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Abstract

Dempster-Shafer evidence theory is an efficient mathematical tool to deal

with uncertain information. In this theory, basic probability assignment

(BPA) is the basic structure for the expression and inference of uncertainty.

In this paper, quantum entanglement involved in Dempster-Shafer evidence

theory is studied. A criterion is given to determine whether a BPA is in an

entangled state or not. Based on that, the information volume involved in

a BPA is discussed. The discussion shows that a non-quantum strategy (or

observation) can not obtained all information contained in a BPA which is

in an entangled state.
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1. Introduction

Uncertainty is ubiquitous in nature. Several uncertainty theories have

been developed, such as probability theory [1], fuzzy set theory [2], possibil-

ity theory [3], Dempster-Shafer evidence theory [4, 5], generalized evidence

theory [6] and D numbers [7].

Among these theories, Dempster-Shafer evidence theory [4, 5] has attract-

ed increasing interest from scientific communities because of its inherent ad-

vantages in representing and handling uncertain information. Recently, this

theory has been used to alleviate the difficulties that appear when we use Kol-

mogorov’s theory for quantum probabilities [8, 9]. In this paper, we study the

quantum entanglement involved in Dempster-Shafer evidence theory. This

work is inspired by our previous work [10] and based on a new proposed

uncertainty measure of BPA, Deng entropy [11]. The main contribution of

this work is that a criterion is proposed to judge if a BPA is in the entangled

state. And by means of that criterion, we reconsider the information volume

contained in a BPA, which corrects our previous conclusion and helps us to

understand that why the upper bound of uncertainty contained in a BPA

should be larger than log22
|X| [10], where |X| is the cardinality of the frame

of discernment X .

The paper is organized as follows. Knowledge background about Dempster-

Shafer evidence theory is briefly introduced in Section 2. Section 3 presents

the idea of quantum entanglement in Dempster-Shafer evidence theory. The

issue of information volume of a BPA is discussed in Section 4. Finally, this
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paper is concluded in Section 5.

2. Dempster-Shafer evidence theory

Dempster-Shafer evidence theory (short for D-S theory), also called be-

lief function theory, as introduced by Dempster[4] and then developed by

Shafer[5], has emerged from their works on statistical inference and uncer-

tain reasoning.

Let X be a set of mutually exclusive and collectively exhaustive events,

indicated by

X = {θ1, θ2, · · · , θi, · · · , θn} (1)

where set X is called a frame of discernment (FOD). The power set of X is

indicated by 2X , namely

2X = {∅, {θ1}, · · · , {θ|X|}, {θ1, θ2}, · · · , {θ1, θ2, · · · , θi}, · · · , X} (2)

For a FOD X = {θ1, θ2, · · · , θ|X|}, a mass function is a mapping m from

2X to [0, 1], formally defined by:

m : 2X → [0, 1] (3)

which satisfies the following condition:

m(∅) = 0 and
∑

A∈2X

m(A) = 1 (4)

In D-S theory, a mass function is also called a basic probability assignment

(BPA). Assume there are two BPAs indicated by m1 andm2, Dempster’s rule
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of combination is used to combine them as follows:

m(A) =











1

1−K

∑

B∩C=A

m1(B)m2(C) , A 6= ∅;

0 , A = ∅.
(5)

with

K =
∑

B∩C=∅

m1(B)m2(C) (6)

Note that the Dempster’s rule of combination is only applicable to such two

BPAs which satisfy the condition K < 1.

D-S theory has more advantages in in handling uncertainty compared

with classical probability theory. When information is adequate, probability

theory is effective to handle that situation. However, when information is

not adequate, probability theory is invalid to such uncertain situation. Here

is an example.

As shown in Figure 1, assume there are two boxes. There are red balls the

left box, and green balls in the right box. The number of balls in each box

is unknown. Now, a person is assigned to pick a boll from these two boxes.

