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Abstract Herein, we argue that the observed +38mm/yr sec-

ular Lunar drift from the Earth does – to an admirable degree of

agreement between theory and observations; explain the observed

secular increase in the Lunar eccentricity. At present, the reces-

sion of the Moon from the Earth is not any more considered as an

anomaly as this is believed to be well explained by conventional

physics of Lunar-Earth tides. However, the same is not true when

it come to the observed increase in the Lunar eccentricity which is

considered to be an anomaly requiring an explanation as to what

is the cause behind this phenomenon. We not only demonstrate an

intimate connection between these two seemingly unrelated phe-

nomenon, but show that the intimate relationship that we deduce

fits so well with observations to a point that – logic dictates that,

the Lunar drift must surely be the cause of the secular increase in

the Lunar eccentricity.

Keywords astrometry, celestial mechanics, ephemerides, plane-

tary recession

1 Introduction

The most recent analysis (Williams et al. 2014) of Lunar

Laser Ranging (LLR) data records panning about 43 yr re-

vealed – at a 3σ-level of statistical significance; an anoma-

lous increase in the mean Earth-Moon distance of about

+38.10 ± 0.20mm/yr. This secular increase is a phe-

nomenon that has been well verified over the years (Dickey

et al. 1994; Williams et al. 2001, 2004; Williams and Boggs

2009b; Williams et al. 2008, 2013, 2014) and the existence

of this phenomena, has been known (cf. Stephenson and

Morrison 1995) since the times1 of the famous English as-
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1According to Stephenson and Morrison (1995), Edmond Halley (1665)

was the first to suggest that the mean motion of the Moon was apparently

getting faster, and this suggestion he made after an analysis ancient Solar

eclipse records.

tronomer, geophysicist, mathematician, meteorologist, and

physicist – Edmund Harley (1656− 1742). As to its cause,

not only is this secular increase attributed to Lunar-Earth

tides, it is consistent with tidal theory (Williams and Boggs

2009a; Williams et al. 2014), the meaning of which is that it

is caused by Earth-Lunar tides.

As determined by the analysis of the aforesaid 43 year
span of LLR data, it has been found that tides induce a semi-

major axis rate of +38.10±0.20mm/yr, corresponding to a

centennial acceleration rate of the Moon’s orbital mean lon-

gitude of about −25.80± 0.10′′cy−2 (Williams and Boggs

2009a; Williams et al. 2014). This modern result is in excel-

lent agreement with analysis made by Stephenson and Mor-

rison (1995) of eclipse data record of the past 2700 years or

so; this analysis gave a centennial acceleration rate of the

Moon of −25.80 ± 0.03′′cy−2. Further, this LLR result is

consistent with analysis made with different data spans, dif-

ferent analysis techniques, analysis of optical observations,

and independent knowledge of tides (Williams and Boggs

2009a; Williams et al. 2014). Therefore, the ∼ +38mm/yr

Lunar recession is not an anomaly but a well understood

phenomenon resulting from Lunar-Earth tides.

Apart from the secular increase in the mean Earth-Moon

distance, the Lunar eccentricity ǫmoon has been found to

be undergoing a secular increase and this is considered an

anomaly that needs an explanation (cf. Williams et al. 2001;

Williams and Dickey 2009; Anderson and Nieto 2009; Io-

rio 2011a,b, 2014a,b). Based on a meticulous analysis of

LLR data records spanning 38.7 yr (i.e., from 1970 March

16 to 2008 November 22: DE421 ephemerides) and using

an accurate model that takes into account all known and

relevant Newtonian and Einsteinian effects including tidal

dissipation in the interiors of both the Earth and the Moon,

Williams et al. (2001) deduced an annual lunar eccentricity

rate of:

ǫ̇moon = + (9.00 ± 2.00) × 10−12 yr−1. (1)
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Subsequent analysis by Williams and Dickey (2009) – an

analysis that relays upon the initial work of Williams et al.

