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Abstract 

 

This short letter is a response to an analysis by Ghirardi of a supposed flaw in a communication scheme 

involving entangled state collapse. We find his analysis entirely correct but missing the point, which is 

subtle, the no-communication theorem merely expresses the truth of the locality of quantum state 

information on measurement but surprisingly says nothing about the particle being present or not by 

dint of the communication scheme itself. Ghirardi’s analysis using the density matrix approach does 

not deal correctly with the analysis of superposition in the interferometer and as such, doesn’t even 

correctly replicate the case for non-entanglement, as did the state vector method used by Cornwall. 

 

1. Introduction 

 

Cornwall[1] developed a communication scheme 

that made use of the observation that state collapse 

on any of the Bell states[2, 3] would result in a 

mixed state (figure 1 and table 1, end of document). 

Allegedly the mixed and the entangled states are 

discerned by an interferometer. In this example, 

using polarisation states of the photon, the 

polarising beam-splitter (PBS) creates “horizontal” 

and “vertical” channels which are then both rotated 

into diagonal polarisation by the Faraday Rotators 

(RZ) such that both channels can be made to 

interfere at the detector. Ghirardi[4] supplied a 

proof allegedly finding flaw in the scheme, which 

we now we contest. 

 

1.1 Single photon un-entangled photon through 

interferometer 

 

It is obvious that such an interferometer detection 

scheme would work with a single photon in an 

arbitrary polarisation state (shown as a bra for 

convenience), 
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If theta is the polarisation angle from the diagonal, 

then the magnitude at the detector is the sum of the 

projections into the diagonal state squared. If 

constructive interference is employed, 
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Or zero if destructive. 

 

If we do a projective measurement on our state 

eqn. 1 into the horizontal or vertical states, then the 

detection magnitude would be proportional ½., that 

is: 
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1.2 Entangled photons 

 

Our position on the apparatus in figure 1, setup 

utilising any of the Bell states, 
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is that, passage through the interferometer on the 

RHS and indeed empty space on the LHS, of 

course is unitary. The evolution of the two-state 

system is given by: 
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No measurement is performed by interferometer 

and so, even though entangled, the RH photon 

passes through interferometer effectively in the 

superposition state, 
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This will lead to constructive or destructive 

interference as previously discussed for the single 

photon. However after a measurement on either 

photon and for the sake of the argument, the LH 

photon will collapse the system into the mixed 

state, 
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Clearly then the entangled and disentangled states 

can be discerned. By this analysis, we argue that all 

the elements are present to understand the 

communication by entangled particle protocol 

(table 1). 

 

2. What the “No-communication theorem” says 

 

As a prelude to the discussion, let us consider the 

tensor product of two systems in the diagonal basis, 
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Such a system we call factorisable or separable and 

we’d expect no operation performed on subsystem 

1 or 2 to affect the other. For instance, if system 1 

is projected into the horizontal or vertical states, 

we’d factorise as, 

 

( ) ( )1 2 2 1 2 2  H H V or V H V⊗ + ⊗ +  

 

thus leaving the other system unaffected. 

 

However when a system is prepared subject to 

some conservation rule (in the following example 

with polarisation, the conservation of angular 

momentum and energy[5]), the possibilities for the 

product space are curtailed, giving the Bell States 

for instance. We might write, 

 

1 2 1 2
0 0H H V V+ + ±  

 

and realise that this cannot be factored, leading to 

the inescapable conclusion that a measurement on 

system will affect the other. However, with 

wavefunction collapse being a strictly 

indeterminate process[6, 7], projection into a state 

would not lead to certainty of that state
†
, thus any 

communication scheme by distant measurement 

would seem to be thwarted by the randomness 

                                                           
†
 There is only certainty with repeated measurements if the state 

is not given sufficient time to evolve, the so-called “Quantum 

Zeno” principle. 

inherent in quantum measurement but a posteriori 

we could discern correlations by pooling 

experimental results[8] and comparing local and 

distant measurement events. 

