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Introduction: The ABC conjecture was proposed by Joseph Oesterle in 

1988 and David Masser in 1985. The conjecture states usually that, for any 

infinitesimal ε >0, there exists a constant Cε >0 such that for any three 

relatively prime integers a, b and c satisfying  

a + b = c,  

the inequality  

   

holds, where p/abc indicates that the product is over primes p which divide 

the product abc.  

This is an unsolved problem hitherto although somebody published papers 

on the internet claiming proved it.    

 

Abstract  

First, we get rid of three kinds from A+B=C according to their respective 

odevity and gcf (A, B, C) =1. After that, expound relations between C and 

raf (A, B, C) by the symmetric law of odd numbers. Finally, we have proven 

C ≤ Cε [raf (A, B, C)] 1+ ε in which case A+B=C and gcf (A, B, C) =1.   
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Values of A, B and C in set A+B=C  

For positive integers A, B and C, let raf (A, B, C) denotes the product of all 

distinct prime factors of A, B and C, e.g. if A=112×13, B=13 and 

C=2×13×61, then raf (A, B, C) =2×11×13×61 =17446. In addition, let gcf (A, 

B, C) denotes greatest common factor of A, B and C.  

Therefrom the ABC conjecture is also able to state that given any 

infinitesimal non-negative real number ε ≥ 0, there exists a constant Cε > 0 

such that for every triple of positive integers A, B and C satisfying A+B=C, 

and gcf (A, B, C) =1, then we have C ≤ Cε [raf (A, B, C)] 1+ ε.   

First let us get rid of three kinds from A+B=C according to their respective 

odevity and gcf (A, B, C) =1, as listed below.     

1. If A, B and C all are positive odd numbers, then A+B is an even number, 

yet C is an odd number, evidently there is only A+B≠C
 according to an odd 

number ≠ an even number.   

2. If any two in A, B and C are positive even numbers, and another is a 

positive odd number, then when A+B is an even number, C is an odd number, 

yet when A+B is an odd number, C is an even number, so there is only 

A+B≠C
 according to an odd number ≠ an even number.  
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3. If A, B and C, all of them are positive even numbers, then they have at 

least a common prime factor 2, manifestly this and the given prerequisite of 

gcf (A, B, C) = 1 are inconsistent, so A, B and C can not be three positive 

even numbers together.    

Therefore we can only continue to have a kind of A+B=C, namely A, B and 

C are two positive odd numbers and one positive even number. So let 

following two equalities add together to replace A+B=C in which case A, B 

and C are two positive odd numbers and one positive even number.  

1. A+B=2XS, where A, B and S are three relatively prime positive odd 

numbers, and X is a positive integer.  

2. A+2YV=C, where A, V and C are three relatively prime positive odd 

numbers, and Y is a positive integer.   

Consequently the proof for ABC conjecture, by now, it is exactly to prove 

the existence of following two inequalities.   

(1). 2XS ≤ Cε [raf (A, B, 2 XS)] 1+ ε in which case A+B=2XS, where A, B and S are 

three relatively prime positive odd numbers, and X is a positive integer.   

(2). C ≤ Cε [raf (A, 2YV, C)] 1+ ε in which case A+2YV =C, where A, V and C are 

three relatively prime positive odd numbers, and Y is a positive integer.    

 

Circumstances Relating to the Proof    

Let us divide all positive odd numbers into two kinds of A and B, namely the 

form of A is 1+4n, and the form of B is 3+4n, where n≥0. From small to 
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large odd numbers of A and of B are arranged as follows respectively.  

A: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69…1+4n …  

B: 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67…3+4n …   

We list also from small to great natural numbers, well then you would 

discover that Permutations of seriate natural numbers show up a certain law.  

