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Recent enigmas of astrophysics such as dark energy or accelerating universe need to update General
Relativity. A thorough examination of the original Einstein Field Equations (EFE) highlights three
inconsistencies concerning the nature of spacetime. Here we solve these inconsistencies. As a consequence,
this article proposes a Higgs compatible 4D expression of mass, m= f(x,y,z,t), and a new explanation of
gravity based on Le Sage Push Gravity. This paper is interesting and important because it touches the weakest
nerve of General Relativity by asking “how mass curves spacetime”? Moreover, this article is supported
by several mathematics demonstrations such as a new version of the Newton Law, a new version of the
Schwarzschild Metric, and a 4D rewriting of the Energy-Momentum Tensor and Einstein Constant.

1. Introduction

When Einstein developed General Relativity (GR) [1-11, 16-28, 50-79], knowledge in physics
was very poor. In the 1900s, the atom was regarded as a pudding in which electrons were represented
by raisins [12,13]. The proton and neutron were discovered later, in, respectively, 1919 and 1932.
So, in the 1910s, GR was grounded on an erroneous view of reality.

Based upon the fluid mechanics, Einstein identified spacetime to a fluid. He developed GR upon
this assumption and his theory was fully verified by Sir Arthur Eddington in 1919. The mathematics
of GR, i.e. the Einstein Field Equations (EFE), Eq. (1), are well known, but the mechanism of
curvature of spacetime by mass remains somewhat obscure [14].

Since the 1910s, physics has evolved considerably. So, to date, we must reconsider GR in the
current context, excluding the pudding model that does not exist anymore, but including the Higgs
Theory. This leads to a new version of GR which explains several enigmas of physics, such as:

– How can mass curve spacetime?
– What is the mechanism of the creation of mass? (in accordance with the Higgs Boson);
– What is gravity?
– What is the mechanism of the increase of the mass of relativistic particles?. . . . . .

Note - The full paper is split in two parts: 1/ The main article (6 pages), which explains the
curvature of spacetime and mass, and 2/ Mathematical demonstrations (Appendices - 34 pages),
which cover an explanation of a new Le Sage-type gravity, a new version of the Newton’s Law, a
new calculus of the Schwarzschild Metric, the 4D mass calculus, and a rewriting of the EFE.

2. Towards a new GR

GR can be studied in different ways. This article is grounded on the 1910s original version [11]
from the fluid mechanics. The examination of the EFE highlights three inconsistencies which are
described in this section. The EFE, without the cosmological constant Λ, may be written as:

Rµν −
1

2
gµνR=

8πG0

c4
Tµν (1)

;



2.1 Inconsistency #1: Direction of the Curvature of Spacetime
In fluid mechanics, the curvature of the fluid made by an object is convex (Fig. 1a). In the

scientific literature, the curvature of spacetime produced by a mass such as a black hole is concave
(Fig. 1b). Since GR is grounded on the Fluid Mechanics, the curvature of spacetime in GR must be
convex, not concave.

Figure 1. The curvature of the fluid is convex in Fluid Mechanics (a). Since GR is grounded
on the Fluid Mechanics, the curvature of spacetime in GR must be convex too, not concave (b).

2.2 Inconsistency #2: Pressure or attractive force?
The fluid exerts a pressure on objects (black arrows in Fig. 1a). This is expressed by the Cauchy

Stress Tensor where each element has a pressure-like dimension (Fig. 2a).
Since the energy–momentum tensor is based on the Cauchy stress tensor, each term of the two

tensors must have the same meaning (Fig. 2a and 2b). Especially, the trace of the two tensors must
represent an isostatic pressure in both cases. Therefore, it is not logical to have a pressure force
in Fluid Mechanics, and an attractive force in GR.

Figure 2. The origin of the energy–momentum tensor is the Cauchy stress tensor (a). Since this tensor is
included in the energy–momentum tensor, the two tensors must have the same meaning, at least in the spatial part.



2.3 Inconsistency #3: Mass or Volume?
In fluid mechanics, the displacement of the fluid is made by the volume of the object, not by its

mass, as shown in Fig. 1a. Here too, we must keep the original meaning of the fluid mechanics and
replace “Mass” by “Volume”. However, this poses a problem that will be solved later.

2.4 Discussion
Inconsistencies #1 and #2 are easily solved because they cancel each other. For example, a

pressure on one side of a sheet of paper produces the same effects than an attractive force on the
other side (Appendix A). The curvature of the sheet is also inverted: concave on one side, convex
on the other.

Convex curvature + Pressure force = Concave curvature + Attractive force

If we assign by convention a positive sign to a convex curvature of spacetime and to a pressure
force, the above assertion gives (++) = (−−). In both cases, the results are identical. As we see,
this does not change the mathematics of GR.

Inconsistency #3 is less obvious. Indeed, experimentations prove that spacetime is curved by
mass, but Fig. 1a shows that spacetime is curved by volume. In reality, spacetime is not curved by
mass as is thought, nor by volume, but by a special kind of volume.

The second part of this article, sections 3 to 6, explains why spacetime is curved by this special
kind of volume instead of mass.

3. Relation Between Mass and Volume

One tends to assume that there exists only one kind of volume. This view must be dropped
because some volumes curve spacetime, others do not. Since spacetime is at the heart of GR, then
to understand the mechanism of the curvature of spacetime, the first thing to do is to separate the
volumes that curve spacetime from those that do not.

In reality, we have not only one type of volume, as we think, but five. The three major classes
of volumes are described below. Appendix K covers the two remaining classes

3.1 Matter Volumes
These volumes are those of nuclear matter and are well known since the 1930s. Experiments

show that the radius of a nucleus isR=A1/3r0, where r0 is about 1.25 fm. Taking the mass number
A= 1 and the nucleon mass as 1.67×10−27 kg, we get:

M = kV = f(x,y,z) (k= 2.3 × 1017kg/m3) (1)

A more accurate formula, which gives better results, is proposed in Appendix D:

M =
c2

G0
εv
V

S
ρs = f(x,y,z) (2)

. . . where εv is elasticity of spacetime, and ρs is the density of spacetime relative to a flat spacetime.

It is important to see that, whatever Eq. (1) or (2), mass is directly connected to volume:

M = f(MatterV olume) (3)



3.2 Empty Volumes
Empty Volumes are simply vacuum, but can also be found in various forms, such as the volumes

of the orbitals of atoms. They exist but are transparent regarding spacetime. Empty Volumes have
no mass, even therein virtual particles would be present. Therefore, they do not curve spacetime.

