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Abstract

This paper’s purpose is to show the effectiveness of an approach to formulate and understand

the dynamics of an observable phenomenon through Newtonian mechanics. The approach starts

by taking a simpler analogue of the problem we need to understand, and solving both the simpler

and the real case simultaneously. Then, I have split the real case into two independent cases.

The major part of the paper will be concentrated on demonstrating that the approach I choose

is effective in comprehending the dynamics of the phenomenon. The problem I have considered

is, in a circus, a co-worker saves a person who falls down during a rehearsal by dashing him in

the horizontal direction, from a few feet above the ground. In the rest of the paper, for ease, I

will be calling the person who saved as rescuer and the person who is being saved as casualty.

The analysis of the problem is based on the assumptions that the collision between the rescuer

and the casualty is an inelastic collision and after the total mass of rescuer and casualty come

in the contact with the ground, it remains stationary.

1 Introduction

The Position, Velocity, and Acceleration components along with Energy, Momentum, and Frictional
forces at impact for this problem are analyzed in this paper. In order to give a comprehensive
view of the problem, I have considered two cases. In the first case, I have considered the casualty
falling to the ground with none rescuing him. In the second case, the casualty is considered to be
saved by the rescuer. For the second case, I have separated the trajectory into two independent
trajectories. The first independent trajectory is of the casualty till he comes in contact with the
rescuer and the second independent trajectory involves the trajectory of the rescuer and the casualty
after collision and till they come in contact with the ground. At the end of the analysis, for a range
of rescuer’s horizontal velocities, Kinetic energy after collision is compared with the Kinetic energy
of casualty before collision. By substituting numerical values in the momentum equations, I will
find the rescuer’s horizontal velocity vo, for which the Kinetic energy after collision is minimal.

2 Position, Velocity, and Acceleration Components

2.1 Equations of 1D motion with constant acceleration

Position function, xt = xo + voxt + 1
2 axt2

Velocity function, vxt = vox + axt

Acceleration function, axt = ax

Replace x with y and z for the corresponding directions. Let us consider this to be a 2D problem,
so we won’t be mentioning z-direction components in rest of the paper.

2.2 Case (i): If the casualty falls to the ground without being rescued

The time when he starts to fall at A be 0 and the time when he touches the ground at D be t1.
For time 0 and t1, the x and y direction components of position, velocity, and acceleration are
decomposed in the tables below.
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Figure 1: fig a

Position, Velocity, and Acceleration components for fig a:

at time 0 (at pt A) at time t1 (at pt D)
xo = 0 (my free choice) xt1 = 0
vxo = 0 vxt1 = 0
axo = 0 axt1 = 0

Table 1: x direction components for fig a

at time 0 (at pt A) at time t1 (at pt D)
yo = h1 (my free choice) yt1 = h1 + 0 − 1

2 gt2
1

vyo = 0 (initial velocity is 0) vyt1 = 0 − gt1

ayo = −g ayt1 = −g

Table 2: y direction components for fig a

2.3 Case (ii): If the casualty is rescued by a rescuer

Here for case(ii), we can separate the motion showed in fig b to two independent motions as shown
in fig b(i) and fig b(ii). In fig b(i), the time at point A is 0 and time at point B be t2. In fig b(ii),
the time at point B is 0 and the time at point C be t3. For each of the independent trajectories in
case(ii), position, velocity, and acceleration components in x and y directions are decomposed in the
below tables.
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Figure 3: fig b(i) and fig b(ii)

Position, Velocity, and Acceleration components for fig b (i):

at time 0 (at pt A) at time t2 (at pt B)
xo = 0 (my free choice) xt2 = 0
vxo = 0 vxt2 = 0
axo = 0 axt2 = 0

Table 3: x direction components for fig b(i)

at time 0 (at pt A) at time t2 (at pt B)
yo = h1 (my free choice) yt2 = h1 + 0 − 1

2 gt2
2

vyo = 0 (intial velocity is 0) vyt2 = 0 − gt2

ayo = −g ayt2 = −g

Table 4: y direction components for fig b(i)