1, 21, 3, 22, 5, 21×3, 7, 23, 9, 21×5, 11, 22×3, 13, 21×7, 15, 24, 17, 21×9, 19, 

22×5, 21, 21×11, 23, 23×3, 25, 21×13, 27, 22×7, 29, 21×15, 31, 25, 33, 21×17, 

35, 22×9, 37, 21×19, 39, 23×5, 41, 21×21, 43, 22×11, 45, 21×23, 47, 24×3, 49, 

21×25, 51, 22×13, 53, 21×27, 55, 23×7, 57, 21×29, 59, 22×15, 61, 21×31, 63, 

26, 65, 21×33, 67, 22×17, 69, 21×35, 71, 23×9, 73, 21×37, 75, 22×19, 77, 

21×39, 79, 24×5, 81, 21×41, 83, 22×21, 85, 21×43, 87, 23×11, 89, 21×45, 91, 

22×23, 93, 21×47, 95, 25×3, 97, 21×49, 99, 22×25, 101, 21×51, 103 …→   

Of course, even numbers contain prime factor 2, yet others are odd numbers 

in the sequence of natural numbers above-listed.  

After each of odd numbers in the sequence of natural numbers is replaced by 

the belongingness of itself, the sequence of natural numbers is changed into 

the following form.  

A, 21, B, 22, A, 21×3, B, 23, A, 21×5, B, 22×3, A, 21×7, B, 24, A, 21×9, B, 22×5 

A, 21×11, B, 23×3, A, 21×13, B, 22×7, A, 21×15, B, 25, A, 21×17, B, 22×9, A 

21×19, B, 23×5, A, 21×21, B, 22×11, A, 21×23, B, 24×3, A, 21×25, B, 22×13, A 

21×27, B, 23×7, A, 21×29, B, 22×15, A, 21×31, B, 26, A, 21×33, B, 22×17, A 

21×35, B, 23×9, A, 21×37, B, 22×19, A, 21×39, B, 24×5, A, 21×41, B, 22×21, A 
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21×43, B, 23×11, A, 21×45, B, 22×23, A, 21×47, B, 25×3, A, 21×49, B, 22×25, 

A, 21×51, B …→   

Thus it can be seen, leave from any given even number >2, there are finitely 

many cycles of B with A leftwards until B=3 with A=1, and there are 

infinitely many cycles of A with B rightwards.   

If we regard an even number on the sequence of natural numbers as a 

symmetric center of odd numbers, then two odd numbers of every bilateral 

symmetry are A and B always, and a sum of bilateral symmetric A and B is 

surely the double of the even number. For example, odd numbers 23(B) and 

25(A), 21(A) and 27(B), 19(B) and 29(A) etc are bilateral symmetries 

respectively whereby even number 23×3 to act as the center of the symmetry, 

and there are 23+25=24×3, 21+27=24×3, 19+29=24×3 etc.  

For another example, odd numbers 49(A) and 51(B), 47(B) and 53(A), 45(A) 

and 55(B) etc are bilateral symmetries respectively whereby even number 

2×25 to act as the center of the symmetry, and there are 49+51=22×25, 

47+53=22×25, 45+55=22×25 etc.  

Again give an example, 63(B) and 65(A), 61(A) and 67(B), 59(B) and 69(A) 

etc are bilateral symmetries respectively whereby even number 26 to act as 

the center of the symmetry, and there are 63+65=27, 61+67=27, 59+69=27 

etc.    

Overall, if A and B are two bilateral symmetric odd numbers whereby 2XS to 

act as the center of the symmetry, then there is A+B=2X+1S, where X≥1, and 
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S is an odd number ≥1.   

The total number of A plus B on the left of 2XS is exactly the total number of 

pairs of bilateral symmetric A and B for symmetric center 2XS. If we regard 

any finite-great even number 2XS as a symmetric center, then there are 

merely finitely more pairs of bilateral symmetric A and B.  

Namely the total number of pairs of A and B wherewith express 2X+1S as the 

both sum is finite, where 2X+1S is a finite-great even number.  

Or rather, the total number of pairs of bilateral symmetric A and B for 

symmetric center 2XS is exactly 2X-1S.    