3.3 Apparent Volumes
Objects we use daily are mainly made of molecules, which are combinations of Matter Volumes

(nuclei and electrons) that have mass, and Empty Volumes (orbitals, gaps between atoms or
molecules...), without mass:

Apparent Volumes =
∑

Matter Volumes +
∑

Empty Volumes

4. What We Call “Volume”

4.1 Volumes in Daily Life and General Physics
In daily life and in general physics, we use exclusively Apparent Volumes. We have the feeling

that Mass and Volume are two different quantities because in Apparent Volumes, the proportion
of Matter Volumes/Empty Volumes varies from one atom to another, from one molecule to another,
from one object to another. Out of GR, we can continue using Apparent Volumes.

4.2 Volumes in GR
In some domains of physics such as GR and astrophysics, we must exclude Empty Volumes

by a thought experiment since these volumes are inert regarding spacetime. There remains Matter
Volumes, i.e. the only volumes that curve spacetime. This shows that mass and matter volume
are two different views of the same quantity, since mass can be converted into matter volume and
conversely, Eq. (1-3). In other words, we must disregard Empty Volumes which are massless, and
we must think “Matter Volume” instead of “Mass”.

4.3 Substituting Mass by Matter Volume
SinceM = f(MatterV olume), it becomes possible to replace mass by Matter Volume. This means

that, instead of saying:

“Spacetime is curved by Mass”

we should say:

“Spacetime is curved by Matter Volume”

The substitution of M by V is very important because it explains the curvature of spacetime, as
shown in Fig. 1a, and, consequently, many enigmas of modern physics.

4.4 Example
If we plunge an object into a glass filled with water, as expected, it is the volume of the object,

not its mass, that displaces the water. This example can be transposed to spacetime as follows.
Consider an electron of volume V crossing a cube of volume 1,000,000 V . Here, the particle is

a Matter Volume, whereas the cube contains a vacuum, i.e. Empty Volumes. Both kinds of volumes
have their own spacetime. The internal spacetime of the particle will “push” the surrounding
spacetime to make room. Since spacetime has elasticity properties (Einstein), the cube will contain
1,000,001 elements inside a volume of 1,000,000 V . In other words, spacetime will be curved in
a convex manner around the particle. Here too, it is the volume of the particle, not its mass, that
curves spacetime, as shown in Fig. 1a.

To summarize, since Mass= f(MatterV olume), we can use indifferently “Mass” or “Matter
volumes” in our calculus. In both cases, the result is identical.



5. Expression of Mass

The above conclusions fully explain the mass creation. The mechanism is as follows:
– A Matter Volume (not a mass) curves spacetime;
– This curvature is convex, not concave, as shown in Fig. 1a;
– It also has elasticity properties (Einstein);
– The elasticity of spacetime exerts a pressure on the surface of the Matter Volume;
– This pressure increases the resistance to movement of the Matter Volume;
– ...which leads to a “Mass Effect”: M = f(MatterV olume) (Appendix D).
In other words, any matter volume curves spacetime and, therefore, creates its own mass effect.
These observations are partially included in the Higgs Mechanism. However, the Higgs Field

has a problem: it does not have an associated potential, as any field does. Saying that the Higgs
Field is a 5th dimension, created at the Big Bang, which permeates all space is pure speculation.
This contradicts the Poisson’s law and Einstein RG. In reality, the Higgs Field is nothing but a
Newtonian Field in spacetime created by a Matter Volume, which acts as a potential.

6. What is Gravity?

Gravity is an application of the curvature of spacetime and is covered by Appendix A.
In section 2.1, we have demonstrated that the curvature of spacetime is not concave but convex.

Therefore, gravity must be “inverted” too. In consequence, gravity should not be an attractive force
but a pressure force. In all cases, the vector of gravity remains the curvature of spacetime. The
mechanism of gravity is explained and mathematically demonstrated in the appendices.

Figure 1. Mass and gravitation are two similar phenomena. The vector of gravity is the elasticity of spacetime (Einstein)
which exerts a pressure on one (mass) or more (gravity) “Matter Volumes”. See Appendices A, B, C and E.

7. Conclusions

To summarize, the originality of this study lies in some simple observations, supported by several
mathematical demonstrations (see the appendices, section 8).

• Direction of the curvature of spacetime: The Fluid Mechanics shows that the curvature of
spacetime is convex, not concave;
• Origin of the curvature of spacetime: Spacetime is not curved by mass as we think,
but by a special kind of volumes, “Matter Volumes”;



• The Mass Effect: The origin of the mass effect is the curvature of spacetime, which
exerts a pressure force on “Matter Volumes”;
• Mass or Volume? Since Mass= f(matter volume), mass can be replaced by “Matter
Volumes”. The 4D expression of mass is given in Eq. (2);
• Gravity: The trace of the Cauchy Tensor represents an isostatic pressure. Therefore,
gravity is not an attractive force but a pressure force (Le Sage “Push Gravity”).

Figure 2. Each object has a matter volume [1] which curves spacetime [2]. Then, elasticity of spacetime exerts a pressure
on the surface of the matter volume [3], which produces a “Mass Effect” [4]. The same principle also applies to gravity.

8. Appendices

The appendices are available as a 34 page PDF document (*):
A – What is Gravity?
B – New version of Newton’s Law;
C – New version of the Schwarzschild Metric;
D – Expression of the mass effect in 4D;
E – Partial Rewriting of the EFE: Rµν − 1/2gµνR= (8πδv)/S . Jµν ;
F – Connexion with the Von Laue Geodesics;
G – Explanation of the Increase of the Mass of Relativistic Particles;
H – Equivalence Principle using the Curvature of Spacetime;
J – Bethe-Weizsacker SEMF;
K – Other Classes of Volumes;
Bibliography.

(*) http://www.spacetime-model.com/files/appendices.pdf
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Appendix A

What is Gravity?

A-1 Introduction
In the current life, we see that two objects are attracted one toward the other. So, our immediate

deduction is that gravity is an attractive force.
The fact that 99,99% of people think that gravity is an attractive force is not a proof per se. In

reality, since no one knows the origin of the gravity force, we are faced with two possibilities:
1/ Gravity is an attractive force (probability = 0.5);
2/ Gravity is a force of pressure (probability = 0.5).
For example, a sheet of paper (Fig. A-1) can be curved either by attracting it (A), or by pushing

it (B). In both cases, the result is the same. Gravity follows the same principle.

Figure A-1: An attractive force (A) produces the same effect than a pressure force (B).

A-2 The Vector of Gravity
In the 1910s, Einstein thought that the vector of gravity could be spacetime. So, he identified

Spacetime to a fluid, and developed General Relativity (GR) grounded on this assumption. The
result is probably the most genius theory of all times: GR.

Since 1919, hundreds experimentations has validated GR. To date, the physicist community
considers that gravity is a consequence of the curvature of spacetime. This is 100% right.

However, the knowledge of the curvature of spacetime is not sufficient to explain the nature of
the force of gravity. Is it an attractive or a pressure force? What is the mechanism of gravity?

