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Abstract. Each finite group is a subgroup of some symmetric group, known

as the Cayley theorem. We find the symmetric group of smallest order which
hosts the finite groups in that sense for most groups of order less than 37.

For each of these small groups this is made concrete by providing a permuta-

tion group with a minimum number of moved elements in terms of a list of
generators of the permutation group in reduced cycle notation.

1. Introduction

1.1. Cayley’s Theorem. The finite groups are fundamentally defined by the mul-
tiplication table (Cayley table) of their elements gj . We shall unify the notation
by sticking to table and the enumeration of group elements as explicitly proposed
by the Small Groups Table in the GAP library [5, 1]. The ith group of order o is
denoted by Gi

o. Its elements are gj , 1 ≤ j ≤ o where g1 is reserved for the unit
element.

Remark 1. The maximum upper index i is the number of groups of order o,
1,1,2,1,2,1,5,2,. . . for o ≥ 1, see Sequence A000001 in the Online Encyclopedia
of Integer Sequences [11].

Every group is a subgroup of a symmetric group, a fact known as Cayley’s
theorem [2, Corol. 2.4]. The simplest construction of such a symmetric super-
group is the representation of the elements by their standard representation [4, Ex.
1.3.3].

Remark 2. The standard representation is a representation by o×o binary matrices
with elements Dij for 1 ≤ i, j ≤ o, with Dij(gk) = 1 if gkgj = gi, zero otherwise.
It is a permutation representation because each matrix has one 1 in every row and
column.

1.2. Aim. The standard representation embeds Gi
o into the symmetric group Sn

with an index n = o. The question arises, what the smallest index n could be such
that a subgroup of Sn is (isomorphic to) Gi

o? Can n be made smaller than o? The
manuscript answers this question quantitatively for most groups of order o ≤ 37 by
constructing permutation groups (and therefore subgroups of the symmetric group
Sn) with the smallest number n of moved elements.
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1.3. Bounds on the Degree. By Lagrange’s theorem the order of a subgroup
divides the order of the group. Since we are seeking symmetric super-groups of
index n (which have order n!) for groups of order o, there is an immediate lower
bound on n given a o, which can be read off Sequence A002034 [11].

If Gi
o is isomorphic to a symmetric group, we cannot find a n! that is smaller than

o. This occurs for one index i if the order o is a factorial, for G1
1
∼= S1, G1

2
∼= S2,

G1
6
∼= S3, G12

24
∼= S4 and so on.

When Gi
o = Gi′

o′ ×Gi′′

o′′ is a direct product of two other groups, an upper bound

of the n hosting Gi
o is given by the sum of the two individual n’s of Gi′

o′ and Gi′′

o′′ .

Proof. Matrix representations of Gi
o with the sum dimensions are constructed by

the direct sum, placing the representation of the element of Gi′

o′ in the left upper

and the representation of the element of Gi′′

o′′ in the right lower block of the product
representation, and zeros at all remaining places. This is still a permutation repre-
sentation because in each row and each column exactly one 1 appears, and the block
structure of the matrices ensures that the products in Gi

o are represented by matrix
products that preserve the products in the two subspaces. Obviously the degree of
this representation is the sum of the degrees of the permutation representations in
the factors. �

1.4. Overview. There is one type of groups for which the minimum n of the
embedding can be found easily, which is discussed in Section 2. The general results
have been found by a brute force matching program (written in Java where a
auxiliary GAP program is used as a generator for some of the Java functions). The
output of this program is reproduced in Section 3 and defines for each of the small
groups Gi

o a permutation group acting on n elements which is isomorphic to Gi
o

and has minimum n.

2. The Cyclic Groups

The close relation between the generating element of a cyclic group, its order and
the order of a generating permutation in its cycle notation leads to an immediate
solution of our minimization problem for all cyclic groups Co. This handles the
cases G1

2
∼= C2, G1

3
∼= C3, G1

4
∼= C4, G1

5
∼= C5, G2

6
∼= C6, G1

7
∼= C7, G1

8
∼= C8,

G1
9
∼= C9, G2

10
∼= C10, G1

11
∼= C11, G2

12
∼= C12, G1

13
∼= C13, G2

14
∼= C14, G1

15
∼= C15,

G1
16

∼= C16, G1
17

∼= C17 and so on [10]. This happens for one i for each o, in takes
care of all groups of prime order.

