to the presence of the relative velocity

~v between the frames S, S′, which originates from the fact that the transformation h given in

(24) (and employed to derive relations (41)) is given in terms of ~v. This situation is somehow

similar to the relation involving t, ~x, and τ shown in (11), which also contains the relative

velocity. However, the confusion is only apparent if we recall that equation (41) represents the

same Maxwell equations, the difference in form arises because they are expressed relative to the

Galilei system of coordinates. Here, from the form of the equations in the Galilei system we can

rightly say that the description of Classical Electrodynamics is simpler and more meaningful

when written in the Lorentzian system. However, in the Galilean limit 1
c2
→ 0 the equations

(41) become

~∇G × ~̌EG + ∂τ ~̌BG = 0

~∇G · ~̌BG = 0
(42)

~∇G · ~̌EG =
1

ε0
ρ̌G

~∇G × ~̌BG = µ0~̌G

and these equations are left invariant by transformations (40). Together, they correspond to the

same equations obtained in the so-called magnetic limit of [1]. However, in their work this form

of the Maxwell’s equation is obtained imposing that c|ρL| � |jL|, | ~EL| � c| ~BL|, a condition

that is not necessary to assume in our model.

Remark: As we mentioned in subsection 5.1, we may consider the transformation h (24) written

in terms of any arbitrary parameter ~β. In this case, the transformations given in (37, 38) would

have ~β replacing the relative velocity ~v.

Let us advance this interpretation a little further. In defining the Galilean fields and the

4-current in frame S let us assume our basic element for Galilean electrodynamics is KG :=

( ~EG, ~BG, ρG,~G, ~β). In terms of these basic fields we can express Lorentzian fields inverting the

previous relations (37, 38), for example

~EL =
√
a(β)2 − 1

c

β
~EG

~BL = ~BG − (1− |a(β)|) c
β2
~β × ~EG

(43)
ρL =

√
a(β)2 − 1

c

β
ρG

~L = ~G − (1− |a(β)|) c
2

β2
ρG~β .

12



Similarly, let us assume another frame S′ with basic element K′G := ( ~E′G,
~B′G, ρ

′
G,~
′
G,
~β′) with

~E′L =
√
a(β′)2 − 1

c

β′
~E′G

~B′L = ~B′G − (1− |a(β′)|) c

β′2
~β′ × ~E′G

(44)
ρ ′L =

√
a(β′)2 − 1

c

β′
ρ′G

~ ′L = ~ ′G − (1− |a(β′)|) c
2

β′2
ρ′G
~β′ .

The Lorentzian fields in expressions (43, 44) correspond to a particular reparametrization of the

Galilean fields in terms of the parameters ~β, ~β′. In order to fix the transformation between the

Lorentzian fields (relative to the frames S and S′) from the transformations of the corresponding

basic Galilean fields (43, 44), we first must adjust the parameters ~β and ~β′ as

~β = ~v = −~v′ = −~β′

and assume the transformation between the Galilean fields and the 4-current as given in table

(40). This process of “adjustment” ressembles the setting of the clocks t = t′ = 0 when the origins

of the frames S, S′ coincide, in the sense they are necessary in order to set the transformations of

the fields, in much the same way as we do t = t′ = 0 as a choice to derive the standard Lorentz

transformations. Therefore, for the magnetic field we have, for example,

~B′L = ~B′G − (1− |a(β′)|) c

β′2
~β′ × ~E′G

= ~BG − (1− |a(β)|) c
β2

(−~β)× ( ~EG +
1

c
~β × ~BG) [~β = ~v]

= |a| ~BG + (1− |a|) c
v2
~v × ~EG + (1− |a|) 1

v2
(~v · ~BG)~v

= |a| ~BL + (1− |a|) 1

v2
~v · ~BL~v −

√
a2 − 1

1

v
~v × ~EL .

This last form represents the generalized Lorentz transformation for the magnetic field as we

have seen in (15). The same reasoning applied to the other objects will reproduce the expected

Lorentz transformation given in (15, 16, 17). Then, we notice that the general scheme shown

in (23) also extends to the basic elements KG = ( ~EG, ~BG, ρG,~G, ~β), KL := ( ~EL, ~BL, ρL,~L, ~β),

K′G = ( ~E′G,
~B′G, ρ

′
G,~
′
G,
~β′), K′L := ( ~E′L,

~B′L, ρ
′
L,~
′
L,
~β′) when we identify ~β = ~v = −~v′ = −~β′, in

the sense that the following diagram is commutative

( ~EG, ~BG, ρG,~G, ~v) = KG

(43)
��

Galilei // K′G = ( ~E′G,
~B′G, ρ

′
G,~
′
G, ~v

′)

(44)
��

( ~EL, ~BL, ρL,~L, ~v) = KL Lorentz // K′L = ( ~E′L,
~B′L, ρ

′
L,~
′
L, ~v
′)

with the transformations given in (43), (44) playing the role of the transformations h, h′ shown

in diagram (23).