Position, Velocity, and Acceleration components for fig b (ii):

at time 0 (at pt B) at time t3 (at pt C)
xo = 0 xt3 = 0 + vxt3 + 0 = w

vxo = vx (+ve value) vxt3 = vx + 0
axo = 0 (vx is const) axt3 = 0

Table 5: x direction components for fig b(ii)

at time 0 (at pt B) at time t3 (at pt C)

yo = h3 yt3 = h3 + vy1t + 1
2

dvy1

dt
t2

vyo = vy1 (-ve value) vyt3 = vy1 + t
dvy1

dt
(-ve value)

ayo =
dvy1

dt
=

(vy1+∆vy1)−vy1

∆t
(-ve value) ayt3 =

dvy1

dt
(-ve value)

Table 6: y direction components for fig b(ii)

2.4 Velocity components at point B

Velocity components of casualty just before the collision: vx = 0 and vy = vby

Velocity components of rescuer just before the collision: vx = vo and vy = 0
Velocity components of total mass (rescuer and casualty) just after the collision: vx = vx and
vy = vy1
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3 Energy equations

Let us consider the mass of recuer and casualty to be equal. The energy equations for all the three
trajectories are formulated below.

3.1 Case (i): Work done by gravity to move the object from A to D
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Figure 4: fig a

WDAD = KED − KEA (No initial velocity at A, so KEA is 0)
WDAD = 1

2 mv2
D

At point A, gPEA = mgh1 and KEA = 0
At point D, gPED = 0 (height at pt D is 0) and KED = 1

2 mv2
D

By Conservation of Total Mechanical Energy, gPEA + KEA = gPED + KED

Substituting values we get, mgh1 + 0 = 0 + 1
2 mv2

D

h1 =
v2

D

2g
(1)

3.2 Case (ii): Work done by gravity to move the object from A to B
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Figure 5: fig b(i)

WDAB = KEB − KEA (No initial velocity at A, so KEA is 0)
WDAB = 1

2 mv2
B

At point A, gPEA = mgh1 and KEA = 0
At point B, gPEB = mgh3 and KEB = 1

2 mv2
B

By Conservation of Total Mechanical Energy, gPEA + KEA = gPEB + KEB

Substituting values we get, mgh1 + 0 = mgh3 + 1
2 mv2

B

h1 − h3 = h2 =
v2

B

2g
(2)
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3.3 Case (ii): Work done by gravity to move the object from B to C
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Figure 6: fig b(ii)

vhyp1 =
vy1

sinθ1

and vhyp2 =
vy2

sinθ2

WDBC = KEC − KEB = (1
2 × 2mv2

C) − (1
2 × 2mv2

B) = mv2
C − mv2

B

WDBC = m(v2
Cx − v2

Bx) + m(v2
Cy − v2

By) = m(v2
x − v2

x)+ m(v2
Cy − v2

By)

WDBC = mv2
Cy − mv2

By

At point B, PEB = mgh3 and KEB = 1
2 × 2m × v2

hyp1 =
mv2

y1

(sinθ1)2

At point C, PEC = 0 and KEC = 1
2 × 2m × v2

hyp2 =
mv2

y2

(sinθ2)2

By Conservation of Total Mechanical Energy, gPEB + KEB = gPEC + KEC

mgh3 +
mv2

y1

(sinθ1)2
= 0 +

mv2
y2

(sinθ2)2

h3 =
1

g
(

v2
y2

(sinθ2)2
−

v2
y1

(sinθ1)2
) (3)

Now we will take the sum of total mechanical energy of casualty and total mechanical energy of
rescuer just before the collision and equate it with the sum of total mechanical energy of total mass
(rescuer and casualty) and energy lost to other forms just after collision.

(
1

2
mv2

By + mgh3) + (
1

2
mv2

o + mgh3) = (
mv2

y1

(sinθ1)2
+ 2mgh3) + ELostToOtherForms (4)

From equation (4), we can note that

mgh3 + mgh3 = 2mgh3 (5)

Equation (5) clearly shows that Potential energy in Equation (4) is conserved.

