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Abstract
The graph theoretical ratio, the tree-cover ratio, involving spanning trees of a
graph G, and a 2-vertex covering (a minimum set S of vertices such that every
edge (or path on 2 vertices)  of G has at least vertex end in S) of G has been
researched. In this paper we introduce a ratio, called the tree-3-covering ratio
with respect to S, involving spanning trees and a 3-vertex covering (a minimum set
S of vertices of G such that every path on 3 vertices has at least one vertex in S) of
graphs. We discuss the asymptotic convergence of this tree-3-cover ratio for
classes of graphs, which may have application in ideal communication situations
involving spanning trees and 3-vertex coverings of extreme networks. We show
that this asymptote lies on the interval ),0[  with the dumbbell graph (a
complete graph on n-1 vertices appended to an end vertex) has tree-3-cover
asymptotic convergence of 1/e, identical to the convergence in the secretary
problem, and the tree-cover asymptotic convergence of complete graphs. We
also introduce the idea of a tree-3-cover area by integrating this tree-3-cover
ratio.

AMS classification: 05C99
Key words: spanning trees of graphs, vertex cover, 3-vertex cover, ratios, social
interaction, network communication, convergence, asymptotes.
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1. Introduction

We shall use the graph theoretical notation of [8] where our graphs are simple
and connected. The order of graphs will be n and size m.

Spanning trees

The graph-theoretical concept of spanning trees can be found in many real world
applications, especially in social networking scenarios. For example, research in
[2] involves work on sexual networks in an American high school which suggest
that sexual networking involving individuals at the school are characterized by
long chains or “spanning trees”, implying that a large part of the school had sexual
contact with each another.

Vertex cover

The importance of minimum 2-vertex coverings of a graph G, i.e. a minimum set S
of vertices such that every path of G on 2 vertices has at least one vertex in S,
occurs often in real life applications involving (extreme) networks with a large
number of nodes (see the parameterized Vertex Cover problem in [5] and [9] ).
The  idea of a 3-vertex covering of a graph G was introduced in [10 ]- this involved
the smallest set S of vertices such that every path of G on 3 vertices has at least
one vertex in S. This allowed for the investigation of the effect of the “activation”
of S on all  other vertices on paths of length at most 2 connected to S.

Ratios

Ratios, such as expanders, Raleigh quotient (see [1]), the central ratio of a graph
(see [4]) and eigen-pair ratio of classes of graphs (see [14]), Independence and
Hall ratios (see [7]), tree-cover ratio (see [13]), h-eigen formation ratio (see [17]),
t-complete sequence ratio (see [15]), chromatic-cover ratio (see [11]), chromatic-
complete difference ratio (see [12]) and the eigen-complete difference ratio (see [
16]), have been investigated.
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Spanning trees and 3-vertex cover

In this paper we combine the two ideas of spanning trees and (minimum) 3-vertex
cover to introduce the idea of a tree-3-cover ratio of a graph. The importance of
large numbers of vertices, which occurs in (extreme) networks, allowed for the
investigation asymptotic convergent of this tree-3-cover ratio for different classes
of graphs. We found that this asymptote lies on the interval ),0[  with the
dumbbell graph (the graph consisting of a complete graph on n-1 vertices
appended to an end vertex) having tree-3-cover asymptotic convergence of 1/e
identical to the secretary problem and the tree-2-cover asymptotic convergence
of the complete graph (see [6 ] and [ 13]). The idea of area is also introduced
which involves the Riemann integral of this tree-3-cover ratio.

This ratio
)(

))((

nKt

SHtS
involving spanning trees and 3-vertex cover S with its

asymptotic property and area  of classes of graphs is presented below:

1.1.1 Definition

A (minimim) 3-vertex cover is of G is a smallest set of vertices of G such that every
path on 3 vertices has at least one vertex in G. If u is a vertex in S and v a vertex
not in S connected to u, we say that v is connected to S by a path of length at
most 2.

1.1 .2 Definition

Let )(Gt be the number of spanning trees of a connected graph G of order n.  Let
S be a set of vertices of a minimum 3-vertex cover of G ,  and )(SH the subgraph
of G induces by S . We consider only the 2 cases (i) Either H(S) is connected or (ii)
H(S) is disconnected and consists of trees as components . In case (ii) ))(( SHt is
defined as 1))(( SHt .

