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Abstract

Dempster-Shafer evidence theory is a primary methodology for multi-source information fusion

since it allows to deal with uncertain information. This theory is based on Dempster’s rule of

combination to synthesize multiple evidences from variousinformation sources. However, in some

cases, counter-intuitive results may be obtained based on Dempster’s rule of combination. Lots of

improved or new methods have been proposed to suppress the counter-intuitive results based on

a physical perspective that minimizes the lost or deviationof original information. In this paper,

inspired by evolutionary game theory, a biological and evolutionary perspective is considered to

study the combination of evidences. An evolutionary combination rule (ECR) is proposed to mimick

the evolution of propositions in a given population and finally find the biologically most supported

proposition which is called as evolutionarily stable proposition (ESP) in this paper. Our proposed

ECR provides new insight for the combination of multi-source information. Experimental results

show that the proposed method is rational and effective.
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I. INTRODUCTION

Multi-source information fusion aims to integrate multiple data and knowledge from mul-

tiple information sources into a consistent, comprehensive, and useful estimation for objects

that beyond the performance of single information source. Many issues in disciplines can

be translated to canonical multi-source information fusion problems. Because of that, multi-

source information fusion is extensively used in many fields[1]–[3]. A crucial issue in the

multi-source information fusion is that how to represent and dispose the imprecise, fuzzy, am-

biguous, even inconsistent and incomplete information. Several branches of theories have been

proposed for the processing of uncertain information. Typically, there are fuzzy set theory [4],

rough set theory [5], [6], possibility theory [7], and so forth. Among these theories, Dempster-

Shafer evidence theory [8], [9] has attracted increasing interest from scientific communities

because of its inherent advantages in representing and handling uncertain information [10]–

[17].

As a tool of reasoning in uncertain environment, Dempter-Shafer evidence theory has

conceived a rounded system for the management of uncertainty. In this theory, the data from

each information source is represented as a mass function, or called as evidence, Dempster’s

rule of combination is provided to combine multiple evidences for the fusion of multi-source

information. However, the combination rule is controversial. Even though it is of many

desirable characteristics, such as commutativity, associativity, and fast and clear convergence

towards a solution, but in some cases, especially when the evidences to be combined are

highly conflicting, Dempster’s rule of combination may bring out counter-intuitive results.

Typical examples contains Zadeh’s paradox [18], evidence shifting [19], [20], dictatorial

power of Dempster’s rule [21], [22], and so on.

For the reasons of producing counter-intuitive results, there exists many debates, which lead

to various alternatives of Dempster’s rule or new methods for the combination of evidences,

for example conjunctive rule [23], disjunctive rule [24], cautious conjunctive rule and bold

disjunctive rule [25], and so on [20], [26]–[36]. Regardingthe debate and improvement about

Dempster’s rule of combination [37]–[43], ones hold that Dempster’s rule is inadequate so

that they modify the original rule or propose new rules to synthesize various information, ones

defend Dempster’s rule and advocate the modification or preprocess of original evidences [21].

Corporately, both of them are expected to bring out an exactly synthetic evidence which can

best represent the system consisting of all original evidences. At present, this is an traditional

and mainstream view. During the process of information fusion, a primary hidden criterion is
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to minimize the lost or deviation between the information included in the synthetic evidence

and that contained in original evidences. Essentially, this is a typical perspective of physics

or engineering.

Instead, inspired by evolutionary game theory, in this paper we use a biological and

evolutionary perspective to study the information fusion.The process of combining evidences

to obtain the most acceptable conclusion is compared to the evolution of species to find the

individuals with the highest fitness who can survive in a population. During this process, evo-

lutionary game theory [44], [45] provides a theoretical framework. Specifically, the supported

propositions in evidences are treated as strategies adopted by individuals in a given population.