On the supposition that A and B are a pair of bilateral symmetric odd 

numbers whereby 2XS to act as the center of the symmetry, then A+B=2X+1S. 

By now, let A plus 2X+1S makes A+2X+1S, then B and A+2X+1S are still 

bilateral symmetry whereby 2X+1S to act as the center of the symmetry, and 

B+(A+2X+1S) =(A+B)+2X+1S =2X+1S+2X+1S =2X+2S.   

If substitute B for A, let B plus 2X+1S makes B+2X+1S, then A and B+2X+1S 

are too bilateral symmetry whereby 2X+1S to act as the center of the 

symmetry, and A+ (B+2X+1S) =2X+2S.    

Provided both let A plus 2X+1S makes A+2X+1S, and let B plus 2X+1S makes 

B+2X+1S, then A+2X+1S and B+2X+1S are likewise bilateral symmetry 

whereby 3×2XS to act as the center of the symmetry, and (A+2X+1S)+ 

(B+2X+1S) =3×2X+1S.   

Since there are merely A and B at two odd places of each and every bilateral 
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symmetry on two sides of an even number as the center of the symmetry, 

then whether B+(A+2X+1S)=2X+2S or A+(B+2X+1S)=2X+2S is A+B=2X+2S 

entirely. Like that, write (A+2X+1S) + (B+2X+1S) =3×2X+1S down A+B= 

3×2X+1S= 2X+1St, where St is an odd number ≥3.    

Do it like this, not only equalities like as A+B=2X+1S are proven to continue 

the existence, one by one, but also they are getting more and more along 

with which X and/or S are getting greater and greater, up to exist infinitely 

more equalities like as A+B=2X+1S where X≥0, and S is an odd number X≥1.   

In other words, added to a positive even number on two sides of A+B=2XS, 

then we get still such an equality like as A+B=2XS.   

Whereas no matter how great a concrete even number 2XS, there are merely 

finitely more pairs of bilateral symmetric A and B for symmetric center 2XS.  

If 2XS is defined as a concrete positive even number, then there is only a part 

of A+B=2XS to satisfy gcf (A, B, 2XS) =1. For example, if 2XS=18, then 

there are 1+17=18, 5+13=18 and 7+11=18 to satisfy gcf (A, B, 2XS) =1, yet 

3+15=18 and 9+9=18 suit not because each has common factor 3.  

If add or subtract a positive odd number on two sides of A+B=2XS, then we 

get another equality like as A+2YV=C, where Y≥1, and V is an odd number 

≥1. That is to say, equalities like as A+2YV=C can come from A+B=2X+1S so 

as add or subtract a positive odd number on two sides of A+B=2X+1S.   

Therefore, on the one hand, equalities like as A+2YV=C are getting more and 

more along with which equalities like as A+B=2X+1S are getting more and 
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more, up to exist infinite more equalities like as A+2YV=C along with which 

infinite more equalities like as A+B=2X+1S appear.  

Certainly, we can likewise transform A+2YV=C into A+B=2XS so as add or 

subtract a positive odd number on the two sides of A+2YV=C.    

On the other hand, if C is only defined as a concrete positive odd number, 

then there is merely finitely more pairs of A and 2YV wherewith express C as 

the both sum. But also, there is probably a part of A+2YV=C to satisfy gcf (A, 

2YV, C) =1. For example, when C=25, there are merely 1+24=25, 3+22=25, 

7+18=25, 9+16=25, 11+14=25and 13+12=25 to satisfy gcf (A, 2YV, C) =1, 

yet 5+20=25 and 15+10=25 suit not because each has common factor 5.  

After factorizations of A, B, S, V and C in A+B=2X+1S plus A+2YV=C, if 

part prime factors have greater exponents, then there are both 2X+1S ≥ raf (A, 

B, 2X+1S) in which case A+B=2X+1S satisfying gcf (A, B, 2X+1S) =1, and C ≥ 

raf (A, 2YV, C) in which case A+2YV=C satisfying gcf (A, 2YV, C) =1. For 

example, 27 > raf (3, 53, 27) for 3+53=27; and for another example, 310 > raf 

(56, 25×23×59, 310) for 56+25×23×59=310.     