Then the ratio:
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)(

))((
)( 3 Gt

SHtS
Gtc s  is the tree-3-cover ratio of G with respect to S .

Note: If )(SH is disconnected, and not trees as components, then one can
consider spanning forests involving the components of )(SH , but such cases are
not considered in this paper.

1.1.2 Definition

The importance of graphs with a large number of vertices is well known. If  is a

class of graphs and )(
)(

))((
)( 3 nf

Gt

SHtS
Gtc s  for each G , where n is the

order of G, then the horizontal asymptote of f(n) is debited by:

)()( lim3 nftcasymp
n

s




This asymptote is called the tree-3-cover asymptote of  which is an indication of
the behavior of the tree cover ratio when the graph has a large number of
vertices, such as in extreme networks.

An ideal communication problem and tree-cover asymptote

In [9] the communication problem is to select a minimal set S of placed sensor
devices in a service area so that the all the nodes of service area is accessible by
the minimal set of sensors. This can be adapted to a situation where there is a
need for a minimal set S of placed sensor devices to communicate with all nodes
that can be reached by paths of length at most 2 from S. Finding the minimal set
of sensors can be modelled as a 3-vertex cover problem, where the 3-vertex cover
set S facilitates the communications between the sensors and the nodes (on paths
of length at most 2 from S) of the service area in networks with a large number of
nodes (vertices), i.e. in extreme networks.  If H(S), in the 3-tree cover definition, is
connected, and M represents the vertices of G not in S, then each vertex of M is
connected by an path of length at most 2(an out-3-vertex path) to vertex of H(S)
which is part of a spanning tree.  Thus  the ease of communication between
vertices of H(S) and M through the out-3-vertex paths,  involving spanning trees,
may be represented by this tree-3-cover ratio – the “ideal” case, involving large
number of nodes, -which we believe is in the case of complete graphs. The more
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difficult communication case may be in the situation involving paths, where this
tree-cover asymptote is infinite.

2. EXAMPLES OF TREE-3-COVER RATIOS AND ASYMPTOTES

2.1 Complete graph
Let G be the compete graph nK on n vertices.

Then a minimum 3-covering set of nK is any subset of n-2 vertices of nK , and

since 4
2

2 )2()(';)( 


  n
n

n
n nKtnKt we have:
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
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nf

Kt

KtS
Ktc which behaves

like
n

1 for n large, so that:

.0)()( lim3 


nfKtcasymp
n

S
n

2.2 Cycles
The cycle nC on kn 3 vertices has nCt n )( , and a minimum 3-vertex cover S

will be the
3
n vertices of the disconnected graph induced by  every third vertex of

the cycle, so that 1))(( SHt and
3
n

S  . Thus:

3
1

)(
)(

))((
)( 3  nf

Ct

SHtS
Ctc

n

s
n so that

.
3
1

) 3 s
ntcasympC

2.3   Complete split-bipartite graph

Let
2

,
2

nnK be the complete split-bipartite graph on n vertices.
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Then
2

2
,

2
2
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









n

nn
n

Kt and either partite set can be taken as a minimum 3-vertex

cover S which yields 1))(( SHt so that

)(
2
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,
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2
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









n
S

nn n
Ktc and

0)( 3

2
,

2

s
nnKtcasymp .

2.4 Paths
Let nP be a path on kn 3 of vertices. A minimum vertex cover S consists of

every third  vertiex of nP . Since
3
n

S  , 1))(( SHt and 1)( nPt we have:

3
)(

)(

))((
)( 3

n
nf

Pt

SHtS
Ptc

n

s
n  so that

3)( s
nPtcasymp

2.5 Wheel graph

The wheel graph nW on 13  kn vertices has a cycle of length k3 with each
vertex joined to a center. The number of spanning trees of this wheel is:

2
2

53

2

53
)( 







 








 


nn

nWt and the minimum vertex cover S will involve every

third  vertex of the cycle and the center vertex. Thus:

1))((' SHt and:
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n
n
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SHtS
Wtc nnn
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s
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)( 3 
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


