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Abstract I give a short explanation of how mathematics representing pure states
is logically distinct from mixed states. This is intended as understandable to the
undergraduate.
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1 Introduction

Quantum physics suffers from logical problems and yet classical physics does not.
The fault lays with logical discrepancies where quantum theory doesn’t tell the full
story of quantum experiments. Specifically, the machinery of quantum indetermin-
acy is missing.

Nonetheless, that machinery is to be found as mathematical information making
up the mathematics of quantum theory. The story of that machinery is told through
knowledge of : where mathematical information originates, how it is conveyed, where
it flows and how one item of information relates logically with another. In that story,
different classes of information play their role:

� axiomatic, implied, true–logically dependent, consequential, true–provable;
� consistent, compliant, satisfying, logically independent, true–non-provable, non-

contradictory;
� self-referent, accidental, inadvertent, coincidental, spontaneous;
� inconsistent, contradictory, false–logically dependent, disprovable, false–provable.

Quantum indeterminacy is information, whose existence we infer, that we deduce
is ontological in single measurement experiments — that is implied in quantum
randomness accumulated when that same experiment is repeated many times over.
Adopting the viewpoint that this indeterminate ontology exists in fact, and ac-
cepting the evidence of Tomasz Paterek et al [1] that links quantum randomness
with logical independence, we should expect to find logical independence within
quantum mathematics, corresponding to indeterminacy in experiments that pre-
pare mixed-states.

This present paper traces through the mathematics of the quantum system
we know as the free particle. In that mathematics, logical independence is found
located in probability amplitude, with the suggestion that the same should extend,
generally, to all quantum systems in quantum physics.

Logical independence refers to an information structure, in a system where an item
or region of information is logically disconnect. This is the complimentary opposite
to items of information that imply or negate one another. Logical connectivity
between logically independent information can be regarded, as null.
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It is helpful to understand the difference between syntactical information versus
semantical information. Syntax concerns rules used for constructing or transform-
ing symbols and formulae – the rules of elementary algebra in the context of this
enquiry. Semantics, on the other hand, concerns interpretation. Here, interpretation
does not refer to physical meaning, but to mathematical meaning: whether symbols
might be understood to mean: complex scalars, real scalars, or rational. Such in-
terpretation has null connectivity with the rules of algebra — the syntax. Indeed,
typically, the interpretation may be only in the theorist’s mind and not asserted by
the mathematics, at all.

A most relevant example of syntax versus semantics, is the comparison of pure
eigenstates against mixed states. Consider the eigenformulae pair:

d

dx
[Φ (k) exp (+ikx)] = +ik [Φ (k) exp (+ikx)] (1)

d

dk
[Ψ (x) exp (−ikx)] = −ix [Ψ (x) exp (−ikx)] (2)

This pair of formulae is true, irrespective of any interpretation placed on the variable
i. But in contrast, the superposition pair:

Ψ (x) =
∫

[Φ (k) exp (+ikx)] dk (3)

Φ (k) =
∫

[Ψ (x) exp (−ikx)] dx (4)

is true, only if we interpret i as pure imaginary. In the case of the eigenvalue pair
(1) & (2) the imaginary interpretation is purely in the mind of the theorist, but for
the superposition pair (3) & (4), the imaginary interpretation is implied. Whilst
for the superposition pair (3) & (4), specific interpretation is necessary, for the
eigenvalue pair (1) & (2), interpretation is possible, but not necessary.

In Mathematical Logic, ‘necessary information versus possible information’ is
recognised as constituting what is known as a ‘modal logic’. However, in textbook
quantum theory, the distinction separating possible from necessary is not notice-
able, nor is it recognised; and the logical distinction between pure states and mixed
states is lost. The crucial difference in expressing pure states is that their inform-
ation derives from pure syntax. The transition in forming mixed states from pure
states demands the creation of new information1. That creation goes unopposed.

The important point is that the logical status of pure states and mixed is
distinct, not only in experiments, but in theory also.
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1 In some way, yet to be understood, this information is lost again during measurement.


