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The formula is derived for the electric force inside a uniformly charged spherical body, as 

well as for the Coulomb force between the charged bodies from the standpoint of the model of 

the vacuum field with charged particles. The parameters of the fluxes of charged particles are 

estimated, including the energy density, energy flux and cross section of interaction with the 

charged matter. The interaction cross section is almost exactly equal to the geometric cross 

section of nucleons and becomes equal to the cross section of interaction of gravitons with the 

matter, if it is assumed that the ratio of the energy density of graviton fluxes to the energy 

density of the charged particles in the vacuum field is equal to the ratio of masses of the 

proton and the electron. In this case, the energy density of gravitons in the Le Sage’s 

gravitation model is expressed in terms of the strong gravitational constant, which establishes 

connection between the ordinary gravitation at the level of stars and the strong gravitation at 

the atomic-nucleon level of matter. The relation is derived, which connects the body charge 

and the rate of emission from the body of the charged particles of the vacuum field, which 

interacted with the matter and transferred their momentum to the body. The charge to mass 

ratio is determined for the charged particles that make up photons and the charged component 

of the gravitational field. These particles are identified as praons, while the praon level of 

matter is considered a lower level relative to the nucleon level of matter. Praons are related to 

nucleons the same way as nucleons are related to neutron stars. Based on the theory of infinite 

nesting of matter a conclusion is made that the charged particles of the vacuum field are 

generated at all levels of matter by the densest objects, such as nucleons and neutron stars. 
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1. Introduction 

The similarity of Maxwell equations for the electromagnetic field, on the one hand, and the 

Heaviside equations for the gravitational field in the Lorentz-invariant theory of gravitation 

[1-2], on the other hand, as well as the similarity of formulas for the Coulomb force and the 

Newton force implies a large probability that the same physical mechanism is responsible for 

that. Earlier in [1] and [3], we derived the formula for the Newton's law of universal 

gravitation and the expression of the gravitational constant in terms of the graviton field 

parameters, using the modernized Le Sage's theory of gravitation. In addition, in [4] we found 

the expression for the body mass as the function of luminosity of the gravitons interacting 

with the body, as well as the expression for the strength of the gravitational field inside the 

body. 

Now we intend to derive the formula for the Coulomb force between the charged bodies 

and to specify the parameters of the vacuum field, consisting of the graviton field and the 

field of charged particles. In the modernized Le Sage's theory of gravitation the all-

permeating fluxes of the vacuum field particles consist of neutrinos, photons and charged 

particles, the properties of which are similar to high-energy cosmic rays. The presence of 

charged particles in the dynamic vacuum field allows us to describe the electrostatic forces 

and as a result to justify the electromagnetic phenomena. 

 

2. The interaction picture 

To understand the electric interaction of the bodies at a distance from each other, consider 

Figure 1 which shows the motion of small charged particles of the vacuum field near the two 

bodies, one of which is neutral and the other is positively charged. As can be seen, both 

positive and negative particles act symmetrically on the positively charged body, which does 
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not result in emerging of any additional force in comparison with the force of gravitation. The 

same applies to the second neutral body. 

 

 

Fig. 1. The lines of motion of the small particles of the vacuum field, 

which are a) positively charged, b) negatively charged, near two 

bodies one of which is neutral and the other is positively charged.  

Figure 2 a) shows that the positive particles push the negatively charged body to the left, 

and Figure 2 b) shows that the negative particles push the positively charged body to the right 

(when the smallest particles pass through the body similarly to gravitons, they transfer their 

momentum to them). Consequently, both bodies will be attracted to each other. 
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Fig. 2. The lines of motion of the small particles of the vacuum 

field which are a) positively charged, b) negatively charged, near 

two bodies, one of which is negatively charged and the other is 

positively charged.  

Figure 3 shows the lines of motion of the negative particles of the vacuum field near two 

positively charged bodies. Both bodies attract the negative particles and obtain an additional 

momentum from them, which leads to repulsion of bodies. The motion of the positive 

particles of the vacuum field in Figure 3 is not shown. It is assumed that they are repelled 

from the bodies and therefore their interaction with them is weak. 

 

 

Fig. 3. The lines of motion of the small particles of the vacuum field, 

which are negatively charged, near two positively charged bodies.  
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For two negatively charged bodies the interaction is similar to the one shown in Figure 3, 

only it is necessary to replace the signs of all charges. This results in the repulsion of similarly 

charged bodies. The described above picture can be found in [5]. The common in all the 

Figures is the fact that depending on the sign of the charge of two bodies the number of 

charged particles falling on the body changes so that after calculating the momentum 

transferred from these particles the electric force with required direction emerges. Thus, we 

reduce the interaction between the charges at a distance to the interaction by means of the 

charged particles of the vacuum field. 

 

3. The Coulomb force 

To determine the expression for the electric force we use the approach applied in [3-4]. 

Let’s assume that the fluence rate of the charged particles of the vacuum field is defined by 

idealized spherical distribution of the following form: 

 

0
0q

dN
B

dtd dA
 .                                                          (1) 

 

According to (1) we suggest that some detector per unit time dt  measures the charged 

particles of the vacuum field in the amount 0dN  that fall on the detector from the solid angle 

d  per unit surface area dA  perpendicularly to this surface. 

We will assume that inside the matter of each charged body an exponential change in the 

number of charged particles of the vacuum field takes place, as the flux of these particles 

travels some path x  in this matter: 

 

dB B dx  ,                       0 exp( )qB B x  ,                                    (2) 
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where   is the cross section of interaction of the moving charged particles with the matter, 

  is the concentration of charges associated with the matter. 

 

Denoting the positive elementary charge by e , for the absolute values of charges and the 

area A  of ball segments in Figure 4 we obtain the following: 

 

1 1 1Q e x A ,                 2 2 2Q e x A ,                

2

2

R
A 

 
  

 
.                    (3) 

 

 

 

Fig.4. Charges 1Q  and 2Q  in the form of ball segments with different 

thickness and charge density, located at the distance R  from each other. 

  

 

The detector is located at point 0 in the middle between the two segments. For it, each 

segment is seen at the same solid angle   at the distance 
2

R
, while the transverse areas of the 

segments are the same and equal A . It means that before we apply further arguments for the 

two large bodies, we should cut these bodies into segments and then calculate the total electric 

force between all the possible pairs of segments by means of vector summation of particular 

forces.  

Let us first consider the case when the charge 1Q  is positive and the charge 2Q  is negative. 

Comparison with Figure 2 shows that interaction leads to attraction due to absorbing and 
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scattering of charged particles falling on the charges and passing through them. As a first 

approximation we can assume that the main contribution is made by the flux of negatively 

charged particles falling on the charge 1Q  from the left and the flux of positively charged 

particles falling on the charge 2Q  from the right. 

Decrease of the flux of charged particles on the left side after passing the first segment in 

Figure 4 according to (2) depends on the thickness of this segment and on the concentration of 

charge:  

 

1 0 1 1exp( )qB B x  . 

 

After that the flux of charged particles passes through the second segment with further 

decrease of the flux:  

 

2 1 2 2exp( )B B x  . 

 

If qp  is the mean momentum of one charged particle in the flux of particles, then the force 

acting on the second segment from the left, taking into account (1) is equal to: 

 

   1 1 2 2 2 0 1 1( ) 1 exp( ) expq q qF p A B B p A x B x         . 

 

Decrease of the flux of charged particles, passing through the second segment from the 

right side, and the force from this side are, respectively: 

 

3 0 2 2exp ( )qB B x  ,         2 0 3 2 2 0( ) 1 exp( )q q q qF p A B B p A x B       . 
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For the force of electrical action on the second segment we find a symmetrical expression, 

which is equal by its absolute value to the force of electrical action on the first segment: 

 

   2 1 2 2 0 1 11 exp( ) 1 exp( )q q qF F F p A x B x         . 