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
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 




 large,  so

that:

0)( 3 s
nWtcasymp

2.5 Ladder graph
The ladder graph

2
,

2
nnL on an even number  n of vertices has:

3

)32()32( 22

2
,

2

nn

nnLt















and 1))(( SHt , where S is taken as follows:

Let P and P’ be the two paths, each having
2

n vertices, of the ladder, with edges

between matched vertices of the two paths. Take S as the set of alternating
vertices on P and P’, where the first vertex of P is selected and the second vertex

of P’ is selected,  so that S will have
2

n vertices. Then we have:

   nn
nn

s
nn

n
nf

Lt

SHtS
Ltc

322322

3
)(

)(

))((
)(

2
,

2

3

2
,

2 
 .

Since  n32  dominates  n32  for large n we have:

     nnn

nn
nf

322

3

322322

3
)(





 for large n so that:
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0)( 3

2
,

2

s
nnLtcasymp

2.6 Star graph with rays of length 1
Let 1,nS be the star graph on n vertices with n-1 rays of length 1. Then its centre is

its minimum 3-covering set so that:

1)(
)(

))((
)(

1,

31,  nf
St

SHtS
Stc

n

s
n . Hence:

1)( 31, s
nStcasymp

2.7 Star graph with k rays of length 2.
Let )2(,knS be the star graph in n vertices with k rays of length 2 from its center so

that n=2k+1 (odd). The center is the minimum 3-vertex cover so that 1S and

1))(( SHt so that:

1
)(

))((
)(

)2(,

3)2(, 
kn

s
kn St

SHtS
Stc and

1)( 3)2(, s
knStcasymp .

2.8 Sun graph

Take a cycle on
2
n vertices, kn 4 , and attach an end vertex to each vertex of the

cycle to form the sun graph nSN on n vertices.  Since nSNt n )( and S consists of

every alternate vertex of the cycle so that
4

;1))((
n

SSHt  . Hence:
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4
1

4
1

)(

))((
)( 3 

n

n

SNt

SHtS
SNtc

n

s
n so that:

4
1

)( 3 s
nSNtc and

4
1

)( 3 s
nSNtcasymp .

2.8 Dumbbell graph

Let 2
nD be the dumbbell graph consisting of two disjoint copies, A and B, of

2

nK

joined by and edge uv.

For each spanning tree of A we get
2

2)
2

(


nn spanning trees of 2
nD through the edge

uv. Thus:

42
2

2
22 )

2
()

2
()

2
()( 

 n
nn

n

nnn
Dt

A 3-vertex cover of A will consist of any set P of 2
2


n vertices of A containing u.

A 3-vertex cover of B will consist of any set Q of 2
2


n vertices of B containing v.

Since each spanning tree of a 3-covering of 2
nD must contain uv, the subgraph

)( QPH  induced by QPS  will contain the following number of spanning
trees:

84
2

4
2 )2

2
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2
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2
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nn nnn

SHt

.
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Thus: 0)( 3 s
nSNtcasymp .

2.9 Lollipop graph

Let 1,1nLP be the lollipop graph consisting of a complete graph F on n-1 vertices
with vertex u joined to a single end vertex.

The number of spanning  of 1,1nLP will be 3)1(  nn .

A 3-vertex cover of 1,1nLP will consist of a set S of n-2 vertices of F not including u.
Thus:

4)2())((  nnSHt so that:
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Letting n go to infinity we get:
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1
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31,1 )( s
nLPtcasymp  , identical to the secretary problem.

Theorem
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The tree-cover ratios and tree-cover asymptotes of the following graphs are:
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Corollary
The tree-3-cover asymptote for all classes of graphs lies on the interval ],0[  .

3. TREE-COVER AREA OF CLASSES OF GRAPHS

We introduce another dimension by integrating this tree-cover ratio.

3.1 Definition

If  is a class of graphs and )(
)(

))((
)( 3 nf

Gt

SHtS
Gtc s  for each G , where n is

the size of G and G has m edges, then the tree cover area of  is defined as:

definedpfortcAdnnf
n

m
tcA pn min0;)(

2
)(

3
)(

3   

Average degree

The value
n

m2 represents the average degree of a graph G.

