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1 Introduction

The generalized Maxwell distribution (GMD for short), a generalization of ordinary Maxwell
distribution, is proposed by Vodă (2009). The GMD has a variety of applications in statistics,
physics and chemistry. Its most common application is in statistical mechanics. Some recent
examples of this have: constructing fractional rheological constitutive equations (Schiessel et al.,
1995); be friction model suitable for quick simulation and control (Farid et al., 2005); forecasting
the temporal change of opening angle in multiple time scales and electroscalar wave (Zhang et
al., 2008; Arbab and Satti, 2009); project of the time related to behavior of viscoelastic materials
(Monsia, 2011).

The probability density function (pdf) and the cumulative distribution function (cdf) of the
GMD with the parameter k > 0 are respectively,

gk(x) =
k

2k/2σ2+1/kΓ(1 + k/2)
x2k exp

(
−x2k

2σ2

)

and
Gk(x) =

∫ x

−∞
gk(t) dt

for x > 0, where σ is a positive constant and Γ(·) is the Gamma function.
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Mills (1926) gave a well-known inequality and Mills’ ratio result for the standard normal cdf
Φ(x) with pdf φ(x) as follows:

x−1(1 + x−2)−1φ(x) < Φ(−x) < x−1φ(x), (1.1)

for x > 0 and

Φ(−x)
φ(x)

∼ 1
x

, (1.2)

as x →∞.

Peng et al. (2009) extended the Mills’ results to the case of the general error distribution:

2λv

v
x1−v

(
1 +

2(v − 1)λv

v
x−v

)−1

<
Tv(−x)
tv(x)

<
2λv

v
x1−v, (1.3)

for v > 1 and x > 0, and for v > 0

Tv(−x)
tv(x)

∼ 2λv

v
x1−v, (1.4)

as x →∞, where λ =
[

2−2/vΓ(1/v)
Γ(3/v)

]1/2

, and Tv(x) is the cdf with pdf tv(x). Huang and Chen (2014)

investigated the similar results of GMD, i.e.,

σ2

k
x1−2k <

Gk(−x)
gk(x)

<
σ2

k
x1−2k

(
1 +

(
σ2

k
x2k − 1

)−1
)

, (1.5)

for k > 1/2, σ > 0 and x > 0, and for k > 0,

Gk(−x)
gk(x)

∼ σ2

k
x1−2k, (1.6)

as x → ∞. The above-mentioned inequalities such as (1.1), (1.3), and (1.5) and Mills’ type-ratios
such as (1.2), (1.4), and (1.6) play an important role in considering some tail behavior and extremes
of economic and financial data.

In this paper, we define the logarithmic generalized Maxwell distribution (denoted by LGMD),
which is a natural extension of the generalized Maxwell distribution. One motivation of considering
LGMD is to obtain more efficient results as parameter estimators when random models were sup-
posed with the LGMD error terms instead of normal ones. Meanwhile, the LGMD can be expected
to be a better model for certain modern areas.

The present paper is to derive the Mills-type inequality, Mills-type ratio, and the tail distribu-
tional representation for the LGMD. As an important application, the asymptotic distribution of
the partial maximum of independent and identically distributed (i.i.d.) with common LGMD is
investigated.

First we provide the definition of LGMD.

Definition 1.1. Let X denote a random variable which obeys the GMD. Set Y = exp(X). Then
we call that Y obeys the LGMD, denoted by Y ∼ LGMD(k) with parameter k > 0.
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Easily check that the pdf of Y ∼ LGMD(k) is

fk(x) =
kx−1

2k/2σ2+1/kΓ(1 + k/2)
(log x)2k exp

(
−(log x)2k

2σ2

)

for x > 0, where parameter k > 0, and σ is a positive constant. Let Fk(x) denote the cdf of Y , i.e.,

Fk(x) =
∫ x

0
fk(t) dt

for x > 0. Note that the LGMD reduces to the logarithmic Maxwell distribution when k = 1.

The rest of the article is organized as follows. In Sec. 2, we derive some results concerning Mills-
type ratios and tail behavior of LGMD. Sec. 3, we consider the limit distribution of the partial
maximum of i.i.d random variables following the LGMD and the suitable norming constants needed.
The result is also extended to the case of a finite mixture of LGMDs.

