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Abstract
    Variational theory of elasticity is surveyed in the context of 

mathematical logic in the present paper. The problem of 
variable-independence of variational principles raised by Chien 
is discussed. We find that Chien’s “High-order Lagrange 
Multiplier Theory”, which deals with the problem of variable-
independence and constraint of variational principles, is 
inconsistent; Luo’s system, which is involved in the problem of 
variable-independence, is involved in contradictions; the 
conventional understanding of independence of variables of 
variational principles connotes contradiction. In the context of 
mathematical logic, variational theory must be established as a 
mathematical system of logic, excluding vagueness and 
misunderstanding. By consideration of logic, variable-
independence is understood as identity of variables and then 
formalization of variational theory is a solution to the problem 
of variable-independence. Two consistent systems for elasticity, 
the Axiomatic System of Variation and the Formal System of 
Variation, are suggested in this paper. 
Keywords variational theory, variable-independence, 

consistency , formalization, Axiomatic System of Variation,  
Formal System of Variation

1. Introduction 
Variational calculus, used widely in various  areas of mathematics, physics and 

engineering, is one of the fundamental and important methods of mathematical physics. The 
Minimum Potential Energy Principle ( MPEP hereinafter) is a typical variational principle in 
elasticity[1,2]. Hu  and Washizu suggested  individually  Hu-Washizu Principle ( H-W 
Principle hereinafter) of three kinds of variables (argument functions)[3-6]. In 1964, Chien 
derived H-W Principle by using Lagrange Multiplier Method. According to He , “from then 
on generalized variational principles can be arrived at from a scientific way, not a blind 
way.”   [7,8] During the period of 1983-1985, Chien argued that  H-W Principle was subject 
to one kind of constraint conditions, and so one kind of  variables in the principle was not 
independent and the principle was  equivalent   to Hellinger-Reissner Principle ( H-R 
Principle hereinafter) of two kinds of variables [9-13]. In order to eliminate the “constraint” 
of H-W Principle, Chien suggested the High-order Lagrange Multiplier Method and  then 
established ,G  Principle [9-11]. He made the comment, in the Chinese version of his paper, 
on Chien’s work as:  the finding of dependence of variables in H-W Principle by Chien led 
to  the birth of  High-order Lagrange Multiplier Method, which is the important landmark in 
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the history of development of variational theory [7].However, as pointed in this paper, there 
exist some contradictions in Chien’s theory.

Luo’s work [14] is also involved in the problem of variable-independence of 
variational principles, taking independence of variables in the variational principles for 
granted. But the problem is not solved because of contradictions involved in the system 
of the work. 

Furthermore, we find that the conventional understanding of independence of variables 
of variational principles, stated or implied in the works of Washizu, Chien and Luo   
connotes contradiction [6, 9-11, 14].  

In the present paper,  we raise and  discuss the problem of consistency of  variational 
theory, arguing that consistency is a fundamental requirement of any mathematical 
theory and variational theory should not be an exception. We assert that variational 
theory must be established as a mathematical system of logic, excluding vagueness and 
misunderstanding, if it is a rigorous mathematical theory. We realize that independence 
of variables should be  understood logically as identity of variables, if variational theory 
is required to be consistent, and formalization of variational theory is a solution to the 
problem of variable-independence. Then we suggest the Axiomatic System of Variation 
and the Formal System of Variation for the variational theory of elasticity, which are 
proved consistent.   

2. Fundamental Equations in Elasticity and the Principle of Consistency
2.1. Governing Equations  in Elasticity
(a)Equilibrium equations:

                )()3,2,1(0,  iniF ijij      ;                  (2.1)

(b)Strain-displacement relations:
         )()3,2,1,(0,)2/1(,)2/1( injiuue ijjiij    ;       (2.2)

(c)Stress-strain relations: 
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          ;         (2.3b)

(d)Traction boundary conditions:

)()3,2,1(0 pijij soniPn               ;        (2.4)

(e)Displacement boundary conditions:        

             )()3,2,1(0 uii soniuu                     .        (2.5)

In  (2.1)-(2.5)  Einstein’s  notations,   
 
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       for   example,    are   used;    is 

the  volume  domain of  the body; ps ,  a  part of  the piecewise smooth boundary of the

body, is loaded with components of surface force per unit area iP ; us , the other   part  of   

the   boundary,  is   given   displacements  iu ;   iF   are components of body force per 
unit volume;  ij ,   ije    and   iu   are  stress,    strain    and    displacement   components
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respectively ; )(eA   and   )(B   are potential and    complementary  energy density of  

the  body  respectively;  jn are direction cosines of the outward normal to the boundary.  

The boundary of the elastic body, s , is divided as                   

up sss                                                       (2.6)

2.2. Main Variational Principles in Elasticity Discussed in This Paper ( functionals 
are given) 

                  
s
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)(    ( for  MPEP)       ,            (2.7)

  
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  


 duFB iijijHR ),()(
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
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         


  deBeAuFB ijijiijijG ])()([),()(

                     
u pS S

iijijijij dsuPndsun )(                             .          (2.11)

2.3.   Principle of Consistency Suggested in This Paper 
A variational theory is consistent iff (if and only if ) there exists no logical

contradiction in its system of logic.

3. Chien’s Theory and Its Inconsistency
3.1. Chien’s Theory of Variational Principles

Chien   uses   “variable”,   which  is ij ,  ije  or iu   in elasticity,   for  the  term

“argument  function” [1] or “quantity” [6] of variational principles. It is not difficult 
to know, by logical consideration, that Chien’s theory is  actually based on the logical 
system below,  though it is not expounded in his papers[9-11].

3.1.1. Postulates Stated or Implied in Chien’s “ High-order Lagrange Multiplier 
Theory”

P3.1. The variational principles of elasticity, whose functionals are formulated by (2.7)-
(2.11).

P3.2. Equations (2.1), (2.2), (2.3a) or (2.3b), (2.4) and (2.5) ((2.1-2.5)  in Sec.3).
P3.3. Uniqueness Theorem [10]:  
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For a  problem of physics formulated in terms of  a complete set of variables,  under 
given  constraint  conditions the formulation of the functional for the  constraint 
variational principle of the problem is unique. If there exists no constraint condition, the  
formulation of the functional for the generalized variational principle of the problem is 
unique.  