(2001); yielded a much larger anomalous eccentricity rate

of:

ǫ̇moon = + (16.00 ± 5.00) × 10−12 yr−1. (2)

Now, in their latest work where they used improved tidal

models, Williams et al. (2014) extended their analysis of the

LLR data by using the new DE430 ephemerides (Folkner

et al. 2014). In this latest analysis, the anomalous eccentric-

ity rate of the Lunar orbit did not vanish but lingered on –

albeit, significantly reduced and now amounting to:

ǫ̇moon = + (5.00 ± 2.00) × 10−12 yr−1. (3)

In this reading, we shall adopt (3) as a measure of the ec-

centricity rate of the Lunar orbit. What we shall do is to

demonstrate that a link between the eccentricity rate of the

Lunar orbit and its annual secular drift of ∼ +38mm/yr,

these can intimately be related to one another. What is strik-

ing is that the deduced relationship between the eccentricity

rate and the lunar drift agree so well that, seductively, one is

compelled some how to consider this relation to be authen-

tic so much that, if the Lunar drift is considered as not being

an astrometric anomaly requiring new physics, on the same

footing, the eccentricity rate of the Lunar orbit is also to be

considered not as being an anomaly requiring new physics

to explain it.

2 Eccentricity Rate for Evenly Expanding Orbits

The eccentricity ǫ of a closed orbit – such as those for plan-

ets in our Solar system; is defined such that:

ǫ =
Rmax −Rmin

Rmax +Rmin

, (4)

where Rmax and Rmin aphelion and perihelion distances of

the orbiting test body, and these terms (Rmax,Rmin) are de-

fined in Figure (1). If the orbit grows evenly at the perihelion

and aphelion, that is to say, if Ṙmax = Ṙmin, then:

ǫ̇

ǫ
= −

Ṙmj

Rmj

, (5)

2.1 Proof

Differentiating Equation (4) with respect to time and then

dividing the resultant equation by ǫ, one obtains:

Fig. 1 This diagram gives a birds-eye-view of the planetary orbit.

The orbit is an ellipse with the Sun at one of foci. The minor and

major axis are represented by Rmn and Rmj respectively. The

minimum and maximum distance of the planet from the Sun are

Rmin and Rmax respectively. The distance l = (1 − ǫ2)Rmin is

the distance of the planet away from the Sun when ϕ = 90o: ǫ is

the eccentricity of the orbit.

ǫ̇

ǫ
=

Ṙmax − Ṙmin

Rmax −Rmin

−
Ṙmax + Ṙmin

Rmax +Rmin

. (6)

The condition that Ṙmax = Ṙmin implies that (6) will re-

duce to:

ǫ̇

ǫ
= −

Ṙmax + Ṙmin

Rmax +Rmin

. (7)

We know that:

Rmj =
1

2
(Rmax +Rmin) , (8)

Rmax = (1 + ǫ)Rmj, (9)

Rmin = (1− ǫ)Rmj. (10)

From Equation (8), we will have:

Ṙmax + Ṙmin

Rmax +Rmin

=
2Ṙmj

2Rmj

=
Ṙmj

Rmj

. (11)

therefore, it follows that:

ǫ̇

ǫ
= −

Ṙmj

Rmj

. (12)
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Fig. 2 In the left panel is a diagram of the usual coordinate system that we are used to i.e. the Right Handed Coordinate (RHC) system.

To the right panel is the parity transformed coordinate system of the RHC-system, i.e., the Left Handed Coordinate (LHC) system. In the

RHC-system, a drift is when (ṙ > 0) and in the LHC-system, a drift will occur when (ṙ < 0).

Hence result. This result is independent of the mechanism

that is the cause of the drift or the eccentricity rate for as long

as the orbit is assumed to grow evenly at the perihelion and

aphelion. This assumptions of the even growth of the orbit

at the perihelion and aphelion can be generalised to include

every point of the orbit so that the orbit is assumed to grow

evenly at all the points.

3 Drifts and the Type of Coordinate System Used

Now, what (12) implies is that an increasing Lunar eccen-

tricity rate must result from a Moon that instead of receding

from the Earth, it approaches the Earth. Thus, at a prima

face level, it would appear as though (12) can not explain

the observed increase in the Lunar eccentricity rate. As we

shall demonstrate shortly, this results from the choice of the

coordinate system that one employs i.e. whether this coordi-

nate system is left or right handed. For the purposes of this

reading, the Left Handed Coordinate (LHC) system and the

Right Handed Coordinate (RHC) systems are defined in Fig-

ure (2). For simplicity, we have in Figure (2) considered the

two dimensional case [(x, y); (r, θ)], this can be extended to

three dimensions and the result obtained is not changed.