 

Expanding the exponents in the linear approximation by the rule exp( ) 1    , taking 

into account (3), we obtain for the force of attraction between two oppositely charged 

segments the following: 

 

2

0 1 22

0 2 2 1 1 2 2

4 q q

q q q

p B Q Q
F p B A x x

e R


     ,         

2

0 1 2

2 3

4 q q

q

p B Q Q

e R




R
F .             (4) 

 

In (4) the force qF  is directed oppositely to the vector R  of the distance from the first 

segment to the second segment, since the charge 2Q  is negative. 

According to the Coulomb's law, the formula for the electric force between two charged 

bodies is as follows: 

 

1 2

3

04
q

Q Q

R


R
F .                                                           (5) 

 

Comparing the values of the forces in (4) and (5), we arrive at the expression for the 

vacuum permittivity in terms of the parameters of charged particles fluxes in case of idealized 

spherical distribution: 
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2

0 2

016 q q

e

p B


 
 .                                                       (6) 

 

The vacuum permittivity in (6) depends on the cross section   of interaction of charged 

particles fluxes with the matter, on the average momentum of one charged particle qp , on the 

fluence rate 0qB  and on the elementary charge e . 

From the expression for the force we determine the electric field strength of one charge at 

the place of the second charge: 

 

1

3

2 04

q Q

Q R
 

F R
E .                                                      (7) 

 

We will assume now that the charge 2Q  in Figure 4 is positive like the charge 1Q . This 

situation corresponds to Figure 3, from which it follows that after the passing the charge 1Q  

the flux of charged particles effectively increases before falling on the charge 2Q . For the flux 

of particles moving from the charge 2Q  and falling on the charge 1Q  the situation is 

symmetric. In order to take into account the effect of increasing of the flux of charged 

particles, we will introduce an additional coefficient  . Then the flux of charged particles 

from the left side after passing the first segment in Figure 4, taking into account (2), changes 

to the value: 

 

 1 0 1 1exp ( )qB B x    . 

 

When passing through the second segment the flux decreases: 
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2 1 2 2exp( )B B x  . 

 

The force acting on the second segment from the left, taking into account (1), is equal to: 

 

   1 1 2 2 2 0 1 1( ) 1 exp( ) exp ( )q q qF p A B B p A x B x           . 

 

For the flux of charged particles passing through the second segment from the right and the 

force from this side we obtain, respectively: 

 

3 0 2 2exp ( )qB B x  ,         2 0 3 2 2 0( ) 1 exp( )q q q qF p A B B p A x B       . 

 

For the force of electrical action on the second segment we obtain: 

 

   1 2 2 2 0 1 11 exp( ) exp ( ) 1q q qF F F p A x B x             . 

 

In this expression, we will expand the exponent and use (3): 

 

0 1 2

0 2 2 1 1 2 2

4 ( )
( )

q q

q q q

p B Q Q
F p AB x x

e R

  
    


   .                        (8) 

 

The repulsion force (8) after changing of the sign of the charge 2Q  must be equal by its 

magnitude to the attraction force in (4). For this the following condition must hold: 2  . 

There is a way to prove this relation. To do this, we should consider the situation in Figure 3, 

estimate the fluxes of charged particles from all sides and their interaction with the charged 
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bodies, so that we could determine how much these fluxes increase when falling on the bodies 

as compared to the situation in Figure 1. We will return to this issue again in Section 6. 

In Figure (1) we see that if one of the bodies has no charge, then the charged particles of 

the vacuum field do not interact with this body electrically. They pass through it almost 

freely, except for the gravitational action. As a result, between the charged and uncharged 

bodies there will be only the force of gravitational attraction. 

 

4. The electric field strength inside the ball 

In order to estimate the field inside a uniform ball it is more convenient to proceed from 

spherical distribution (1) to cubic distribution in the form of a mixed derivative for the flux of 

charged particles of the vacuum field directed in one way: 

 

0
0q

dN
D

dtdA
 ,                                                             (9) 

 

where the fluence rate 0qD  indicates the number of charged particles 0dN , that during time 

dt  fell on the area dA  of one of the cube faces, limiting the volume under consideration, 

which is perpendicular to the flux. 

 

Figure 5 shows the section of a uniform charged ball with a radius a , inside which there is 

a small test body in form of a ball with a radius b . 
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Fig.5. The small ball is at a distance r  from the center of the large ball. 

  

The fluxes of charged particles of the vacuum field move along the paths 1, 2, 3, as well as 

other paths, passing the section of the small ball, which is at a distance r  from the center of 

the large ball. If we replace the small ball with the cube of the same size, then in case of 

idealized cubic distribution it is enough to consider the vertical fluxes along the path 2. The 

fluxes of charged particles passing through the other faces of the small cube will be 

symmetrical and will not influence the electric force. This means that with this approach we 

will take into account the fluxes along inclined paths 1 and 3 not directly, but indirectly. All 

these fluxes in case of vector summation will give the force, acting on the small ball and 

should be added to the force, calculated for path 2.  

Let the volume of the small ball be equal to the volume of some cube. Then for the volume 

of a cube with an edge s  and for the absolute value of charge q  of this cube we obtain the 

relations: 

 

3
3 4

3

b
s


 ,                              3

bq e s ,                                    (10) 

 

2 

1 
3 

r 
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where b  is the concentration of charge in the small ball. 

 

Distribution (9) replaces the actual distribution of the charged particles of the vacuum field 

in space with the idealized cubic distribution, when only six fluxes of charged particles fall on 

the given cubic volume perpendicularly to the faces of the cube. 

By analogy with (2) we can write the dependence of the fluence rate of the charged 

particles of the vacuum field on the distance traveled in the matter: 

 

dD D dx  ,                              0 exp( )qD D x  .                               (11) 

 

Let us first assume the charge q  of the small ball in Figure 5 as negative and the charge of 

the large ball as positive. 

The flux of charged particles falling from above travels the path 
2

s
a r   in the large ball 

with the concentration of charge a  in its matter, and reaches the small cube, with which we 

replaced the small ball. According to (11) at this point the fluence rate decreases to the value: 

 

1 0 exp
2

q a

s
D D a r

  
     

  
. 

 

Then the flux passes through the small cube with concentration of charge b  and decreases 

again:  

 

2 1exp( )bD D s  . 
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The force from this flux of charged particles is proportional to the square of the face of the 

small cube and to the number of charged particles, which transferred their momentum per 

time unit to the cube matter:  

 

 2 2

1 1 2 0( ) 1 exp( ) exp
2

q q b q a

s
F p s D D p s s D a r 

  
         

  
.             (12) 

 

On the lower side of the large ball the flux of charged particles first passes the path 

2

s
a r   to a small cube and then passes through the cube:  

 

3 0 exp
2

q a

s
D D a r

  
     

  
,                  4 3exp( )bD D s  . 

 

The force acting on the small cube from this side equals: 

 

 2 2

2 3 4 0( ) 1 exp( ) exp
2

q q b q a

s
F p s D D p s s D a r 

  
         

  
.             (13) 

 

The total force is the difference between the forces (12) and (13): 

 

 2

1 2 01 exp( ) exp exp .
2 2

q q b q a a

s s
F F F p s s D a r a r  

       
                  

       
 

 

Since exponents in this expression are small enough, the exponents can be expanded in the 

small parameter by the rule: exp( ) 1    . With this in mind, we obtain: 
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2 3

02q q q b aF p D s r   . 