First, by interacting with others, each individual receives payoff which determines its fitness

in the population. Then, individuals with high fitness have more chances to reproduce so as to

increase their rate in the population. Finally, through theevolution of population, individuals

with the highest fitness survive, and the strategy adopted bythem, i.e. proposition, wins out

to become the most supported or acceptable conclusion. The proposed method is called as

evolutionary combination rule (ECR). Here, even it is namedas a rule, the ECR actually is

not a traditional combination rule which is expected to obtain a synthetic evidence, but just

want to find the most supported propositions in the given multi-evidence system. Because

it can directly find the object which has the highest fitness, potentially, the proposed ECR

provides a fast decision-making support for evidence-based multi-source information fusion

without relying on a transformation function between evidence and probability distribution.

In the rest of this paper, it is organized as follows. SectionII gives a brief introduction to

Dempster-Shafer evidence theory and evolutionary game theory. In Section III, the proposed

ECR is presented, which mainly contains five steps includingevidence weighted averaging,

construction of Jaccard matrix game, evolutionary dynamics, evolution of averaging evidence,

and two-dimensional measure output. After that, some illustrative examples are given to show

the effectiveness of the proposed method in Section IV. Finally, Section V concludes this

paper.

II. PRELIMINARIES

A. Dempster-Shafer evidence theory

Dempster-Shafer evidence theory [8], [9], also called Dempster-Shafer theory (DST) or

evidence theory, is used to handle uncertain information. This theory needs weaker conditions

than the Bayesian theory of probability, so it is often regarded as an extension of the Bayesian

theory – see discussion in [22]. As a theory of reasoning under the uncertain environment,
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DST has an advantage of directly expressing the “uncertainty” by assigning the probability

to the subsets of the set composed of multiple objects, rather than to each of the individual

objects. The probability assigned to each subset is limitedby a lower bound and an upper

bound, which respectively measure the total belief and the total plausibility for the objects in

the subset. DST offers a method to combine distinct and cognitively independent bodies of

evidence. Recently, DST has attracted many concern from various fields, such as parameter

estimation [46]–[48], classification and clustering [49]–[51], decision-making [52]–[56], etc

[57]–[61]. As an extension of this theory, Dezert-Smarandache Theory (DSmT) of plausible

and paradoxical reasoning [62]–[64] is also given much attention [36], [65]–[67].

For completeness of the explanation, a few basic concepts onDST are introduced as

follows.

Let Ω be a set of mutually exclusive and collectively exhaustive events, indicated by

Ω = {E1, E2, · · · , Ei, · · · , EN} (1)

where setΩ is called a frame of discernment (FOD). The power set ofΩ is indicated by2Ω,

namely

2Ω = {∅, {E1}, · · · , {EN}, {E1, E2}, · · · , {E1, E2, · · · , Ei}, · · · ,Ω} (2)

The elements of2Ω or subset ofΩ are called propositions. For example ifA ∈ 2Ω, A is

called a proposition.

For a FODΩ = {E1, E2, · · · , EN}, a mass function is a mappingm from 2Ω to [0, 1],

formally defined by:

m : 2Ω → [0, 1] (3)

which satisfies the following condition:

m(∅) = 0 and
∑

A∈2Ω

m(A) = 1 (4)

In DST, a mass function is also called a basic probability assignment (BPA), or a belief

function, or a piece of evidences. The assigned probabilitym(A) measures the belief exactly

assigned toA and represents how strongly the evidence supportsA. If m(A) > 0, A is called

a focal element, and the union of all focal elements is calledthe core of the mass function.

Associated with each mass function is the belief measure andplausibility measure,Bel

function andP l function respectively. For a propositionA ⊆ Ω, the belief functionBel :

2Ω → [0, 1] is defined as

Bel(A) =
∑

B⊆A

m(B) (5)
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Fig. 1. The relationship of belief and plausibility.

The plausibility functionP l : 2Ω → [0, 1] is defined as

P l(A) = 1− Bel(Ā) =
∑

B∩A 6=∅

m(B) (6)

whereĀ = Ω \ A.