P3.4. A variable,  ij ,  ije  or iu  , can not be both an  independent and non-independent 

variable of a variational principle under discussion. ( the law of contradiction of 
variable-independence)

P3.5. Each of ij ,  ije  and iu  must be either an independent or a non-independent 

variable of the variational principle under discussion. (the law of excluded middle of 
variable-independence) 

P3.6. An equation from  (2.1-2.5) can not be both a constraint and a natural condition of a 
variational principle under discussion. ( the law of contradiction of constraint) 

P3.7. Each of (2.1-2.5) must be either a constraint condition of or a natural condition of 
the variational principle under discussion.( the law of excluded middle of constraint)

P3.8. Any of the variational principle specified by P3.1 can not be both a constraint 
variational principle and a complete generalized variational principle  for the problem 
of elasticity. ( the law of contradiction of identification of the variational principles)

P3.9. Each of the variational principle specified by P3.1 must be either a constraint 
variational principle or a complete generalized variational principle for the problem of 
elasticity. ( the law of excluded middle of identification of the variational principles)

3.1.2.  Definitions Stated or Implied in Chien’s “ High-order Lagrange Multiplier 
Theory”

D3.1. A  variable  is independent  for a variational principle iff  it  is  not  subject to  any 
constraint condition, which is defined by D3.2 or D3.3, of the variational principle 
under discussion . 

D3.2. A constraint condition for forward inference, of a variational principle, is an 
algebraic or  differential equation which must be substituted into the variational 
principle or its Euler equations if  forward inference process (see D3.5) is exercised. 

D3.3. Any two variational principles among those whose functionals are formulated by 
(2.7)-(2.11) are equivalent to each other iff  the sum or the difference of their
functionals is equal to zero. The constraint condition for equivalence is the algebraic 
equation which must be satisfied to make  the equivalence true.

D3.4. Natural  conditions of a variational  principle are algebraic and  differential 
equations which can be deduced from the variational principle if   forward  inference  
(see D3.5) is exercised.

D3.5. A forward inference process is a process of deducing  natural conditions from a 
variational principle together with its constraint conditions, if any, following the rules 
of mathematical inference in Sec.3.1.3. 

D3.6. An inverse inference process is a process  of deriving a variational principle from 
(2.1-2.5),  following  the rules of mathematical inference in Sec.3.1.3.  A semi-inverse 
inference process is a process of transforming a variational equation into a transformed 
variational equation, following the rules of mathematical inference in Sec.3.1.3.

D3.7. A constraint variational principle is a variational principle with at least one 
constraint condition.
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D3.8. Generalized   variational   principles   are   variational    principles established by 
Lagrange Multiplier Method.  Complete generalized  variational  principles are non-
constraint variational  principles established by Lagrange Multiplier Method and High-
order Lagrange  Multiplier Method.

D3.9. A proof is a logical argument process under P3.1-P3.9, according to D3.1-D3.9 and 
following R3.1-R3.9.

3.1.3. Rules of  mathematical inference Stated or Implied in Chien’s “ High-order 
Lagrange Multiplier Theory”  

R3.1. The Fundamental Lemma of the calculus of variations [1] (generalized).
R3.2. The Gauss Theorem in the differential calculus.
R3.3. The shearing stress symmetry ( jiij   ) and the work-and-energy principle in 

elasticity [2]. 
R3.4. The rules of operations in the algebraic, differential, integral and variational 

calculus.    
R3.5. Substitution method for forward inference processes (see D3.5): a method to

eliminate constraint conditions.
R3.6. Lagrange multiplier method (of the first  order or  the higher order): a method to 

eliminate constraint conditions in semi-inverse inference processes (see D3.6).  
R3.7. Substitution method for semi- inverse inference processes (see D3.6): a method to 

introduce constraint conditions into transformed variational equations. 
R3.8. Weighted-residual method for inverse inference processes (see D3.6): a method to 

introduce natural conditions into variational principles.
R3.9. In an equation of constraint  condition there exists at least one variable which is 

subject to the constraint and not independent. 
 In the following Sec. 3.2-3.5 we will give some proofs within Chien’s Theory and 

show that there exist contradictions in Chien’s Theory.

3.2. Contradictions to P3.3 and P3.8: Proofs according to D3.3 and following R3.6, 
Theorems and Remark 

   From          0])()([  


 deBeA ijijHWHR                     (3.1)

Chien argues [10], according to D3.3, that H-R and H-W Principle are equivalent to each 
other and each of them is subject to the  constraint condition 

                                0)()(  ijij eBeA                                       (3.2) 

That means that two functionals, not unique one, exist for variational principle under a 
unique constraint. 

Now following R3.6, we eliminate the constraint condition of H-R Principle, (3.2), by 
High-order Lagrange multiplier method and  formulate  H-W Principle:

 


 deBeA ijijHHRHW ])()([                   (3.3)

 where                        1H  .

And so, HW  is proved here to be a complete generalized variational principle. We know 

that Chien established 'G , a complete generalized variational principle, by High-order
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Lagrange Multiplier  Method[9-11]. So,  two functionals, HW  and 'G , not unique one, 

exist for functionals of the complete generalized variational principle. 
  From the proofs above, we have the theorems:
  Theorem3.2.1
  There exist two functionals, HR  and HW   , subject to one constraint (3.2); and, there 

exist two functionals, HW  and 'G , of complete generalized variational principles, for 

elasticity.
  Theorem3.2.2
  H-W Principle, whose functional is HW , is a constraint and also a complete 

generalized variational principle, of elasticity.
And we have the remark below:
   Remark 3.1.

Theorem 3.2.1 is in contradiction to P3.3; Theorem 3.2.2 is in contradiction to P3.8.

 3.3.  Contradiction of Constraint: Proofs according to D3.6, Theorem and Remark
3.3.1. Proof 3.3.1

The proof is given by Chien [11]. In his proof  (2.1) and (2.4) are  introduced   to 
formulate   the  variational equation   by    weighted-residual  method  while (2.2), (2.3a) 
and (2.5) are introduced into the variational equation by substitution method. Therefore,  
(2.1) and (2.4)  become  natural  conditions   of  MPEP (see R3.8) while (2.2), (2.3a) and 
(2.5) become constraint conditions of MPEP (see R3.7).