To explain the curvature of spacetime, i.e. gravity, physicists use metaphors such as those of Fig.
A-2 (next page) or Fig. 1b of the main article. These two figures are identical to thousands similar
scientific figures that try to represent the curvature of spacetime. However, these metaphors never
explain the mechanism of gravity.
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Figure A-2: This metaphor, as thousands similar scientific figures,
tries to represent the curvature of spacetime by a mass.

A-3 Curvature of Spacetime vs. Gravity
Fig. A-3 tries to explain gravity, i.e. the attraction of a mass M1 by another mass M2. On this

figure we see that mass M1 falls in the hole produced by the larger mass M2 (black arrow).

This figure raises a problem: theoretically, M1 must move toward the center of M2, not toward
its bottom. Therefore, despite its popularity, this kind of figures does not represent the reality of the
curvature of spacetime, and therefore gravity.

Figure A-3: This figure is wrong because theoretically, M1

should be attracted toward the center of M2, not toward its bottom.

Another more pertinent inconsistency is shown in Fig. A-4, next page.

Each mass makes its own curvature of spacetime. Even if the two masses are close to each
other, we do not see by which mystery these two masses could be attracted one toward the other.
This means that representing the curvature of spacetime by a deformation of a 2D plane is wrong.
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Figure A-4: Each mass, M1 and M2, produces its own curvature of spacetime. We do not see
by which mechanism these two masses could be attracted one toward the other.

A-4 The Einstein Field Equations
A thorough examination of the Einstein Field Equations, or “EFE” (see the main article), gives

the solution to the gravity enigma. Gravity would be a pressure force, not an attractive force.

Fig. 1a of the main article shows that the fluid exerts a pressure on a “Matter Volume”. As
explained below, extending this pressure to several volumes gives the mechanism of gravity.

A second argument is given by the trace of the energy-momentum tensor Tuv in the main
article. This mathematical object represents the isostatic pressure force on the surface of a “Matter
Volume”. Here too, if we extend this external pressure force to several objects, we get gravity.

A-5 What is “Push Gravity”
It seems that the first suggestion of gravity as a pressure force comes from a friend of Newton,

Nicolas Fatio de Duillier [29-31]. In 1690, he wrote a letter to Huygen in which he suggested that
gravity could be a pressure force. His theory is dated 1690-1743.

In 1748, Georges-Louis Le Sage completed the De Duillier’s theory [32-34]. His “Push
Gravity”, also known as “Shadow Gravity”, describes gravity as a pressure force. In the Le Sage’s
theory, space could be filled with tiny particles called “Ultramundane Corpuscles”.

During the last century, several physicists have tried unsuccessfully to explain gravity. Even if
the vector of gravity is spacetime, the mechanism of gravity remains an enigma.

For example, in 1904, J. J. Thomson considered a Le Sage-type model in which the
ultramundane flux consisted of radiations such as x-rays. In the 1930s, De Broglie thought that
Le Sage Corpuscles were neutrinos. However, whatever the nature of the flux, “Push Gravity” must
be reconsidered in a spacetime context.

Here we show that gravity is a Le Sage “Push Gravity”, not a Newton Attractive Force. However,
two major differences exist between the Le Sage “Push Gravity” and our explanation:

1/ The external pressure force comes from the curvature of spacetime;
2/ Mass must be replaced by Matter Volume.

To summarize, Push Gravity seems much more logical than the well known Newton-type
gravity. The pressure force does not come from Le Sage hypothetical Ultramundane Corpuscles
but from the curvature of spacetime produced by Matter Volumes.
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A-6 Proposed Theory
The mechanism of gravity becomes clear and easy to understand if we think “Matter Volume”

instead of “Mass” because a mass can not curve spacetime. A volume does.
We have demonstrated in the main article (sections 2 and 3) that spacetime exerts a pressure on

any matter volume. Gravity is nothing but an extension of this ascertainment (Fig. A-5):

Gravity would not be an attractive force between masses,
but a pressure force exerted by the curvature of spacetime on

“Matter Volumes”, which tends to bring them closer to each other.

Figure A-5: Mass and gravity are two similar phenomena

Convex vs. Concave:
Section 4-2 and Fig. 1 of the main article show that the curvature of spacetime is convex, not

concave (Fig. A-5).

Pressure Force vs. Attractive Force:
Section 4-4 of the main article and Fig. A-5 also show that the convex curvature of spacetime

exerts a pressure force on objects, not an attractive force.

Results:
As shown in the introduction and Fig. A-1, the results are identical in both cases. Therefore, we

can combine these assertions into the following expression concerning spacetime:

Concave curvature + Attractive force ≡ Convex curvature + Pressure force

If we assign by convention a positive sign to a convex curvature of spacetime and to a pressure
force, the above assertion gives (−−) = (++). As we see, this does not change the EFE.

This means that gravity is a combination of three elements:
- The Le Sage’s Push Gravity
- The Einstein’s Curvature of Spacetime
- Our explanation of “Matter Volumes” and EFE inconsistencies (main article).

This combination gives a rational and consistent explanation of gravity.

Moreover, this new explanation of gravity is fully demonstrated with mathematics in Appendices
B, C and E in which we replace “Mass” by “Matter Volume”.
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A-7 Curvature of Spacetime vs. Pressure
Fig. A-6a shows the curvature of spacetime produced by the “Matter Volumes” of two spheres.

On the left sphere, spacetime has two different magnitudes of curvature:

– Point L (Left side): The curvatures of spacetime of the two spheres are added.
– Point R (Right side): The curvature of spacetime of the right sphere is subtracted from
that of the left one because the two curvatures are in opposition.

The difference of the curvature of spacetime on each side of the two spheres leads to a difference
of pressure (black and grey arrows on Fig. A-6b). In reality, Fig. A-6a and Fig. A-6b are two
different views of the same phenomenon: curvature of spacetime vs. pressure.

The same principle also applies if the two spheres are the Earth and the Moon.

At the Lagrangian point (oval on Fig. A-6a), the curvature of spacetime produced by the Earth
is canceled by that produced by the Moon. The curvature of spacetime is null at this point and, as a
consequence, gravity disappears.

Figure A-6: Curvature of spacetime vs. pressure on the surface of each sphere (gravity).

A-8 Conclusions
This appendix shows that the combination “Le Sage Push Gravity + Einstein Curvature of

Spacetime + Our theory about volumes and EFE inconsistencies” solves the enigma of gravity.
The original “Push Gravity” must be modified as follows:

1/ “Ultramundane particles” must be replaced by the curvature of spacetime.
2/ Spacetime is curved by “Matter volumes”, not by mass;
3/ The curvature of spacetime is convex, not concave;
4/ Spacetime exerts a pressure force on objects which is “Gravity”.
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New Version of the
Newton’s Law

B-1 Introduction
The Newton’s Law is obtained from the Einstein Field Equations (EFE). It is a particular solution

for a spherical static symmetry object using the weak field approximation. Here we show that the
Newton’s Law can be easily explained and obtained replacing mass by “Matter Volume”. This
method is simpler than calculating the Newton’s Law from the EFE.