Let the cycle length (order of the generating element g and number of vertices in
the cycle be c. The cycle is a cyclic subgroup Cc of the group, comprising the unit
element and g, g2, . . . gc−1. A maximum order N of the embedding Sn follows for
given c as follows: The permutation representing g has a mix of cycles; the lengths
li of the cycles is some partition of n (of lengths larger than one because we want to
avoid fixed elements to minimize n). The order of the element is the least common
multiple of the lengths [4][12, Exercise 1.2]:

(1) l1 + l2 + · · · = n;

(2) lcm(l1, l1, . . .) = c;

Theorem 1. The cycle structure that minimizes n for a given c with prime fac-
torization c =

∏
i≥1 p

ei
i is li = peii or any permutation of this list of cycle lengths.
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Proof. because ci = peii , the requirement on the least common multiple is obviously
satisfied. We need to show that the li should be coprime to minimize n and should
have different prime bases. We first see that if a cycle length pair (li, lj) had a
common prime factor p, we could divide one of both which has this prime factor
with a lower or the same prime factor as the other through this prime factor, which
would generate the same least common multiple but reduce one of the terms in
(1) by the factor p, leading to a smaller n. Also, if one li would not be just a
prime power but a product of prime powers with different bases, splitting these
prime powers into two different l′i and l′′i terms would maintain the least common
multiple, but lead to a smaller n because the sum of the prime powers would be
smaller than the product of the prime powers:

(3) pe11 + pe22 ≤ pe11 pe22

is by division through the positive right hand side equivalent to

(4) 1/pe22 + 1/pe11 ≤ 1

which is correct because one of the two terms on the left hand side is ≤ 1/2 and
the other ≤ 1/3. �

Remark 3. There are ϕ(c) choices for the generator (i.e. element of order c) in
the cyclic group Cc, where ϕ is Euler’s totient function. The other elements have
orders that are divisors of c and the order of the element gk is in the k-th column
of row c in A054531 [11]. The frequency of elements of given order is detailed in
Sequence [11, A054522].

This essentially completes the task of finding permutation representations of
lowest n for the cyclic groups. The minimum n can be read off sequence [11,
A008475] as a function of o in these cases.

3. Results

The results are represented as a list of generators in permutation form for most
of the small groups Gi

o, o ≤ 37. The groups are separated by blank lines.
The first line in a group representation provides the order o of the group, its

index i in the group library and after an n the index of the symmetric supergroup
Sn. For groups where the results are not (yet) available (17 out of 161), a lower
bound of n is printed followed by a line which says missing.

The minimum degree of this permutation group (defined as the minimum number
of points moved for any non-identity element among the o permutations) is also
printed after deg for comparison with earlier work [3, 8, 7].

This line is followed by one or more lines of generators—which are not necessarily
a smallest set of generators—sufficient to generate the entire group as products of
generators [9, 6]. A generator specification starts with a g, then the index of the
element in the small group library (starting from g1 for the unit element), and
the mapping by a permutation in reduced cycle notation that represents the group
element. By construction, the largest moved element in the set of generators equals
n.