The RHC-system is the coordinate system that we are

used to, while the LHC-system is the mirror image of the

RHC-system. In the RHC-system, a drift will occur when

(ṙ > 0) and in the LHC-system, a drift will occur when

(ṙ < 0). What this implies is that the sign of ṙ depends on

the choice of the coordinate system. In-order to in-cooperate

this into our result (12), there is need to introduce a parity

term δRL, which is such that (δRL = −1) if the coordinate

system is right handed and (δRL = +1) if the coordinate

system is left handed, that is to say:

ǫ̇

ǫ
= −δRL

Ṙmj

Rmj

. (13)

Now, from §(13), in-order that we are in tandem with

physical and natural reality as revealed by observations, it

follows that for the Moon, we must have (δRL = − 1)

since (ǫ̇moon/ǫmoon > 0) and (Ṙmoon
mj /Rmoon

mj > 0), where

Rmoon
mj is the Moon’s semi-major axis. What this all implies

is that Nature may very well employ a LHC-system instead

of the RHC-system that we employ.

4 Comparison with Observations

In-order that we evaluate (13) for the Lunar eccentricity rate,

we need to compute Ṙmoon
mj /Rmoon

mj . For the Earth-Moon

system, the Earth is the central massive body and the Moon

is the orbiting test body. At apogee of the Moon, the cen-

tres of mass of the two systems are 4.055 × 108 km while

at perigee, they are 3.633 × 108 km apart. This means the

mean distance of the Earth-Moon system is (3.80± 0.20)×
108 km. The “error” ±0.20 × 108 km is not an error bar

but a “bar” expressing the range between the maximum and

minimum distance. From this, it follows that:

Ṙmoon
mj

Rmoon
mj

= (100.00± 5.00)× 10−12 yr−1. (14)

Now, from (14), given that2, ǫmoon = 0.0549, it follows

that:

ǫ̇moon/ǫmoon

Ṙmoon
mj /Rmoon

mj

=
+(90.00± 40.00)× 10−12 yr−1

+(100.00± 5.00)× 10−12 yr−1
, (15)

so that:

2See: http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html. Vis-

ited on this day 14/3/2015@14h26 GMT+ 2.
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ǫ̇moon/ǫmoon

Ṙmoon
mj /Rmoon

mj

= +0.90± 0.50. (16)

If the Lunar eccentricity rate is due to the observed Lu-

nar drift, then, according to (13), the magnitude of the ra-

tio [(ǫ̇moon/ǫmoon)/(Ṙ
moon
mj /Rmoon

mj )] is – from theory; ex-

pected to be identically equal to unity. Clearly, the above re-

sult (16), is clear testimony that the recession of the Moon is

most certainly the cause of the increase in the Lunar eccen-

tricity given the excellent agreement between the two mea-

surements and what is expected from theory.

5 Discussion

In our view, the agreement between theory and observations

as revealed by (16), is so good that, one is compelled by

the dictates of logic to conceive in their mind that the ob-

served Lunar drift is most certainly the cause of the Lunar

eccentricity rate. Surely, the result of the present letter is im-

portant in that, if it is accepted as being correct or plausible,

then, the observed Lunar eccentricity rate seizes forthwith to

be an anomalous phenomenon requiring an as to its cause.

If the Lunar drift is as a result of Earth-Lunar tides, so is

the Lunar eccentricity rate. These two phenomenon are –

according to (13); intimately tied together into an intricate

and inseparable Gordian knot.

Amongst others, this agreement between theory and ob-

servations is a clear endorsement of the models that have

been used to deduce the values ǫ̇moon and Ṙmoon, for if these

models where somehow not correct, the agreement between

theory and observations as revealed by (16) would not hold

somehow. An agreement — as that revealed by (16); using

an incorrect model would only occur by an extremely very

rare fortuitous chance and this is so because, the theoretical

result (13) is independent of any model used; the meaning of

which is that – any demonstration that a given model agrees

with this result is nothing short of an endorsement of the

validity of this model.

The issue of the secular Lunar eccentricity rate and the

Lunar drift has attracted the attention of a significant num-

ber of researchers with some seeking an explanation from

conversational physics (e.g. Williams et al. 2004; Acedo

2013a,b; Nyambuya 2014, amongst others); others appeal

to cosmology (e.g. Iorio 2011a,b, 2014b, amongst others);

while others seek an explanation from exotic ideas (e.g.

Xin 2011; Riofrio 2012; Ziefle 2013; Williams et al. 2014,

amongst others). Given the attention this phenomenon has

attracted, the present letter may be important in that it now

ties these two phenomenon into an intricate and insepara-

ble phenomenon, thereby reducing the avenues which this

problem may be tackled.