 

In this expression, we will take into account that the charge density of the large ball is 

given by the formula: q ae  , and will use (10): 

 

2

0

2

2 q q q

q

q p D r
F

e

 
 ,                      

2

0

2

2 q q q

q

q p D

e

 


r
F . 

 

The force qF  acts on the small ball with the negative charge q  in Figure 5 so that the force 

is directed toward the center of the large ball and oppositely to the radius vector r  from the 

center of the large ball to the small ball. By definition, the electric field strength is the ratio of 

the force, acting on the test body, to the charge of the test body. Then the vector of the electric 

field strength inside the large ball will be: 

 

2

0

2

2q q q qp D

q e

 
 

F r
E .                                               (14) 

 

In electrostatics, the vector of the electric field strength inside a uniform charged ball is 

determined by the formula: 

 

03

q




r
E .                                                           (15) 

 

From comparison of (14) and (15) we find the expression of the vacuum permittivity in 

terms of the parameters of charged particles fluxes in the cubic distribution approximation:  
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2

0 2

06 q q

e

p D



 .                                                        (16) 

 

The difference between the used cubic (9) and spherical (1) distributions leads to the fact 

that the formulas for vacuum permittivity (16) and (6) differ by a numerical factor. 

If the small ball in Figure 5 has not a negative charge but a positive charge q , then its 

interaction with the charge of the large ball should be considered in view of Figure 3 for the 

interaction of two positive charges. It means that it is necessary to introduce an additional 

coefficient   in order to take into account the effect of increasing of the flux of charged 

particles. 

As a result, the fluence rates 1D  and 2D  and the force (12) from the flux of charged 

particles falling from above on the small cube, by which we replaced the small ball, will 

change and be equal to: 

 

1 0 exp ( )
2

q a

s
D D a r  

  
     

  
,         2 1exp( )bD D s  , 

 

 2 2

1 1 2 0( ) 1 exp( ) exp ( )
2

q q b q a

s
F p s D D p s s D a r   

  
         

  
.             (17) 

 

Similarly, at the lower side of the large ball for the fluence rate and the force, instead of 

(13), we have: 

 

3 0 exp ( )
2

q a

s
D D a r  

  
     

  
,                  4 3exp( )bD D s  , 
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 2 2

2 3 4 0( ) 1 exp( ) exp ( )
2

q q b q a

s
F p s D D p s s D a r   

  
         

  
.          (18) 

 

The total force equals the difference between the forces (18) and (17): 

 

 

2 1

2

01 exp ( ) exp ( ) exp ( ) .
2 2

q

q b q a a

F F F

s s
p s s D a r a r      

  

       
                

       

 

 

Expanding the exponents by the rule: exp( ) 1   , we find: 

 

3

02 ( )q q q b aF p D s r      . 

 

Let us assume that the charge density of the large ball is given by the formula: q ae  , 

and for the coefficient   the relation holds: 2  , which was found in the previous section. 

Then, with regard to (10), we obtain: 

 

2

02 3

0 2

2
2

q q q

q q q b a

p D q r
F p D s r

e

 
    . 

 

The force qF  is directed radially from the center of the large ball, and the expression for 

this force after dividing by the charge q  leads to the electric field strength (14). 

 

5. The parameters of the fluxes of charged particle of the vacuum field 

We will estimate the energy density for cubic distribution of charged particles fluxes of 

vacuum field in space. Suppose there is a cube with an edge s , into which charged particles 
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fly from six sides perpendicularly to the faces of the cube. The speed of charged particles is 

assumed to be equal to the speed of light, so that in the time 
s

c
 the cube will be completely 

filled. In view of distribution (9) the number of charged particles in the cube will be: 

3

06
c

s D
N

c
 . If the energy of one charged particle is q qE p c ,  then with the help of (16) for 

the energy density of charged particles of vacuum field we find: 

 

2

03 2

0

6
q c

cq q q

E N e
p D

s


 
   .                                           (19) 

 

Now we will use the spherical distribution (1) to estimate the energy density of charged 

particles of vacuum field. An empty sphere with radius R  can be filled with charged particles 

in the time 
2R

c
, if the graviton fluxes are directed radially and correspond to the full solid 

angle 4 . The number of charged particles inside the sphere will equal 
08 q

s

ARB
N

c


 . 

Multiplying this number by the energy of one charged particle and dividing by the sphere’s 

volume we can find the energy density. In view of (6) and the condition 
24A R , we obtain: 

 

2

03 2

0

3 3
24

4 2

q s

sq q q

E N e
p B

R
 

  
   .                                        (20) 

 

The energy density (20) with spherical distribution is 3/2 times greater than with cubic 

distribution (19), which emphasizes that our estimates are approximate due to the use of two 

idealized distributions.  
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Earlier in [4] we have applied the concept of the graviton field to calculate the Newton’s 

gravitational force between two bodies and the gravitational constant. This allowed us to 

estimate the energy density of the graviton field for cubic distribution and the rate of the 

energy flux of the graviton field in one direction: 
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 ,                             (21) 
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 , 

 

here g gE p c  is the average energy of one graviton, gp is the average momentum of one 

graviton, 0D  is the number of gravitons falling per unit time on unit area from one of the six 

spatial directions in cubic distribution, 

3

06
c

s D
N

c
 , G  is the gravitational constant, nM  is 

the mass of one nucleon of the matter, 
505.6 10   m

2
 is the cross section of interaction of 

gravitons and the matter. 

 

The energy density c  in (21) is associated with the gravitational constant G  and with 

gravitation at the level of nucleons. Similarly, the energy density of the charged particles of 

the vacuum field cq  in (19) is associated with the electromagnetic action of the field on each 

elementary charge e of the matter. 

Further we will need the similarity coefficients, with the help of which in the theory of 

infinite nesting of matter [1], [5], [6] we will calculate the physical quantities inherent in each 

particular level of matter. As the typical parameters of a neutron star we will take the mass 

equal to 1.35 Solar mass or 
302.7 10sM   kg and the stellar radius equal to 12sR   km. 
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Dividing the mass of the neutron star by the proton mass pM , we find the coefficient of 

similarity in mass: 
571.62 10s

p

M

M
    . Similarly, we calculate the coefficient of similarity 

in size as the ratio of the stellar radius to the proton radius: 
191.4 10s

p

R
P

R
   , here the 

quantity 168.73 10pR   m in the self-consistent model of the proton [7] was used.  

The coefficient of similarity in speed equals the ratio of the characteristic speeds of the 

matter inside the star and the proton, respectively. For the star the characteristic speed sC  is 

calculated from the energy equality from the standpoint of the general principle of 

equivalence of mass and energy, generalized with respect to the absolute value of the total 

energy to any space objects:  
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R
 ,                         76.8 10

2

s
s

s

kGM
C

R
    m/s. 

 

Similarly, we find for the proton the equality of the characteristic speed of its matter and 

the speed of light: 

 

82.99 10
2

p

p

p

k ΓM
C c

R
     m/s, 

 

while 
2

29

0

1.514 10
4 p e

e
Γ =

M M
  m

3
·kg

-1
·s

-2
 is the strong gravitational constant, 

calculated from the equality of electric and gravitational forces in the hydrogen atom, 0  is 
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the vacuum permittivity, eM  is the electron mass and according to [7] for the proton 

0.62k  . Hence, the coefficient of similarity in speed is equal to: 0.23s

p

C
S

C
  . 

