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Abstract: We consider the equations of motion of three-body problem in a Lagrange 

form (which means a consideration of relative motions of 3-bodies in regard to each 

other). Analyzing such a system of equations, we consider in details the case of 

moon‟s motion of negligible mass m₃ around the 2-nd of two giant-bodies m₁, m₂ 

(which are rotating around their common centre of masses on Kepler’s trajectories), 

the mass of which is assumed to be less than the mass of central body. 

Under assumptions of R3BP, we obtain the equations of motion which describe the 

relative mutual motion of the centre of mass of 2-nd giant-body m₂ (Planet) and the 

centre of mass of 3-rd body (Moon) with additional effective mass m₂ placed in that 

centre of mass (m₂ + m₃), where  is the dimensionless dynamical parameter. They 

should be rotating around their common centre of masses on Kepler‟s elliptic orbits. 

For negligible effective mass (m₂ + m₃) it gives the equations of motion which 

should describe a quasi-elliptic orbit of 3-rd body (Moon) around the 2-nd body m₂ 

(Planet) for most of the moons of the Planets in Solar system. But the orbit of Earth‟s 

Moon should be considered as non-constant elliptic motion for the effective mass 

0.0178m₂ placed in the centre of mass for the 3-rd body (Moon). The position of their 

common centre of masses should obviously differ for real mass m₃ = 0.0123m₂ and 

for the effective mass (0.0055+0.0123)m₂  placed in the centre of mass of the Moon. 

 

Key Words: restricted three-body problem, orbit of the Moon, relative motion 

mailto:sergej-ershkov@yandex.ru


 

2 

Introduction. 

 

The stability of the motion of the Moon is the ancient problem which leading scientists 

have been trying to solve during last 400 years. A new derivation to estimate such a 

problem from a point of view of relative motions in restricted three-body problem 

(R3BP) is proposed here. 

Systematic approach to the problem above was suggested earlier in KAM-

(Kolmogorov-Arnold-Moser)-theory [1] in which the central KAM-theorem is known 

to be applied for researches of stability of Solar system in terms of restricted three-

body problem [2-5], especially if we consider photogravitational restricted three-body 

problem [6-8] with additional influence of Yarkovsky effect of non-gravitational nature 

[9]. 

 

KAM is the theory of stability of dynamical systems [1] which should solve a very 

specific question in regard to the stability of orbits of so-called “small bodies” in Solar 

system, in terms of restricted three-body problem [3]: indeed, dynamics of all the 

planets is assumed to satisfy to restrictions of  restricted three-body problem (such as 

infinitesimal masses, negligible deviations of the main orbital elements, etc.).  

Nevertheless, KAM also is known to assume the appropriate Hamilton formalism in 

proof of the central KAM-theorem [1]: the dynamical system is assumed to be 

Hamilton system as well as all the mathematical operations over such a dynamical 

system are assumed to be associated with a proper Hamilton system. 

According to the Bruns theorem [5], there is no other invariants except well-known 10 

integrals for three-body problem (including integral of energy, momentum, etc.), this is 

a classical example of Hamilton system. But in case of restricted three-body problem, 

there is no other invariants except only one, Jacobian-type integral of motion [3]. 

Such a contradiction is the main paradox of KAM-theory: it adopts all the restrictions 

of restricted three-body problem, but nevertheless it proves to use the Hamilton 

formalism, which assumes the conservation of all other invariants (the integral of 

energy, momentum, etc.). 

To avoid ambiguity, let us consider a relative motion in three-body problem [2]. 
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1. Equations of motion. 

 

Let us consider the system of ODE for restricted three-body problem in barycentric 

Cartesian co-ordinate system, at given initial conditions [2-3]: 

 

 

- here q₁, q₂, q₃ - mean the radius-vectors of bodies m₁, m₂, m₃, accordingly;  - is the 

gravitational constant. 