Tree-cover height

For complete graphs, the length of the longest path is (n-1) so that we refer to the
integral part of the definition as the tree-3-cover height of the graph.

3.1 Example- cycle
If nC is a cycle on kn 3 vertices, then:

3
1

)(
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))((
)( 3  nf

Ct

SHtS
Ctc

n

s
n so that the tree-cover height of cycles is:

dn
3
1 which gives the tree-cover area of cycles as:
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10);
3
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3
12 33
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n

n
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knntcA nC 3;2
3
23  .

3.2 Example- the path

If nP is a path on kn 3 number of vertices then:

3
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n
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n

s
n  so that:
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3

(
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3
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2
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n

n

n
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3
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)1(2 2
3 


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3.3 Example- star graph with rays of length 1

20);(
)22()22( 33
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


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3.4 Example= star graph with rays of length 2

30);(
)22(22 3
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3
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3.5  Sun graph

20;4);
4

(2
4
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n

dntcA SNSNn
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4
2

3 
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4. CONCLUSION: KNOWN AND NEW RESULTS

4.1 Combining spanning trees and 3-vertex coverings
In this paper we combined the concepts of spanning trees t(G) and a minimum 3-
vertex cover, S, of a graph G, to introduce a new concept of a tree-3-cover ratio of
G (where H(S) is the induced subgraph of G induced by a minimum 3-vertex
covering S of G):

)(

))((

Gt

SHtS

This ratio was motivated by the possible importance of 3-vertex coverings in
sensor activation, the tree-cover ratio of [13], and that the general tree-3-cover
ratio for lollipop graphs, as a function of the order n of such graphs, is

.
1

1
1

3












n

n
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This ratio has the asymptotic convergence of 1/e, which is identical to the
probability of the best applicant being selected in the secretary problem. These
considerations resulted in the investigation of the asymptotic convergence of the
tree-3-cover ratio of classes of graphs.  We introduced integration of the tree-3-
cover ratio which allowed for the idea of tree-cover area of classes of graphs.

We propose that the tree-cover asymptote of the sun graph on n=4k vertices is
the smallest amongst all such possible positive tree-3-cover asymptotes of classes
of graphs. Future research may involve considering the tree-3-cover ratio of the
complement of classes of graphs discussed here. We could have considered the
reciprocal of the tree-cover ratio, i.e. the ratio:

  .
))((

)(
)( 1

3 SHtS

Gt
Gtc 

For example, the reciprocal of the tree-3-cover ratio of lollipop graphs would have
the asymptotic convergence of e, while paths on 3k number of vertices would
have a reciprocal tree-cover asymptote of 0 (which is the same as the tree-cover
asymptote of complete-split bipartite graphs) and (reciprocal) tree-cover area of

).ln3(
)1(23)22(

cn
n

n
dn

nn

n








4.2 known and new results: ratios, asymptotes and areas
For the complete graph on n vertices the following are known results:

The vertex expansion ratio: 1
2/

2/)(
min

2




 n

n

S

S

n
S

which has asymptote 1 (see [1])

The Hall ratio:
1)(

)(
max)(

n

H

HV
G 











 which converges to infinity (see [7]).

The integral eigen-ratio, i.e the ratio of a+b to ab, where a and b and two, distinct
non-zero eigenvalues whose sum and product is integral, is:
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n

n




1

2 which converges to -1 and:

The eigen- area: ))1ln()(1(  nnn (see [14]).

The central radius ratio is 1
)(


n

n

n

Grad which has asymptote 1 (see [4]).

The tree-cover ratio (or tree-2-cover ratio) is 
)(

))((
)(

Gt

SHtS
Gtc s

2
1

1








 

n

n

with asymptote 1/e (see [13]).

The H-eigen formation ratio of the graph G, on m edges, with H-decomposition.
Is:

mGEGEGEratio H
H /)]()([)(  so that for the complete graph we get:

)1(
)23(2

)(
2

2 



nn

nn
Kratio nK with asymptote -2 (see[17]).

The chromatic-cover ratio is
2

2

)(

))(( )1(
)}(cov{

n

n
K

nKn

SHS

n
S 

 
 with asymptote 1

(see [11]).
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