Obviously,P l(A) ≥ Bel(A), these functionsBel andP l are the lower limit function and

upper limit function of the probability to which proposition A is supported, respectively.

According to Shafer’s explanation [9], the difference between the belief and the plausibility

of a propositionA expresses the ignorance of the assessment for the proposition A. The

relationship of belief and plausibility is shown in Fig. 1.

Consider two independent pieces of evidence characterizedby their BPAsm1 andm2 on

the FODΩ, in DST,m1 andm2 are combined with Dempster’s rule of combination, denoted

by m = m1 ⊕m2, defined as follows:

m(A) =











1
1−K

∑

B∩C=A
m1(B)m2(C) , A 6= ∅;

0 , A = ∅.
(7)

with

K =
∑

B∩C=∅

m1(B)m2(C) (8)

whereK is a normalization constant, called conflict coefficient between the two BPAs. Note

that Dempster’s rule of combination is only applicable to such two BPAs which satisfy the

conditionK < 1. Dempster’s rule of combination is the core of DST, it satisfies commutative

and associative properties, i.e., (i)m1 ⊕m2 = m2 ⊕m1 and (ii) (m1 ⊕m2)⊕m3 = m1 ⊕

(m2 ⊕ m3). Thus if there exist multiple belief structures, the combination of them can be

carried out in a pairwise way with any order. The vacuous BPAm(Ω) = 1 is neutral element

of Dempster’s rule.
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B. Evolutionary game theory

Evolutionary game theory (EGT) [44], [45] has been developed by John Maynard Smith to

study the interaction among different players or populations. In recent years, EGT has become

a paradigmatic framework to understand the emergence and evolution of cooperation among

unrelated individuals [68]–[81]. The main idea of the EGT isto track the change of each

strategy’s frequency in the population during the evolutionary process. In EGT, evolutionarily

stable strategy (ESS) [44] and replicator equation (RE) [82], [83] are the two central and key

concepts.

1) Evolutionarily stable strategy (ESS):In a given environment, an ESS is such a strategy,

adopted by a population, that can not be invaded by any other alternative strategy which is

initially rare. The condition required by an ESS can be formulated as [44], [45]:

E(S, S) > E(T, S), (9)

or

E(S, S) = E(T, S), and E(S, T ) > E(T, T ), (10)

for all T 6= S, where strategyS is an ESS,T is an alternative strategy, andE(T, S) is the

payoff of strategyT playing against strategyS.

An evolutionarily stable strategy biologically means thatit can not be successfully invaded

by any mutant strategies. In game theory, there are two kindsof strategies, pure strategies and

mixed strategies. A pure strategy defines an absolutely certain action or move that a player

will play in every possible attainable situation in a game. In contrast, a mixed strategy is an

assignment of a probability to pure strategies so as to allowa player to randomly select a

pure strategy. In other words, in a mixed strategy, there aretwo or more pure strategies that

can be selected by chance. If the evolutionarily stable strategy (ESS)S is a pure strategy,S

is called a pure ESS. On the contrary, onceS is a mixed strategy,S becomes the so-called

mixed ESS. In [45], it has been proven that a game with two purestrategies always has an

ESS (pure ESS or mixed ESS).

Hawk-Dove game is a classical and paradigmatic example of pure and mixed ESS. Assume

there is a population of animals, in which each individual aggressiveness is different during

the interaction with others. Accordingly, their behaviorscan be divided into two types: the

aggressive type and the cooperative type. The aggressive type corresponds to strategy “Hawk”

(H), the cooperative type is associated with strategy “Dove” (D). Within each interaction,

two animals meet and compete for a resourceV (V > 0). When two Hawks meet, they will

March 10, 2015 DRAFT



fight so that both of them have the opportunity to get(V − C)/2, whereC is the cost of

injury in the fight. When two Doves meet, they will share the resource, which means each

individual obtainsV/2. If, however, a Hawk meets a Dove, the former will fight and the

latter can only escape. As a result, the Hawk obtains the entire resource without any cost of

injury, the Dove is left with nothing. In this sense, the payoff matrix of Hawk-Dove game

is shown in Eq. (11).