 

As it was shown in [1], the ratio of the absolute value of strong gravitation energy density 

to the electromagnetic energy density of the proton is equal to the ratio of the proton mass to 

the electron mass 
p

e

M

M
. Indeed, for the energy of the fields and their ratios, in view of the 

definition of the strong gravitational constant Γ , we have: 

2

p

g

k ΓM
E

R
 ,  

2

04
e

ke
E

R
 ,  

2

0

2

4g p p

e e

E ΓM M

E e M


  . We believe that the same ratio exists for the energy densities of 

graviton field and charged particles of the vacuum field, which allows us to estimate the 

energy density of charged particles of the vacuum field: 

 

324 10e
cq c

p

M

M
     J/m

3
.                                            (22) 

 

Let us substitute (22) into (19), using the value of c  from (21), and take into account the 

proximity of the proton mass and the average mass of a nucleon p nM M , as well as the 

definition of the strong gravitational constant in the form 
2

04 p e

e
Γ =

M M
. This gives an 

estimate of the cross section of interaction of the charged particles of the vacuum field with 

the charged matter: 
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This cross section has a value that almost exactly coincides with the geometrical cross 

section of a nucleon and significantly exceeds the cross section 
505.6 10   m

2
 of interaction 

of gravitons with the matter. In order to find the significant difference between   and  , we 

will express c  from (22), use cq  from (19) and take into account the definition of Γ : 
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   .                                        (24) 

 

From comparison of (24) and (21), provided that p nM M , it follows that if in (21) we 

pass from the cross section   to the cross section  , then at the same time it is necessary to 

substitute the gravitational constant G  with the strong gravitational constant Γ . In (24) the 

energy density c  of the graviton field at the level of nucleons is fully expressed in terms of 

the parameters of the nucleon level of matter. Similarly, in (19) the energy density cq  of the 

charged particles of the vacuum field is expressed in terms of the parameters of the nucleon 

level of matter. In this case, both in (19) and (24) the same cross section   of interaction of 

the vacuum field particles with the matter consisting of nucleons is used. 

By analogy with (24) for the graviton field at the stellar level we can write: 
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If in this expression we shall consider the following relations in accordance with the 

dimensional analysis, coefficients of similarity and (24): 

 

2PS
G = Γ


,        s pM M ,        

2

s P  , 

 

then we obtain the relation 
2

34

3
2.3 10s c

S

P


     J/m

3
, in which the energy density of 

graviton field at the stellar level s , needed to keep the matter in neutron stars, linked to the 

energy density c . Since the energy density c  is required for the integrity of the nucleons in 

the field of strong gravitation, then c s  . 

 

In view of (16), (19), (22) and the relation q qE p c , for the rate of the energy flux of 

charged particles of the vacuum field in one direction we find: 
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 .                              (25) 

 

Due to the fact that the above-mentioned energy density cq  of charged particles of the 

vacuum field is less than the energy density c  of graviton field in (21), the rate of the energy 

flux of charged particles of the vacuum field fqP  is less than the rate the energy flux of the 

graviton field fP . 

 

6. The estimates of forces and energies 
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In [1] and [5] the assumption is made that some neutron stars – magnetars can have a 

positive electric charge of up to 185.5 10sQ eS P    C, where e  is the elementary 

electric charge and the similarity coefficients are used in accordance with the dimensional 

analysis. 

 The proton electric energy on the surface of the charged magnetar will reach 

5

0

6.6 10
4

s
pe

s

eQ
E

R
   J  or 

244 10 eV. The corresponding electric force will be equal to 

2

0

55
4

s
pe

s

eQ
F

R
   N. It is assumed that it is precisely the electrical energy in the magnetar 

field that is the energy source of high energy cosmic rays. 

For the absolute value of the gravitational energy of the proton on the surface of the 

magnetar similarly we have: 112.5 10
p s

pg

s

GM M
E

R

    J. This energy and the gravitational 

force, associated with it, are clearly not enough to keep the proton, on which the repulsive 

force is acting from the entire charge of the magnetar. However the magnetar looks like a 

huge atomic nucleus consisting of a number of closely-spaced nucleons. Between nucleons 

there is strong interaction, which holds them together. In the gravitational model of strong 

interaction [5] the idea of strong gravitation is used to describe the strong interaction. The 

nucleons in the atomic nuclei are attracted to each other by strong gravitation and repel from 

each other by means of the torsion field, which arises from the rapid rotation of the nucleons. 

According to the Lorentz-invariant theory of gravitation [1-2], the torsion field arises 

similarly to the magnetic field in electromagnetism, and in the general theory of relativity it 

corresponds to the gravitomagnetic field. The balance of attractive and repulsive forces, 

arising from strong gravitation, can be responsible for the integrity of the atomic nuclei, as 

well as for the integrity of the charged neutron star. 
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We did the estimates of forces and energies in the atomic nuclei in [5] and [8]. For 

example, the nickel nucleus 
62

28 Ni  consists of 62A   nucleons, among which there are 28 

protons and 34 neutrons. The mass of this nucleus is 
251.028 10NM   kg, and the radius is 

obtained from experiments on the scattering of electrons by the formula: 

1 3 15

0 4.9 10NR R A    m, where 
15

0 1.23 10R   m. Based on these data we will estimate the 

force, acting from the nucleus on the proton located on the nucleus surface, with the help of 

strong gravitation: 6

2
1 10

p N

pN

N

ΓM M
F

R
   N.  

The surface of the magnetar as a neutron star apparently consists of the nuclei of such 

elements as iron, nickel and heavier nuclei, since their binding energy per nucleon is 

maximum. If the proton was near one of these nuclei on the magnetar surface, the force p NF  

would keep the proton, acting against the force of electrical repulsion 55peF  N from the 

magnetar charge. But the concentration of nuclei on the stellar surface is such that the proton 

on the average will be located somewhere between the nuclei at a distance r  from them.  

To keep the proton the condition 
2

p N

p pe

ΓM M
F F

r
   must hold, which implies that 

137 10r   m. For a cube with the edge 2r , at the corners of which there are 8 nuclei 
62

28 Ni , 

and the proton is in the center of the cube, the matter  density is equal to 

11

3
3 10NM

r
    kg/m

3
. The matter density on the magnetar surface must exceed this value, 

so that the condition of stability with respect to electric forces is satisfied. On the other hand, 

the estimates in [9] of the matter density in the crust of the neutron star imply that at a density 

of 
112.7 10  kg/m

3
 and more the nuclei 

62

28 Ni  begin to decay. Consequently, heavier nuclei 

must prevail in the magnetar crust, in particular, a typical nucleus according to [9] is 
105

35 Br . 

From these calculations it follows that the magnetar charge is almost the maximum charge 
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that the star can have without loss of its integrity. And the main contribution into the stability 

of a star is made by not ordinary but strong gravitation, acting at the level of atomic nuclei. 

With the help of the similarity coefficients we can calculate the mass, radius and charge of 

the praon – the particle, which relates to the proton, as the proton relates to the magnetar: 

841 10
p

pr

M
m



   kg, 
356.2 10

p

pr

R
r

P

   m, 574.6 10pr

e
q

S P

   C. If the praon is 

located at the surface of the proton, its electrical energy and gravitational energy in the strong 

gravitational field will be equal: 51
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   J, 672.9 10
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p
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E

R

   J. 

The ratio of these energies is the same as the ratio of the electric energy of the proton at the 

surface of the magnetar to the gravitational energy of this proton in the gravitational field of 

the magnetar. In the substantial model of the proton and neutron, presented in [5], it is 

assumed that the nucleons consist of neutral and charged praons, just as neutron stars consist 

of nucleons. In addition, by analogy with the composition of cosmic rays, consisting mainly 

of relativistic protons, we can assume that the charged component of the vacuum field can 

consist of praons accelerated by positively charged atomic nuclei up to high energies. 