This new version of the Newton’s Law is very important because it demonstrates that gravity is
a pressure force exerted by the curvature of spacetime (see Appendix A).

B-2 Bulk Modulus
The bulk modulus KB of a substance measures the substance’s resistance to uniform

compression (Fig. B-1). It is defined as the pressure increase needed to cause a given relative
decrease in volume, Eq. (1).

Figure B-1: Bulk modulus

KB =−V ∆P

∆V
(1)

Starting with the Navier-Stokes Equations of the Fluid Mechanics, Einstein, helped by
Grossmann, demonstrated in the 1910s that spacetime:

• Can be identified to a Newtonian fluid,
• Returns to its rest shape after having removal of the applied stress (elasticity).



Appendix B

Therefore, the Bulk Modulus, Eq. (1), which is a version of the Cauchy Tensor of the Fluid
Mechanics, can also be applied to spacetime. It means that the curvature of spacetime made by a
“Matter Volume” exerts a pressure on the surface of the latter (fig. B-1).

B-3 Elasticity Law
Elasticity phenomena follow the well-known logarithmic law:

ε= ln

(
R−∆R

R

)
(2)

where ε = coefficient of elasticity (in fact “true strain”).

The Schwarzschild Metric gives an order of magnitude of the curvature (compression) of
spacetime, which is infinitesimal. For example, the ratio curvature of spacetime/radius of the
Schwarzschild Metric, or ∆R/R=GM/Rc2, is 1.4166× 10−39 for the proton, with M = 1.672×
10−27 kg, R = 8.768× 10−16 m, G = 6.674× 10−11, c2 = 8.987× 1016 m/s.

Under these conditions, whatever the formula used, logarithmic or not, the curvature of
spacetime can be considered as a linear function since we are working on an infinitesimal segment
near to the point zero. So, Eq. (2) becomes in first order approximation:

εR ≈
∆R

R
(3)

or, with volumes:

εV ≈
∆V

V
(4)

For the moment, the linear εR and volumetric εv coefficients of elasticity (in fact “strain”) of
spacetime are unknown.

B-4 Curvature of Spacetime
A matter volume V inserted into spacetime pushes it to make room (Fig. B-2). So the following

volumes are identical:

V = V1 = V2...= Vn (5)

Figure B-2: Volumes V, V1, V2, V3... are identical
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Since the curvature of spacetime is a linear function, the coefficient of elasticity of spacetime εv
can be considered constant. So, combining Eqs. (4) and (5) gives:

∆V = ∆V1 = ∆V2...= ∆Vn (6)

However, there should not be any confusion between a simple displacement of spacetime, Vx,
produced by the insertion of a matter volume into a flat spacetime, and the curvature ∆Vx = εvVx
due to the elasticity of spacetime (fig. B-3).

Figure B-3: Simple displacement (Vx) vs. curvature of spacetime (∆Vx)

B-5 Solving ∆x= f(∆R)

Since the ∆V’s are infinitesimal, the volume ∆Vx is simply the product of ∆x by the surface
Sx (fig. B-4):

∆Vx = Sx ∆x = 4πd2∆x (7)

The volume ∆VR is also the product of ∆R by the surface SR:

∆VR = SR ∆R = 4πR2∆R (8)

Figure B-4: Displacement and curvature at distances R and d
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From Eq. (6) we have:

∆VR = ∆Vx (9)

Combining Eqs. (7), (8) and (9) gives:

4πR2∆R= 4πd2∆x (10)

Finally, we get:

∆x=
R2

d2
∆R (11)

Where:
• R is the radius of the matter volume VR,
• ∆R is the curvature of spacetime on the surface of the matter volume VR,
• d is the distance of the point of measurement,
• ∆x is the curvature of spacetime at distance d.

B-6 Curvature ∆x vs Mass M
As explained in the main text, the “Mass Effect” is a combination of the volume and the surface

of a “Matter Volume”.

On one hand, the “Mass Effect” is proportional to the curvature of spacetime, i.e. to the“Matter
Volume” since it is the latter that curves spacetime. On the other hand, it is inversely proportional to
the surface S since the origin of the “Mass Effect” is a pressure. If we combine these two statements,
we get the following dimensional quantity:

[M ]≡ [L3][1/L2]≡ [L] (12)

At this point, we do not know the relation between ∆R and M but, referring to Einstein’s works,
we have good reasons to believe that this relation is a simple linear function like:

∆R=KM (13)

. . . where K is a constant having the dimensional quantity of [L/M]. This value is in line with
the dimensional quantity of some terms of the Schwarzschild Metric: 2ε= 2∆r/r= 2GM/rc2

(sometimes, we use the Schwarzschild Radius, ε= rs/r).

The challenge, now, is to calculate K to find back the Newton Law.

B-7 The Newton Law
Porting Eq. (13) in Eq. (11) gives:

∆x=
R2

d2
KM (14)

or

∆x

R2
=K

M

d2
(15)
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Since x = ct, replacing R2 by c2t2 gives:

∆x

c2t2
=K

M

d2
(16)

or :

∆x

t2
= c2K

M

d2
(17)

The value ∆x/t2 has the dimensional quantity of an acceleration [L/T2]. So, replacing this
fraction by the acceleration symbol “a” (see the note below), we get:

a= c2K
M

d2
(18)

Notes: Here, ∆x is an infinitesimal quantity, not a differential quantity such as dx. Moreover,
we are working in a linear segment of the elasticity of spacetime. In such a situation, ∆x/∆t≈ x/t.

The multiplication of a constant c2 by a second constant K gives a constant. So, we can replace
the product c2K by a new and unknown constant for the moment, G for example:

c2K = G (19)

or (the following equation is not necessary here but will be used further):

K =
G

c2
(20)

Porting Eq. (19) in Eq. (18) gives:

a=G
M

d2
(21)

To be consistent, this unknown constant G must have the same dimensional quantity of the
product c2K, Eq. (19):

• c2 : Dimensional quantity⇒ [L2/T 2]
• K : Dimensional quantity⇒ [L/M ] (see section B-6)

So,

The dimensional quantity of this new constant G is
[c2K] = [L2/T2][L/M] = [L3/MT2].

On the other hand, we know that a force F is the product of an acceleration a by a mass m.
Therefore, Eq. (21) can be written as follows:

F =G
Mm

d2
(22)
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For the moment, G is unknown but we must note that:

• G is a constant,
• Its dimensional quantity is [L3/MT 2].