   
3.3.2. Proof 3.3.2 Given by us in This Paper 
   Now (2.3a) is introduced to formulate the variational principle by weighted-residual 
method while (2.1), (2.2), (2.4) and (2.5)  are introduced into the principle by substitution 
method: 

0]
)(

[ 



 


de
e

eA
ijij

ij

  .                                                   (3.4)

Substituting (2.2) into (3.4), then

0],
)(

[ 



 


due
e

eA
jiijij

ij

   ,                                        (3.5)

 then

0],),()([  


duueA ijijjiij     .                            (3.6)

Substituting  (2.1) into (3.6), then

        0])([  
up S

ijij

S

ijijii dsundsunduFeA 


  ,             (3.7)

 where Gauss Theorem is used.
 Substituting  (2.4) and (2.5) into (3.7),    

        0])([  
pS

iiii dsuPduFeA 


   ,                                       (3.8)

 then     0])([  
pS

iiii dsuPduFeA 


   .                                 (3.9)
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And so, following R3.8, (2.3a) becomes a natural condition of MPEP while, following 
R3.7, (2.1), (2.2), (2.4) and (2.5) become  constraint conditions of MPEP. 

3.3.3. Theorem and Remark   
From Sec.3.3.1-3.3.2, we have the theorem:
Theorem3.3
Each of (2.1), (2.3a) and (2.4) is a constraint condition and also a natural condition of 

MPEP. 
Then we have the following remark:

Remark 3.2.
Theorem 3.3 is in contradiction to P3.6.

3.4. Contradiction of Constraint Again: Proofs according to D3.5, Theorem and 
Remark

 3.4.1. Proof 3.4.1
The proof is given by Chien  [11]:
From (2.7) and following R3.4,

              


















 duFe
e

eA
iiij

ij
p

)(
   

s
dsuP

p

ii 0      .             (3.10)   

Substituting (2.2) into (3.10),   

               

















s

dsuPduFu
e

eA

p

iiiiji
ij

p 0,
)( 



                  (3.11)    

is obtained. Following R3.2 and R3.4, he arrives at 

         





















s

dsuPn
e

eA
duF

e

eA

p

iij
ij

iij
ij

p 0)
)(

(),
)(

( 


  ,  (3.12) 

for which (2.5) has been satisfied.
  Then, following R3.1, the Euler equations [1] are

)(0),
)(

( inF
e

eA
ij

ij





                                           (3.13)

 and

)(0)
)(

( pij
ij

sonPn
e

eA





        .                              (3.14) 

From P3.7, the stress-strain relationship (2.3a) is required to be substituted into (3.13) 
and (3.14)  to transform them into (2.1) and (2.4), which will become natural conditions 
of MPEP according to D3.4. Therefore,  (2.3a) is a constraint condition according to D3.2. 

 3.4.2. Proof 3.4.2 by us in This Paper
   From (2.7) and following R3.4,

 


















 duFuueee
e

eA
iiijijijijijijijijij

ij
p ,,

)(
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                            
s

dsuP
p

ii 0     .                                                              (3.15)

We have (see R3.2)

 


 duudu jiijjiijijij ],),[(),(

 
s

dsunduu
s

dsun
up

ijijijjiijijij 


],)2/1(,)2/1[(  .         (3.16)

Substituting （3.16）into  (3.15) ,  we get

 


















 duFuuee
e

eA
iijijijjiijijijij

ij
p ),(],)2/1(,)2/1([)

)(
(

0)(  
s

dsun
s

dsuPn
up

ijijiijij      .                           (3.17)

    From P3.7,  (2.2) and (2.5) are required to be substituted into (3.17) and  are constraint 
conditions according to D3.2. Eliminating the constraints by substitution (see R3.5),  we 
obtain

 


















 duFe
e

eA
iijijijij

ij
p ),()

)(
(

0)(  
s

dsuPn
p

iijij            ,                                        (3.18)

where ije  and iu  are independent according to D3.1. And then  (2.1) , (2.3a) and (2.4) are 

natural conditions of  MPEP, following R3.1 and according to D3.4.  

3.4.3. Theorem and Remark
   From Sec. 3.4.1 and Sec.3.4.2,  we have the theorem:

Theorem 3.4
Equation (2.3a) is a constraint condition and also a natural condition of MPEP. 
And we have the remark:
Remark 3.3
Theorem 3.4 is in contradiction to P3.6. 

3.5. Contradiction of Independence of Variable: Proof according to D3.1 and 
following R3.9, Theorem and Remark
From Theorem 3.3 in Sec. 3.3.3 and Theorem 3.4 in Sec. 3.4.3,  following R3.9 and 

according to D3.1, we have the theorem:
Theorem 3.5
Variable ij  is both a non-independent and  an independent variable of MPEP. 

And we have the remark:
Remark 3.4.   
Theorem 3.5 is in contradiction to P3.4. 

3.6. Inconsistence of Chien’s Theory and the Problem of Variable-independence 
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From Remark 3.1-Remark 3.4, we conclude, according to Principle of Consistency in 
Sec.2.3, with the remark below:

Remark 3.5.
 Chien’s theory of variational principles in elasticity, or High-order Lagrange 

Multiplier Theory, is inconsistent.
Then the problem of variable-independence raised by Chien is not solved by the High-

order Lagrange Multiplier Theory because of the inconsistence of the theory. In fact, 
from Theorem 3.5 in Sec.3.5, a variable can be both independent and non-independent in 
Chien’s theory. 
   