Order 2 Id 1 n 2

deg 2 at g2 (1 2)

g2 (1 2)
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Order 3 Id 1 n 3

deg 3 at g2 (1 2 3)

g2 (1 2 3)

Order 4 Id 1 n 4

deg 4 at g2 (1 2 3 4)

g2 (1 2 3 4)

Order 4 Id 2 n 4

deg 2 at g2 (3 4)

g2 (3 4)

g3 (1 2)

Order 5 Id 1 n 5

deg 5 at g2 (1 2 3 4 5)

g2 (1 2 3 4 5)

Order 6 Id 1 n 3

deg 2 at g2 (2 3)

g2 (2 3)

g3 (1 2 3)

Order 6 Id 2 n 5

deg 2 at g2 (1 2)

g4 (1 2)(3 4 5)

Order 7 Id 1 n 7

deg 7 at g2 (1 2 3 4 5 6 7)

g2 (1 2 3 4 5 6 7)

Order 8 Id 1 n 8

deg 8 at g2 (1 2 3 4 5 6 7 8)

g2 (1 2 3 4 5 6 7 8)

Order 8 Id 2 n 6

deg 2 at g3 (5 6)

g3 (5 6)

g2 (1 2 3 4)

Order 8 Id 3 n 4

deg 2 at g2 (3 4)

g2 (3 4)

g3 (1 3)(2 4)

Order 8 Id 4 n 8

deg 8 at g2 (1 2 3 4)(5 6 7 8)

g2 (1 2 3 4)(5 6 7 8)

g3 (1 5 3 7)(2 8 4 6)

Order 8 Id 5 n 6

deg 2 at g2 (5 6)

g2 (5 6)

g3 (3 4)
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g4 (1 2)

Order 9 Id 1 n 9

deg 9 at g2 (1 2 3 4 5 6 7 8 9)

g2 (1 2 3 4 5 6 7 8 9)

Order 9 Id 2 n 6

deg 3 at g2 (4 5 6)

g2 (4 5 6)

g3 (1 2 3)

Order 10 Id 1 n 5

deg 4 at g2 (2 3)(4 5)

g2 (2 3)(4 5)

g4 (1 4)(3 5)

Order 10 Id 2 n 7

deg 2 at g2 (1 2)

g4 (1 2)(3 4 5 6 7)

Order 11 Id 1 n 11

deg 11 at g2 (1 2 3 4 5 6 7 8 9 10 11)

g2 (1 2 3 4 5 6 7 8 9 10 11)

Order 12 Id 1 n 7

deg 3 at g4 (5 6 7)

g4 (5 6 7)

g2 (1 2 3 4)(6 7)

Order 12 Id 2 n 7

deg 3 at g3 (1 2 3)

g5 (1 2 3)(4 5 6 7)

Order 12 Id 3 n 4

deg 3 at g2 (2 3 4)

g3 (1 2)(3 4)

g2 (2 3 4)

Order 12 Id 4 n 5

deg 2 at g2 (4 5)

g2 (4 5)

g9 (1 2)(3 4)

Order 12 Id 5 n 7

deg 2 at g2 (6 7)

g2 (6 7)

g7 (1 2)(3 4 5)

Order 14 Id 1 n 7

deg 6 at g2 (2 3)(4 5)(6 7)

g2 (2 3)(4 5)(6 7)

g4 (1 4)(3 6)(5 7)
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Order 14 Id 2 n 9

deg 2 at g2 (1 2)

g4 (1 2)(3 4 5 6 7 8 9)

Order 15 Id 1 n 8

deg 3 at g2 (1 2 3)

g5 (1 2 3)(4 5 6 7 8)

Order 16 Id 1 n 16

deg 16 at g2 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)

g2 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)

Order 16 Id 2 n 8

deg 4 at g2 (5 6 7 8)

g2 (5 6 7 8)

g3 (1 2 3 4)

Order 16 Id 3 n 8

deg 2 at g3 (7 8)

g3 (7 8)

g2 (1 7)(2 8)(3 4 5 6)

Order 16 Id 4 n 8

deg 4 at g3 (1 3 2 4)

g2 (3 4)(5 6 7 8)

g3 (1 3 2 4)

Order 16 Id 5 n 10

deg 2 at g3 (9 10)

g3 (9 10)

g2 (1 2 3 4 5 6 7 8)

Order 16 Id 6 n 8

deg 4 at g3 (5 6)(7 8)

g3 (5 6)(7 8)

g2 (1 5 2 7 3 6 4 8)