2 Mills’ Ratio and Tail Properties of LGMD

In this section, we derive some results including Mills’ inequality, Mills’ ratio of LGMD.

For LGMD and GMD, note that 1−Gk(log x) = 1− Fk(x) and

1−Gk(log x)
x−1gk(log x)

=
1− Fk(x)

fk(x)
.

So, by Lemma 2.2 and Theorem 2.1 in Huang and Chen (2014), we have the following two results.

Theorem 2.1. Let Fk and fk respectively denote the cdf and pdf of LGMD with parameter k > 1/2.
We have the inequality below for all x > 1,

σ2

k
x(log x)1−2k <

1− Fk(x)
fk(x)

<
σ2

k
x(log x)1−2k

(
1 +

(
σ2

k
(log x)2k − 1

)−1
)

, (2.1)

where σ is a positive constant.

Corollary 2.1. For fixed k > 0, as x →∞, we have

1− Fk(x)
fk(x)

∼ σ2

k
x(log x)1−2k. (2.2)

Remark 2.1. Since the LGMD(k) are reduced to the logarithmic Maxwell distribution as k = 1,
so by Theorem 2.1 and Corollary 2.1, we derive the inequality and Mills’ ratio of the logarithmic
Maxwell distribution, i.e.,

σ2x(log x)−1f1(x) < 1− F1(x) < σ2x(log x)−1(1 + (σ2(log x)2 − 1)−1)f1(x),

for x > 1 and
1− F1(x)

f1(x)
∼ σ2x

log x
,

as x →∞.
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Remark 2.2. For k > 1/2, Corollary 2.1 gives Fk ∈ D(Λ), i.e., there exist norming constants
αn > 0 and βn ∈ R which make sure Fn

k (αnx + βn) converges to exp(− exp(−x)). Since

(d/dx)fk(x)
fk(x)

= −1
x

(
1− 2k

log x
+

k

σ2
(log x)2k−1

)
,

by Corollary 2.1, we have
1− Fk(x)

fk(x)
(d/dx)fk(x)

fk(x)
→ −1

as x →∞. Hence, it follows by Proposition 1.18 in Resnick (1987) that Fk ∈ D(Λ). The choice of
norming constants αn and βn is discussed by Theorem 3.2.

Finner et al. (2008) investigated the asymptotic behavior of the ratio of the Student’s t and
normal distributions as the degrees of freedom u = u(x) satisfies

lim
x→∞

x4

u
= β ∈ [0,∞). (2.3)

The main motivation of the work is to consider the false discovery rate in multiple testing problems
with large numbers of hypotheses and extremely small critical values for the smallest ordered p
value; in detail, see Finner et al. (2007). In this section, we study the asymptotic behavior of the
ratio of pdfs and the ratio of the tails of the LGMD and the logarithmic Maxwell distribution.
Firstly, we consider the case of k → 1. Secondly, we consider the case of x →∞ for fixed k.

Theorem 2.2. For k > 0, let x = x(k) be such that

k − 1 =
γ

2(log x)2 log log x

for some γ ∈ R. Then

lim
k→1

f1(x)
fk(x)

= exp
( γ

2σ2

)
(2.4)

and

lim
k→1

1− F1(x)
1− Fk(x)

= exp
( γ

2σ2

)
. (2.5)

Proof. Note that 2(k+1)/2σ2+1/kΓ(1+k/2)

kσ3π1/2 → 1 as k → 1, so

lim
k→1

f1(x)
fk(x)

= lim
k→1

(log x)2−2k exp
(

(log x)2k

2σ2
− (log x)2

2σ2

)

= lim
k→1

exp
(

(log x)2

2σ2

(
(log x)2k−2 − 1

))

= lim
k→1

exp
(

(log x)2

2σ2
(exp((2k − 2) log log x)− 1)

)

= lim
k→1

exp
(

(log x)2

2σ2

(
exp

(
γ

(log x)2

)
− 1

))

= exp
( γ

2σ2

)
.