4.  Luo’s System and Its Problem of Consistency   

  In his paper, Luo uses  “variable”,  “function”  or  “field”  [14] for the term “argument 
function” of variational principles. He claims,  without proof and explanation, that “the 
momentum field ip , the velocity field iv , the displacement field iu , the strain field ij   

and the stress field ij  are five  independent  variables” in the 5-field variational 

principle [14]. Then less-field variational principles, including the 3-field Gurtin-type 
(Hu-Washizu class) generalized variational principle,  are inferred by reduction 
operations. It seems that the problem of variable-independence raised by Chien for H-W 
Principle has been settled by Luo’s work. But if Luo’s system ( the variational 
principles, the algebraic equations, the differential equations and the inference in Luo’s 
work) is discussed by logic and if the following prostitute is proposed, some 
contradictions may exist in Luo’s system. The prostitute is:

  P4.1. A variable in the system can not be both an independent and a non-independent 
variable. ( The law of contradiction of independence of variables)
  The variational principle with five independent fields is inferred from the fundamental 
equations in linear elastodynamics (Eq.3.1-3.9 in [14]). If the five fields in the 
fundamental equations are considered to be independent, the conventional understanding 
of independence of variables will be violated. On the other hand, if the five fields in the 
fundamental equations are considered to be non-independent, the law of contradiction of 
independence of variables, P4.1, will be violated because the same five fields in the 5-
field variational principle are considered as independent. 
   Similar contradictions may occur when reduction operations are practiced. The 
variational principles with less (than five) independent fields are inferred by reduction 
from the principle with all five independent fields. If all fields in the “when equations” 
( equations chosen from the fundamental equations Eq. 3.1-3.9 by using “When …” 
sentences in Sec.V.2-V.5 of [14]) are considered to be independent, the conventional 
understanding of independence of variables will be violated.. On the other hand, if some 
fields in “when equations” are considered to be non-independent, the law of contradiction 
of independence of variables, P4.1, will be violated because they are independent fields 
in the 5-field variational principle.
  The contradiction connoted by the conventional understanding of variable-independence
in variational theory will be discussed further in Sec.5.1.

5. Finding a Solution to the Problem of Variable-independence 
5.1. Contradiction Connoted by the Conventional Independence of Variables in 

Variational Theory
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5.1.1. Conventional Independence of Variables in Variational Theory
The understanding of “ independent variable ” is implied  in different versions as:

(1)  quantity with no subsidiary condition ; [6]
(2) variable not subject to any constraint condition ; [9-11]
(3)  variable, or function, or field, without any constraint  [14] .

Now we understand the “ conventionally independent variable ” as whatever version of 
(1)-(3) above.
5.1.2. Discussion by Means of System 5.1
5.1.2.1. System 5.1

(a)Postulates:

P5.1.1  The variational principle, whose functional is (2.8), where iF , iP  and  iu  are 

different from zero.
P5.1.2 Variables ij ,  ije and iu  are conventionally independent (see Sec.5.1.1).   

(b)Rules of Inference:
R5.1.1 Fundamental Lemma of the calculus of variations [1] (generalized). 
R5.1.2 The Gauss Theorem in the differential calculus.
R5.1.3 The shearing stress symmetry ( jiij   ) in elasticity [2]. 

R5.1.4 The rules of operations in the algebraic, differential and variational calculus.
(c)Definitions
D5.1.1 A proof is a logical argument process starting from P5.1.1-P5.1.2, following 

R5.1.1-R5.1.4.
5.1.2.2. Contradiction: Proof 5.1
    From P5.1.2 we know

              )()3,2,1,(0,)2/1(,)2/1( injiuue ijjiij     ,   (5.1)

otherwise ije will not be conventionally independent.

  On the other hand, it  is  not  difficult to  obtain (2.1), (2.2), (2.3a), (2.4) and (2.5)
from P5.1.1  and   P5.1.2,  following R5.1.1-R5.1.4.

Then we find that Eq.(2.2)  and (5.1) are in contradiction to each other. And so , the 
conventional understanding of independence of variables in variational theory connotes 
contradiction.
5.2.  Understanding Variable-independence by Logic
   Eliminating constraint by substitution implies that a non-independent variable is not 
identical to itself in nature, it is a symbol of others. In other words, logically, a non-
independent variable “is not” itself in nature, it “is” something else. For example, if ije  is 

a non-independent variable, it “is not” ije  in nature, it “is” ijji uu ,)2/1(,)2/1(  .  And so 

we understand logically that variable-independence is identity of variables, that is, every 
independent variable is or identical to itself. This understanding by logic of variable-
independence is the essence of the  solution to the problem of variable-independence of 
variational theory. 

5.3. Characterization of the New Theory to be Established 
From Sec.3-4 we know that neither Chien’s Theory nor Luo’s Theory solves the 

problem of variable-independence because of the difficulty of inconsistence. To find a 
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solution to the problem, a new theory has to be established, which should be 
characterized by:
A. It must be a mathematical system of logic excluding vagueness and 

misunderstanding because vagueness and misunderstanding lead to contradictions. 
B. The conventional understanding of independence of variables in variational theory 
(see 5.1.1)  has to be excluded.

C. Variable-independence is understood logically as identity of independent variables 
(see Sec.5.2), formalization is an approach to formulate identity of independent 
variables or variable-independence of logic,  and so the coming theory will be a 
formalized theory.

D. Proof of independence of  variables will not be included. 
Chien raised the variable-independence problem by his “High-order Lagrange 

Multiplier Theory”. Behind Chien’s argument is an implied postulate that 
independence of variables must be proved. But any proof needs independence of at 
least one kind of variable so that the inference for the proof  would be practiced. 
Then a question arises: why is such a kind of variable so special that its 
independence needs no proving? No answer exists to this question in Chien’s 
Theory.

E. Concept of constraint will  not be included.
  When an equation is considered as a conventional constraint condition, it means 
that it is required to be satisfied in the variation process of the variational principle 
under discussion, otherwise some contradictions may arise. (A typical example will 
be formally discussed in Sec.5.4 for MPEP.) That is to say, consistency is a more 
fundamental issue than constraint. Even in conventional theories, eliminating a 
conventional constraint  is nothing but an inference operation following the 
inference rules of  variational theory. In other words, a constraint condition  
corresponds to a rule of inference. And so, concept of constraint is unnecessary for 
variational theories, as long as rules of inference, then consistent systems, are 
established. 

F. Consistence of the logic systems of the coming theory must be proved and can be 
proved, and consistency of the logic systems will be formalized.  

To prove consistence of the Axiomatic System of Variation, the formalized
inconsistency equation, or, equivalently, the formalized inconsistency inequality, 
must be formulated, which will be discussed in Sec. 5.4.

G. It is almost definitely predicted that the logic system of the coming theory will be 
incomplete. 

In Luo’s Theory independence of 5 variables is taken for granted, which avoids 
the contradictions caused by “proof”. However,  contradictions may arise when 
complete coverage of variational principles in his paper is pursued by inference of 
reduction (see Sec.4). Chien’s theory is “complete” to cover every variational 
principle of (2.7)-(2.11) at the expense of consistency. And so we predict that the 
coming variational theory will be incomplete, if it is required to be consistent.