On the contrary, there are both 2X+1S ≤ raf (A, B, 2X+1S) in which case 

A+B=2X+1S satisfying gcf (A, B, 2X+1S) =1, and C ≤ raf (A, 2YV, C) in which 

case A+2YV=C satisfying gcf (A, 2YV, C) =1. For example, 22×7 < raf (13, 

3×5, 22×7) for 13+3×5=22×7; and for another example, 34 < raf (11×7, 22, 34) 

for 11×7+22 =34.   

Since either A or B in A+B=2X+1S plus an even number is still an odd 
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number, and 2X+1S plus the even number is still an even number, thereby we 

can use A+B=2X+1S to express every equality which on two sides of 

A+B=2X+1S plus an even number makes.  

Consequently, there are infinitely more 2X+1S ≥ raf (A, B, 2X+1S) plus 2X+1S ≤ 

raf (A, B, 2X+1S) in which case A+B=2X+1S.    

Likewise, either 2YV plus an even number is still an even number, or A plus 

an even number is still an odd number, and C plus the even number is still an 

odd number, so we can use equality A+2YV=C to express every equality 

which on two sides of A+2YV=C plus an even number makes.   

Consequently, there are infinitely more C ≥ raf (A, 2YV, C) plus C ≤ raf (A, 

2YV, C) in which case A+2YV = C.  

But, if let 2X+1S ≥ raf (A, B, 2X+1S) and 2X+1S ≤ raf (A, B, 2X+1S) in which 

case A+B=2X+1S separate, and let C ≥ raf (A, 2YV, C) and C ≤ raf (A, 2YV, C) 

in which case A+2YV =C separate, then for inequalities like as each of the 

four kinds, we are unable to deduce their total number whether be actually 

infinitely more or finitely more.  

However, what deserve to be affirmed is that there are 2X+1S ≥ raf (A, B, 

2X+1S) and 2X+1S ≤ raf (A, B, 2X+1S) in which case A+B=2X+1S satisfying gcf 

(A, B, 2X+1S) =1, and there are C ≥ raf (A, 2YV, C) and C ≤ raf (A, 2YV, C) 

in which case A+2YV = C satisfying gcf (A, 2YV, C) =1, according to the 

preceding illustration with examples.      
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Proving C ≤ Cε [raf (A, B, C)] 1+ε   

Hereinbefore, we have known that both there are 2X+1S ≤ raf (A, B, 2X+1S) and 

2X+1S ≥ raf (A, B, 2X+1S) in which case A+B=2XS satisfying gcf (A, B, 2X+1S) 

=1, and there are C ≤ raf (A, 2YV, C) and C ≥ raf (A, 2YV, C) in which case 

A+2YV=C satisfying gcf (A, 2YV, C) =1, whether inequalities of each kind are 

infinitely more, or are finitely more.   

First let us expound a set of identical substitution as the follows. If an even 

number on the right side of each of above-mentioned four inequalities added 

to an infinitesimal non-negative real number such as R ≥ 0, then the result is 

both equivalent to multiply the even number by another infinitesimal real 

number, and equivalent to increase an even more infinitesimal real number 

such as ε ≥0 to the exponent of the even number, i.e. from this form a new 

exponent 1+ε, but when R= 0, the multiplied real number is 1, yet ε = 0.   

Actually, aforementioned three ways of doing, all are in order to increase an 

identical even number into a value and the same, but also we consider such an 

identical substitution as a rule.    

Now that exists the rule of the identical substitution between each other, then 

we set about proving aforesaid four inequalities, one by one, thereinafter.  