Order 16 Id 7 n 8

deg 6 at g2 (3 4)(5 6)(7 8)

g2 (3 4)(5 6)(7 8)

g3 (1 3)(2 5)(4 7)(6 8)

Order 16 Id 8 n 8

deg 6 at g3 (3 4)(5 6)(7 8)

g3 (3 4)(5 6)(7 8)

g2 (1 3 2 5)(4 7 6 8)

Order 16 Id 9 (n>=15)

missing

Order 16 Id 10 n 8

deg 2 at g3 (7 8)

g3 (7 8)
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g4 (5 6)

g2 (1 2 3 4)

Order 16 Id 11 n 6

deg 2 at g2 (5 6)

g2 (5 6)

g3 (3 5)(4 6)

g4 (1 2)

Order 16 Id 12 n 10

deg 2 at g4 (1 2)

g2 (3 4 5 6)(7 8 9 10)

g3 (3 7 5 9)(4 10 6 8)

g4 (1 2)

Order 16 Id 13 n 8

deg 4 at g2 (5 6)(7 8)

g2 (5 6)(7 8)

g3 (1 5)(2 6)(3 7)(4 8)

g12 (1 7)(2 8)(3 6)(4 5)

Order 16 Id 14 n 8

deg 2 at g2 (7 8)

g2 (7 8)

g3 (5 6)

g4 (3 4)

g5 (1 2)

Order 17 Id 1 n 17

deg 17

g2 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)

Order 18 Id 1 n 9

deg 8 at g2 (2 3)(4 5)(6 7)(8 9)

g2 (2 3)(4 5)(6 7)(8 9)

g5 (1 4)(3 6)(5 8)(7 9)

Order 18 Id 2 n 9

deg 2 at g2 (1 2)

g5 (1 2)(3 4 5 6 7 8 9 10 11)

Order 18 Id 3 n 6

deg 2 at g2 (5 6)

g2 (5 6)

g8 (1 2 3)(4 5 6)

Order 18 Id 4 n 6

deg 3 at g3 (2 3 4)

g2 (3 4)(5 6)

g5 (2 3)(5 6)

g6 (1 5)(3 4)

Order 18 Id 5 n 8
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deg 2 at g2 (1 2)

g3 (6 7 8)

g6 (1 2)(3 4 5)

Order 19 Id 1 n 19

deg 19 at g2 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)

g2 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)

Order 20 Id 1 n 9

deg 4 at g3 (1 3)(2 4)

g4 (5 6 7 8 9)

g2 (1 2 3 4)(6 9)(7 8)

Order 20 Id 2 n 9

deg 4 at g2 (1 2 3 4)

g5 (1 2 3 4)(5 6 7 8 9)

Order 20 Id 3 n 5

deg 4 at g2 (2 4 3 5)

g3 (2 3)(4 5)

g6 (1 4 2 3)

Order 20 Id 4 n 7

deg 2 at g3 (1 2)

g2 (4 5)(6 7)

g9 (1 2)(3 6)(5 7)

Order 20 Id 5 n 9

deg 2 at g2 (8 9)

g2 (8 9)

g7 (1 2)(3 4 5 6 7)

Order 21 Id 1 n 7

deg 6 at g2 (2 3 4)(5 6 7)

g2 (2 3 4)(5 6 7)

g5 (1 5 2)(4 7 6)

Order 21 Id 2 n 10

deg 3 at g2 (1 2 3)

g5 (1 2 3)(4 5 6 7 8 9 10)

Order 22 Id 1 n 11

deg 10 at g2 (2 3)(4 5)(6 7)(8 9)(10 11)

g2 (2 3)(4 5)(6 7)(8 9)(10 11)

g4 (1 4)(3 6)(5 8)(7 10)(9 11)

Order 22 Id 2 n 13

deg 2 at g2 (1 2)

g4 (1 2)(3 4 5 6 7 8 9 10 11 12 13)

Order 23 Id 1 n 23

deg 23

g2 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)
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Order 24 Id 1 n 11

deg 3 at g5 (9 10 11)

g5 (9 10 11)

g2 (1 2 3 4 5 6 7 8)(10 11)