At the present time cosmic rays are registered with energies up to 
196 10rE   eV or 9.6 J 

per nucleon. Assuming that this is the energy of the accelerated proton, we will divide it by 

the coefficient of similarity in energy and will find the corresponding energy of the praon: 

55

2
1 10r

pr

E
E

S

   J. Equating this energy to the energy qE  of a charged particle of the 

vacuum field, we can estimate the concentration of these charged particles as the 

concentration of relativistically moving praons. In view of (19) and (22) we obtain: 
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Multiplying this concentration of charged particles by the charge of one praon prq  and the 

speed of light, we can estimate the density of the current in the vacuum in one direction, 

which arises from the flux of positively charged praons in one direction at cubic distribution: 

 

395.5 10pr prj n q c    A/m
2
 . 

 

Beside the current density j , we should expect another similar current density j  in the 

same direction, which arises from the flux of negatively charged praons. This should ensure a 

certain degree of vacuum electroneutrality and existence of electrical forces of repulsion and 

attraction. 

Now we will consider the question of neutron star’s matter permeability for gravitons and 

charged particles of the vacuum field, respectively. The fluence rates from a unit solid angle 

similarly to (2) have the form: 

 

0 exp( )B B n x  ,                 0 exp( )q qB B x  . 

 

If the neutron star has a radius of 12 km and a mass of 1.35 solar masses, then the average 

concentration of nucleons will equal 
44

3

3
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s

n s

M
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M R
   m

-3
. The average concentration 

of the positive charge in the magnetar is 
24

3

3
4.7 10

4

s

s

Q

eR



   m

-3
. Assuming that 

2 24sx R  km, for the exponents in view of (21) and (23) we find: 0.3n x  , 

0.007x  . It follows that if we put three neutron stars in the way of the flux of gravitons, 

the flux will reduce approximately by a factor of ne , where 2.71828...ne  is the base of the 
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natural logarithm. But for the flux of charged particles of the vacuum field in order to reduce 

it noticeably we need to put in a line about 140 magnetars. 

This difference in fluxes allows us to explain the saturation effect of the specific binding 

energy, when the nuclear binding energy per nucleon, depending on the number of nucleons 

in nuclei, first increases, reaching a maximum of 8.79 MeV per nucleon for the nucleus 
62

28 Ni , 

and then begins to decrease. For light nuclei the increase in the specific energy agrees well 

with the increase of the specific gravitational energy of the nucleus in the strong gravitational 

field, when the energy increases in direct proportion to the square of mass and in inverse 

proportion to the radius of the nucleus. The saturation effect comes into play in the range of 

17 to 23 nucleons, forming the nucleus. Besides, adding a new nucleon to the nucleus 

increases the energy not proportionally to the square of mass, but to a lesser extent. This is 

due to the fact that gravitons of strong gravitation cannot permeate the nucleus with a lot of 

nucleons, as is evident from the exponent. Each new nucleon is simply pressed to the nucleus 

from the outside by the strong gravitation, until for the large nuclei this force reaches the 

maximum, conditioned by the pressure of the graviton flux. However, the charged particles of 

the vacuum field in these conditions have almost 50 times larger path length, and therefore the 

positive electrical energy of the nucleus’ protons further decreases the negative gravitational 

energy of the nucleus, making the main contribution into the observed decrease in the specific 

binding energy of massive nuclei. 

Earlier in [3] we estimated the maximum force between two stellar objects: 

 

4
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m 2
2 10

16

c
F

k G
    N, 

 

where 0.6k   for the case of uniform density of each object, and it is assumed that the 

graviton fluxes are fully retained by these objects, which are located close to each other. 
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A similar expression for the maximum force at the nucleon level of matter, after replacing 

the gravitational constant by the strong gravitational constant, in view of the coefficient of 

similarity in speed 0.23S   has the form: 

 

4
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m 2 4
5 10
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k S Γ
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We should note that the corresponding ratio of the gravitational energy and the force 

between two protons to their electrostatic energy and force is equal to the ratio of the proton 

mass to the electron mass. Indeed, for the forces and their ratios in view of the definition of 

the strong gravitational constant 
2

04 p e

e
Γ =

M M
, we have: 
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4g p p

e e

F ΓM M

F e M


  . We can explain this by the fact that in the expression for qB  the 

exponent for the flux of charged particles of the vacuum field in the magnetar and hence in 

the proton is less than the corresponding exponent for the flux of gravitons in the expression 

for B . The gravitons are retained in the proton matter more than the charged particles of the 

vacuum field, and therefore the gravitational force is greater than the electric force. 

After passing from dense and charged objects such as magnetars and protons to the bodies 

surrounding us the situation with the ratio of forces is changing. The gravitational force 

decreases rapidly with decreasing of the mass of bodies, and we can hardly influence it. 

However, by changing the charges of bodies we can change their electrical interaction, so that 

the electric force can be many times greater than the gravitational force between these bodies. 

This can be seen from the ratio of the electric and gravitational forces for two identical bodies 
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with the mass m  and charge q , which is proportional to the squared charge: 

2

2

04

e

g

F q

F Gm
 . 

Let us take for example two iron balls with the radius 5r  cm each. With the density of 

iron 7874 kg/m
3
 it gives the mass of each ball of approximately 4.1 kg. For the equality of the 

gravitational and electrical forces it is enough to charge the balls up to 

10

04 3.5 10q m G    C, so that the potential of each ball reaches the value 

0

63
4

q

r



  V. Let us estimate the electrical energy of the praon, flying near the ball, 

taking into account that above we estimated the charge of the praon with the value 

574.6 10pr

e
q

S P

   C: 553 10pre prE q     J. On the other hand, the energy of a praon, 

regarded as a relativistic particle similar by its properties to cosmic rays, has been found 

above in the form: 
55

2
1 10r

pr

E
E

S

   J. Comparison of these two energies allows us to 

make the following conclusions. Firstly, even weakly charged bodies, which interact at the 

level of low gravitational force, can influence the motion of praons near them and deflect 

them aside. This substantiates the pattern of motion of the charged particles of the vacuum 

field near the charged bodies in Figures 1-3 and our calculations of the electric force. 

Secondly, if we decrease the charges and increase the sizes of bodies, there can be deviations 

from the Coulomb law. However, these deviations should be distinguished from the 

gravitational force, which in this case becomes greater than the electric force. 

The last conclusion can be specified as follows. In order to find the deviations from the 

Coulomb law, it is desirable that the condition of small potentials is satisfied 
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   V. To reduce the dependence on the gravitational force, there are the 
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following conditions e gF F  or 
04q m G . Hence for the corresponding electrical 

potential of one ball, we have: 
0

22
4

m G

r



  V or 28.4

m

r
  kg/m. For the iron balls it 

gives 2.9r  cm, 0.8m  kg. Another complication in the experiments for finding deviations 

from the Coulomb law occurs due to the fact that in conductive bodies the uncompensated 

charges are located in the thin layer on the bodies’ surface, with a thickness of the order of 1 

or 2 atomic layers. Free electrons easily go out of the equilibrium position in the external 

electric field, either repelling or being attracted to the source of the external field, thereby 

changing their concentration on the body. Due to this, in two interacting charged metal balls 

additional electrical forces appear, which are usually calculated by the method of images. 

 

7. Interaction of the body’s charge with the vacuum field 

The Coulomb law, due to the presence of charged particles in the vacuum field, can be 

explained with the help of Le Sage’s model. However, not only the fluxes of charged particles 

influence the interaction of charged bodies, but the charges of bodies themselves influence the 

fluxes of charged particles around the bodies. One example of this influence is deflection of 

the charged particles from their trajectories, as it was described in the previous section. In 

addition, each charged body achieves a certain balance of energy and momentum during 

interaction with the vacuum field. 