5.4. Establishment of Formalized Inconsistency
  According to Kline , Hilbert argued that the “equation” 

                                      01                                                              (5.2)



12

will be formally inferred when a formal logical system is inconsistent [15]. In this sub-
section we establish the formalized inconsistency equation of the form of  (5.2).   

5.4.1. Formalized System 5.4 Suggested for MPEP
(a)Postulates:

P5.4.1. The variational principle, whose functional is (2.7), where  iF  and iP  are 
different from zero.
P5.4.2. Variables, ije  and iu , are conventionally independent.

 (b)Rules of Inference:
R5.4.1. Fundamental Lemma of the calculus of variations [1] (generalized). 
R5.4.2. The rules of operations in the algebraic, differential and variational calculus.

         R5.4.3. Formal substitution.
(c)Definitions 

       D5.4.1. A proof is a logical argument process from P5.4.1-P5.4.2 following R5.4.1-
R5.4.3.

5.4.2. Formalized Inconsistency: Proof 5.4
From P5.4.1 and following R5.4.2 we have (3.20).
From (3.20), P5.4.2 and following R5.4.1, we obtain

                           )(0
)( in

e

eA

ij





    ,                                       (5.3)

    )(0 inF i                                          (5.4)
and

                        )(0 pi sonP   .                                     (5.5)

On the other hand, from P5.4.1,        

  )(0 inF i    .                                       (5.6)
Equations (5.4) and (5.6) are in contradiction to each other.  Formalizing the 
contradiction and following R5.4.3, we substitute (5.4) formally into (5.6) and have

                     )(00 in  ,                                        (5.7)
which is the inconsistency inequality. From (5.7), we have, formally, 
                         )(10 in   ,                                        (5.8)
which is the inconsistency equation.
   On the other hand, from (5.8) we have (5.7). Then (5.7) and (5.8) are equivalent to each 
other because they can be deduced from each other.
   Similarly, we can establish a formalized inconsistency equation on ps .

6. A Quasi-formalized Theory of Variational Calculus in Elasticity[16,17]                     
   Based on A-G  in Sec.5.3, we establish the Quasi-formalized Theory of Variational 
Calculus in elasticity.
   The Quasi-formalized Theory consists of the general definitions, the Axiomatic System 
of Variation,   proofs and theorems of the Axiomatic System of Variation. 

6.1. Definitions      
6.1.1. General Definitions 
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D6.1. (Definition of the Axiomatic System of  Variation)
      The  Axiomatic  System of Variation consists  of  the  definitions  in   the system   in 
Sec.6.1.2,   the non-dimensional functions and equations in Sec.6.2, the well-formed 
functions in Sec.6.3,  the   equation-building  regulations  in Sec.6.4,  all well-formed  
equations  (wfes),  the  postulates  and   their  equations  in  Sec.6.5,  the  rules  of 
inference  in  Sec.6.6,  proofs  and  theorems  in  the  system. 
D6.2. (Definition of Consistency of  an Axiomatic System)
      An axiomatic system is consistent iff  the formalized inconsistency equation
                    )(01 sonandin                             (6.1)
  is not a theorem in the system. 
D6.3. (Definition of Completeness of an Axiomatic System)
      An  axiomatic system  is  complete  iff  every wfe is either a postulate or a theorem in
the system.

D6.4. (Definition of Independence of an Axiomatic System)
   An axiomatic system is independent iff no wfe of   postulate  can be deduced from 
other  wfes of postulates in the system. 

D6.5. (Definition of Proof  of an Axiomatic System)
       A proof of an axiomatic system is an inference process concluded by a theorem 

according to D6.2, D6.3 or D6.4.

6.1.2. Definitions in the Axiomatic System of Variation
D6.6. (Definition of the Formalized Independence of Well-formed Argument Functions)
      The  formalized  independence  of  well-formed   argument   functions is that every 

well-formed argument   function is identical to itself. 
D6.7. (Definition of Proof in the Axiomatic System of Variation )

  A proof in the Axiomatic System of Variation is a finite sequence  of wfes deduced 
from the equations of postulates, following the rules of inference in the system.   

D6.8. (Definition of Provability of Wfes)
      A wfe is provable to be a theorem iff it can be deduced from the equations of  
postulates, following the rules of inference  in the Axiomatic Syetem.

D6.9. (Definition of the Formalized Consistency  Equation)
      Identity

               )(00 sonandin                            (6.2)
is the formalized equation of consistency. 

6.2.  Non-dimensional Functions and Equations 
N6.1. The non-dimensional  Cartesian  coordinate  system )3,2,1( ixi  is established for 

the Axiomatic System of Variation.
N6.2. The bounded and closed 3D-domain  in the Cartesian coordinate system 

established by N6.1  is the volume of the elastic body, and s )( up sss   is the 

finite, closed and piecewise-smooth surface of   .
N6.3. Every function, every equation and every inequality defined in    and on  s  in the 

Axiomatic System of Variation is   dimensionless.
     

6.3. Well-formed Functions
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F6.1. A real number is a well-formed number function. 
F6.2. The continuous  functions, defined in   and on s , possessing continuous first order 

partial derivatives with respect to  )3,2,1( ixi  in   , that is, stress distribution 

functions ij , strain distribution functions ije  and displacement distribution 

functions iu , are the well-formed argument functions.

F6.3. The given, finite and  continuous functions, that is, body-force functions iF   

defined in   , surface-force functions  iP  defined on ps and boundary-displacement 

functions iu  defined on us  , are the well-formed prescribed functions.

F6.4. The continuous energy density function )(eA  in  , possessing continuous partial 

derivatives 
ije

eA


 )(

 in   , is the well-formed energy density function.

F6.5.A function built from the well-formed functions defined in F6.1-6.4, by means of 
algebraic and/or differential operations, is a well-formed derived function.

F6.6. A functional built from the well-formed functions defined in F6.1-6.5, by means of 
integral operation, is a well-formed functional-type function.  

F6.7. No  function is a well-formed function in the system unless it is compelled to be 
one by F6.1-F6.6.