The condition of the theorem deduces (log x)2−2k → 1 as k → 1. According to Corollary 2.1,
Remark 2.1 and (2.4), (2.5) can be deduced.
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Theorem 2.3. For fixed k, we have

f1(x)
fk(exp((log x)1/k))

=
2(k+1)/2Γ(1 + k/2) exp((log x)1/k)

π1/2kσ1−1/kx
(2.6)

and

lim
x→∞

(log x)1/k−1(1− F1(x))
1− Fk(exp((log x)1/k))

=
2(k+1)/2Γ(1 + k/2)

π1/2σ1−1/k
. (2.7)

Proof. Note that (2.6) follows from fundamental calculation. By Corollary 2.1, Remark 2.1 and
(2.6), we have

lim
x→∞

(log x)1/k−1(1− F1(x))
1− Fk(exp((log x)1/k))

= lim
x→∞

kx

exp((log x)1/k)
f1(x)

fk(exp((log x)1/k))

=
2(k+1)/2Γ(1 + k/2)

π1/2σ1−1/k
,

so (2.7) follows.

3 Asymptotic Distribution of the Maximum

By applying Corollary 2.1, we could establish the distributional tail representation for the
LGMD.

Theorem 3.1. Under the conditions of Theorem 2.1, we have

1− Fk(x) = c(x) exp
(
−

∫ x

e

g(t)
f(t)

dt
)

for large enough x, where

c(x) =
1

2k/2σ1/kΓ(1 + k/2)
exp

(−1/(2σ2)
)
(1 + θ1(x))

and

f(t) =
σ2

k
t(log t)1−2k, g(t) = 1− σ2

k
(log t)−2k,

where θ1(x) → 0 as x →∞.

Proof. For large enough x, by Corollary 2.1, we have

1− Fk(x) =
σ2

k
(log x)1−2kxfk(x)(1 + θ1(x))

=
1

2k/2σ1/kΓ(1 + k/2)
exp

(
log log x− (log x)2k

2σ2

)
(1 + θ1(x))

=
1

2k/2σ1/kΓ(1 + k/2)
exp

(
− 1

2σ2

)
exp

(
−

∫ x

e

(
k(log t)2k−1

σ2t
− 1

t log t

)
dt

)
(1 + θ1(x))
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=
1

2k/2σ1/kΓ(1 + k/2)
exp

(
− 1

2σ2

)
exp

(
−

∫ x

e

1− k−1σ2(log t)−2k

k−1σ2t(log t)1−2k
dt

)
(1 + θ1(x))

= c(x) exp
(
−

∫ x

e

g(t)
f(t)

dt
)

,

where θ1(x) → 0 as x →∞. The desired result follows.

Remark 3.1. As limt→∞ g(t) = 1, f(t) > 0 on [1,∞) is absolutely continuous function and
limt→∞ f ′(t) = 0 in Theorem 3.1, an application of Theorem 3.1 and Corollary 1.7 in Resnick
(1987) shows Fk ∈ D(Λ), where D(Λ) denotes the domain of attraction Λ(x) = exp(− exp(−x)).

In this we consider the asymptotic distribution of the normalized maximum of a sequence of i.i.d.
random variables following LGMD. Remark 2.2 and Theorem 3.1 showed that the distribution of
partial maximum converges to Λ(x). So, the following work is to find the suitable norming constants.

Theorem 3.2. Let {Xn, n ≥ 1} be an i.i.d. sequence from the LGMD with k > 1/2. Let Mn =
max{Xk, 1 ≤ k ≤ n}. We have

lim
n→∞P (Mn ≤ αnx + βn) = exp(− exp(−x)),

where

αn

=
σ2 exp

(
21/(2k)σ1/k(log n)1/(2k)

) (
1 + σ1/k(log n)1/(2k)−1

22−1/(2k)k2 (log log n− (k2 − 1) log 2− 2k log Γ(1 + k/2))
)

k
(
21/(2k)σ1/k(log n)1/(2k) + log

(
1 + σ1/k(log n)1/(2k)−1

22−1/(2k)k2 (log log n− (k2 − 1) log 2− 2k log Γ(1 + k/2))
))2k−1

and

βn

=exp
(
21/(2k)σ1/k(log n)1/(2k)

) (
1 +

σ1/k(log n)1/(2k)−1

22−1/(2k)k2

(
log log n− (k2 − 1) log 2− 2k log Γ(1 + k/2)

) )
.