 

System above could be represented for relative motion of three-bodies as shown below 

(by the proper linear transformations): 
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Let us designate as below: 

 

 

Using of (*) above, let us transform the previous system to another form: 

 

 

 

Analysing the system (1.1) we should note that if we sum all the above equations one 

to each other it would lead us to the result below: 

 

If we also sum all the equalities (*) one to each other, we should obtain 
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Under assumption of restricted three-body problem, we assume that the mass of small 

3-rd body m₃ ≪ m₁, m₂, accordingly; besides, for the case of moving of small 3-rd 

body m₃ as a moon around the 2-nd body m₂, let us additionaly assume R ₂,₃ ≪ R ₁,₂. 

 

So, taking into consideration (**), we obtain from the system (1.1) as below: 

 

 

 

- where the 1-st equation of (1.2) describes the relative motion of 2 massive bodies 

(which are rotating around their common centre of masses on Kepler’s trajectories); 

the 2-nd describes the orbit of small 3-rd body m₃ (Moon) relative to the 2-nd body m₂ 

(Planet), for which we could obtain according to the trigonometric “Law of Cosines” 

[10]: 

 

- here  – is the angle between the radius-vectors R ₂,₃ and R ₁,₂. 

 

Equation (1.3) could be simplified under additional assumption above R ₂,₃ ≪ R ₁,₂ 

for restricted mutual motions of bodies m₁, m₂ in R3BP [3] as below: 
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Moreover, if we present Eq. (1.4) in a form below 

 

- then Eq. (1.5) describes the relative motion of the centre of mass of 2-nd giant-body 

m₂ (Planet) and the centre of mass of 3-rd body (Moon) with the effective mass (m₂ + 

m₃), which are rotating around their common centre of masses on the stable Kepler‟s 

elliptic trajectories. 

Besides, if the dimensionless parameters ,  → 0 then equation (1.5) should describe 

a quasi-circle motion of 3-rd body (Moon) around the 2-nd body m₂ (Planet). 

 

 

 

2. The comparison of the moons in Solar system. 

 

 

As we can see from Eq. (1.5),  is the key parameter which determines the character of 

moving of the small 3-rd body m₃ (the Moon) relative to the 2-nd body m₂ (Planet). Let 

us compare such a parameter for all considerable known cases of orbital moving of the 

moons in Solar system [12] (Tab.1): 
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Table 1. Comparison of the averaged parameters of the moons in Solar system. 

Masses of 

the 

Planets 

(Solar 

system), 

kg 

Ratio m₁ 

(Sun) 

to mass m₂ 

(Planet) 

Distance  

R₁,₂ 

(between 

 Sun-Planet), 

AU 

Parameter , 

ratio m₃ 

(Moon) 

to mass m₂ 

(Planet) 

Distance  

R ₂,₃ 

(between 

Moon-Planet) 

in 10³ km 

 

Parameter 

Mercury, 

3.310²³  

0.387 AU    

Venus, 

4.8710²⁴  

0.723 AU    

Earth, 

5.9710²⁴ 

1 Earth = 

332,946 kg 

1 AU = 

149,500,000 

km  

12,30010ˉ⁶ 383.4 

Moon 

5,53210ˉ⁶ 

Mars, 

6.4210²³ 

 

1.524 AU 

1) Phobos 

0.0210ˉ⁶ 

2) Deimos 

0.00310ˉ⁶ 

1) Phobos 

9.38 

2) Deimos 

23.46 

1) Phobos 

0.2210ˉ⁶ 

2) Deimos 

3.410ˉ⁶ 

Jupiter, 

1.910²⁷ 

 

5.2 AU 

1) Ganymede 

7910ˉ⁶ 

2)  Callisto 

5810ˉ⁶ 

3)   Io 

4710ˉ⁶ 

4)  Europa 

2510ˉ⁶ 

1) Ganymede 

1,070 

2)  Callisto 

1,883 

3)   Io 

422 

4)  Europa 

671 

1) Ganymede 

2.7310ˉ⁶ 

2)  Callisto 

14.8910ˉ⁶ 

3)   Io 

0.1710ˉ⁶ 

4)  Europa 

0.6710ˉ⁶ 










055.0

946,332










815.0

946,332
















3

2,1

3

3,2

2

1

R

R

m

m










107.0

946,332










8.317

946,332
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Saturn, 

5.6910²⁶ 

 

 

9.54 AU 

 

 