6.4. Regulations for Building Well-formed-equations 
E6.1. An algebraic equation or algebraic inequality of  well-formed functions specified in 

F6.1-6.5 is a wfe. 
E6.2. A differential equation or differential inequality of well-formed functions specified 

in F6.1-6.5 is a wfe.
E6.3. A variational equation built from a well-formed function specified in F6.6 is a wfe.
E6.4. A variational equation transformed from a variational equation specified in E6.3 by 

means of operations following the Rules of Inference is a wfe.
E6.5. No equation is a wfe unless it is compelled to be one by E6.1-E6.4.
   
6.5.  Postulates in the Axiomatic System of Variation
P6.1. A well-formed variational equation of elasticity.
P6.2. The   well-formed differential equations of elasticity.
P6.3. The formalized independence of well-formed argument functions (see D6.6).
P6.4. The formalized consistency equation (see D6.9).

Therefore, the equations of postulates in the system are (by P6.1-P6.4)
  



 duFuueeA iiijjiijij ]),)2/1(,)2/1(()([   

 0)(  
s

dsuun
s

dsuP
up

iijijii                         (6.3)

where iF , iP  and iu are different from zero,

                ),()3,2,1( sonandiniuu ii            (6.4)

                ),()3,2,1,( sonandinjiee ijij       (6.5)

                ),()3,2,1,( sonandinjiijij        (6.6)



15

                ),(00 sonandin                                   (6.7)
and dimensionless equations (2.1), (2.2), (2.3a), (2.4) and (2.5) ((2.1-2.5A) in Sec.6).                 

In the equations above the Einstein’s notations are applied.

6.6.  Rules of  Inference
R6.1.      )()3,2,1,( sonandinjijiij     .       (6.8)

R6.2.    


 du jiij ),(  
s

dsun
s

dsun
up

ijijijij      .                           (6.9)

R6.3. Formalized Fundamental Lemma of the calculus of variations in elasticity:   

If      0)(  
up S

ijji

S

iiiiijijijji dsnKdsuIduHeGF 


,   (6.10)

             )()3,2,1( sonandiniuu ii       ,        (6.11)

            )()3,2,1,( sonandinjiee ijij    ,       (6.12)

and    )()3,2,1,( sonandinjiijij    ,     (6.13)

then                        )()3,2,1,(0 injiFij             ,          (6.14)

                        )()3,2,1,(0 injiGij             ,           (6.15)

                         )()3,2,1(0 iniH i                ,        (6.16)

                          )()3,2,1(0 pi soniI               ,       (6.17)

and                     )()3,2,1(0 ui soniK               ,     (6.18)

                                   
where   jiF ,  jiG , iH , iI , and iK  are continuous functions of )3,2,1( ixi ; the 

Einstein’s notations are applied. 
R6.4. The rules of algebraic and first-order differential operations for wfes specified in 

E6.1-6.2. Substitution including formal substitution is allowed except for the forbidden 
substitution specified in R6.6.

R6.5.The rules of first-order variational and first-order differential operations for wfes 
specified in E6.3-6.4. Substitution is allowed except for the forbidden substitution 
specified in R6.6.

R6.6. Rule of Forbidden Substitution:
    Substituting any of (2.1-2.5A) into wfes specified in E6.3-6.4 is forbidden. 
R6.7.The method of exhaustion.
R6.8. There exists no rule of inference except for R6.1-R6.8.
    
6.7.  Consistency of the Axiomatic System of Variation 
Theorem 6.1.
    The Axiomatic System of Variation defined by D6.1 is consistent.
Proof 6.1. (by the method of exhaustion, R6.7)( see D6.5):
Sub-process 1:

From (6.4-6.6),  (6.1) can  not be deduced.
Example 6.1: 

From  (6.4),
                  )3,2,1(0  iuu ii  .                                         (6.19)
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            Following R6.4, (6.7) is deduced from (6.19).
Sub-process 2:
    From  (2.1-2.5A),  (6.1) can  not be deduced.
    Example 6.2: 

Subtracting  each of  (2.1-2.5A) from itself, (6.7) is deduced following  R6.4. 
Sub-process 3:
    From  (2.1-2.5A) and  (6.4)-(6.6),  (6.1) can  not be deduced.

Example 6.3: 
From  (6.4),

           )3,2,1(,)2/1(,)2/1(  iuu jiji                                 (6.20)

and
          )3,2,1(,)2/1(,)2/1(  iuu ijij   .                                (6.21)

From  (2.2),  
)3,2,1,(0],)2/1(,)2/1[(],)2/1(,)2/1[()(  jiuuuuee ijijjijiijij .

(6.22) 
Substituting  (6.5), (6.20)  and (6.21) into (6.22) , (6.7) in   is deduced.

Sub-process 4:
From (2.1-2.5A) and (6.3)-(6.6),  (6.1) can  not be deduced.
Example 6.4: 
       From  (6.3) and following R6.1, R6.2 and R6.5,   

 





 duFuuee
e

eA
iijijijijjiijijij

ij

]),(),)2/1(,)2/1(()
)(

[(

0)()(  
s

dsnuu
s

dsuPn
up

ijjiiiijij                . (6.23)

From (6.4)-(6.6) and  (6.23) and following R6.3,

         )()3,2,1(0,  iniF ijij              ,       (6.24)

               )()3,2,1,(0,)2/1(,)2/1( injiuue ijjiij  , (6.25)

  )()3,2,1,(0
)(  inji

e

eA
ij

ij





   ,          (6.26)

        )()3,2,1(0 pijij soniPn       ,           (6.27)

           )()3,2,1(0 uii soniuu              .            (6.28)

Subtracting  (6.24)  from (2.1) ,  (6.25)  from (2.2),  (6.26)  from (2.3a) , (6.27) 
from (2.4) and (6.28) from (2.5) respectively, 5 equations  similar to (6.22) are 
obtained. And then  (6.7) is deduced either by R6.4 or by using  (6.4)-(6.6) and R6.4 in 
the same way as Example 6.3.

Sub-process 5:
   From  (2.1-2.5A) and  (6.3)-(6.7),  (6.1) can  not be deduced. 
   Example 6.5: 

Adding (6.7) to any algebraic or differential equation within Sub-process1 to 
Sub-process 4 will not lead to  (6.1).  

Example 6.6: 
Multiplying  any   algebraic or  differential equation  within  Sub-process 1 to
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Sub-process 4  by (6.7 ) will not lead to  (6.1).
   Example 6.7: 

Substituting  (6.7) for  any  algebraic or  differential  equation  within Sub-process 1
to Sub-process 4, or vice versa, will not lead to (6.1).   