So, we can identify G to the constant of gravitation issued from experimentation:

G= 6, 67428× 10−11 (23)

In other words,

Eq. (22) can be identified to the
Newton Law of Universal Gravitation.

This result is very important because the mathematic development in this appendix is based
exclusively on “Matter Volumes” instead of “Mass”.
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New Version of the
Schwarzschild Metric

C-1 Introduction
Here we show that the Schwarzschild Metric can be easily obtained using matter volumes

instead of masses. The following demonstration does not require the knowledge of tensor calculus.

C-2 The Minkowski Metric
The expression of the Minkowski Metric, in spherical coordinates, is:

ds2 =−c2dt2 + dr2 + r2(dθ2 + sin2 θdφ2) (1)

The Schwarzschild Metric refers to a static object with a spherical symmetry. It is built from a
Minkowski Metric, in spherical coordinates, with two unknown functions: A(r) and B(r):

ds2 =−B(r)c
2dt2 +A(r)dr

2 + r2(dθ2 + sin2 θdφ2) (2)

The Minkowski Equation must follow the Lorentz Invariance in Special Relativity (SR) or
General Relativity (GR). To get this invariance, we must set A(r) = 1/B(r). Details of calculus
are described in books concerning SR and GR [11, 50-79]. So:

B(r)A(r) = 1 (3)

C-3 The Schwarzschild Metric
To calculate the Schwarzschild Metric, we can start with fig. C-1 (next page), which is issued

from the main article, where:
• drout is an elementary differential radial variation outside of any “Matter Volume”, i.e. outside

of any mass;
• drin is an elementary differential radial variation inside a Schwarzschild spacetime;
• r is the point of measurement.

Section B-3 of Appendix B shows that the order of magnitude of the coefficient of elasticity εR
(here noted ε) is infinitesimal. So, we can use the first order approximation Eq. (3) of Appendix B.
Since ε is a simple coefficient, we can calculate the relation between two differential elementary
radius dr(out) and dr(in), out and in a gravitational field, closed one to the other:

drin = (1 + ε) drout (4)

Since ε� 1, Eq. (4) can be written as:

drin =
1

(1 − ε)
drout (5)
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Figure C-1: Spacetime has been reduced to 1D

or, elevating in square:

dr2in =
1

(1 − ε)2
dr2out (6)

Developing the denominator (1 − ε)2 = 1 − 2ε+ ε2 and ignoring the last term ε2, we obtain:

dr2in =
1

(1 − 2ε)
dr2out (7)

This result is nothing but the radial component of the Schwarzschild Metric, i.e. the function A(r)
of dr2 in Eq. (2). Then, the calculation of B(r) is immediate, taking into account that A(r)B(r) = 1
from Eq. (3). So:

A(r) =
1

(1 − 2ε)
(8)

B(r) = (1 − 2ε) (9)

Thus, Eq. (2) becomes:

ds2 =−(1 − 2ε)c2dt2 +
1

(1 − 2ε)
dr2 + r2(dθ2 + sin2 θdφ2) (10)

On the other hand, Eqs. (3), (13) and (20) of Appendix B can be rewritten as:

ε=
∆R

r
=
KM

r
=

GM

rc2
(11)

Finally, porting this expression in Eq. (10) gives:

ds2 =−
(

1 − 2GM

rc2

)
c2dt2 +

1(
1 − 2GM

rc2

) dr2 + r2(dθ2 + sin2 θdφ2) (12)
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C-4 Conclusions
This new calculus of the Schwarzschild Metric, which is exclusively based on matter volumes

instead of mass (Fig. C-1), gives identical results than developing the EFE in the case of a static
spherical symmetry. This is due to the fact that the origin of EFE is the Fluid Mechanics, which is
itself based on volumes, not on masses.

Another point: it is remarkable to see the simplicity of this 2 page demonstration v.s. reducing
the EFE to the case of a static sphere with a spherical symmetry which requires about 15 pages of
complex equations (tensors).
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Expression of the Mass Effect in 4D

D-1 Expression of “M”
In the main paper and appendix B, we have seen that the displacement of spacetime VR is equal

to that of the matter volume, V, which produces this displacement (fig. D-1):

VR = V (1)

Figure D-1: The curvature of spacetime

On the other hand, the curvature of spacetime is (Eq. (4), section B-3, Appendix B):

∆VR = εv VR (2)

Porting Eq. (1) in Eq. (2) gives:

∆VR = εv V (3)

Since the volume ∆VR is infinitesimal, we can consider that the radial curvature of spacetime,
∆R, at the surface of M, is calculated dividing the volume by the surface:

∆R=
∆VR
S

(4)

Replacing ∆VR by Eq. (3) gives:

∆R= εv
V

S
(5)
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Porting Eq. (13), Section B-6, Appendix B, in Eq. (5) gives:

KM = εv
V

S
(6)

or
M =

εv
K

V

S
(7)

Porting in Eq. (7) the expression of K given in Eq. (20) of Appendix B gives the expression of
the “Mass Effect”. Here, we have added a new coefficient, ρs (see explanation below):

M =
c2

G0
εv
V

S
ρs (8)

with:
M = Mass effect (kg)
V = Volume of the “Matter Volume” (m3)
S = Surface of the “Matter Volume” (m2)
εv = Coefficient of volumetric elasticity of spacetime. This parameter is unknown but can
be calculated from the mass/diameter of spherical particles such as some leptons or
“magic” nuclei. See section D-3.
c = Speed of the light (m/s)
G0 = Universal constant of gravitation
ρs = Density of surrounding spacetime relative to a flat spacetime. This parameter is equal
to 1 in a Minkowsky Spacetime.

It seems useful to differentiate εv, the coefficient of elasticity of spacetime, and ρs, the density
of surrounding spacetime. We could merge these two parameters in one common parameter since
we are faced with two dimensionless coefficients. In both cases, result is identical.

The coefficient of elasticity of spacetime εv is an intrinsic coefficient of spacetime. This
coefficient does not change. On the contrary, the density of surrounding spacetime, ρs, can change
from one point of the universe to another. This is why the two parameters have been separated.

For example, the particle may be located in a Riemannian spacetime, such as near a black hole.
In this case, the “Mass Effect” of the particle will increase because the curvature of spacetime (ρs)
near a black hole is huge.

To summarize, Eq. (8) shows that the “Mass Effect” is not constant and may vary. For example,
the mass of electron is 510.998928(11) KeV/c2 on Earth, but it can be for example 498 KeV/c2
outside our solar system in a flat spacetime, or more than 100 GeV/c2 near a black hole.

D-2 Case of a sphere
In the particular case of a sphere, we have V = 4/3πR3 and S = 4πR2. Thus, Eq. (8) becomes:

M =
εvRc

2

3 G0
ρs (9)
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D-3 Nuclei
Nuclei aren’t spherical generally. Since we don’t know exactly their shape, it is not possible to

apply Eq. (9) to calculate their mass effect.