Let us consider the energy density of the charged particles of the vacuum field inside the 

charged body and near it. Suppose there is a body in the form of a cube with an edge s . The 

number of charged particles D  per unit time through a unit area during particles’ motion in 

the matter decreases according to formula (11). During time 
s

c
 six fluxes of charged particles 

from each side will pass inside the cube through the faces with the area 
2s  and will change up 

to the value: 
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where N  is the number of charged particles that passed through the cube.  

 

If charged particles flew through the same empty volume, the number of charged particles 

coming out would be 

3
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6 qs D
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c
 . Consequently, the number of charged particles, which 

interacted with the matter of charged body during time 
s

c
, equals:  
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As it was shown in [4], almost all the energy of the graviton field, which interacts with the 

matter, is re-emitted back to the graviton field, without heating the bodies significantly. This 

also applies to the fluxes of charged particles the vacuum field, that transfer their momentum 

to the matter with return of the energy back to the vacuum field. 

Let us estimate in view of (19) the energy density of those charged particles that interact 

with the bodies’ matter: 
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From (26) we will calculate the luminosity of charged particles of a body in the form of a 

cube, multiplying m  by the volume 
3s  and dividing by the time 

s

c
. Expressing the charge 

concentration in terms of the charge, in view of (19) we have:  
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From (27) it follows that the luminosity qP  of the charged particles, understood as the 

luminosity of those charged particles fluxes that interacted with the charged matter of body 

and gave their momentum to it, is proportional to body charge Q . This means that the body 

charge can be expressed in terms of the parameters of the charged particles fluxes interacting 

with the body. 

In (27) there is a product 
3n s  equal to the number of uncompensated elementary charges 

in the body under consideration. Then the charged particles luminosity per one elementary 

charge, in view of (19), (22-23) will equal: 
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The ratio of the luminosity 1P  to the average energy of a charged particle q qE p c  gives 

the number of charged particles that interact with one uncompensated elementary charge of 

matter per unit time and gave their momentum to it. According to (28), this number of 

charged particles is equal to the product 06 qD  , while the cross section   characterizes the 

effective area of elementary charge’s interaction with charged particles, and the coefficient 6 

is associated with the six sides of cubic distribution of charged particles fluxes 0qD  in (11).  
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Expression (27) can be given a different meaning, if we assume that the area of the cube 

face is connected with the cross section   by the following relation: 
2

1s k N , where 1k  is 

some numerical coefficient, N  is the number of uncompensated elementary charges in the 

cube. Then under the condition eN Q  (27) can be rewritten as follows: 

 

2

1

2

0

q

ck Q
P

s
 . 

 

This relation shows that the emission rate is proportional with accuracy to a coefficient 1k  

to the electric energy of the charged body, derived from the body in the time 
s

c
 of passing the 

body characteristic size by the charged particles. 

We note one more aspect concerning the interaction between the electromagnetic and 

gravitational fields. The concept of the general field [10] shows that the vector fields, 

including the electromagnetic and gravitational fields, are the components of one general 

field. And in case if the theorem of equipartition of the energy is satisfied, the equations of 

particular fields no longer depend on each other and are similar in form to the Maxwell 

equations. If the fields interact with each other, then in the Hamiltonian it is manifested in the 

terms with the field energy, where the cross-terms with the products of different field 

strengths appear. This is possible, for example, in non-stationary processes in the systems that 

have not reached equilibrium. From the viewpoint of the vacuum field, it means that in 

stationary conditions the gravitons and charged particles of the vacuum field interact with the 

matter relatively independently, creating gravitational and electromagnetic forces. If there is 

no equilibrium in the system, then the kinetic energy of matter and the energies of some fields 

are transformed into the energy of other fields, and the exchange of energies between 
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gravitons and charged particles in the vacuum field is possible as well. This leads to the cross-

terms in the system’s energy. 

 

8. Photons and praons 

In this section we will try to specify which particles can be responsible for electromagnetic 

phenomena. The charged particles of the vacuum field not only lead to the electric forces in 

the Coulomb law, but should be part of the photons, i.e. the electromagnetic quanta emitted 

by atoms. Let us consider, for example, a photon with the wavelength 
71.21567 10   m and 

the angular frequency 
162

1.54946 10
c




   s
-1

, arising in the hydrogen atom in the 

transition of an electron from the second to the first level in the Lyman series. The probability 

of this transition equals 
8

2 4.699 10A    s
-1

 [11], which gives the average lifetime of an 

electron at the second level 
9

2

2

1
2.1 10

A
    s, as a measure of duration of photon emission 

during the transition. In quantum mechanics [12] there is a formula for the oscillator’s 

oscillations decay time in ne  times, where 2.71828...ne   is the base of the natural logarithm, 

with the help of which we obtain the following estimate: 

 

9
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e




 

   s. 

 

where 0  is the vacuum permeability. 

 

The duration of photon emission can be calculated directly within the Bohr model of a 

hydrogen atom. In this model, the electric force between a proton and an electron acts as a 

centripetal force in the electron’s rotation around the nucleus in the form of a proton. In this 
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rotation, the electron must emit an electromagnetic wave, since it is constantly accelerated 

towards the nucleus. The formula for the charge emission rate during its rotation is well 

known, which allows us to relate the electron velocity and the effective force acting on the 

electron from emission. Moment of this force decreases the angular momentum of the 

electron, leading to a decrease in the radius of rotation. Hence we can derive the dependence 

of the radius on the time [5]. From this dependence we find the duration of photon emission 

as the time of transition of an electron from the second to the first level of energy. Given that 

the average radius of the electron rotation on the second level equals 2 4 Br a , and the 

average radius of the electron rotation on the first level is the Bohr radius 1 Br a , we have the 

following: 

 

 
2 2 3 2

3 3 90
2 14

4
1.2 10ec M

r r
e

 
     s.                                      (29) 

 

For the instantaneous power of electromagnetic emission we obtain the formula: 
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e e
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 . 

 

This implies a strong dependence of the emission rate on the current radius er  of the 

electron rotation, which is inversely proportional to the fourth power of this radius. It turns 

out that the main photon energy is emitted when the electron approaches the lower energy 

level. 

Knowing the emission duration we can find the length of the photon c . To calculate 

the volume of the photon we also need its midsection. In the first approximation, we assume 

that the mean radius of the photon equals 4 Br a , which is equal to 2r . We note that in the 
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substantial model of electron [5], it is considered as a thin disk that has on the main energy 

level the inner radius 0.5 Ba  and the outer edge 1.5 Ba , and the Bohr radius 1 Br a  is obtained 

as a certain characteristic radius of the disk and the average radius of the electron rotation. On 

the second level, the outer edge of the electron disk is greater than the average radius of the 

electron rotation 2 4 Br a  on this level. With this in mind, the volume of the photon will 

equal: 
2 216 BV r a c    . 

Further on we will use a simplified model of photon from [1], [13], according to which the 

photon consists of charged particles, the rotation of which around the photon’s axis creates 

the angular momentum of the photon. In addition, inside the photon as well as in the 

electromagnetic wave there must be mutually-perpendicular periodically varying electric and 

magnetic fields. Electromagnetic energy of the photon consists of the equal electric and 

magnetic components, and for the total energy density we can write: 

 2 2 2 2 2 20 0
0

0

1

2 2 2
e m E B E c B E

 
  


      , since in the wave E cB . The electric 

field strength E  inside the photon will be characterized by the amplitude 0E . The field inside 

the photon oscillates, varying from zero to the peak value, so for the average density of the 

electromagnetic energy of the photon, we assume that 
20
0

2
em E


  . We also assume that the 

photon energy is equally divided between the mechanical energy of the charged particles and 

the electromagnetic energy. The photon energy W   is proportional to the Planck constant 

 and the angular frequency  . Dividing the photon energy by the photon volume, we obtain 

the energy density, which can be equated to the doubled density of electromagnetic energy 

inside the photon: 

 

2 em

W

V
 ,                               

2

0 02
E

r c




 
 .                                  (30) 
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Substituting in (30) the photon angular frequency 
161.54946 10   s

-1
, the duration of the 

photon emission   from (29) and the photon radius 4 Br a , we estimate the amplitude of the 

electric field strength inside the photon: 
6

0 2.7 10E   V/m. For comparison, the proton creates 

at the Bohr radius the electric field strength 
11

2

0

5.1 10
4

B

B

e
E

a
   V/m. It can be noted that 

0E  is close enough to the value 
2

B
B

a
E

r


, where   is the fine structure constant. Besides the 

multiplier 
2

Ba

r


 appears in the expression for the electric field strength in the remote wave 

zone, that is the zone where the photon is generated: 
2 2

0 016 4B

e e
E

a r rr

 

 
 

 
, here r  is the 

distance from the electron to the observation point with regard to the delay of the 

electromagnetic wave propagation [5]. 