Order 24 Id 2

deg 3 at g3 (1 2 3)

g6 (1 2 3)(4 5 6 7 8 9 10 11)

Order 24 Id 3 n 8

deg 6 at g2 (3 4 5)(6 7 8)

g2 (3 4 5)(6 7 8)

g7 (1 3 6)(2 7 5)

Order 24 Id 4 n 11

deg 3 at g5 (1 2 3)

g2 (2 3)(4 5 6 7)(8 9 10 11)

g14 (1 2)(4 8 6 10)(5 11 7 9)

Order 24 Id 5 n 7

deg 2 at g2 (6 7)

g2 (6 7)

g14 (1 6)(2 3 4 5)

Order 24 Id 6 n 7

deg 3 at g5 (3 6 7)

g2 (4 5)(6 7)

g14 (1 4)(2 5)(3 6)

Order 24 Id 7 n 9

deg 2 at g3 (1 2)

g2 (4 5)(6 7 8 9)

g14 (1 2)(3 4)(6 7 8 9)

Order 24 Id 8 n 7

deg 3 at g5 (1 4 5)

g2 (4 5)(6 7)

g14 (1 4)(2 6 3 7)

Order 24 Id 9 n 9

deg 2 at g3 (8 9)

g3 (8 9)

g7 (1 2 3)(4 5 6 7)

Order 24 Id 10 n 7

deg 2 at g2 (6 7)

g2 (6 7)

g9 (1 6)(2 7)(3 4 5)

Order 24 Id 11 n 11

deg 3 at g4 (1 2 3)

g2 (4 5 6 7)(8 9 10 11)
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g9 (1 2 3)(4 8 6 10)(5 11 7 9)

Order 24 Id 12 n 4

deg 2 at g2 (3 4)

g2 (3 4)

g10 (1 2 3)

Order 24 Id 13 n 6

deg 2 at g2 (1 2)

g4 (3 4)(5 6)

g6 (1 2)(4 5 6)

Order 24 Id 14 n 7

deg 2 at g2 (6 7)

g2 (6 7)

g3 (4 5)

g15 (1 2)(3 6)

Order 24 Id 15 n 9

deg 2 at g2 (8 9)

g2 (8 9)

g3 (6 7)

g11 (1 2)(3 4 5)

Order 25 Id 1 n 25

deg 25 at g2 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)

g2 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)

Order 25 Id 2 n 10

deg 5 at g2 (6 7 8 9 10)

g2 (6 7 8 9 10)

g3 (1 2 3 4 5)

Order 26 Id 1 n 13

deg 12 at g2 (2 3)(4 5)(6 7)(8 9)(10 11)(12 13)

g2 (2 3)(4 5)(6 7)(8 9)(10 11)(12 13)

g4 (1 4)(3 6)(5 8)(7 10)(9 12)(11 13)

Order 26 Id 2 n 15

deg 2 at g2 (1 2)

g4 (1 2)(3 4 5 6 7 8 9 10 11 12 13 14 15)

Order 27 Id 1 n 27

deg 27 at g2 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)

g2 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)

Order 27 Id 2 n 12

deg 3 at g3 (10 11 12)

g3 (10 11 12)

g2 (1 2 3 4 5 6 7 8 9)

Order 27 Id 3 n 9

deg 6 at g2 (4 5 6)(7 8 9)
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g2 (4 5 6)(7 8 9)

g3 (1 4 7)(2 5 9)(3 6 8)

Order 27 Id 4 n 9

deg 6 at g3 (4 5 6)(7 8 9)

g3 (4 5 6)(7 8 9)

g2 (1 4 7 2 6 8 3 5 9)

Order 27 Id 5 n 9

deg 3 at g2 (7 8 9)

g2 (7 8 9)

g3 (4 5 6)

g4 (1 2 3)

Order 28 Id 1 n 11

deg 4 at g3 (1 3)(2 4)

g4 (5 6 7 8 9 10 11)

g2 (1 2 3 4)(6 11)(7 10)(8 9)