Proof. Since Fk ∈ D(Λ), there must be norming constants an > 0 and bn ∈ R which make sure
that limn→∞ P ((Mn − bn)/an ≤ x) = exp(− exp(−x)). By Proposition 1.1 in Resnick (1987) and
Theorem 3.1, the norming constants can be chosen that an and bn satisfy the equations: bn =
(1/(1 − Fk))←(n) and an = f(bn). Note that Fk(x) is continuous, then 1 − Fk(bn) = n−1. By
Corollary 2.1, we have

nk−1σ2(log bn)1−2kbnfk(bn) → 1,

as n →∞, i.e.,

n2−
k
2 σ−

1
k Γ−1

(
1 +

k

2

)
log bn exp

(
−(log bn)2k

2σ2

)
→ 1,

as n →∞, and so

log n− k

2
log 2− 1

k
log σ − log Γ

(
1 +

k

2

)
+ log log bn − (log bn)2k

2σ2
→ 0, (3.1)

as n →∞, which deduces
(log bn)2k

2σ2 log n
→ 1,
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as n →∞, thus
2k log log bn − log 2− 2 log σ − log log n → 0,

as n →∞, hence

log log bn =
1
2k

(log 2 + 2 log σ + log log n) + o(1).

Putting the above equality into (3.1), we have

(log bn)2k = 2σ2

(
log n +

1
2k

log log n− k2 − 1
2k

log 2− log Γ
(

1 +
k

2

))
+ o(1),

which deduces that

log bn = 2
1
2k σ

1
k (log n)

1
2k

(
1 +

log log n− (k2 − 1) log 2− 2k log Γ(1 + k
2 )

22k2 log n
+ o

(
(log n)−1

)
)

,

therefore

bn =exp
(
2

1
2k σ

1
k (log n)

1
2k

) (
1 +

σ
1
k (log n)

1
2k
−1

22− 1
2k k2

(
log log n− (k2 − 1) log 2− 2k log Γ(1 +

k

2
)
)

+ o
(
(log n)

1
2k
−1

) )

=βn + o
(
(log n)

1
2k
−1 exp

(
2

1
2k σ

1
k (log n)

1
2k

))
,

where

βn = exp
(
21/(2k)σ1/k(log n)1/(2k)

) (
1 +

σ1/k(log n)1/(2k)−1

22−1/(2k)k2
(log log n− (k2 − 1) log 2− 2k log Γ(1 + k/2))

)
.

Hence, we have

αn = f(βn)

=
σ2 exp(21/(2k)σ1/k(log n)1/(2k))

(
1 + σ1/k(log n)1/(2k)−1

22−1/(2k)k2 (log log n− (k2 − 1) log 2− 2k log Γ(1 + k/2))
)

k
(
21/(2k)σ1/k(log n)1/(2k) + log

(
1 + σ1/k(log n)1/(2k)−1

22−1/(2k)k2 (log log n− (k2 − 1) log 2− 2k log Γ(1 + k/2))
))2k−1

.

It is easy to check that limn→∞ αn/an = 1 and limn→∞(bn−βn)/αn = 0. Hence, by Theorem 1.2.3
in Leadbetter et al. (1983), the result follows.

Remark 3.2. Theorem 3.2 shows that the limit distribution of the normalized maximum from the
logarithmic Maxwell distribution is the Gumbel extreme value distribution with norming constants

αn =
σ2 exp

(
21/2σ(log n)1/2

) (
1 + σ

23/2(log n)1/2

(
log log n− 2 log(π1/2/2)

))

21/2σ(log n)1/2 + log
(
1 + σ

23/2(log n)1/2

(
log log n− 2 log(π1/2/2)

))

and

βn = exp
(
21/2σ(log n)1/2

) (
1 +

σ

23/2(log n)1/2

(
log log n− 2 log(π1/2/2)

))
.
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At the end of this section, we extend the result of Theorem 3.2 to the case of a finite mixture
of LGMDs.