A =

H D

H

D







(V − C)/2 V

0 V /2







(11)

Here,E(H,H) = (V − C)/2, E(H,D) = V , E(D,H) = 0, E(D,D) = V/2, where

E(s1, s2) is the payoff ofs1 playing againsts2. In the Hawk-Dove game, there are two

pure strategies, namelyH andD, and innumerable mixed strategiesqH + (1 − q)D where

q ∈ (0, 1). According to the condition of ESS, in this game, strategyH is a pure ESS if

V > C becauseE(H,H) > E(D,H). Conversely, ifV < C, the mixed strategyp∗ = V/C

which means thatH andD are respectively selected with probabilityp∗ and1−p∗, is a mixed

ESS because,∀p ∈ (0, 1) and p 6= p∗, E(p∗, p∗) = E(p, p∗) andE(p∗, p) > E(p, p), where

E(p∗, p∗) = V
2
(1− V

C
), E(p, p∗) = V

2
(1− V

C
), E(p∗, p) = V

2
(1+ V

C
−2p), E(p, p) = V

2
(1−C

V
p2).

It is noted that the payoff of mixed strategy~p = (p, 1 − p) playing against mixed payoff

~q = (q, 1− q) is calculated by~pA~q.

2) Replicator equation (RE):In EGT, the replicator equation (RE) [82], [83] plays a key

role to determine the evolutionary process of population, which has provided a frequency-

dependent evolutionary dynamics to a well-mixed population.

Assume there existsn strategies in a well-mixed population. A game payoff matrixA =

[aij ] determines the payoff of a player with strategyi if he meets another player who carries

out strategyj. The fitness of strategyi is defined by:

fi =
n
∑

j=1

xjaij , i = 1, · · · , n (12)

wherexj is the relative frequency of strategyj in the population. The average fitness of all

strategies is denoted asφ, which is defined by:

φ =
n
∑

i=1

xifi (13)

The relative frequency of strategyi, namelyxi, is changed with time by this following

differential equation:
dxi

dt
= xi(fi − φ), i = 1, · · · , n (14)
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Eq.(14) is the so called replicator equation, which impliesthat the change ofxi depends

on the fitness of strategyi andxi itself. By solving dxi

dt
= 0, i = 1, · · · , n, the fixed points of

this evolutionary system, denoted as(x∗
1, · · · , x

∗
n), can be found. The stability of each fixed

point is the most focus of concern. Regarding the stability of each fixed point(x∗
1, · · · , x

∗
n),

a theorem is usually used to verify whether the fixed point is stable or not, which is given

as below.

Theorem 1: [83] Given a set of replicator equationsdxi

dt
= xi(fi − φ), i = 1, · · · , n, the

fixed point p∗ = (x∗
1, · · · , x

∗
n) is asymptotically stable if all eigenvalues associated with p∗

are negative numbers or have negative real parts.

For more details on Theorem 1, please refer to [83]. Since thereplicator equation is

nonlinear, an exact solution is difficult to find. Hofbauer and Sigmund have proved that each

ESS ofA is definitely an asymptotically stable point of the replicator equation [83]. So the

ESSs are often taken as the asymptotically stable solutionsof the replicator equation.

III. EVOLUTIONARY COMBINATION RULE (ECR)

The evolution of species abides by natural selection which provides an excellent mechanism

to find individuals with higher fitness. Analogously, information fusion aims to find the most

supported proposition by roundly synthesizing information coming from multiple sources.

If the information is expressed by the means of probability distributions, the state with

the biggest probability is always concerned intensely. In DST, since the introduction of

subjective or epistemic uncertainty, the mass function, also called evidence or basic probability

assignment (BPA), is employed to represent the uncertain information.