1) Titan 

24010ˉ⁶ 

2) Rhea 

4.110ˉ⁶ 

3) Iapetus 

3.410ˉ⁶ 

4) Dione 

1.910ˉ⁶ 

5) Tethys 

1.0910ˉ⁶ 

6) Enceladus 

0.1910ˉ⁶ 

7) Mimas 

0.0710ˉ⁶ 

1) Titan 

1,222 

2) Rhea 

527 

3) Iapetus 

3,561 

4) Dione 

377 

5) Tethys 

294.6 

6) Enceladus 

238 

7) Mimas 

185.4 

1) Titan 

2.210ˉ⁶ 

2) Rhea 

0.1810ˉ⁶ 

3) Iapetus 

54.4610ˉ⁶ 

4) Dione 

0.0710ˉ⁶ 

5) Tethys 

0.0310ˉ⁶ 

6) Enceladus 

0.01610ˉ⁶ 

7) Mimas 

0.00810ˉ⁶ 

Uranus, 

8.6910²⁵ 

 

19.19 AU 

1) Titania 

4010ˉ⁶ 

2) Oberon 

3510ˉ⁶ 

3) Ariel: 

1610ˉ⁶ 

4) Umbriel: 

13.4910ˉ⁶ 

5) Miranda: 

0.7510ˉ⁶ 

1) Titania 

436 

2) Oberon 

584 

3) Ariel: 

191 

4) Umbriel: 

266.3 

5) Miranda: 

129.4 

1) Titania 

0.0810ˉ⁶ 

2) Oberon 

0.210ˉ⁶ 

3) Ariel: 

0.0110ˉ⁶ 

4) Umbriel: 

0.01910ˉ⁶ 

5) Miranda: 

0.00210ˉ⁶ 










16.95

946,332










37.14

946,332
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Neptune, 

1.0210²⁶ 

 

30.07 AU 

1) Triton 

21010ˉ⁶ 

2) Proteus 

0.4810ˉ⁶ 

3) Nereid 

0.2910ˉ⁶ 

1) Triton 

355 

2) Proteus 

118 

3) Nereid 

5,513 

1) Triton 

0.0110ˉ⁶ 

2) Proteus 

0.000410ˉ⁶ 

3) Nereid 

35.8110ˉ⁶ 

 

 

 

3. Discussion. 

 

As we can see from the Tab.1 above, the dimensionless key parameter , which 

determines the character of moving of the small 3-rd body m₃ (Moon) relative to the 

2-nd body m₂ (Planet), is varying for all variety of the moons of the Planets (in Solar 

system) from the meaning 0.000410ˉ⁶ (for Proteus of Neptune) to the meaning 

54.4610ˉ⁶ (for Iapetus of Saturn); but it still remains to be negligible enough for 

adopting the stable moving of the effective mass (m₂ + m₃) on quasi-elliptic 

Kepler‟s orbit around their common centre of masses with the 2-nd body m₂. 

 

Eq. (1.5) and the corresponding parameter  play a key role in this paper. As for the 

physical meaning of Eq. (1.5), it describes  the relative motion of the centre of mass of 

2-nd giant-body m₂ (Planet) and the centre of mass of 3-rd body (Moon) with the 

effective mass (m₂ + m₃), which are rotating around their common centre of masses 

on the stable Kepler‟s elliptic trajectories. In case the dimensionless parameters ,  → 

0 then equation (1.5) should describe a quasi-circle motion of 3-rd body (Moon) 

around the 2-nd body m₂ (Planet). 

For example, Eq. (1.5) refers to the classical two-body problem if  is a constant; 

nevertheless,  is fluctuating with time during orbital motion in R3BP, and hence Eq. 










15.17

946,332
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(1.5) actually describes a perturbed two-body problem and its solution is a non-

constant elliptic instead of a fixed elliptic. As for physical explanation on the effective 

mass (m₂ + m₃), it seems that m₂ could be also considered as the secular part of the 

third-body perturbation. 

As for the connection (similarities, differences and etc.) between the equation of 

relative motion Eq. (1.5) and the classical perturbed two-body problem (with the main 

perturbation being third-body gravity), they are roughly equivalent; but the proposed 

ansatz is obviously alternative approach, which could be more effective for the 

investigations of mutual relative motion and stability of the Moons orbits in solar 

system. 