Finite mixture distributions or models have been widely applied in various areas like Chemistry
(Roeder, 1994) and image and video databases (Yang and Ahuja, 1998). Recently, some extreme
statistical scholars have also studied them. Mladenović (1999) have considered extreme values of the
sequences of independent random variables with common mixed distributions containing normal,
Cauchy and uniform distributions. Peng et al. (2010) have investigated the limit distribution and
its corresponding uniform convergence rate for a finite mixed of exponential distribution.

If the distribution function (df) F of a random variable ξ have

F (x) = p1F1(x) + p2F2(x) + · · ·+ prFr(x),

we say that ξ obeys a finite mixture distribution F, where Fi, 1 ≤ i ≤ r denote different dfs of the
mixture components. The weight coefficients have the condition that pi > 0, i = 1, 2, · · · , r and∑r

j=1 pj = 1.

Next, we consider the extreme value distribution from a finite mixture with component dfs Fki

obeying LGMD(ki), where the parameter ki > 1 for 1 ≤ i ≤ r and ki 6= kj for i 6= j. Denote the df
of the finite mixture by

F (x) = p1Fk1(x) + p2Fk2(x) + · · ·+ prFkr(x) (3.2)

for x > 0.

Theorem 3.3. Let {Zn, n ≥ 1} be a sequence of i.i.d. random variables following the common df
F given by (3.2). Let Mn = max{Z1, Z2, · · · , Zn}. Then

lim
n→∞P

(
Mn − βn

αn
≤ x

)
= exp(− exp(−x))

holds with the norming constants

αn =
σ1/k exp

(
21/(2k)σ1/k(log n)1/(2k)

)

21−1/(2k)k(log n)1−1/(2k)

and

βn =exp
(
21/(2k)σ1/k(log n)1/(2k)

) (
1 +

σ1/k(log n)1/(2k)−1

22−1/(2k)k2

(
log log n + 2k log p− (k2 − 1) log 2

− 2k log Γ(1 + k/2)
))

,

where σ = max{σ1, · · · , σr}, and p = pi1 +· · ·+pij , where is ∈ {i, σi = σ and k = ki}, 1 ≤ s ≤ j ≤ r
and k = min{k1, · · · , kr}.

Proof. By (3.2), we have

1− F (x) =
r∑

i=1

pi(1− Fki
(x)).

By Theorem 2.1, we have
r∑

i=1

piσ
2
i

ki
(log x)1−2kixfki

(x) < 1− F (x)
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<
r∑

i=1

piσ
2
i

ki
(log x)1−2kix

(
1 + (

σ2
i

ki
(log x)2ki − 1)−1

)
fki

(x)

for all x > 1, according to the definition of fk, which implies

p log x

2
k
2 σ

1
k Γ(1 + k

2 )
exp

(
−(log x)2k

2σ2

)
(1 + Ak(x)) < 1− F (x)

<
p log x

2
k
2 σ

1
k Γ(1 + k

2 )

(
1 + (

σ2

k
(log x)2k − 1)−1

)
exp

(
−(log x)2k

2σ2

)
(1 + Bk(x)), (3.3)

where

Ak(x) =
∑

ki 6=k

2
k
2 piσ

1
k Γ(1 + k

2 )

2
ki
2 pσ

1
ki Γ(1 + ki

2 )
exp

(
(log x)2k

2σ2
− (log x)2ki

2σ2
i

)
→ 0 (3.4)

and

Bk(x) =
∑

ki 6=k

2
k
2 piσ

1
k Γ(1 + k

2 )

2
ki
2 pσ

1
ki Γ(1 + ki

2 )

1 + (σ2
i

ki
(log x)2ki − 1)−1

1 + (σ2

k (log x)2k − 1)−1
exp

(
(log x)2k

2σ2
− (log x)2ki

2σ2
i

)
→ 0 (3.5)

as x →∞ since k = min{k1, k2, · · · , kr}. Combining (3.3)-(3.5) and (2.2) together, for large enough
x, we obtain

1− F (x) ∼ p(1− Fk(x)) (3.6)

as x → ∞, where Fk denotes the cdf of the LGMD(k), and σ and p are defined by Theorem 3.3.
By Proposition 1.19 in Resnick (1987), we can derive F ∈ D(Λ). The norming constants can be
obtained by Theorem 3.2 and (3.6). The proof is complete.
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