Before we close, it is perhaps important that we point

out a related and interesting investigation that we have

made on the observed +38mm/yr Lunar drift. Apart

from the Lunar drift, analysis of ephemerides of the Earth

obtained from spacecraft data (Krasinsky and Brumberg

2004; Standish 2005; Pitjeva 2012) has revealed that the

Earth-Moon system is undergoing a secular drift of about

+(15.00 ± 7.00) cm/yr (Krasinsky and Brumberg 2004)

away from the Sun. Realising this, and knowing that a sec-

ular drift amongst others implies a change in the orbital an-

gular momentum (J) of the test body, in the reading Nyam-

buya (2014), we applied the Law of Conversation of total

angular momentum (L) to the Earth-Moon system (that is,

the sum of the orbital angular momentum J and the spin S

angular momentum of the test body: L = J + S), where

upon we where able to explain the observed +38mm/yr

Lunar drift as not being a result of tides, but a direct result

of the observed annual +(15.00 ± 7.00) cm/yr drift of the

Earth-Moon system.

The Law of Conservation of total angular momentum is

independent of the gravitational model or mechanism re-

sponsible for the observed drifts. If tides are what is respon-

sible for the observed Lunar drift, then, these same tides are

what is responsible for the secular drift of the Earth-Moon

system, therefore, the drift of the Earth-Moon will forthwith

seize to be an anomalous observation as its explanation will

be well within the provinces of the conventional theory of

Earth-Moon tides.

At present, we are in the process of building a theory of

gravitation that we have coined the Azimuthally Symmetric

Theory of Gravitation (Nyambuya 2010, 2015a,b, abbrevi-

ated ASTG-model). This theory is built on the usual Poison-

Laplace equation (∇2Φ = 4πG̺). Usually, gravitation is

assumed to be a spherically symmetric phenomenon and be-

cause of this, the gravitational potential is assumed to be

dependent only on the radial coordinate r i.e. Φ = Φ(r).

In the ASTG-model, we extended the gravitational poten-

tial’s dependence on the coordinates so that Φ = Φ(r, θ),
and the angular dependence (θ) is attributed to the spin of

the gravitating body. We have shown in the reading Nyam-

buya (2015b) that the ASTG-model, does, to a reasonable

extent, provide an alternative explanation of the observed

secular recession of the Earth-Moon system. The ASTG-

model attributes the secular drift of the Earth-Moon system

to the loss of orbital angular momentum which is itself –

according to the ASTG-model; caused by the azimuthally

dependent gravitational field [Φ = Φ(r, θ)].
Now, as already said, in the reading Nyambuya (2014),

we demonstrated that independent of any gravitational

model, the Law of Conservation of total angular momen-

tum when applied to the recession (away from the Sun) of

the Earth-Moon system, this recession can be shown to be

the cause of the observed Lunar drift and not tides. What
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this implies is that there is a need to introspect the ASTG-

model with respect to tidal theory. Tidal theory takes into

account first and second order azimuthal gravitational terms

that arise due local effects induced by the shape and dis-

tribution of mass for a given gravitating object. What tidal

theory does not do is to attribute the extra gravitational poles

to the spin of the gravitating object but to the shape and dis-

tribution of mass for a given gravitating object. Just maybe,

it might very be that tidal theory and the ASTG-model share

a common ground. Because of this issue of Lunar drift

and Lunar eccentricity, we now anticipate that in the very

near future, we shall conduct an introspection of the ASTG-

model – i.e., a study on how it compares with tidal theory.

6 Conclusion

Assuming the correctness and acceptability of the thesis pre-

sented herein, we hereby set-forth the following as our con-

clusion:

1. If the observed +38mm/yr Lunar drift is as a result of Earth-

Lunar tides, so is the Lunar eccentricity rate. Therefore, these

two phenomenon are not anomalous in their nature as they are

explained by the conventional physics of Earth-Lunar tides.

2. The excellent agreement between theory and observations here

witnessed in the present reading is a clear endorsement of the

models that have been used to deduce the values ǫ̇moon and

Ṙmoon, for if these models where somehow not correct, the

agreement between the independent theoretical result (13) and

observations as revealed by (16) would not hold. Apart from

the endorsement of the models, it is a glowing testimony to the

accuracy of the LLR data and the data reduction methods used.

3. The eccentricity rate (12) suggests that Nature may very well

employ a LHC-system instead of the RHC-system that we em-

ploy.
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