1

2
mv2

By +
1

2
mv2

o =
mv2

y1

(sinθ1)2
+ ELostToOtherForms (6)

4 Momentum equations

For ease of calculation, we will consider the mass of rescuer and the casualty to be 1 kg each.
Let us take the velocity of casualty just before collision, vBy = −6y m/s. So, the Kinetic energy
of the casualty before collision is 18 J. Then for a range of rescuer’s horizontal velocities, |vo| =
2|vby|, |vby|, | vby

2 |, | vby

3 |, | vby

6 | , and | vby

12 |, we will be finding the Kinetic energy of total mass (rescuer
and casualty) just after collision.
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I will use KECasBefCollision for the Kinetic energy of casualty just before collision and KEAftCollision

for the Kinetic energy of total mass (rescuer and casualty) just after collision. I will be using
KETotBefCollision for the sum of the kinetic energies of both rescuer and casualty before collision.
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Figure 7: fig c

Consider |vo| > |vBy|. Lets say |vo| = 2|vBy|
So, mi = 1, vBy = −6y and mj = 1, vo = 12x

If |vo| = 2|vBy|, then KEAftCollision (45J)> KECasBefCollision (18J)

Consider |vo| = |vBy|
So, mi = 1, vBy = −6y and mj = 1, vo = 6x

If |vo| = |vBy|, then KEAftCollision (18J)= KECasBefCollision (18J)

Consider |vo| < |vBy|. Lets say |vo| =
|vBy|

2
So, mi = 1, vBy = −6y and mj = 1, vo = 3x

If |vo| =
|vBy|

2 , then KEAftCollision (11.25J)< KECasBefCollision (18J)

Consider |vo| < |vBy|. Lets say |vo| =
|vBy|

3
So, mi = 1, vBy = −6y and mj = 1, vo = 2x

If |vo| =
|vBy|

3 , then KEAftCollision (10J)< KECasBefCollision (18J)

Consider |vo| < |vBy|. Lets say |vo| =
|vBy|

6
So, mi = 1, vBy = −6y and mj = 1, vo = x

If |vo| =
|vBy|

6 , then KEAftCollision (9.25J)< KECasBefCollision (18J)

Consider |vo| < |vBy|. Lets say |vo| =
|vBy|

12
So, mi = 1, vBy = −6y and mj = 1, vo = 0.5x

If |vo| =
|vBy|

12 , then KEAftCollision (9.0625J)< KECasBefCollision (18J)

4.1 Improbable Case

Let us consider the case, |vo| = 0. Imagine the rescuer and the casualty to be in outer space. Let
us assume that the force experienced by them due to gravity of any celestial body is zero. Now
let us give the casualty an initial velocity vBy and the rescuer is stationary. In this case, after the
casualty hits the rescuer, their masses stick together and continue to move with a velocity

vBy

2 . But
arranging such a collision in the presence of earth’s gravitational field between the rescuer and the
casualty is improbable. Let the velocity of total mass after collision be v1.
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Consider the value of mi = 1, vBy = −6y and mj = 1, vo = 0
PTotBefCollision = mivi + mjvj = 1 × −6y + 1 × 0 = −6y

2v1 = −6y ⇒ v1 = −3y

|v1| =
√

(−3)2 =
√

9 = 3
KETotBefCollision = 1

2 × 1 × 36 + 1
2 × 1 × 0 = 18J

KEAftCollision = 1
2 × 2 × 9 = 9J

KECasBefCollision = 1
2 × 1 × 36 = 18J

If|vo| = 0, KEAftCollision =
KECasBefCollision

2
(7)

In this improbable case, Kinetic energy of the total mass after inelastic collision is reduced to half
the Kinetic energy of the casualty before collision.

5 Frictional Forces

Assumption:

The total mass of rescuer and casualty (2m), after they come in contact with the ground at point C,
remains stationary. In other words, the total mass (2m) after impact at point C doesn’t moves along
the direction of increasing x, due the presence of frictional forces between the total mass and ground.

The maximum frictional force (Ffrmax) and Normal force (N) experienced by the mass due to
the ground, at the instant of impact at point C, are found based on the above assumption.