Order 28 Id 2 n 11

deg 4 at g2 (1 2 3 4)

g5 (1 2 3 4)(5 6 7 8 9 10 11)

Order 28 Id 3 n 9

deg 2 at g3 (1 2)

g2 (4 5)(6 7)(8 9)

g9 (1 2)(3 6)(5 8)(7 9)

Order 28 Id 4 n 11

deg 2 at g2 (10 11)

g2 (10 11)

g7 (1 2)(3 4 5 6 7 8 9)

Order 29 Id 1 n 29

deg 29 at g2 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29)

g2 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29)

Order 30 Id 1 n 8

deg 2 at g2 (7 8)

g2 (7 8)

g11 (1 7)(2 3 4 5 6)

Order 30 Id 2 n 8

deg 3 at g3 (2 3 4)

g2 (5 6)(7 8)

g11 (1 7)(2 3 4)(6 8)

Order 30 Id 3 n 8

deg 3 at g3 (1 3 4)

g2 (3 4)(5 6)(7 8)

g11 (1 3)(2 7)(6 8)

Order 30 Id 4 n 10
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deg 2 at g2 (1 2)

g11 (1 2)(3 4 5)(6 7 8 9 10)

Order 31 Id 1 n 31

deg 31

g2 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)

Order 32 Id 1 n 32

deg 32

g2 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)

Order 32 Id 2 n 12

deg 4 at g4 (1 2)(7 8)

g2 (7 8)(9 10 11 12)

g3 (1 7)(2 8)(3 4 5 6)

Order 32 Id 3 n 12

deg 4 at g3 (9 10 11 12)

g3 (9 10 11 12)

g2 (1 2 3 4 5 6 7 8)

Order 32 Id 4 n 12

deg 4 at g5 (9 11)(10 12)

g3 (5 6)(7 8)(9 10 11 12)

g2 (1 5 2 7 3 6 4 8)

Order 32 Id 5 n 12

deg 2 at g3 (11 12)

g3 (11 12)

g2 (1 11)(2 12)(3 4 5 6 7 8 9 10)

Order 32 Id 6 n 8

deg 4 at g3 (5 6)(7 8)

g3 (5 6)(7 8)

g2 (1 2 5 7)(3 4 6 8)

Order 32 Id 7 n 8

deg 4 at g3 (5 6)(7 8)

g3 (5 6)(7 8)

g2 (1 2 5 7 3 4 6 8)

Order 32 Id 8 n>=16

missing

Order 32 Id 9 n 12

deg 4 at g5 (3 5)(4 6)

g3 (7 8)(9 10)(11 12)

g2 (1 7)(2 9)(3 4 5 6)(8 11)(10 12)

Order 32 Id 10 n 12

deg 4 at g5 (9 11)(10 12)

g2 (3 4)(5 6)(7 8)(9 10 11 12)

g3 (1 3 2 5)(4 7 6 8)
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Order 32 Id 11 n 8

deg 4 at g7 (2 3 5 7)

g3 (1 2)(3 4)(5 6)(7 8)

g7 (2 3 5 7)

Order 32 Id 12 n 12

deg 4 at g3 (9 10 11 12)

g3 (9 10 11 12)

g2 (1 2 3 4 5 6 7 8)(10 12)

Order 32 Id 13 n 12

deg 4 at g5 (9 11)(10 12)

g2 (3 4)(5 6)(7 8)(9 10 11 12)

g7 (1 3 2 5)(4 7 6 8)(9 10 11 12)

Order 32 Id 14 n 12

deg 4 at g5 (9 11)(10 12)

g2 (3 4)(5 6)(7 8)(9 10 11 12)

g7 (1 3)(2 5)(4 7)(6 8)(9 10 11 12)

Order 32 Id 15 n>=15

missing

Order 32 Id 16 n 18

deg 2 at g3 (1 2)

g2 (3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)

g3 (1 2)