 

If the total sum of dimensionless parameters ( + ) is negligible then equation (1.5) 

should describe a stable quasi-circle orbit of 3-rd body (Moon) around the 2-nd body 

m₂ (Planet). Let us consider the proper examples which deviate (differ) to some extent 

from the negligibility case ( + ) → 0 above (Tab.1) [12]: 

 

1. Nereid-Neptune:   ( + ) = (35.81+0,29)10ˉ⁶,          eccentricity 0.7507 

2. Triton-Neptune:    ( + ) = (0.01+210)10ˉ⁶,            eccentricity 0.000 016 

3. Iapetus-Saturn:      ( + ) = (54.46+3.4)10ˉ⁶,           eccentricity 0.0286 

4. Titan-Saturn:         ( + ) = (2.2+240)10ˉ⁶,              eccentricity 0.0288 

5. Io-Jupiter:              ( + ) = (0.168 + 47)10ˉ⁶,          eccentricity 0.0041 

6. Callisto-Jupiter:    ( + ) = (14.89+58)10ˉ⁶,            eccentricity 0.0074 

7. Ganymede-Jupiter: ( + ) = (2.73+79)10ˉ⁶,             eccentricity 0.0013 

8. Phobos-Mars:         ( + ) = (0,217+0,02)10ˉ⁶,        eccentricity 0.0151 

9. Moon-Earth:           ( + ) = (5,532+12,300)10ˉ⁶,    eccentricity 0.0549 

 

The obvious extreme exception is the Nereid (moon of Neptune) from this scheme: 

Nereid orbits Neptune in the prograde direction at an average distance of 
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5,513,400 km, but its high eccentricity of 0.7507 takes it as close as 1,372,000 km and 

as far as 9,655,000 km [12]. 

The unusual orbit suggests that it may be either a captured asteroid or Kuiper belt 

object, or that it was an inner moon in the past and was perturbed during the capture 

of Neptune's largest moon Triton [12]. One could suppose that the orbit of Nereid 

should be derived preferably from the assumptions of R4BP (the case of Restricted 

Four-Body Problem) or more complicated cases. 

 

As we can see from consideration above, in case of the Earth‟s Moon such a 

dimensionless key parameters increase simulteneously to the crucial meanings  = 

0.0055 and  = 0.0123 respectively, ( + ) = 0.0178. It means that the orbit for 

relative motion of the Moon in regard to the Earth could not be considered as quasi-

elliptic orbit and should be considered as non-constant elliptic orbit with the effective 

mass (m₂ + m₃) placed in the centre of mass for the Moon. 

As we know [3-4], the elements of that elliptic orbit depend on the position of the 

common centre of masses for 3-rd small body (Moon) and the planet (Earth). But 

such a position of their common centre of mass should obviously differ for the real 

mass m₃ and the effective mass (m₂ + m₃) placed in the centre of mass of the 3-rd 

body (Moon). So, the elliptic orbit of motion of the Moon derived from the 

assumtions of R3BP should differ from the elliptic orbit which could be obtained 

from the assumtions of R2BP (the case of Restricted Two-Body Problem: it means 

mutual moving of 2 gravitating masses without the influence of other central forces). 

 

As for the meanings of the terms quasi-elliptic, quasi-circle and non-constant elliptic: 

“quasi” means that the main orbital elements of the orbit of moon around the planet 

still remains circa the same without essential alterations (due to negligible influence 

of moon‟s gravity in a frame of the R3BP), but the term “non-constant elliptic” means 

that Eq. (1.5) describes actually a perturbed two-body problem and its solution is a 

non-constant elliptic instead of a fixed elliptic. 
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4. Remarks about the eccentricities of the orbits. 

 

According to the definition [12], the orbital eccentricity of an astronomical object is a 

parameter that determines the amount by which its orbit around another body deviates 

from a perfect orbit: 

 

- where  - is the specific orbital energy; h - is the specific angular momentum;  - is 

the sum of the standard gravitational parameters of the bodies,  =   m₂  (1 +  + ), 

see (1.5). 