13



5.3 The contravariant model and the electric limit

This model is defined by taking the contravariant tensor FµνG and the contravariant four-current

JµG as the main elements of analysis. We define

( ~EG; ~BG) := (−F0i
G ;−1

2
εijkF jkG ) . (45)

From (28) and (29) we have

~EG :=
√
a2 − 1

c

v
~EL − (1− |a|) c

v2
(~v × ~BL)

(46)
~BG := ~BL .

The four-current in the Lorentz system is JµL ≡ (J0
L, J

i
L) := (cρL,~L), and we denote the cor-

responding Galilean contravariant four-current as JµG ≡ (J0
G, J

i
G) ≡ (cρG,~G), which is defined

as

JµG :=
∂Xµ

G

∂Xα
L

JαL (47)

and whose components are

ρG :=
√
a2 − 1

c

v
ρL + (1− |a|) 1

v2
~v · ~L

(48)
~G := ~L .

The transformation of the Galilei fields and the four current is now obtained from

F ′µνG =
∂X ′µG
∂Xα

G

∂X ′νG

∂Xβ
G

FαβG
(49)

J ′µG =
∂X ′µG
∂Xα

G

JαG

and it gives

CGS SI

~E′G = ~EG ~̌E′G = ~̌EG

~B′G = ~BG − 1
c~v × ~EG ~̌B′G = ~̌BG − ε0µ0~v × ~̌EG

ρ′G = ρG ρ̌′G = ρ̌G

~ ′G = ~G − 1
c~vρG ~̌ ′G = ~̌G − ~vρ̌G

(50)

In the Galilei system the Maxwell equations become

ε0
√
µ0 v~∇G × ~̌EG −

2
√
µ0

(1− |a|)1

v
∂τ ~̌BG −

1
√
µ0

(1− |a|)1

v
(~v · ~∇G) ~̌BG +

+ε0
√
µ0(1− |a|)1

v
~v × ∂τ ~̌EG = 0

~∇G · ~̌BG + (1− |a|) 1

v2
~v · ∂τ ~̌BG = 0 (51)

~∇G · ~̌EG =
1

ε0
ρ̌G

~∇G × ~̌BG − ε0µ0∂τ ~̌EG = µ0~̌G
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and the Galilean limit of these equations become

~∇G × ~̌EG = 0

~∇G · ~̌BG = 0
(52)

~∇G · ~̌EG =
1

ε0
ρ̌G

~∇G × ~̌BG − ε0µ0∂τ ~̌EG = µ0~̌G .

It is straightforward to check that equations (52) are left invariant by the transformations (50)

and together they correspond to the electric limit of [1]. This limit was obtained in [1] assuming

that c|ρL| � |~L| and EL � cBL, a condition that we didn’t need to assume.

5.4 The General Galilean model

Our third model combines some aspects of the two previous ones. Here, we consider electrody-

namics in a medium and introduce the fields ( ~EG, ~BG, ~DG, ~HG) defined in terms of the Galilean

fields strengths FGµν , HµνG as follows

EGi := FG0i

BGi := −1

2
εijkFGjk

(53)
DGi := −H0i

G

HGi := −1

2
εijkHjkG

where, in addition to (28, 29), we also consider

H0i
G = −

√
a2 − 1

c

v
DLi + (1− |a|) c

v2
(~v × ~HL)i

(54)
HijG = −εijkHk .

The four-current in this general model follows the same definition given in section 5.3 and shown

in equations (47, 48). We obtain

~EG =
1√

a2 − 1

v

c
~EL

~BG = ~BL +
1− |a|√
a2 − 1

1

v
~v × ~EL

(55)
~DG =

√
a2 − 1

c

v
~DL − (1− |a|) c

v2
~v × ~HL

~HG = ~HL .