Traditional solution of combining evidences aims to obtaina mass function that best

synthesizes all information. Then, based on the obtained synthetic evidence, a decision can

be made. In this paper, instead of seeking the best syntheticevidence, our purpose is to find

the best supported proposition (of course, it can also be seen as an evidence who only has

a focal element), analogous to find the most probable state inprobability theory. Obviously,

it is not rational that simply let the proposition with the biggest belief be the candidate,

because this approach ignores the interaction between propositions. Natural selection and the

concept of fitness have inspired us consider this problem from a biological and evolutionary

standpoint.

In this paper, we propose a new method to combine evidences coming from different

information sources based on evolutionary game theory. Theproposed method is called as

evolutionary combination rule (ECR). In the ECR, propositions in the FOD are naturally
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1. Evidence weighted averaging

Evidence m1

with 

weight w1

2. Construction of 

Jaccard matrix 

game

4. Evolution of 

averaging evidence

3. Evolutionary 

dynamics

5. Two-dimensional 

measure output

Evidence mi

with 

weight wi

Evidence mn

with 

weight wn

input

Frame of discernment Ω 

(Ω, JΩ)

dm/dt

Averaging evidence m

Averaging evidence m

ESPm

Evolutionary combination rule (ECR)

t

Fig. 2. Framework of the proposed evolutionary combinationrule

seen as strategies that can be adopted by a population given an environment. Through

an evolutionary process of strategies, propositions with the highest fitness can be found

so as to facilitate the subsequent analysis and decision. Fig. 2 shows a framework of the

proposed ECR. Mainly, there are five steps including evidence weighted averaging, construc-

tion of Jaccard matrix game, evolutionary dynamics, evolution of averaging evidence, two-

dimensional measure output, which will be detailed in the following content of this section,

respectively. Most notably, in the proposed ECR, there are two basic problems: (i) what

are the interactive relationships between propositions (strategies) ? (ii) how do propositions

evolve in a population? These questions will also be answered in the following content.

A. Evidence weighted averaging

Given multiple evidences from different information sources, in accord with the traditional

assumption, these evidences are mutually independent. Forthese independent evidences, by

considering the difference of importance among information sources, the weighted averaging

March 10, 2015 DRAFT



approach is used to integrate multiple evidences.

Given a FODΩ, assume there aren evidences or BPAs indicated bym1, · · ·, mn, each

evidence has a weighting factor indicated bywi,
n
∑

i=1
wi = 1. the averaging evidence is denoted

asm, which is obtained by

m(A) =
n
∑

i=1

wimi(A), A ⊆ Ω. (15)

B. Jaccard matrix game (JMG)

In the ECR, propositions, subsets of the FOD, are treated as strategies. A key problem is to

define the interaction rule between these propositions. Given a FODΩ, suppose proposition

A meets propositionB, how many payoff will be obtained forA, and forB as well? To solve

this issue, in this paper the similarity degree between setsis used to express the payoffs of

propositions since propositions are represented as sets. This idea is based on that an individual

can obtain more benefit if he interacts with individuals being similar with him. In biology,

there is a so-called greenbeard effect which shows that cooperative behaviors more likely

appear between individuals with similar phenotypes [84]. Therefore, each proposition obtains

more if similar propositions meet, but less if not similar. Specially, in a pair interaction, each

can obtain 1 if these two propositions are identical, conversely 0 if they are totally different.

Mathematically, Jaccard similarity coefficient gives the similarity degree between two sets

[85]. In this paper, a Jaccard matrix game (JMG) is proposed to formalize the interaction

relationship between propositions. The definition of the JMG is given as follows.

Definition 1: Given a FODΩ, a Jaccard matrix game (JMG) onΩ is defined as

Γ = (Ω, JΩ) (16)

where the set of strategies is composed by propositions of the FOD (i.e., the nonempty subsets

of Ω), the payoff matrix isJΩ = [JΩ(A,B)]A,B⊆Ω in which JΩ(A,B) represents the payoff

of propositionA playing against propositionB, and it is defined by the Jaccard similarity

coefficient between setsA andB, i.e., JΩ(A,B) = |A∩B|
|A∪B|

.