From the mechanical point of view we can consider in a simplified way the photon as a 

long thin cylinder, rotating with the angular frequency  . If inside the cylinder there are N  

particles, each of which has a relativistic mass m , then in case of uniform distribution of 

particles the angular momentum of the cylinder must be equal to the Planck constant, as it is 

supposed for all photons: 

 

21

2
Nmr  .                                                         (31) 

 

From (31) it follows that the mechanical energy of the particles’ rotation, calculated as half 

the product of the angular momentum  and the angular velocity of rotation, is equal to the 

half of the photon energy: 
1 1

2 2
rW W  . The other half of the photon energy must be the 
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electromagnetic energy, which was taken into account in (30). Since the angular momentum 

of the electron in the atom is quantized and proportional to , from (31) it follows that the 

total relativistic mass Nm  of the charged particles rotating inside the photon must be of the 

order of the electron mass, in order to ensure the angular momentum  of the photon. 

However, the mass Nm  is only a small part of the mass of the entire flux of charged particles 

of the vacuum field, that pass through the electron disk per time of the photon emission   

from (29). The total relativistic mass of particles of the entire flux per time   is expressed by 

the product of the energy flux rate (25), the time   and the area of the electron disk 
2r , and 

then dividing by the square of the speed of light in order to pass from the energy to the mass: 

2

5

2
3.8 10

fqr P

c

 
   kg, which is much greater than the electron mass. 

Let us consider the motion of some charged particle inside the photon, located on the 

radius r . This particle rotates at a certain velocity v  around the axis of the photon, and 

besides it moves at the speed of light, as well as the photon, in the direction of its propagation. 

For the particle’s period of rotation we can write: 

 

2 2 r
T

v c

  


   ,                                

v

r
  .                                     (32) 

 

In this model of a photon, there is a relationship between the centripetal force, required for 

the particle’s rotation, and the electric force, exerted on the particle with the charge q  and the 

mass m . In view of (32) we have: 

 

2
2

0

mv
qE m r

r
  .                                                    (33) 
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Let us express from (30) 0E  and substitute it in (33) in order to determine the ratio 
q

m
 for 

the charged particles inside the photon. In view of (29) for  , as well as the assumed relation 

4 Br a  and the value of the photon angular frequency 
161.54946 10   s

-1
, we find: 

 

32
2 160

0

16 2.7 10B

cq r
a

m E

 
     C/kg.                              (34) 

 

For the level of stars, the charge to mass ratio should be the highest for the charged 

magnetar, as a neutron star with the mass 
302.7 10sM   kg that, according to our assumption, 

bears the electric charge 
185.5 10sQ   C. This gives: 

122 10s

s

Q

M

  C/kg. At the level of 

atoms, the same is true for the proton, for which 
79.6 10

p

e

M
  C/kg. What does the relation 

(34) give to us? From this relation it follows that we must refer to a lower level of matter, that 

is, the praon level of matter. For the charged praon at rest, the mass to charge ratio, in view of 

the results of Section 6, is: 274.6 10
pr

pr

q

m
  C/kg. Now we will take into account that in (34) 

the mass of the charged particle is the relativistic mass, i.e. the ratio of the particle’s energy to 

the square of the speed of light. This mass can be written as: prm m , where   is the 

Lorentz factor for the particle, moving almost at the speed of light. Substituting the mass 

prm m  in (34) and using the value 
pr

pr

q

m
 for the praon, we can determine the Lorentz factor: 

111.7 10   . 

Earlier in Section 6, we referred to the fact that the protons in cosmic rays reach the energy 

196 10rE   eV, while the rest energy of the proton is 89.38 10pE   eV. Consequently, for the 
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most energetic cosmic-ray protons the Lorentz factor is as follows: 
106.4 10r

p

p

E

E
    . We 

see that the Lorentz factors for praons and protons are close enough to each other. All this 

means that the photon is a tightly bound flux of praons, the energy of which is maximum and 

corresponds to the energy of cosmic rays at the nucleon level of matter. Besides, praons are 

related to protons, just as protons are related to a charged neutron star – a magnetar. From 

photon’s neutrality it follows that it must consist both of positively and negatively charged 

praons. 

 

9. Conclusion 

Based on the assumption that the electric force appears due to the action of the fluxes of 

charged particles that exist in the vacuum field, we derived an expression for the electric field 

strengths inside the ball (14) and outside it (7). These expressions are in good agreement with 

the formulas for the field strengths in electrostatics. From the field strengths we can easily 

proceed to the scalar potentials of the electric field, since the strength is up to a sign 

determined as the potential gradient. 

Once we find the electric scalar potential, then with the help of a special procedure [14] we 

can find the 4-potential, the stress-energy tensor of the electromagnetic field, the 

electromagnetic field equations, the electromagnetic force, as well as the contribution of the 

electromagnetic field into the equation for the metric. This means that the electromagnetic 

field theory both in the flat Minkowski space and in the curved spacetime is fully proved at 

the substantial level through the charged particles fluxes of vacuum field. And the dependence 

of metric on the electromagnetic field potential allows us to take into account the influence of 

the inhomogeneous charged particles fluxes on the results of space-time experiments, based 

as a rule on the use of electromagnetic waves and devices. 
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In (19) and (22) we made an estimate of the energy density of the charged component of 

the vacuum  field, in (23) we presented the cross section of charged particles’ interaction with 

the matter, in (25) we estimated the rate of the energy flux of the charged particles in one 

direction. Based on the principles of the theory of infinite nesting of matter, the densest 

objects at each level of matter are assumed as the sources of the charged particles of vacuum 

field – neutron stars and magnetars, nucleons and atoms, praons as the components that make 

up nucleons, etc. These objects emit neutrinos, photons and high-energy cosmic rays that can 

make contribution to the vacuum field at all levels of matter.  

In the formula (27) we expressed the body charge in terms of the emission rate of those 

fluxes of charged particles of the vacuum field, which interacted with the body’s matter and 

transferred their momentum to it. Due to this interaction, the contribution was made by the 

charged component of the vacuum field into the mass as the measure of body’s inertia. The 

inertia of the body is manifested in its acceleration, when the balance changes between the 

falling on the body and outgoing energy fluxes of the vacuum field. We can distinguish in the 

vacuum field three components, one of which  with the energy density c  is associated with 

the strong gravitation and the rest energy of particles, determines the integrity of nucleons and 

atomic nuclei, and is mainly responsible for the inertia of bodies. Another component with the 

energy density s  is responsible for the ordinary gravitation, and the third component in the 

form of charged particles with the energy density cq  leads to electromagnetism. The last two 

components make their own contribution to the mass of bodies. 