 

The specific orbital energy equals to the constant sum of kinetic and potential energy 

in a 2-body ballistic trajectory [12]: 

 

- here a – is the semi-major axis. For an elliptic orbit the specific orbital energy is the 

negative of the additional energy required to accelerate a mass of one kilogram to 

escape velocity (parabolic orbit). 

 

 

Thus, assuming  = (t), we should obtain from the equality above: 

 

 

- where (t) – is the periodic function depending on time-parameter t, which is slowly 

varying during all the time-period from the minimal meaning min > 0 to the maximal 

meaning max, preferably (max - min)  0. 

 

Besides, we should note that in an elliptical orbit, the specific angular momentum h is 

twice the area per unit time swept out by a chord of ellipse (i.e., the area which is 
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totally covered by a chord of ellipse during it’s motion per unit time, multiplied by 2) 

from the primary to the secondary body [12], according to the Kepler‟s 2-nd law of 

planetary motion.  

Since the area of the entire orbital ellipse is totally swept out in one orbital period, the 

specific angular momentun h is equal to twice the area of the ellipse divided by the 

orbital period, as represented by the equation: 

 

- where b – is the semi-minor axis. So, from Eq. (4.1) we should obtain that for the 

constant specific angular momentum h, the semi-minor axis b should be constant also. 

 

Thus, we could express the components of elliptic orbit as below: 

 

 

- which could be schematically imagined as it is shown at Figs.1-3. 
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Figs.1-3. Orbits of the moon, schematically imagined. 

 

 

As for the chosen parameters at Figs. 1-3: meanings of the parameter a₀ is varying 

in the range from 0.0123 (Fig.1) to the meaning 10.123 (Fig.2) and 49.5 (Fig.3); 

parameter a₀(t) is varying in the range from the 0.0055(0.9+0.1sint) (Fig.1) to the 

meaning 0.55(0.9+0.1sint) (Fig.2) and 100(1.0+0.5sin t) (Fig.3). Obviously, we can 

see that the orbit of moon at the last of Fig.1-3 quite differs from the elliptic one. 

 

 



 

15 

 

Conclusion. 

 

We have considered the equations of motion of three-body problem in a Lagrange 

form (for the relative motions of 3-bodies in regard to each other). Analyzing such a 

system of equations, we explore the case of moon‟s motion of negligible mass m₃ 

around the 2-nd of two giant-bodies m₁, m₂, the mass of which is assumed to be less 

than the mass of central body m₂. Besides, only the natural satellites which are massive 

enough to have achieved hydrostatic equilibrium has been considered; there are known 

22 of such a mid-sized natural satellites for planets of Solar system, including Earth‟s 

Moon, see Tab.1. 

It has been proposed the elegant derivation of a key parameter  that determines the 

character of the moving of the Moon) relative to the Planet. 

We also obtain that the equations of motion R3BP should describe the relative mutual 

motion of the centre of mass of 2-nd giant-body m₂ (Planet) and the centre of mass of 

3-rd body (Moon) with additional effective mass m₂ placed in that centre of mass 

(m₂ + m₃), where  is the dimensionless dynamical parameter (non-constant, but 

negligible). Thus, they should be rotating around their common centre of masses on 

Kepler‟s elliptic orbits. So, the case R3BP of '3-body problem' for the moon's orbit 

was elegantly reduced to the case R2BP of '2-body problem' (the last one is known to 

be stable for the relative motion of „planet-satellite‟ pairs [3-4]). 

 

For negligible effective mass (m₂ + m₃) it gives equations of motion which should 

describe a quasi-elliptic orbit of 3-rd body (Moon) around the 2-nd body m₂ (Planet) 

for most of the moons of the Planets in Solar system. But the orbit of Earth‟s Moon 

should be considered as non-constant elliptic motion for the effective mass 0.0178m₂ 

placed in the centre of mass for the 3-rd body (Moon). The position of their common 

centre of masses should obviously differ for the real mass m₃ = 0.0123m₂ and for the 

effective mass (0.0055+0.0123)m₂  placed in the centre of mass of the Moon. 
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