The radius R of a nucleus is often defined as R= 1.2 ×A1/3, A being the mass number. In
reality, the right member does not mean that mass follows a A1/3 law. This rule concerns the
arrangement of nucleons inside the nucleus. The result is equivalent but the significance is different.

We must also note that a surface component also exists in the Bethe-Weizsacker expression.
It means that, early in 1937, Bethe and Weizsacker predicted the Eq. (8) here demonstrated, by
connecting the “Mass Effect” to the volume and surface. This topic is developed in Appendix J.

We must keep in mind that nuclei are made of empty volumes and matter volumes (see
Appendix J). However, the nucleus has a behaviour of “matter volume” because the empty volumes
are enclosed inside the nucleus. The space between nucleons may vary from one nucleus to another.
Thus, it is necessary to know the arrangement of nucleons with accuracy before any calculations.
A particular case are magic nuclei (nuclei having a null quadripolar moment) because they are
supposed to be spherical. It will be interesting to make accurate experiments on the relation
volume/surface/mass effect of magic nuclei.

On the other hand, some nuclei have a halo made of empty volumes that are not relevant in mass
calculation (see section J-2, Appendix J). This is the case for example of the 11Li (3p8n), which
has empty volumes between the 9Li and the 2n orbitals. These exceptions highlight the difficulty to
make accurate calculations of the mass effect. In all cases, before any calculation, we must know
exactly the geometry of matter volumes and empty volumes inside the nucleus. It means that the
calculus of the mass from the geometry of the nucleus, Eq. (8), is not as simple as it sounds.

As a direct consequence of the proposed theory, it could be possible that a relationship exists
between the sphericity of particles or nuclei and the accuracy of measurements. This deduction
suggests that leptons could be spherical since their mass effect is known with an excellent accuracy.
This is also the case of some particles such as the proton, neutron, or π meson. Inversely, this is not
the case of quarks. This means that quarks could have a non-spherical and complex shape.
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Partial Rewriting of the
Einstein Field Equations (EFE)

E-1 Original EFE
The original EFE are fully described in [11] and in several books [50-79].

Rµν −
1

2
gµνR=

8πG0

c4
Tµν (1)

with:
Rµν = Ricci Curvature Tensor;
gµν = Metric Tensor;
R = Scalar Curvature;
8πG0/c

4 = Einstein Coefficient;
Tµν = Energy-Momentum Tensor. See below and Fig. 2 of the main text.

Figure E-1: Energy-Momentum Tensor

Tµν =

T00 T01 T02 T03
T10 T11 T12 T13
T20 T21 T22 T23
T30 T31 T32 T33

=

 E/V ρmcvx ρmcvy ρmcvz
ρmcvx σx τxy τxz
ρmcvy τyx σy τyz
ρmcvz τzx τzy σz

 (2)
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E-2 Expression of Mass
Eq. (8) of Appendix D shows that Mass= f(MatterV olume):

M =
c2

G0
εv
V

S
ρs (3)

with:
M = Mass effect (kg)
c = Speed of the light (m/s)
G0 = Universal constant of gravitation
εv = Coefficient of volumetric elasticity of spacetime.
V = Volume of the matter volume (m3)
S = Surface of the matter volume (m2)
ρs = Density of surrounding spacetime relative to a flat spacetime.

E-3 Density of Matter
In the case of non-relativistic objects, the density of matter, ρm, is:

ρm =
M

V
(4)

Porting Eq. (3) in Eq. (4) gives, after simplification by V:

ρm =
c2

S G0
εv ρs (5)

E-4 Components of Tµν
Components of the Tµν tensor are given in Eq. (2).

Element T00

T00 =
E

V
=
mc2

V
(6)

Since m= ρmV (ρm = density of matter):

T00 =
ρmV c

2

V
(7)

Porting Eq. (5) in Eq. (7), after simplification by V:

T00 =
c4

S G0
εv ρs (8)

Elements T01,T02,T03,T10,T20,T30

Tµν = ρm c vµν =
c2

S G0
εv ρs c vµν (9)

or:

Tµν =
c4

S G0
εv ρs ·

vµν
c

(10)
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Elements T11,T22,T33

σµν is a normal pressure and aµν is a normal acceleration:

σµν =
Fµν
S

=
maµν
S

=
c2

G0
εv
V

S
ρs ·

aµν
S

(11)

or:

σµν =
c4

S G0
εv ρs ·

V

S c2
aµν (12)

Elements T12,T13,T23,T21,T31,T32

τµν is a tangential pressure and aµν is a tangential acceleration.

τµν =
Fµν
S

=
maµν
S

=
c2

G0
εv
V

S
ρs ·

aµν
S

(13)

or:

τµν =
c4

S G0
εv ρs ·

V

S c2
aµν (14)

E-5 New Energy-Momentum Tensor
Eqs. (8-10-12-14) have the following common expression:

c4

S G0
εv ρs (15)

Extracting this expression from each component Eqs. (8-10-12-14) leads to a new tensor. To
avoid confusion with the traditional Energy-Momentum tensor Tµν , this new tensor is called Jµν
(this symbol is different to the Bessel Symbol Jν used in some countries). We get:

Jµν =

 1 v01/c v02/c v03/c
v10/c (V/Sc2)a11 (V/Sc2)a12 (V/Sc2)a13
v20/c (V/Sc2)a21 (V/Sc2)a22 (V/Sc2)a23
v30/c (V/Sc2)a31 (V/Sc2)a32 (V/Sc2)a33

 (16)

This gives the following equivalence:

Tµν =
c4

S G0
εv ρs Jµν (17)

Appending the Einstein Constant to Eq. (17), the full right hand side of the EFE becomes:

8πG0

c4
× Tµν =

8πG0

c4
× c4

S G0
εv ρs Jµν (18)

After simplifying by G0 and c4 the right hand side we get the new EFE:

Rµν −
1

2
gµνR=

8πεvρs
S

Jµν (19)

where:
εv = Coefficient of volumetric elasticity of spacetime.
S = Surface of the matter volume (m2)
ρs = Density of surrounding spacetime relative to a flat spacetime.
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E-6 Conclusions
1 - Spacetime Density
This new version of EFE includes a constant, ρs, which is the density of the surrounding

spacetime. Here, it is a constant but, in reality, it is a variable (a partial derivative) because it varies
from one point of the universe to another. It means that this new version of EFE may give different
results depending of the location of the object(s) in the universe.

For example, we could suppose that the density of spacetime ρs is greater in the center of the
universe than on its borders since the whole spacetime of the universe exerts a pressure toward
the center. This density of spacetime, ρs, can be calculated on each point of the universe using
computers. Result is a new vision of the universe that could explain dark matter and dark energy.