Order 32 Id 17 n 16

deg 8 at g3 (2 10)(4 12)(6 14)(8 16)

g2 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)

g3 (2 10)(4 12)(6 14)(8 16)

Order 32 Id 18 n 16

deg 14 at g2 (3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)

g2 (3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)

g3 (1 3)(2 5)(4 7)(6 9)(8 11)(10 13)(12 15)(14 16)

Order 32 Id 19 n 16

deg 14

g8 (1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)

g3 (2 5)(4 7)(6 9)(8 11)(10 13)(12 15)(14 16)

Order 32 Id 20 n>=14

missing

Order 32 Id 21 n 10

deg 2 at g4 (9 10)

g4 (9 10)

g2 (5 6 7 8)

g3 (1 2 3 4)



14 RICHARD J. MATHAR

Order 32 Id 22 n 10

deg 2 at g3 (9 10)

g3 (9 10)

g4 (7 8)

g2 (1 9)(2 10)(3 4 5 6)

Order 32 Id 23 n 10

deg 2 at g4 (9 10)

g4 (9 10)

g2 (3 4)(5 6 7 8)

g3 (1 3 2 4)

Order 32 Id 24 n>=10

missing

Order 32 Id 25 n 8

deg 2 at g3 (7 8)

g3 (7 8)

g8 (5 7)(6 8)

g2 (1 2 3 4)(5 7)(6 8)

Order 32 Id 26 n>=12

missing

Order 32 Id 27 n 8

deg 4 at g2 (5 6)(7 8)

g2 (5 6)(7 8)

g3 (3 5)(4 6)

g4 (1 7)(2 8)

Order 32 Id 28 n 8

deg 4 at g2 (5 6)(7 8)

g2 (5 6)(7 8)

g4 (3 5)(4 6)

g7 (1 7)(2 8)(5 6)

Order 32 Id 29 n 12

deg 4 at g4 (1 3)(2 4)

g2 (3 4)(5 6 7 8)(9 10 11 12)

g3 (5 9 7 11)(6 12 8 10)

g4 (1 3)(2 4)

Order 32 Id 30 n>=10

missing

Order 32 Id 31 n>=11

missing

Order 32 Id 32 n>=11

missing

Order 32 Id 33 n>=12

missing
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Order 32 Id 34 n 8

deg 4 at g2 (5 6)(7 8)

g2 (5 6)(7 8)

g7 (3 5)(4 6)(7 8)

g8 (1 7)(2 8)(5 6)

Order 32 Id 35 n>=9

missing

Order 32 Id 36 n>=10

missing

Order 32 Id 37 n 10

deg 2

g8 (3 4 5 6 7 8 9 10)

g12 (3 5 7 9)(4 10 8 6)

g14 (1 2)(3 5 7 9)(4 6 8 10)

Order 32 Id 38 n>= 9

missing

Order 32 Id 39 n 10

deg 2 at g4 (1 2)

g2 (5 6)(7 8)(9 10)

g3 (3 5)(4 7)(6 9)(8 10)

g4 (1 2)

Order 32 Id 40 n 10

deg 2 at g4 (3 4)

g3 (5 6)(7 8)(9 10)

g4 (3 4)

g2 (1 5 2 7)(6 9 8 10)

Order 32 Id 41 n>=10

missing

Order 32 Id 42 n>=13

missing

Order 32 Id 43 n 8

deg 4 at g4 (2 4)(5 7)

g2 (1 2)(3 4)(5 6)(7 8)

g3 (2 5)(4 7)(6 8)

g4 (2 4)(5 7)

Order 32 Id 44 n>=14

missing

Order 32 Id 45 n 10

deg 2

g8 (7 8 9 10)

g18 (5 6)(7 8 9 10)
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g20 (3 4)(7 8 9 10)

g3 (1 2)

Order 32 Id 46 n 8

deg 2 at g2 (7 8)

g2 (7 8)

g3 (5 7)(6 8)

g4 (3 4)

g5 (1 2)