       From Sub-process 1 to Sub-process 5,  (6.1) is not a theorem according to D6.8, then 
Theorem 6.1. is proved according to D6.2.

6.8. Incompleteness of the Axiomatic System of Variation 
Theorem 6.2.
The Axiomatic System of Variation defined by D6.1 is incomplete.  

    Proof 6.2. (see D6.5, D6.8):
Variational principles other than (6.3), dimensionless MPEP for example, are not 

theorems in the system. Therefore, the axiomatic system is incomplete according to D6.3.

6.9.  On the Independence of the Axiomatic System of Variation
Theorem 6.3.

  The Axiomatic System of Variation defined by D6.1 is not independent.
Proof 6.3. (see D6.5)

   Equations (6.7) and (2.1-2.5A) are deduced from  (6.3)-(6.6) in Sub-process 4 in 
Sec.6.7, and Theorem 6.3 is proved according to D6.4.

6.10. Minimization of the Axiomatic System of Variation
  Equations (6.4)-(6.6) are included in the equations of postulates of the Axiomatic 
System of Variation because they are explicit  formulations of variable-independence. 
Including (6.4)-(6.7) and (2.1-2.5A) serves the purpose to show compatibility between 
the formalized variable-independence and the equations of (2.1-2.5A) (see Example 6.3 
in Sec. 6.7).  Excluding Eq.(6.4)-(6.7) and (2.1-2.5A) (and P6.2 and P6.4) from the 
equations of postulates will minimize the system and establish the Minimized Axiomatic 
System of Variation, which is a “pure”  (without algebraic and differential equations for 
postulates) variational formulation of the elastic theory, with variable-independence 
postulated by P6.3. 

7. A Formalized Theory of the Variational Calculus in Elasticity [16,17]
The Formalized Theory  consists of the definitions ; the Formal System of Variation;

proofs,  theorems and interpretation of the Formal System of Variation.
7.1.   Definitions
7.1.1. Definitions Concerning the Formal System of Variation
D7.1. (Definition of the Formal System of Variation)
     The Formal System of Variation consists of the symbols in Sec.7.2, the rules of 

formula-building operations in Sec.7.3, the rules of symbol-omitting in Sec.7.4, all 
well-formed formulas (wffs), the axiom in Sec.7.5 , the rules of inference in Sec.7.6,  
proofs and  theorems in the system. 

D7.2.  (Definition of Proof of  Theorems in the  Formal System of Variation)
A proof of theorems in the Formal System of Variation (defined by D7.1) is a finite 

sequence of separate expressions, in which each expression satisfies one of the 
following conditions:
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(a) It is the axiom of the Formal System of Variation, A7.1;
(b) It is inferred from the expressions previous in the sequence, following the rules of 

inference, I7.1-I7.12, in the Formal System of Variation;
(c) The end expression(s) of the sequence is/are the theorem(s) proved in the Formal 

System of Variation.

7.1.2. General Definitions
D7.3.  ( Definition of Consistency of a Formal System)
     A formal system is consistent iff every axiom and every theorem in the system is a 

wff. 
D7.4.  ( Definition of Completeness of a Formal System)
     A formal system is complete iff every wff is an axiom or a theorem in the system.
D7.5. (Definition of Independence of a Formal System)
     A formal system is independent iff no axiom can be inferred from other axioms in 

the system, following the rules of inference in the  system.
D7.6. (Definition of Proof of a Formal System)

      A proof of  a formal  system is an  inference  process concluded by a theorem 
according to D7.3 , D7.4 or D7.5.

7.2. Symbols
  Sym. 7.1. Formula Symbols:
       Oqhwvdptucrefga ,,,,,,,,,,,,,,, 
  Sym. 7.2. Prefix Symbols:
       ,,, kji
  Sym. 7.3. Connective Symbols:

   ,,,),(,
  Sym. 7.4. Variable Symbols:

(A) Symbol-Variables are 1s  and 2s .  Each symbol-variable takes any formula symbol 
as its value. 

(B) Expression-Variables are X  and Y . Each expression-variable takes any expression 
( finite sequence of symbols ) as its value.

(C) Wff (well-formed-formula)-Variables are ),,2,1( nmFm  . Each wff-variable 

takes any wff as its value.
(D) Prefix-Variable is K  , which takes any one among kandji,   as its 

value.

 7.3. Rules of Formula-Building Operations
  B7.1. Every formula symbol is a wff.
  B7.2. If X  is a wff, then
                                                   )(X   ,                                                    (7.1)
                                                XK                                                        (7.2)
            and                              X                                                        (7.3)

are wffs respectively.
  B7.3.  If X  and Y  are wffs respectively, then
                                             YX     ,                                                     (7.4)
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                                             YX      ,                                                     (7.5)
                                            YX                                                          (7.6)

and                               YX                                                            (7.7)
are wffs respectively.

  B7.4. No expression is a wff unless it is compelled to be one by B7.1-B7.3.

7.4. Rules of Symbol-Omitting
O7.1. The dot,   , need not be explicitly mentioned.
O7.2. The outermost parentheses of an expression need not be explicitly 

mentioned.
O7.3. The inner parentheses of
                                        ))(( YX                                                            (7.8)

need not be explicitly mentioned.
O7.4. The parentheses can be omitted by following the priority-order of
  grouping and connection ( given in the priority-down-order in (7.9)):
                                      ,,,),(                                                    (7.9)

7.5.  Axiom of the Formal System of Variation
A7.1.       Ohwhvkpdjfureai  )))()(()())()()(((         (7.10)

7.6.  Rules of Inference
I7.1. Substitution Rule:
          If                            21 FF   ,                                                          (7.11)

then 1F  can be replaced by 2F , another wff, no matter whether  1F  is a wff or a sub-
wff (a part of a wff, which is a wff itself).