In some sense, ρs, can be assimilated to the Cosmological Constant Λgµν that Einstein removed
from his EFE. The only difference is that, contrary to Λgµν , ρs is fully explained (Appendix D).

2 - Using traditional EFE
This new version of EFE needs to know the volume and the surface of the matter volume which

produces the curvature of spacetime. Moreover, it also needs to know the coefficient of curvature
of spacetime, εv, and the density of surrounding spacetime relative to a flat spacetime, ρs. In that
sense, it would be more convenient to continue using the traditional Energy-Momentum Tensor on
Earth. In astrophysics, we must bear in mind that ρs varies at each point of the universe. In that
particular case, using the traditional Energy-Momentum Tensor could lead to erroneous results.

E-7 Case of a static sphere
In this case we have:

V =
4

3
πr3 (20)

and
S = 4πr2 (21)

hence
V

S
=

4πr3

3

1

4πr2
=
r

3
(22)

Porting this expression in the tensor Jµν , Eq. (16), gives, after simplification, a new tensor Kµν :

Kµν =

 1 v01/c v02/c v03/c
v10/c (r/3c2)a11 (r/3c2)a12 (r/3c2)a13
v20/c (r/3c2)a21 (r/3c2)a22 (r/3c2)a23
v30/c (r/3c2)a31 (r/3c2)a32 (r/3c2)a33

 (23)

Finally, replacing “S” of the right hand side of Eq. (19) by its expression in Eq. (21) gives, after
simplification, a reduced version of the EFE in the case of a static sphere:

Rµν −
1

2
gµνR=

2εvρs
r2

Kµν (24)
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Von Laue Geodesics

F-1 Introduction

A set of concentric circles is drawn in (fig. F-1a). These lines represent the geodesics of
spacetime far from any mass, in a Minkowski spacetime. If a static spherical symmetry matter
volume is inserted in the centre (fig. F-1b), spacetime will be curved, as explained in the main
article. This figure F-1b has been duplicated in fig. F-2.

Figure F-1: Curvature of spacetime

Figure F-2: Von Laue Geodesics

The Von Laue Geodesics [32] has been drawn over these concentric circles. Result is that the
Von Laue Geodesics match EXACTLY the concentric circles.

In other words, it seems that Von Laue, early as the 1920s, predicted the theory presented here.
It is obvious that his diagram shows volumes, not masses, even if the Von Laue Formulas are
related to the mass of the body.
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Explanation of the Increase of the
Mass of Relativistic Particles

G-1 Introduction
The increase of the mass of relativistic particles is covered by special relativity. However, this

phenomenon remains somewhat obscure. To date, we are still unable to explain with simple words,
i.e. without using mathematics, why the mass of relativistic particles increases. This appendix
proposes a simple and rational explanation of this strange phenomenon using the curvature of
spacetime and “Matter Volume” instead of mass.

G-2 Length contraction
Special relativity states that, at relativistic speed, times expand, lengths contract and angles are

modified [1-11]. The length contraction is defined by the formula

lm = l0

√
1 − v2

c2
(1)

where
• lm = Measured length
• l0 = Proper length
• v = Speed of object
• c = Speed of light

G-3 Mass increase
Consider a particle at rest (Fig. G-1a, next page). Its matter volume produces a curvature of the

spacetime. Geodesics of spacetime are spaced of l0.

If this particle moves at a relativistic speed “v” (Fig. G-1b), spacetime geodesics seems to shrink
(length contraction). As a result, the curvature of spacetime, ∆R0 and ∆Rm below, increases. In
other words, the density of the curvature of spacetime is inversely proportional to the space between
two geodesics (also see note 1). Therefore, Eq. (1) becomes:

∆Rm =
∆R0√

1 − v2/c2
(2)

where:
• ∆Rm = Infinitesimal element of the curvature of spacetime measured (external observer)
• ∆R0 = Infinitesimal element of the proper curvature of spacetime
• v = Speed of the particle
• c = Speed of light
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Figure G-1: Since the spacetime is more dense in (b), the mass effect increases.

Using Eq. (13) of Appendix B, ∆R=KM , we can replace the curvatures of spacetime ∆Rm

and ∆R0, by the measured mass effect “m” and the proper mass effect “m0”. See notes 2 and 3.
After simplification by K, we get:

m =
m0√

1 − v2/c2
(3)

In other words, as shown in Fig. G-1, the mass or volume of a relativistic particle does not
increase. In reality, the curvature of spacetime becomes more condensed at relativistic speed and
produces an opposition force which has the same effect as an increase of mass.

Note 1: The spacetime curvature is the difference of displacement ∆R of a geodesic vs. to
the same geodesic in a Minkowski space. As shown in Appendix C, the curvature of spacetime is
infinitesimal. Thus, regardless of the function used, the portion of the curve on which we work is
linear. Taking this linearity into account, there is no objection to consider that the curvature of
spacetime is inversely proportional to the space between two geodesics.

Note 2: The nature of expression ∆R=KM is not relevant because this section covers
exclusively the calculation of the coefficient to be applied to a proper value to get the measured
value. This coefficient is noted γ (or 1/γ) in scientific literature. This means that the relationship
between the spacetime curvature and the mass effect is not affected by this study. For example,
if we make 5 measurements of the curvature of spacetime at different speeds, we will not have 5
different relationships between ∆R and M, but only one applicable in all cases ...but we will have
5 different coefficients γ.

Note 3: The principles of special relativity state that the measurement of the mass of a relativistic
particle increases. However, the converse is also true if we swap the reference systems. If we
could pick up a measuring device on a particle in movement, this device would indicate that our
spacetime, that in which we live, is much more dense as we see it. Thus, a section of the LHC for
example, with a mass of 3 tons, measured from a device located on the particle in motion, would
have a mass of 3000 tons if γ = 1000. From our point of view, the mass of a relativistic particle
increases, but from the particle’s point of view, it is our world that increases. In all cases, the
proper mass of the particle or that of our world remains unchanged. This “relative view” is often
misunderstood.



Appendix G

Note 4: It is wrong to think that the mass or the “matter volume” of relativistic particles
really increases. In reality, it is the mass effect due to the apparent compression of spacetime that
increases. The volume remains unchanged. On Earth, we consider that “mass” is an intrinsic value
of a particle, such as the volume. It is not true. Since the mass effect comes from the pressure of
spacetime on the particle, it is a virtual effect, such as pressure, speed, force, energy... On the other
hand, the mass effect depends of the surrounding density of spacetime. Thus, for example, if the
spacetime density was two times higher, the mass effect would be twice as important as well, but the
intrinsic characteristics of the particle, more specifically the volume, would remain unchanged.
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Equivalence Principle
using the Curvature of Spacetime

H-1 Demonstration
Let’s consider a static object on Earth (fig. H-1). “Matter volume” cause a curvature of spacetime

that exerts a gravitational force on the surface of the object. Gravity is g= 9.81m.s−2 on the surface
of Earth.