 

(1). For inequality 2X+1S ≤ raf (A, B, 2X+1S) in which case A+B=2XS 

satisfying gcf (A, B, 2X+1S) =1, 2X+1S divided by raf (A, B, 2X+1S) is equal to 

2XS1
t-1~Sn

m-1/ArafBraf as a true fraction, where S1~Sn express all distinct prime 
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factors of S; t-1~m-1 are respectively exponents of prime factors S1~Sn orderly 

and t-1≥0, … m-1≥0; Araf expresses the product of all distinct prime factors of 

A; and Braf expresses the product of all distinct prime factors of B.  

Undoubtedly 2XS1
t-1~Sn

m-1/ArafBraf as the true fraction is smaller than 1.   

After that, even number raf (A, B, 2X+1S) added to an infinitesimal 

non-negative real number such as R ≥ 0 to turn the even number itself into [raf 

(A, B, 2X+1S)] 1+ ε according to the above mentioned the rule of the identical 

substitution. Evidently there is 2X+1S ≤ [raf (A, B, 2 X+1S)] 1+ ε successively.   

By now, multiply [raf (A, B, 2 X+1S)] 1+ ε by 2 XS1
t-1~Sn

m-1/Araf Braf, then there is 

still 2X+1S ≤ 2 XS1
t-1~Sn

m-1/Araf Braf [raf (A, B, 2X+1S)] 1+ ε.   

Also let Cε= 2 XS1
t-1~Sn

m-1/Araf Braf, we get 2X+1S ≤ Cε [raf (A, B, 2 X+1S)] 1+ ε.    

Manifestly when R=0, it has ε =0, and there is 2X+1S=Cε [raf (A, B, 2 X+1S)] 1+ ε, 

yet when R>0, it has ε >0, and there is 2X+1S < Cε [raf (A, B, 2 X+1S)] 1+ ε.     

 

(2). For inequality C ≤ raf (A, 2YV, C) in which case A+2YV =C satisfying 

gcf (A, 2YV, C) =1, C divided by raf (A, 2YV, C) is equal to 

C1
j-1~Ce

f-1/2ArafVraf as a true fraction, where C1~Ce express all distinct prime 

factors of C; j-1~f-1 are respectively exponents of prime factors C1~Ce orderly 

and j-1≥0, … f-1≥0; Araf expresses the product of all distinct prime factors of 

A; and Vraf expresses the product of all distinct prime factors of V.  

Undoubtedly C1
j-1~Ce

f-1/2ArafVraf as the true fraction is smaller than 1 too.   

After that, even number raf (A, 2YV, C) added to an infinitesimal non-negative 
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real number such as R ≥ 0 to turn the even number itself into [raf (A, 2YV, 

C)]1+ ε according to the above mentioned the rule of the identical substitution.  

Evidently there is C ≤ [raf (A, 2YV, C)] 1+ ε successively.   

By now, multiply [raf (A, 2YV, C)] 1+ ε by C1
j-1~Ce

f-1/2ArafVraf, then there is still 

C ≤ C1
j-1~Ce

f-1/2ArafVraf [raf (A, 2YV, C)] 1+ ε.   

Also let Cε= C1
j-1~Ce

f-1/2ArafVraf, we get C ≤Cε [raf (A, 2YV, C)] 1+ ε.   

Manifestly when R= 0, it has ε = 0, and there is C = Cε [raf (A, 2YV, C)] 1+ ε, 

yet when R>0, it has ε >0, and there is C < Cε [raf (A, 2YV, C)] 1+ ε.   

 

(3). For inequality 2X+1S ≥ raf (A, B, 2X+1S) in which case A+B=2XS 

satisfying gcf (A, B, 2X+1S) =1, 2X+1S divided by raf (A, B, 2X+1S) is equal to 

2XS1
t-1~Sn

m-1/ArafBraf as a false fraction, where S1~Sn express all distinct prime 

factors of S; t-1~m-1 are respectively exponents of prime factors S1~Sn orderly 

and t-1≥0, … m-1≥0; Araf expresses the product of all distinct prime factors of 

A; and Braf expresses the product of all distinct prime factors of B.   