5.1 Just before the impact
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Figure 8: fig d

Just before the mass hits the ground, velocity in the x-direction is constant. So, acceleration in
the x-direction is 0.

ax = 0 ⇒ fx = max = 0

fy = −m
dvy2

dt
=

−m(vy2 − (vy2 − ∆vy2))

∆t3
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For a particular fall, however down we move the ground, just vy2 increases its magnitude in the
negative y direction. The horizontal velocity, vx remains constant. See the images below.
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Figure 9: fig d(i)
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Figure 10: fig d(ii)
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Figure 11: fig d(iii)

As this case is just before the impact, there is a small gap between the total mass and the ground.
So, vy2 continues to increase its magnitude in the negative y direction and vx continues to remain
constant until the mass comes in contact with the ground. So, due to the manifest lack of contact
between the mass and ground at this instant, there is neither a Normal force nor frictional force
acting on the mass.
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5.2 At the instant of impact

At the instant of impact, based on the assumption that the total mass (2m) after the impact is
stationary, the values of Fx, Fy, ax, and ay are found.
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Figure 12: fig e

X-direction components:

At the instant of impact, velocity component in x direction changes from vx to 0. So, the cor-
responding force and acceleration component are

Fx = 2m × (0 − vx)

∆t3
= −2mvx

∆t3
(8)

ax = − vx

∆t3
(9)

Sign Interpretation for equation (9): vx just before the impact is a +ve value. At the instant
of impact, acceleration ax is -ve value. The -ve acceleration decreases vx from +ve value to 0.

Y-direction components:

At the instant of impact, velocity component in y direction changes from vy2 to 0. So, the cor-
responding force and acceleration component are

Fy = 2m × (0 − vy2)

∆t3
= −2mvy2

∆t3
(10)

ay = − vy2

∆t3
(11)

Sign Interpretation for equation (11): vy2 just before the impact is a -ve value. At the instant of
impact, acceleration ay= -(-value) =+value. Positive acceleration in y direction increases vy2 from
-ve value to 0.

5.3 Requirements of the ground to make the total mass (2m) stationary
at impact

The maximum frictional force exerted by the ground, Ffrmax should be atleast −2mvx

∆t3

N.

The ground should be able to provide a normal force of atleast
−2mvy2

∆t3

N.
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6 Effectiveness of the approach in comprehending the phe-

nomenon
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Figure 13: fig f

As we can see from the above plot, the horizontal velocity of the rescuer for which the Kinetic
energy after inelastic collision is reduced to the maximum possible relative to the Kinetic energy
of casualty just before the collision, is vo = 0. If vo = 0, then the KE of total mass (rescuer and
casualty) after collision is just half the KE of casualty before collision. To assert this statement,
refer to equation (7) in the improbable case explained in momentum section.We can also prove this
by substituting the mass, vy1, and θ1 values used in improbable case under momentum equations
section to equation (6) derived in the energy equations section.

Equation (6): 1
2 mv2

by + 1
2 mv2

o =
mv2

y1

(sinθ1)2 + EKELostToOtherForms

The first term in LHS is 18J and the second term in LHS is 0. So, it is enough to prove
mv2

y1

(sinθ1)2 = 1
2 (1

2 mv2
by)=9J

While deriving equation (4), for the RHS terms we have considered the total mass to be 2m. So, we
can here substitute m=1 kg, and v1 = |vhyp1| = 3 m/s
For this case, horizontal velocity of rescuer, vo is 0. So, θ1 value is 90o.
vy1 = sinθ1 × 3 = sin90o × 3 = −3y (-ve for its direction)

|vy1| =
√

(−3)2 =
√

9 = 3

If vo = 0, then
mv2

y1

(sinθ1)2 = 1×9
1 = 9J, which is the value of 1

2 (1
2 mv2

by)

Substituting
mv2

y1

(sinθ1)2 value in equation (6), we get EKELostToOtherForms=9J

Kinetic energy of the total mass (rescuer and casualty) after collision, is reduced in comparison
with the Kinetic Energy of casualty before collision by an amount, EKELostToOtherForms=9J. The
above exercise demonstrates that we can infer and assert any further conclusions from the primary
information available depending on the requirements.

7 Conclusion

When working with problems involving the dynamics of moving objects, we can consider a similar
problem shedding the intricacies of the problem in which we are interested in. So in this way we
can compare the findings of our problem with a simpler analogue, leading to better understanding
of the problem. The simpler analogue we used in this paper for comparison is essentially a special
case of our problem. For instance, the position, velocity, and acceleration components at point D
in special case and Point C in the real case can be used for studying the impact at point D in real
case. The paper also demonstrates how splitting a problem into smaller blocks will give us better
ways to approach the problem. Here, in this example, the separation of the trajectory for the second
case into two independent trajectories, proved easy to derive equation (4) under energy equations
section.
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