We know that he chooses the the left box with a probability P1 = 0.6, and

chooses the right box with a probability P2 = 0.4. Based on probability

theory, it can be obtained that the probability of picking a red ball is 0.6,

the probability of picking a green ball is 0.4, namely p(R) = 0.6, p(G) = 0.4.

Now, let us change the configuration, as shown in Figure 2. In the left box,

there are still only red balls. But in the right box, there are not only red balls

but also green balls. In accord with above, the exact number of balls in each

box is still unknown, and the ratio of them are completely unknown. This
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Figure 1: A game of picking ball which can be handled by probability theory

person also has 0.6 probability to choose the left box and 0.4 probability

to choose the right box. The question is how possible that a red ball is

picked. Obviously, in this case due to lack of adequate information, p(R)

and p(G) cannot be obtained. Facing the situation of inadequate information,

probability theory is incapable. However, if using D-S theory to analyze this

problem, we can obtain a BPA that m(R) = 0.6 and m(R,G) = 0.4, which

means the probability of red ball being picked is 0.6 and the probability of

red ball or green ball being picked is 0.4. In the framework of D-S theory, the

uncertainty has been expressed more effective. D-S theory has more ability

to express uncertain information than probability theory.

3. Quantum entanglement in D-S theory

As we found, in D-S theory a BPA can assign its mass to subsets of

FOD. For example, given a FOD X = {A,B} which includes all possible
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Figure 2: A game of picking ball where probability theory is unable but D-S theory is able

to handle

categories that a target T belongs to, a BPA can be m(A) = a, m(B) = b,

m(A,B) = 1 − a − b, where a, b ∈ [0, 1]. Herein, m(A,B) indicates that at

that moment the target T can be either A or B. This is very similar with

a famous example in quantum mechanism, Schrödinger’s cat. The example

of Schrödinger’s cat, shows that a cat would be either alive or dead before

the box is opened by a conscious observer [12]. According to the idea of

quantum mechanism, this cat is in an entangled state of state “ALIVE” and

state “DEAD”. Back to D-S theory, therefore we suspect that there is also

quantum entanglement in D-S theory. In this paper, we give a criterion

to determine whether a BPA is in an entangled state or not. At first, an

approach is given to translate a BPA into a Hilbert space.

Given a FOD X = {θ1, θ2, · · · , θi, · · · , θn}, it generates a high dimensional

Hilbert space SH of a multi-state system. In SH , |θi > indicates a vector
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that θi happens, and |θ̄i > indicates θi does not happen. A BPA m can be

translated to a state |ψ > in SH , formally given by:

|ψ >=
∑

j

√
xj |f(θ1)f(θ2) · · ·f(θn) > (7)

where xj is the mass value of subset Fj in m, i.e., m(Fj) = xj , and

f(θi) =







θi, θi ∈ Fj

θ̄i, θi /∈ Fj

(8)

Here is an example.

Example 1. Given a FOD X = {θ1, θ2}, there is a BPA: m(θ1) = x1,
m(θ2) = x2, m(θ1, θ2) = x3, where x1 + x2 + x3 = 1 and x1, x2, x3 ≥ 0. The
BPA m can be translated as

|ψ >= √
x1|θ1θ̄2 > +

√
x2|θ̄1θ2 > +

√
x3|θ1θ2 > +0|θ̄1θ̄2 > (9)

Then, the criterion to determine whether a BPA is in an entangled state

or not is given as follows.

Criterion 1. Given a FOD X = {θ1, θ2, · · · , θi, · · · , θn}, a BPA m, which
corresponds to |ψ >= ∑

j

√
xj |f(θ1)f(θ2) · · ·f(θn) >, is in an entangled state

if there does not exist |ψ1 >, |ψ2 >, · · · , |ψn >, such that

|ψ >= |ψ1 > ⊗|ψ2 > ⊗ · · · ⊗ |ψn > (10)

where |ψi >= αi|θi > +βi|θ̄i >, and |αi|2 + |βi|2 = 1, for i = 1, 2, · · · , n, and
⊗ is a tensor product operator.