Undoubtedly 2XS1
t-1~Sn

m-1/ArafBraf as the false fraction is greater than 1.    

After that, even number raf (A, B, 2X+1S) added to an infinitesimal 

non-negative real number such as R ≥ 0 to turn the even number itself into [raf 

(A, B, 2X+1S)] 1+ε according to the above mentioned the rule of the identical 

substitution.   

By now, multiply [raf (A, B, 2X+1S)] 1+ ε by 2XS1
t-1~Sn

m-1/ArafBraf, then there is 

2X+1S ≤ 2XS1
t-1~Sn

m-1/ArafBraf [raf (A, B, 2X+1S)] 1+ ε.  
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Let Cε= 2XS1
t-1~Sn

m-1/ArafBraf, we get 2X+1S ≤ Cε [raf (A, B, 2X+1S)] 1+ ε.   

Manifestly when R=0, it has ε =0, and there is 2X+1S =Cε [raf (A, B, 2X+1S)] 1+ ε, 

yet when R>0, it has ε >0, and there is 2X+1S < Cε [raf (A, B, 2X+1S)] 1+ ε.     

 

(4). For inequality C ≥ raf (A, 2YV, C) in which case A+2YV =C satisfying 

gcf (A, 2YV, C) = 1, C divided by raf (A, 2YV, C) is equal to 

C1
j-1~Ce

f-1/2ArafVraf as a false fraction, where C1~Ce express all distinct prime 

factors of C; j-1~f-1 are respectively exponents of prime factors C1~Ce orderly 

and j-1≥0, … f-1≥0; Araf expresses the product of all distinct prime factors of 

A; and Vraf expresses the product of all distinct prime factors of V.   

Undoubtedly C1
j-1~Ce

f-1/2ArafVraf as the false fraction is greater than 1.    

After that, even number raf (A, 2YV, C) added to an infinitesimal non-negative 

real number such as R ≥ 0 to turn the even number itself into [raf (A, 2YV, 

C)]1+ ε according to the above mentioned the rule of the identical substitution.  

By now, multiply [raf (A, 2YV, C)] 1+ ε by C1
j-1~Ce

f-1/2ArafVraf, then there is 

C≤C1
j-1~Ce

f-1/2ArafVraf [raf (A, 2YV, C)] 1+ ε.   

Let Cε= C1
j-1~Ce

f-1/2ArafVraf, we get C ≤ Cε [raf (A, 2YV, C)] 1+ ε.      

Manifestly when R= 0, it has ε = 0, and there is C = Cε [raf (A, 2YV, C)] 1+ ε, 

yet when R>0, it has ε >0, and there is C < Cε [raf (A, 2YV, C)] 1+ ε.   

 

We have concluded Cε=2XS1
t-1~Sn

m-1/ArafBraf and Cε=C1
j-1~Ce

f-1/2ArafVraf in the 

preceding proof. Thus it can be seen, Cε in each of aforementioned four 
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inequalities is a constant because it consists of known numbers.  

Besides, for an infinitesimal non-negative real number R ≥ 0, actually, it is 

merely comparatively speaking, if raf (A, B, 2X+1S) or raf (A, 2YV, C) is an 

infinite-great positive even number, then regard any concrete positive real 

number as R, it is still an infinitesimal non-negative real number such as 

R=211139999199989999619992999923876415432654999999999999999999 

722123478886187649722876835165111556437865437656782015.31115√2π.  

To sum up, we have proven that there are both 2X+1S≤Cε [raf (A, B, 2 X+1S)] 1+ ε 

in which case A+B=2XS satisfying gcf (A, B, 2X+1S) =1, and C≤Cε [raf (A, 2Y 

V, C)] 1+ ε in which case A+2YV=C satisfying gcf (A, 2YV, C) =1, where X ≥1, 

Y ≥1, S is an odd number ≥ 1, and C is an odd number ≥ 1.    

The proof is completed by now. As a consequence, the ABC conjecture is 

tenable.   