Next, an example is given to show the JMG.

Example 1: Given a FOD with two elementsΩ1 = {a, b}, a JMG onΩ1, denoted as

(Ω1, JΩ1
), can be constructed. In this game, the set of all potential strategies is{a, b, ab} (for
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the sake of presentation, set{x, y} is abbreviated asxy), and the payoff matrix is calculated

easily

JΩ1
=

a b ab

a

b

ab













1 0 1/2

0 1 1/2

1/2 1/2 1













(17)

Similarly, given a FOD with three elementsΩ2 = {a, b, c}, a new JMG(Ω2, JΩ2
) is

obtained, where the set of strategies is{a, b, c, ab, ac, bc, abc}, and the payoff matrix is shown

as follows.

JΩ2
=

a b c ab ac bc abc

a

b

c

ab

ac

bc

abc









































1 0 0 1/2 1/2 0 1/3

0 1 0 1/2 0 1/2 1/3

0 0 1 0 1/2 1/2 1/3

1/2 1/2 0 1 1/3 1/3 2/3

1/2 0 1/2 1/3 1 1/3 2/3

0 1/2 1/2 1/3 1/3 1 2/3

1/3 1/3 1/3 2/3 2/3 2/3 1









































(18)

Again, for each propositionA ⊆ Ω in DST, it is equivalent to a pure strategy in a JMG.

For example, given a FODΩ = {a, b}, there are three propositionsa, b ab, each is a pure

strategies in the JMG(Ω, JΩ). All propositions consist of the set of pure strategies adopted

by a population. Moreover, in a JMG, a pure strategy corresponds to a proposition which

also can be seen as a mass function who only has a focal element, and a mixed strategy is

associated with a set of propositions which is a mass function with multiple focal elements.

As shown in the above example, a JMG can be constructed if a FODis given. Formally, the

complication of a JMG is determined by the size of the given FOD Ω. However, regardless

of the size ofΩ, some self-evident corollaries about the JMG are obtained.

Corollary 1: A JMG (Ω, JΩ) is symmetric, namelyJΩ(A,B) = JΩ(B,A).

Corollary 2: Let ∆ESS
Ω be the set of all ESSs (evolutionarily stable strategies) ina JMG

(Ω, JΩ), then

∆ESS
Ω = {A|A ⊆ Ω, A 6= ∅}

Corollary 2 shows a one-to-one correspondence between purestrategies and ESSs in JMGs.

Due to the equivalence between propositions and pure strategies in JMGs, in this paper we

also call the evolutionarily stable strategy (ESS) as evolutionarily stable proposition (ESP).

Assume the set of ESPs in a JMG is indicated by∆ESP
Ω , then we have∆ESP

Ω ⇔ ∆ESS
Ω .
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C. Replicator dynamics on the JMG

Once the interaction relationship between propositions has been determined, the next

problem is that how the propositions evolve. In other words,what kind of evolutionary

dynamics is adopted in this population? To address this issue, the replicator equation is used to

mimick the evolutionary process of population based on two reasons. At first, it commendably

simulates the evolution of population in a well-mixed environment where individuals could

randomly interact with other members of the populations. More important, the replicator

equation is mathematically equivalent to the Lotka-Volterra equation of ecology [83] which

describes the dynamics of species in an interacting biological system. The Lotka-Volterra

equation is very close to real facts since it does not rely on the rationality assumption which

is fundamental but challenged in the classical game theory.So, the equivalent replicator

equation also gets rid of the puzzle caused by the controversial rationality assumption. The

replicator dynamics on a JMG is defined as follows.