ρG =
√
a2 − 1

c

v
ρL + (1− |a|) 1

v2
~v · ~L

~G = ~L .
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The transformations of the fields and the four-current follows the same pattern as before and

assume the form

CGS SI

~E′G = ~EG + 1
c~v × ~BG ~̌E′G = ~̌EG + ~v × ~̌BG

~B′G = ~BG ~̌B′G = ~̌BG

~D′G = ~DG
~̌D′G = ~̌DG

~H ′G = ~HG − 1
c~v × ~DG

~̌H ′G = ~̌HG − ~v × ~̌DG

ρ′G = ρG ρ̌ ′G = ρ̌G

~ ′G = ~G − 1
c~vρG ~̌ ′G = ~̌G − ~vρ̌G

(56)

In the Galilei system the Maxwell’s equations (6) become

~∇G × ~̌EG + ∂τ ~̌BG = 0

~∇G · ~̌BG = 0
(57)

~∇G · ~̌DG = ρ̌G

~∇G × ~̌HG − ∂τ ~̌DG = ~̌G

and they assume the same form as the Maxwell’s equation in the Lorentz system. Contrarily to

what we have seen in the covariant and contravariant models, this form of the Maxwell equations

in the Galilei system shown in (57) are invariant under the Galilei transformations of the fields

and the four-current (40).

Now, let us analyze the constitutive relations between the fields. In the SI system the

constitutive relations assume the form [8]

~̌DL = ε0 ~̌EL + ~̌P
(58)

~̌HL =
1

µ0

~̌BL − ~̌M .

When we assume the vacuum we have ~̌P = 0, ~̌M = 0 in (58), which determines the following

relation between the Galilean fields

~̌DG = − 2

µ0
(1− |a|) 1

v2
~̌EG −

1

µ0
(1− |a|) 1

v2
~v × ~̌BG +

1

µ0
(1− |a|)2 1

v4
(~v · ~̌EG)~v

(59)
~̌HG =

1

µ0

~̌BG −
1

µ0
(1− |a|) 1

v2
~v × ~̌EG .

Here, our results differ considerably from those obtained by Levy Leblond and Le Bellac. In

their model there is only one set of fields, which corresponds to the Lorentzian fields of our work,
~̌EL, ~̌BL, ~̌DL, ~̌HL. Therefore, in their work the transformations of what we call Lorentzian fields

would assume the form given in table (40) that are not consistent with the constitutive relations

in vacuum ~̌DL = ε0 ~̌EL, ~̌HL = 1
µ0
~̌BL. In our model, there is no such inconsistency since the
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transformations given in (40) are imposed on another set, the Galilean fields ~̌EG, ~̌BG, ~̌DG, ~̌HG,

that are related to the Lorentzian fields through equations (55) (in the CGS system). Nonethe-

less, even though the constitutive relations don’t contradict the transformations of the Galilean

fields we notice that the application of the Galilean limit in (59) is not consistent since it would

give ~̌DG = 0, contradicting one of the Maxwell’s equations, ~∇ · ~̌DG = ρ̌G.

This violation of one of the Maxwell’s equation may be seen as an attempt to endow Galilean

spacetime with a wrong metric. In fact, both the Maxwell’s equation and the constitutive rela-

tions of the Galilean fields can be thought as arising from the formulation of Maxwell’s equation

in a Riemannian manifold in the following way. Using CGS units the Maxwell’s equation in a

Riemannian space is given by the equations

Fαβ;γ + Fβγ;α + Fγα;β = 0, Hαβ;β = −4π

c
Jα

where

Hαβ = gαµgβνFµν (60)

determines the constitutive relations. This last equation links the constitutive relation with the

geometry of the spacetime through the metric tensor gαβ [12]. Here, if we take spacetime having

a Lorentzian metric

ηµνL =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


we have the corresponding object

ηµνG =
∂Xµ

G

∂Xα
L

∂Xν
G

∂xβL
ηαβL =

(
2c2

v2
(|a| − 1) c

v2
(|a| − 1)vi

c
v2

(|a| − 1)vi −δij

)
.

Assuming gαβ = ηαβG in (60) we obtain the constitutive relations for the Galilean fields as

~DG = 2(|a| − 1)
c2

v2
~EG + (|a| − 1)

c

v2
~v × ~BG + (1− |a|)2 c

2

v4
~v · ~EG~v

~HG = ~BG + (|a| − 1)
c

v2
~v × ~EG

that corresponds to conditions (59) written in the CGS system. This shows the link between

the constitutive relatons for the Galilean fields and a metric ηαβG for spacetime. Now, the line

element of spacetime maybe written either in the Lorentzian or the Galilean system as

ds2 = ηLµνdX
µ
LdX

ν
L = ηGµνdX

µ
GdX

ν
G

with

ηGµν =

(
1

a2−1
v2

c2
1
|a|+1

vi
c

1
|a|+1

vi
c −δij + |a|−1

|a|+1
vivj
v2

)
.
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Taking the Galilean limit we have

nGµν →

(
1 1

2cvi
1
2cvi −δij

)

which gives the following expression for the line element in the Galilei system

ds2 = c2dτ2 + ~v · d~x dτ − d~x2

therefore, we may argue that the constitutive relations (58) are not consistent since it is equiv-

alent to assuming a non-suitable metric for the Galilei spacetime.