Order 32 Id 47 n 12

deg 2

g3 (5 6 7 8)(9 10 11 12)

g8 (5 9 7 11)(6 12 8 10)

g12 (3 4)(5 6 7 8)(9 10 11 12)

g18 (1 2)(5 10 7 12)(6 9 8 11)

Order 32 Id 48 n 10

g4 (3 4 5 6)(7 8 9 10)

g8 (3 7 5 9)(4 8 6 10)

g14 (1 2)(3 4 5 6)(7 8 9 10)

g18 (3 8 5 10)(4 9 6 7)

Order 32 Id 49 n 8

deg 4

g20 (1 2 3 4)(5 6 7 8)

g3 (5 7)(6 8)

g4 (1 5)(2 6)(3 7)(4 8)

g8 (2 4)(6 8)

Order 32 Id 50 n>=12

missing

Order 32 Id 51 n 10

deg 2

g3 (9 10)

g4 (7 8)

g6 (5 6)

g8 (3 4)

g12 (1 2)

Order 33 Id 1 n 14

deg 3 at g2 (1 2 3)

g5 (1 2 3)(4 5 6 7 8 9 10 11 12 13 14)

Order 34 Id 1 n 17

deg 2

g3 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)

g4 (2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 10)

Order 34 Id 2 n 19

deg 2 at g2 (1 2)

g4 (1 2)(3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)
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Order 35 Id 1 n 12

deg 5 at g2 (1 2 3 4 5)

g5 (1 2 3 4 5)(6 7 8 9 10 11 12)

Order 36 Id 1 n 13

deg 4 at g3 (10 12)(11 13)

g2 (2 3)(4 5)(6 7)(8 9)(10 11 12 13)

g7 (1 4)(3 6)(5 8)(7 9)(10 11 12 13)

Order 36 Id 2 n 13

deg 4 at g2 (1 2 3 4)

g6 (1 2 3 4)(5 6 7 8 9 10 11 12 13)

Order 36 Id 3 n 13

g2 (2 3 4)(5 6 7 8 9 10 11 12 13)

g8 (1 2 4)(5 6 7 8 9 10 11 12 13)

Order 36 Id 4 n 11

deg 2 at g3 (1 2)

g2 (4 5)(6 7)(8 9)(10 11)

g14 (1 2)(3 6)(5 8)(7 10)(9 11)

Order 36 Id 5 n 13

deg 2 at g2 (12 13)

g2 (12 13)

g9 (1 2)(3 4 5 6 7 8 9 10 11)

Order 36 Id 6 n 10

deg 3 at g3 (1 2 3)

g5 (8 9 10)

g6 (1 2 3)(4 5 6 7)(9 10)

Order 36 Id 7 n 10

deg 3 at g4 (8 9 10)

g4 (8 9 10)

g5 (5 6 7)

g2 (1 2 3 4)(6 7)(9 10)

Order 36 Id 8 n 10

deg 3 at g3 (8 9 10)

g3 (8 9 10)

g7 (1 2 3)(4 5 6 7)

Order 36 Id 9 n 6

deg 3 at g5 (1 6 5)

g3 (3 4)(5 6)

g7 (1 3)(2 5 4 6)

Order 36 Id 10 n 6

deg 2 at g2 (3 4)

g6 (3 4)(5 6)

g17 (1 3)(2 5 6)
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Order 36 Id 11 n 7

deg 3 at g2 (5 6 7)

g2 (5 6 7)

g18 (1 2 3)(4 6 5)

Order 36 Id 12 n 8

deg 2 at g2 (7 8)

g2 (7 8)

g20 (1 2)(3 4 5)(6 7 8)

Order 36 Id 13 n 8

deg 2 at g3 (1 2)

g2 (5 6)(7 8)

g7 (4 5)(7 8)

g15 (1 2)(3 7)(5 6)

Order 36 Id 14 n 10

deg 2 at g2 (6 7)

g7 (6 7)(8 9 10)

g10 (1 2)(3 4 5)

Order 37 Id 1 n 37

g2 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37)
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