Definition 2: Given an evidencem on a FODΩ, the belief or basic probability for

propositionA, i.e. m(A), evolves in time according to the equation

dm(A)

dt
= m(A) (fA − φ) , A ⊆ Ω, A 6= ∅ (19)

wherefA is the fitness of propositionA, and it is given in terms of a JMG(Ω, JΩ) by

fA =
∑

B⊆Ω,B 6=∅

m(B)JΩ(A,B) (20)

whereas the average fitness of propositions in the population is

φ =
∑

A

∑

B

m(A)JΩ(A,B)m(B), A, B ⊆ Ω, and A,B 6= ∅ (21)

Regarding the differential dynamic system shown in Eqs.(19)-(21), people are mainly

concerned with the asymptotically stable points (ASPs). Hofbauer and Sigmund [83] provided

a theorem to show the relationship between the ASPs of replicator dynamics and ESSs of a

symmetric two-player game.

Theorem 2: [83] Given a symmetric two-player gameG, strategyx∗ is an ESS ofG if

and only if x∗ is an ASP of the replicator equation evolving onG.

Theorem 2 shows that there is an one-to-one correspondence between ASPs and ESSs

in a symmetric two-player game. Let us denote the set of ASPs of the replicator equation

in a JMG by∆ASP
Ω , evolutionarily stable propositions (ESPs) by∆ESP

Ω . Since JMGs are

symmetric, the following corollary is naturally satisfied.

Corollary 3: In JMGs,m∗ ∈ ∆ESP
Ω if and only if m∗ ∈ ∆ASP

Ω .
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Here, an example is given to help understand this relationship.

Example 2: Given a FODΩ = {a, b}, a JMGΓ = (Ω, JΩ) is constructed, its payoff matrix

JΩ is shown as follows.

JΩ =

a b ab

a

b

ab













1 0 1/2

0 1 1/2

1/2 1/2 1













(22)

Now let us study the replicator dynamics on the gameΓ. In this JMG, there are three

pure strategies,a, b, andab. For the sake of presentation, let the basic probabilities of these

propositions bem(a) = x, m(b) = y, m(ab) = z, wherex + y + z = 1. According to the

replicator equation, we can write (replacing, as usual, thetime derivatives ofx, y, z by ẋ,

ẏ, ż),






















ẋ = x(fx − φ)

ẏ = y(fy − φ)

ż = z(fz − φ)

(23)

where






















fx = x+ z/2

fy = y + z/2

fz = x/2 + y/2 + z

(24)

and

φ = (x, y, z)JΩ(x, y, z)
T = x(x+ z/2) + y(y + z/2) + z(x/2 + y/2 + z) (25)

According to the stability theory of differential equations, the fixed point of the replicator

dynamic system represented by Eqs. (23)-(25) should satisfy ẋ = 0, ẏ = 0, ż = 0, where

x + y + z = 1. So all fixed points can be obtained, they are(x∗
1, y

∗
1, z

∗
1) = (1, 0, 0),

(x∗
2, y

∗
2, z

∗
2) = (0, 1, 0), (x∗

3, y
∗
3, z

∗
3) = (0, 0, 1), (x∗

4, y
∗
4, z

∗
4) = (0, 0.5, 0.5), (x∗

5, y
∗
5, z

∗
5) =

(0.5, 0.5, 0), (x∗
6, y

∗
6, z

∗
6) = (0.5, 0, 0.5). The stability of each fixed point can be checked

by a Jacobian matrix,JM , as follows.