Remark: Another set of constitutive relations

In equations (58) we have considered constitutive equations for the Lorentzian fields in the case

the medium is the vacuum (then with ~P = 0, ~M = 0) and as a result we obtained the corre-

sponding constitutive relations for the Galiean fields (59). Now, we focus on the inverse process

and we will consider constitutive relations for the Galilean fields and investigate the relations

they impose on the Lorentzian fields.

Lets us assume Σ is a frame relative to which the Galilean fields in vacuum satisfy the

relation

~̌EGΣ =
1

ε0
~̌DGΣ

(61)
~̌HGΣ =

1

µ0

~̌BGΣ .

For another frame S moving with velocity ~v relative to Σ we have the fields ~̌DGS , ~̌BGS , ~̌EGS , ~̌HGS

that relates to the Galilean fields in frame Σ by (56). Then, from (61) the constitutive relations

of the Galilean fields in frame S become

~̌EGS =
1

ε0
~̌DGS + ~v × ~̌BGS

(62)
~̌HGS =

1

µ0

~̌BGS − ~v × ~̌DGS .

Now, taking the relations between the Galilean and the Lorentzian fields given in (55) we obtain

from (62) the constitutive relations for the Lorentzian fields

~̌DLS =
ε20µ0

(a2 − 1)
v2 ~̌ELS +

[
(1− |a|)√
a2 − 1

√
ε0
µ0

1

v
− (2− |a|)√

a2 − 1
ε0
√
ε0µ0 v

]
~v × ~̌BLS +

+

[
− (1− |a|)

(1 + |a|)
ε0
v2

+
(3− |a|)
(1 + |a|)

ε20µ0

]
~v × (~v × ~̌ELS)

~̌HLS =
1

µ0

~̌BLS +

[
(1− |a|)√
a2 − 1

√
ε0
µ0

1

v
− (2− |a|)√

a2 − 1
ε0
√
ε0µ0 v

]
~v × ~̌ELS + ε0 ~v × (~v × ~̌BLS) .

This expression differs considerably from the ordinary expression of the Lorentzian theory, see

for example equations (11) of [10].
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6 Conclusion

In our work we employ a kind of tensor calculus defined from the relation between two coordinate

systems for spacetime, the Galilei and the Lorentz systems defined in (22). Here, we considered

the standard Maxwell electrodynamics as defined relative to the Lorentz system by means of

the tensor FLµν , or FµνL . The relation between the covariant and contravariant components of

these tensors corresponds at most to an overall minus sign as this is implicit in the assumption

that spacetime has a metric signature of the type diag(+,−,−,−). Therefore, the setting of

Maxwell’s equation is immaterial either we employ FLµν or FµνL .

Our approach to derive the Galilei electrodynamics involved first to transform the Maxwell

theory to the Galilei system. Contrarily to the model of the Galilei electrodynamics of [1]

that is based on a priori imposition of relations of the type c|ρ| � |~| and | ~E| � c| ~B| in the

magnetic limit, and c|ρ| � |~| and | ~E| � c| ~B| in the electric limit, the main features of our

treatment depends on the particular roles played by the electromagnetic tensors FGµν , FµνG and

the corresponding relations that are established between the Galilei and the Lorentzian fields

(28-31). Therefore, we concluded from sections 5.2, 5.3 that the choice of one or another of

these Galilean tensors determine different models of the Galilei electrodynamics upon taking

the Galilean limit.

The general Galilean model of section 5.4 mixes both constructions as it accommodates the

electric and the magnetics fields ~EG, ~BG as components of a covariant tensor FGµν , while the

electric and the magnetic excitations ~DG, ~HG are accommodated as components of a contravari-

ant tensor HµνG . The remarkable aspect of this third model is that it produces the same set of

equations for the Galilean and the Lorentzian fields, this time with the absolute time replacing

the local time in the Galilei electrodynamics. Here, in our model we still have problems to con-

ciliate realistic constitutive relations for the Galilean fields in the case the medium considered is

the vacuum. Perhaps we could try to set the parameter a in the GLT transformation in a way

that would guarantee the consistency of the constitutive relation with the equations obeyed by

the Galilean fields without contradicting ~∇ · ~̌DG = ρ̌G.
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