We will also note the difference in how the origin of the electrical force is understood. In 

our approach, the fluxes of charged particles of the vacuum field are the source of electrical 

force, they exist as a necessary complement to the matter in the form of elementary particles 

and the bodies composed of them, are involved in the processes of gravitational clustering of 
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the scattered matter, and are generated by the emission from the densest objects, such as 

praons, nucleons and neutron stars. 

In electrostatics, the electric force is not explained. In quantum electrodynamics by means 

of selecting the Lagrangian of the field’s interaction with the matter the formula is derived 

that resembles the formula for the electric energy of the interaction between two charges in 

electrostatics [15]. As interpretation the pattern is suggested, in which the charged bodies 

exchange virtual photons with each other, which leads to the electrical interaction. Besides, 

here the uncertainty principle is used, limiting the lifetime of virtual photons. Due to 

virtuality, the photons are attributed very exotic properties, including the possibility of energy 

negativity or the presence of the momentum without energy. The photons’ energy is 

considered to be proportional to the Planck constant, and therefore the possibility of existence 

of photons and particles, belonging to the lower levels of matter and with another Planck 

constant, is not considered. The obvious disadvantage of this approach is the difficulty to 

explain the origin of virtual particles as such and their unique properties. 

If we consider the fluxes of charged particles in the vacuum field as the source of the 

electric forces, it becomes possible to consider their scattering in the process of quantum 

transitions in atoms. In [5] the substantial model of electron in the form of a disk is 

considered, in which the charged matter rotates differentially, and ensures the magnetic 

moment of the electron. In addition, the electron spin is explained as the result of the shift of 

the disk’s center relative to the nucleus and rotation of this center in addition to the matter 

rotation in the electron cloud. If the electron transits into the quantum state with lower energy, 

it emits a photon, which carries with it the angular momentum that is proportional to the Dirac 

constant. In this process, the scattering of charged particles of the vacuum field on the 

electron disk, taking into account the action of the magnetic and electric fields in the wave 

zone, leads to the formation of a photon as an object preserving its structure for a long time. 
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In Section 8, we studied the model of the photon, emitted in atomic transition in the 

hydrogen atom. Associating the photon parameters and its structure with the parameters of the 

emitter – the charged electron disk, we managed to determine the charge to mass ratio for the 

particles that make up the photon. As a result, it turned out that photons consist of praons of 

very high energies, comparable to the energies that cosmic rays would have if these rays 

emerged at the nucleon level of matter near the protons. These relativistic praons must form 

the basis of the charged particles of the vacuum field. Indeed, in the interaction of praons of 

the vacuum field with the electron in atomic transition, the twisting of praons takes place 

under action of the fields along the axis of the electron disk, and the appearing photon carries 

away the excess angular momentum of the electron from the atom. Meanwhile, part of praons 

of the vacuum field is part of the photon, so that the speed of the photon actually is the speed 

of praons in the fluxes of particles of the vacuum field. 

In contrast to the chaotic motion of the praons in the vacuum field, the praons in the 

photon are rigidly bound to each other by both electromagnetic and gravitational forces. The 

situation here is similar to the situation with the nucleons, which only in special 

circumstances can form extremely stable formations – the atomic nuclei. According to the 

gravitational model of strong interaction [5], the nucleons in atomic nuclei are attracted to 

each other by strong gravitation and repel each other by means of the torsion field, arising 

from the rapid rotation of the nucleons. In order to form the nucleus, the nucleons must 

interact with each other only in a strictly defined orientation of the spins and magnetic 

moments and must have sufficient initial energy that allows rotating the nucleons up to the 

desired rotation speed by means of gravitational induction. The praons in the photon can 

interact with each other in a similar way. We can even calculate the gravitational constant for 

the praon level of matter with the help of the coefficients of similarity from Section 5 and the 

strong gravitational constant 
2

29

0

1.514 10
4 p e

e
Γ =

M M
  m

3
·kg

-1
·s

-2
 in the following way, 
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using the theory of dimensions and SPФ symmetry, according to [1]: 

68

2
3.3 10prG = Γ

PS


  m

3
·kg

-1
·s

-2
 . In the gravitational field with this large gravitational 

constant, the praons of the photon can form sufficiently rigid structure, so that the photon 

could fly large cosmic distances without decaying. 

In Section 5, for the ratio of the absolute value of energy in the field of strong gravitation 

to the energy of electric field of the proton we found: 
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4g p p

e e

E ΓM M

E e M


  . Аналогичное 

равенство следует и для праона, для чего необходимо постоянную сильной гравитации 

Γ  заменить на постоянную гравитации для праонного уровня материи prG  и 

подставить массу и заряд праона из раздела 6:  
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Concurrent consideration of the evolution of objects at different levels of matter, such as 

the level of praons, nucleons and neutron stars, allows us to draw conclusions not only as to 

the origin of gravitational and electromagnetic forces. For example, if for a neutron star with 

the mass 1.35sM   Solar mass and the stellar radius 12sR  km we calculate the average 

binding energy per nucleon, we will obtain 
127.5 10

2

n s
b

s

kGM M
E

R

   J or 47 MeV per 

nucleon, which is greater than the binding energy of atomic nuclei. Taking into account that 

neutron stars are born in supernova explosions, when the explosion energy is carried away by 

neutrinos and emission, and is converted into the kinetic energy of the discharged shell, a 

significant part of the binding energy is emitted from the star and transferred into the 

environment. In [13], we estimated that 61% of all praons are part of nucleons, and the rest 

39% form new particles (which are structurally the analogues of white dwarfs at the level of 

elementary particles) or exist separately. The same proportion remains at the level of stars: 

61% of all nucleons over time will be part of neutron stars, and the rest of nucleons remain 
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either as a gas or as the matter of white dwarfs. New particles as the analogues of white 

dwarfs, due to their significant presence in cosmic space, can ensure the red shift effect in the 

spectra of distant galaxies, explain the background radiation and the dark matter, etc. 

Consequently, the concentration of free protons in the visible Universe must be of the 

same order as the averaged over the entire space concentration of nucleons in stars, that is of 

the order of concentration of baryons 0.13n  m
-3

, according to the findings of the Lambda-

Cold Dark Model [16]. With this in mind, the product of the concentration of baryons and the 

binding energy of a neutron star in the calculation per nucleon will give us the estimate of the 

maximum energy density of emission in cosmic space: 
121 10bnE   J/m

3
. Indeed, the energy 

density in the relic radiation equals 
144 10 J/m

3
, and the energy density in the stellar 

radiation, magnetic fields and cosmic rays is of the same order of magnitude, as well as the 

kinetic energy of the motion of gas particles. The sum of these energy densities does not 

exceed the maximum energy density bnE . 

In conclusion, we will estimate the length of free path of the charged particles of the 

vacuum field in the cosmic space, taking as the charge concentration in a first approximation 

the value 0.13   of the elementary charge per cubic meter, which is equal to the average 

concentration of baryons in the Universe. This approach gives only the minimum value of the 

free path length, since on the average the matter in the Universe is neutral, and   must 

reflects the average concentration of the total charge of the Universe. From the ratio 1x   

at a given concentration of charges and the value   according to (23), we find the free path 

length of charged particles: 
302.9 10x  m. This value is 3 orders of magnitude greater than 

the visible size of the Universe, which is estimated by the value of 14 billion parsecs or 

274 10 m. Consequently, the charged particles can easily reach our Universe from a distance, 

where they can be produced in a concentration sufficient to meet the required energy density. 

We do not support the model of the Big Bang, which limits the lifetime of the Universe to the 
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value of 13.8 billion years, explaining in a different way the phenomena associated with this 

model [13]. Then the charged particles of the vacuum field can have enough time to get into 

our Universe from the outside and reach here the equilibrium concentration with the value 

874 10prn   m
-3

. 
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