Criterion 1 shows that a BPA is in an entangled state if it can not be

factored in Hilbert space SH by using tensor product operator. Two examples

are given as below.
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Example 2. Given a FOD X = {θ1, θ2}, there is a BPA m(θ1, θ2) = 1.
At first, we translates m to the state in Hilbert space,

|ψ >= 1|θ1θ2 > +0|θ1θ̄2 > +0|θ̄1θ2 > +0|θ̄1θ̄2 > (11)

Then, we assume that |ψ > is not entangled, which means that there exist
|ψ1 >= α1|θ1 > +β1|θ̄1 > and |ψ2 >= α2|θ2 > +β2|θ̄2 >, where |α1|2+|β1|2 =
1 and |α2|2 + |β2|2 = 1, so that |ψ >= |ψ1 > ⊗|ψ2 >. Because,

|φ1 > ⊗|φ2 >= (α1|θ1 > +β1|θ̄1 >)⊗ (α2|θ2 > +β2|θ̄2 >)
= α1α2|θ1θ2 > +α1β2|θ1θ̄2 > +α2β1|θ̄1θ2 > +β1β2|θ̄1θ̄2 >

The following condition must be meet,






























α1α2 = 1
α1β2 = 0
α2β1 = 0
β1β2 = 0

|α1|2 + |β1|2 = 1

|α2|2 + |β2|2 = 1

(12)

It is readily to find that α1 = α2 = ±1, β1 = β2 = 0, which means that |ψ1 >
and |ψ2 > are existing so that |ψ >= |ψ1 > ⊗|ψ2 >. Therefore, the BPA
m(θ1, θ2) = 1 is not in an entangled state.

Example 3. Given a FOD X = {θ1, θ2}, there is a BPA m(θ1) = m(θ2) =
m(θ1, θ2) = 1/3.

Similarly, at first, a state |ψ > is generated,

|ψ >=
√

1/3|θ1θ2 > +
√

1/3|θ1θ̄2 > +
√

1/3|θ̄1θ2 > +0|θ̄1θ̄2 > (13)

Then, assume |ψ > is not an entangled state, so there exist |ψ1 >=
α1|θ1 > +β1|θ̄1 > and |ψ2 >= α2|θ2 > +β2|θ̄2 >, where |α1|2 + |β1|2 = 1 and
|α2|2+ |β2|2 = 1, so that |ψ >= |ψ1 > ⊗|ψ2 >. The following condition must
be meet if |ψ > is not entangled,



































α1α2 =
√

1/3

α1β2 =
√

1/3

α2β1 =
√

1/3
β1β2 = 0

|α1|2 + |β1|2 = 1

|α2|2 + |β2|2 = 1

(14)
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Obviously, there is not solution for Eq.(14) so that |ψ >= |ψ1 > ⊗|ψ2 >.
Therefore, the BPA m(θ1) = m(θ2) = m(θ1, θ2) = 1/3 is in an entangled
state.

4. Understanding the information volume contained in a BPA

In order to measure the uncertainty or entropy contained in a BPA, an

index, called Deng entropy, has been proposed in [11], which is shown as

follows,

Ed = −
∑

i

m(Fi) log2
m(Fi)

2|Fi| − 1
(15)

where, Fi is a proposition in mass function m, and |Fi| is the cardinality of

Fi. Specially, Deng entropy definitely degenerate to Shannon entropy if the

mass values of m are only assigned to single elements, namely,

Ed = −
∑

i

m(θi) log2
m(θi)

2|θi| − 1
= −

∑

i

m(θi) log2m(θi) (16)

According to the definition of Deng entropy, the upper bound of uncer-

tainty, also called information volume, contained in a BPA can be calculated.