 

The “No-communication theorem”[9-11] tries to 

expand on these limiting-beliefs by showing how 

for any measurement on a joint density matrix by 

one party has no effect on what the other party can 

measure; it is as though the other party did nothing. 

In a nutshell, let our joint density matrix for the two 

systems be, 
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The joint operator on the system is the tensor 

product of what operates on system 1 and system 2, 
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and to isolate discussion to system 1, let the second 

operator be the identity I. The state after this 

operation is, 
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And setup *

1 1
PP = I for the most general case. 

 

Whereupon to find the effect on system 2 and what 

it measures, we take the reduced trace or “trace 

out” system 1, 
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This would seem to seal the argument. However, 

there is a flaw or omission in the logic stemming 

from the treatment of interference by the positive-

semi-definite density matrix. 

 

3. The flaw in Ghirardi’s argument pertaining to 

the Cornwall Apparatus 

 

Ghirardi[4] analyses the source and interferometer 

setup and arrives at the following density matrices; 

after measurement by the remote system (figure 1): 
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2
H V V H V H H Vρ = +   eqn. 9 

 

This is not surprising, as density matrices were 

setup precisely to handle statistical mixtures. This 
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would give the same signal as derived in eqn. 2, so 

on this we concur. We don’t need to look at the 

action of the Faraday rotators (RZ figure 1), as there 

is no interference between the horizontal and 

vertical “channels” of the interferometer and a 

phase difference would have no affect on the 

expectation by eqn. 2. 

 

To deal with the no measurement condition and the 

state of superposition that passes through both arms 

of the interferometer, Ghirardi includes the effect 

of the Faraday rotators in the state vector, 

 

 ( )1 2 1 2

1

2

i i
e H V e V H

θ θ−
Φ = +   eqn. 10 

 

and constructs the density matrix, 
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He believes the extra 2
nd

 terms (in bold) in the 

unmeasured case becomes traced out at the detector 

leaving exactly the same density matrix as the 

measured case. The formalism is entirely correct 

but misses the point: where does Ghriardi show the 

interference of the horizontal and vertical 

channels? Our position is that the density matrix 

treatment cannot show interference. 

 

Let us return to the introduction with the single 

photon and consider the interference of the 

following state (with the effect of the Faraday 

rotators included), 
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Which leads to the density matrix, 
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Now consider a statistical mixture:  
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and its density matrix, 

 

 
1

2
H H V Vρ = +  eqn. 13 

 

So we can see in the density matrix formulation 

that the off-diagonal elements in eqn. 12 show the 

purity of the state but if the expectation is a 

function of the trace and the diagonal elements, 

how is that different from a statistical mixture? 

 

4. Conclusion: The no-communication theorem has 

an omission in logic 

 

This short paper has shown that the “No-

communication theorem” has a starling omission in 

its use of the density matrix formulation of its 

argument. The density matrix clearly cannot show 

interference by summing along positive-semi-

definite diagonal matrix elements and all the proof 

amounts to showing is the truism that there is a 

particle present. However interference can make 

the expectation of the particle zero and that 

interference is a result of superposition. Implicit in 

entangled systems is the superposition of space-like 

separated particles, de-entanglement renders the 

particles into a mixed state. 
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Figure 1 – Transmitting Classical Data down a Quantum Channel 

 

Table 1 – The Protocol for Transmitting Classical Data down a Quantum Channel 

Measurement/Modulation at 

distant system and state of two 
photon system 

State of distant system State of local system 
Local measurement by 

interferometer after 
modulation of distant system 

No modulation: 'Binary 0' 

 

Entangled => Pure state 

 

(Or at least some 

superposition) 

Entangled => Pure state 

 

Pure state results in 

interference 

(Or at least some interference 

since source is not ideally 
pure) 

Modulation: 'Binary 1' 

 

Not entangled <=> 

Mixed state  

Not entangled <=> 

Mixed state  

Mixed state gives 

no interference 

 