I7.2.              nn FFFFFF   2121 )(                         (7.12)

I7.3.              11 FKKF                                                                           (7.13)

I7.4.              122121 )( ssssss                                                           (7.14)

I7.5.              nn KFKFKFFFFK  2121 )(                     (7.15)

I7.6.              )( 2121 nn FFFKKFKFKF                      (7.16)

I7.7.                          Ofu                                                                      (7.17)
                                 Opd                                                                      (7.18)
                                 Owh                                                                     (7.19)
                                 eca                                                                     (7.20)
                                 Ovhvq                                                            (7.21)

I7.8.                         1221 FFFF                                                        (7.22)

I7.9.                        3213231 )( FFFFFFF                                           (7.23)

I7.10.                      11 FOF                                                                  (7.24)
I7.11.                      )()()()( vqkdtjugiri                               (7.25)

I7.12.         If   OhFkdFjeFFuFi  )()()( 54321   ,             (7.26)

                    then        )5,4,3,2,1(  mOFm                                  (7.27)
I7.13. There exists no rule of inference except for I7.1-I7.13.
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7.7.   Proof 7.0.  in the Formal System of Variation (Given Concisely)
        (see D7.2)
 The axiom (from (7.10)):

Ohwhvkpdjfureai  )))()(()())()()(((         (7.28)
 By I7.1 and I7.2,

                    Ohwhvkpdjfureai  ))()(()())()()((          (7.29)
  By I7.1 and I7.3,

                   Ohwhvkpdjfureai  ))()(()())()()((         (7.30)
   By I7.1 and I7.2,
               Ohwhvkpdjfureai  ))()(()())()()((     (7.31)
  By I7.1, I7.4 and (7.20) of  I7.7, 

)()( pddpjfuufrreeeci  
Ohwwhhvvhk  )(                                                      (7.32)

  By I7.1, I7.5, I7.6, I7.7, I7.8, I7.9, I7.10 and I7.11,
))(())()()(( dptjecreufgi  

Ohwvk  ))((                                                                            (7.33) 
  By I7.12,

Ofg    ,                                                         (7.34)
                                           Ore        ,                                                      (7.35) 

                 Oc       ,                                                      (7.36)
                                          Opt        ,                                                       (7.37)

Owv        .                                                       (7.38)

7.8. Consistence of the Formal System of Variation
  Theorem 7.1.
    The Formal System of Variation defined by D7.1 is  consistent.

   Proof 7.1. (see D7.6):
(a) The axiom of the system, (7.10), is a wff (see Sec. 7.5).
(b) A  wff  is  built  by defining  (see B7.1, Sec. 7.3),  deriving  from a wff (see B7.2, 

Sec.7.3) or connecting  two wffs (see B7.3, Sec. 7.3). Therefore, a wff  can  only be  
transformed into  another  wff  following any one of I7.1-I7.11, by which a wff is 
replaced by another wff (see Sec.7.6).  

(c) By I7.12, five wffs are inferred from a wff (see Sec. 7.6).
(d) From (a)-(c) above, every theorem proved in the system is a wff (see D7.2, Sec.7.1).
(e) From (a) and (d),  the  Formal  System  of  Variation  is  consistent  (see D7.3, Sec. 

7.1).

7.9. Incompleteness of the Formal System of Variation
  Theorem 7.2.
    The Formal System of Variation defined by D7.1 is  incomplete.
  Proof 7.2. (see D7.6):

A number of wffs,
   Opdjfuai  ))())(((                                          (7.39)

for example, are not theorems in the system (see D7.2, Sec. 7.1), and so the Formal 
System of Variation is  incomplete according to D7.4, Sec.7.1.
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7.10. Independence of the Formal System of Variation
Theorem 7.3.
 The Formal System of Variation defined by D7.1 is independent.
Proof 7.3. (see D7.6):
  There is only one axiom (7.10) in the system, so Theorem 7.3 is proved according to 
D7.5, Sec.7.1.

7.11. Interpretation of the Formal System of Variation
7.11.1. Interpretation: the Dictionary

          Symbol                    Interpretation 
              a                            )()( ineA

                                          )(  inij

      e                    )( ineij

                  r                   )(,)2/1(,)2/1( inuu ijji 

            f                     )( inF i

                  u                       )( inui   

            p )( pi sonp                        

          d                                 )( pi sonu

      h                                 )( ujij sonn
      q                                   )( ujij sonn                   

                  v                                  )( ui sonu

                  w                                  )( ui sonu
                  g                                   )(,  injij

                  c                                   )( in
e

A

ij


       t                                  )( pjij sonn
                  O                                          0

                   i                                         


d

                  j                                        
ps

ds

                  k                                         
us

ds

                                                           
                                                          

                                                    

                                          
                                          
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                                  )( onSubstitutiofSign
                                          
mF                               ),,2,1(),,( nmuef iijijm 

7.11.2. Interpretation: Rules of Inference
 Rules of Inference       Interpretation

I7.11                 


 duduu ijjiijjiij ),(],)2/1(,)2/1[(

                            dsundsun ijij

ss

ijij

up

)()(                       (7.40)

I7.12                If  


deffuf ijiji  ))()(( 321

                        
up s

jij

s

i dsnfdsuf 0))(()( 54     ,        (7.41)

                   then )5,4,3,2,1(0),,(  muef iijijm      .        (7.42)

7.11.3. Interpretation: Axiom and Theorems in the Formal System of Variation
   The interpretation of the axiom, (7.10), is




duFuueeA iiijjiijijij  )),)2/1(,)2/1(()(((

0))(  
s

dsuunds
s

up
up

iijijii                      .  (7.43) 

           Theorems                               Interpretation
                  (7.34)                                         (2.1)

(7.35)                                         (2.2)
(7.36)                                         (2.3a)
(7.37)                                         (2.4)
(7.38)                                         (2.5)

  
8. Conclusions
(1) Variational theory must be established as a mathematical system of logic, excluding 

vagueness and misunderstanding.
(2)Of a variational theory, consistency of its system of logic is an essential requirement 

and a fundamental topic. 
(3)Chien’s “High-order Lagrange Multiplier Theory”  is inconsistent.
(4)There exist contradictions concerning independence of variables in Luo’s system.
(5)The conventional understanding of variable-independence connotes contradiction
(6) It is suggested in this paper that variable-independence should be understood 

logically as identity of variables.
(7) A solution to the problem of variable-independence is formalization of variational 

theory.
(8) The Axiomatic System of Variation suggested in this paper is consistent, incomplete 

and not independent.
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(9) The Formal System of Variation  suggested in this paper is consistent,  incomplete 
and independent.
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