Figure H-1: Gravitationnal force using the spacetime curvature

Let’s now consider the same object accelerated out of any gravitational field. We can represent
this object in two different views (fig. H-2a and H-2b).

Figure H-2: Inertial acceleration using the spacetime curvature

In both cases, acceleration “a” is supposed to be identical to g:

a= g= 9.81m.s−2

Without any reference, a local observer cannot know if the curvature of spacetime is due to a
pressure on the object (fig. H-2a) or to its acceleration (fig. H-2b). In fact, these two figures are
identical and depend on where the observer stands, as described in Special Relativity.
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Since:

• By definition, g = 9.81 m.s−2 (fig. H-1) is identical to a = 9.81 m.s−2 (fig. H-2a and H-2b).
• These examples use the same object. Therefore, the curvature of spacetime produced by the

matter volume of this object is identical.
• The two precedent points show that the “mass effect” produced by these curvatures are

identical.

We deduce that the “gravitational mass effect” (fig. H-1) is identical to the “inertial mass effect”
(fig. H-2):

Gravitational mass effect
=

Inertial mass effect
=

Effect from spacetime curvature

As shown, this demonstration of the Equivalence Principle is fully explained using “Matter
Volume” instead of “Mass”.
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The Bethe-Weizsacker SEMF

J-1 History
The Bethe-Weizsacker’s formula, sometimes also called semi-empirical mass formula (SEMF),

is used to approximate the binding energy of an atomic nucleus from its number of protons and
neutrons. It is based partly on theory and partly on empirical measurements.

The theory is based on the liquid drop model proposed by George Gamow, which can account
for most of the terms in the formula and gives rough estimates for the values of the coefficients. It
was first formulated in 1935 by Carl Friedrich von Weizsacker, and although refinements have been
made to the coefficients over the years, the structure of the formula remains the same today.

The SEMF gives a good approximation but, as explained, this formula is grounded on the “liquid
drop model”, which is not a “pure theory”.

This appendix shows that the SEMF and Equ. (8) of Appendix D have strong similarities. In
particular, the two main terms of each expressions, the Volume V , and the Surface S, are present in
both equations. It means that the theory here proposed also explains the SEMF.

J-2 The formula
In the following formula, let “A” be the total number of nucleons, “Z” the number of protons,

and “N” the number of neutrons, so that “A=Z+N”.

The mass of an atomic nucleus is given by:

m=Zmp +Nmn − EB

c2
(1)

wheremp andmn are the rest mass of a proton and a neutron, respectively, andEB is the binding
energy of the nucleus. The SEMF states that the binding energy will take the following form:

EB = aVA− aSA
2/3 − aC

Z2

A1/3
− aA

(A− 2Z)2

A
− δ(A,Z) (2)

The coefficients are determined empirically. Each term is summarized below.

Volume term
The term “aVA” is known as the “volume term”. The volume of the nucleus is proportional to

“A”, so this term is proportional to the volume.

Surface term
The term “aSA2/3” is known as the “surface term”. This term, based on the strong force, is a

correction to the volume term. If the volume of the nucleus is proportional to “A”, then the radius
should be proportional to “A1/3” and the surface area to “A2/3”. This explains why the surface
term is proportional to “A2/3”. It can also be deduced that “aS” should have a similar order of
magnitude as “aV ”.
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Coulomb term
The term “aC(Z2/A1/3)” is known as the “Coulomb” or “electrostatic term”. The basis for this

term is the electromagnetic force electrostatic repulsion between protons.

Asymmetry term
The term “aA((A− 2Z)2/A)” is known as the “asymmetry term”.

Pairing term
The term “δ(A,Z)” is known as the “pairing term”, possibly also known as the pairwise

interaction.

J-3 Explanation of the SEMF
The proposed theory gives the mass formula in Appendix D, Equ. (8):

M =
c2

G0
εv
V

S
ρs (3)

with:
M = Mass effect (kg)
V = Volume of the “Matter Volume” (m3)
S = Surface of the “Matter Volume” (m2)
... etc... (see Appendix D).

In this equation, we see that the mass is directly proportional to the volume V , and inversely
proportional to the surface S.

The SEMF equation is different because it represents the binding energy, not the mass of a given
nucleus. However, these two expressions (fig. J-1 next page) are grounded on a common basis: the
volume V , and the surface S.

Figure J-1: The mass expression of Appendix D, Equ. (8), and SEMF equation are grounded on
the same basis: the volume V , and the surface S.
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J-4 Conclusions
As fig. J-1 shows, the mass expression of Appendix D, Equ. (8), and SEMF equation are

grounded on the same basis: the volume V , and the surface S.

It is not a validation per se but an strong argument that supports the theory here proposed.
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Other Classes of Volumes

In reality, it exists five classes of volumes, not three as indicated in the main article. The two
extra classes are described below.

K-1 Hermetic Volumes

These volumes are combinations of matter and empty volumes but their global volume is
hermetic regarding spacetime. Therefore, Hermetic Volumes are like Matter Volumes, they get
mass. For example, a nucleus is made of nucleons (matter volumes), separated by empty space
(empty volume). Whatever the content of this empty space (a vacuum, π0 mesons...), this volume
exists. Since this global volume is hermetic regarding spacetime, the whole volume of the nucleus
deforms spacetime and, therefore, gets mass. This explains why the volume (≡ mass) of the nucleus
is greater than those of its nucleons (mass excess). This also explains why the volume of a proton,
938 MeV/c2, is much greater than the “matter volumes” of the three quarks, 2.3+2.3+4.8=9.4
MeV/c2.

K-2 Special Volumes

These kinds of volumes are called “special” because we do not know their behaviour regarding
spacetime. This is the case of 6He, 8He, 14Be... For example, 11Li has a core with 3p6n and a halo
of 2n. Since we do not know the penetration of spacetime inside these nuclei, these volumes can
not be classified in any of the preceding categories.

K-3 Can we replace mass by volume?

The following questions may arise about volumes:

1/ Can we replace mass by “volume”?
No, because the word “Volume” is undefined.

2/ Can we replace mass by “apparent volumes”?
No, because apparent volumes are a combination of matter volumes, with mass, and massless

empty volumes. Only matter volumes (with mass) are significant.

3/ Can we replace mass by “matter volumes” or “hermetic volumes”?
Yes, because there is a relation between matter volumes or hermetic volumes and mass (see the

main article and appendix D). It is obvious that if we have V = f(M) and reciprocally M = f(V ),
we can use indifferently V or M in our calculus.
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