Example 4. Given a FOD X = {θ1, θ2, · · · , θN}, let us consider three special
cases of mass functions as follows.

• m1(Fi) = m1(Fj) and
∑

i

m1(Fi) = 1, ∀Fi, Fj ⊆ X, Fi, Fj 6= ∅.

• m2(X) = 1.

• m3(θ1) = m3(θ2) = · · · = m3(θN ) = 1/N .

Obviously, in terms of Deng entropy, the uncertainty contained in each
BPA changes with size of FOD, N . Figure 3 gives these results. As found
in Figure 3, m1 has the maximum uncertainty. In other words, in order to
eliminate all uncertainty contained in m1, the information volume we need
is the maximum.
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Figure 3: Deng entropy as a function of the size of frame of discernment in three types of
mass functions

For example, if N = 32, we can obtained that Ed(m1) = 48, Ed(m2) = 32,
Ed(m3) = 5. Moreover, it is easy to verify that the maximum Deng entropy
is 48 for an evidential system whose size of FOD is 32. Namely, given FOD
X = {a1, a2, · · · , a32}, for any BPA m on X, we have Ed(m) ≤ 48. The
maximum information volume is 48.

In previous study [10], the information volume of a BPA has been inves-

tigated. In [10], our conclusion is that the range of uncertainty contained

in a BPA is [0, log2 2
|X|], where |X| is the size of FOD. However, based on

Deng entropy, the previous conclusion is not correct, and we find that the

upper bound of uncertainty is larger than log2 2
|X|. For example, if |X| = 32,
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the upper bound of uncertainty is 48, but not 32. How to explain the gap

between 32 and 48? In [13], we conjecture that it is caused by quantum

entanglement. Now, let us reconsider this problem from the perspective of

quantum entanglement.

Given a FODX = {θ1, θ2, · · · , θ32}, the information volume 32 is obtained

from BPA mFOD:

mFOD(θ1, θ2, · · · , θ32) = 1.

The information volume 48 is obtained from BPA mAVG:

mAV G(Fi) = 1/(232 − 1), ∀Fi, Fi ∈ 2X and Fi 6= ∅.
At first, these two BPAs are translated to vectors in Hilbert space, ψFOD

and ψAV G. Based on Criterion 1, we find that |ψFOD >= |ψ1 > ⊗ · · ·⊗ |ψi >

⊗ · · · ⊗ |ψ32 >, where |ψi >= 1|θi > +0|θ̄i > for all i = 1, 2, · · · , 32. So,

mFOD is not entangled. However, it is easy to demonstrate that there does

not exist |ψi >= αi|θi > +βi|θ̄i >, where |αi|2+ |βi|2 = 1 and i = 1, 2, · · · , 32,

so that |ψAV G >= |ψ1 > ⊗ · · · ⊗ |ψi > ⊗ · · · ⊗ |ψ32 >. Therefore, mAV G is in

an entangled state.

Here, we found that the information volume of mAV G is larger than that

of mFOD since the impact of quantum entanglement. In our view, the BPA

mFOD represents a non-quantum strategy (or observation) to acquire infor-

mation of a system. For example, in order to find the top 1 student (or

students), we can ask all students one by one [10, 13]. “One by one” implies

that the observation is decomposable, such observation or strategy is classi-

cal or non-quantum. However, all information contained in mAV G which is

entangled, can not be completely by using such a non-quantum strategy or
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observation.

5. Conclusion

In this paper, we studied the quantum entanglement in D-S theory. At

first, an approach was proposed to convert a BPA to a state defined in the

Hilbert space. Then, we gave a criterion to decide whether a BPA is in

the entangled state or not. And examples are given to show that criterion.

Finally, based on the proposed criterion, we reconsidered the uncertainty

bound of BPA. We found that quantum entanglement helps to explain the

information volume of a BPA calculated by using Deng entropy. In the future

research, the degree of entanglement in a BPA will be studied.
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