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Abstract. A derivation of formulation for calculating porosity of three-dimension granular materials is presented in this 

work, where granular particles are assumed spherical. Overlapping area problem is solved in two-dimension using geometry 

in two overlapping circles. The three-dimension overlap is formulated through numeric integration from the two dimension 

overlap. 
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1 Introduction 

Porosity calculation of two-dimension granular grains 

configurations produced from simulation can be 

performed using image processing [1].  Furthermore, 

this method can be advanced for three-dimensional 

structure by analyzing slice by slice results from X-ray 

micro-CT imaging [2, 3]. One of the reasons why 

structure information such as porosity is important, 

because it is related to bulk properties of the materials 

consisted of granular grains [4]. In this work, other 

method than image processing is proposed to calculate 

the porosity. The problem in overlapping spherical 

grains is also discussed. 

2 Calculation of porosity 

Considered that there are three-dimension grains 

configurations as illustrated in Figure 1, where from the 

simulation particle positions can be easily obtained, 

while from the experiment it is rather difficult. 

Assumed that particle positions and radius are already 

available 

 NiRzyx iiii ..,,1,,,, = . (1) 

On a horizontal plane z radius of spherical grains i will 

have circle equation 
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Projection of spherical grain i exists in plane z if Ri,z > 0. 

Requirement from Equation (3) will determine which 

grains should be included in calculating projection area 

of all grains in plane z. 

 

Figure 1. Example of three-dimension grains configuration as 

reported in: (a) simulation [5] and (b) experiment [6]. 

Non-overlapping grains 

Porosity in a plane z can defined as 

 
A

A zg

z

,
1−=φ . (4) 

where A is area of plane z and Ag,z is area occupied by 

grains projection on the plane, which have circle 

equation from Equation (2). If the system is constrained 

in a box with dimension p × l × h then 
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 plA = . (5) 

If there is no overlap between grains then Ag,z will be 

simply as 
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For condition where there are overlaps, Equation (6) 

must be modified. 

Overlapping grains 

Figure 2 shows the difference between grains 

configurations where overlapping grains exists and 

where not. In the former case boundary of each grain 

projection can not be identified, while in the later case 

it still can. 

 

Figure 2. Grains projection on a plane z for condition: non-

overlapping grains (top) and overlapping grains (bottom). 

Considered first there are two grain projections in a 

plane z with radius Ri and Rj, whose centers are located 

at (xi, yi) and (xj, yj). Overlap between grains can be 

defined as [7] 

 [ ]ijjiij rRR −+= ,0maxξ , (7) 

where 
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Both Equations (3) and (7) uses function max(), which is 

defined as 
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Meaning of overlap ξij from Equation (7) is given in 

Figure 3 as illustration. 

 

Figure 3. Overlap distance between two spherical grains 

grains i and j. 

For clearer illustration area of interest from Figure 3 is 

redrawn in Figure 4. Sector of circle i with boundaries 

line Ri, circumference with angular distance θi, and line 

Ri has area of 

 iiis RA θ2,
2

1
= , (10) 

and also for sector of circle j. Area of triangle in circle i 

with boundaries line Ri, chord l, and line Ri has area of 

 iiit RA θsin
2

1 2

, =  (11) 

 

Figure 4. Overlap area between two grains i and j with other 

geometry parameters required for calculation the overlap 

area. 

using half of vector cross product in calculating area of 

a parallelogram. Then, total area of circle i minus the 

overlap segment is 

 itisicio AAAA ,,,, +−= , (12) 

where Ac,i is circle are 
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Substitution of Equations (10), (11), and (13) into 

Equation (12) will produce 

 ( )iiiiio RRA θθπ sin2
2

1 22

, +−= . (14) 

Then, total area occupied by projection of spherical 

grains i and j in plane z is 
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Equation (6) can be modified using Equation (15) into 

 ∑∑
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Equation (15) will reduce to Equation (6) if θi = θj = 0 or 

there is no overlapping grains in plane z. Equation (15) 

still requires value of θi and θj, where the way how to 

find them will be shown in next subsection. 

Angle of overlapping area 

From Figure 4 following relation can be obtained 
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and also 
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Similar relations for θj can be shown for Equations (17) 

and (18) straight forwards. 

Total porosity 

A system constrained in a box with dimension p × l × h 

at plane z it will has area occupied by overlapping 

grains 
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which implicitly depends on z. Sum over z will produce 

total volume occupied by all overlapping spherical 

grains 
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with 

 ( ) zkz ∆−= 1  (21) 

and 
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Then, total porosity of the system will be 

 
V

Vg−=1φ , (23) 

where 

 plhV = . (24) 

3 Summaries 

Derivation of formula for porosity calculation for three-

dimension granular materials has been presented in 

this work. Further investigation is required to justify 

result. 
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