JM =













∂ẋ
∂x

∂ẋ
∂y

∂ẋ
∂z

∂ẏ

∂x

∂ẏ

∂y

∂ẏ

∂z

∂ż
∂x

∂ż
∂y

∂ż
∂z













(26)

Let us take(x∗
1, y

∗
1, z

∗
1) as an example. For this fixed point,

A = JM |(x=x∗

1
, y=y∗

1
, z=z∗

1
) =













−1 0 −0.5

0 −1 0

0 0 −0.5













. (27)
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TABLE I

FIXED POINTS AND THEIR STABILITY IN EXAMPLE 2

Fixed points (Beliefs of a, b and ab) Associated eigenvalues Stablity

(1, 0, 0) -1, -1, -0.5 stable (ASP)

(0, 1, 0) -1, -1, -0.5 stable (ASP)

(0, 0, 1) -1, -0.5, -0.5 stable (ASP)

(0, 0.5, 0.5) -0.75, -0.5, 0.25 unstable

(0.5, 0.5, 0) -0.5, 0, 0.5 unstable

(0.5, 0, 0.5) -0.75, -0.5, 0.25 unstable

The stability of fixed point(x∗
1, y

∗
1, z

∗
1) is determined by the eigenvalues of the following

characteristic equation

det(A− λI) = 0 (28)

where det is the determinant of a matrix, andI is an identity matrix. So, the eigenvalue

λ can be readily calculated, and they areλ1 = −1, λ2 = −1, λ3 = −0.5. According to

Theorem 1 [83], the fixed points(x∗
1, y

∗
1, z

∗
1) is an asymptotically stable point (ASP) since all

eigenvalues are negative numbers. Meanwhile, ASP(x∗
1, y

∗
1, z

∗
1) corresponds tom(a) = 1, so

we say propositiona is an evolutionarily stable proposition (ESP).

By means of this approach, the stability of other fixed pointscan be found. The results are

shown in Tab. I. As shown in Tab. I, there are three ASPs, namely m(a) = 1, m(b) = 1 and

m(ab) = 1, which are in one-one corresponding with ESPs, i.e.,∆ESP
Ω = ∆ASP

Ω . Graphically,

a two-dimensional space, called simplex, can clearly represent the evolutionary dynamics of

propositionsa, b andab, as shown in Fig. 3. In the simplex, every vertex of means thatthere

only exists a sole proposition (i.e., strategy) in the population, edges represent that at least a

proposition is missing in the population. The interior of the simplex corresponds to the case

of all propositions coexistence. At each point of the simplex, the sum of the belief of all

propositions is 1. In addition, in Fig. 3, arrows represent the directions of evolution, black

circles indicate ASPs, white circles are unstable fixed points. From Fig. 3, it clearly shows

that there are three ASPs that are precisely ESPs ofΓ, and three unstable fixed points that

are located on the midpoints of there edges.
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Fig. 3. Evolutionary dynamics of propositions a, b and ab in Example 2

D. Evolution of averaging evidence

As aforementioned, given an evidence which is usually the average of multiple evidences

in multi-source information fusion, the replicator dynamics determines which proposition this

evidence will evolve to. Here is an example to show the evolutionary process.

Example 3: Given an evidencem on a FODΩ = {a, b, c},

m(a) = 0.25, m(b) = 0.25, m(c) = 0.25,

m(ab) = 0.05, m(ac) = 0.1, m(bc) = 0.05, m(abc) = 0.05.

We want to determine which is the most possible object among objectsa, b, c, in terms

of m. As we see, the support degrees for objectsa, b and c are very similar inm. Facing

this situation, we use the proposed ECR for analysis. Letm be the initial configuration of

this population att = 0, andmt(A) be the mass value ofm(A) at time t, whereA ⊆ Ω.

The evolutionary process is illustrated by

mt+∆t(A) = mt(A) +
dmt(A)

dt
∆t (29)

In this paper, we simulate the evolutionary process of each proposition by using the fourth-

order Runge-Kutta method, as shown in Fig. 4, where the horizontal axis “Time” indicates

time points in the Runge-Kutta method. According to Fig. 4, given an initial configuration
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Fig. 4. The evolutionary process of propositions in Example3

determined by evidencem, in the end of evolution, propositionac survives and finally

occupies the population, while other propositions become extinct. So,ac is the only ESP

for evidencem, denoted asESPm = ac. It implies that propositionac has the highest

fitness. As a result, it suggests that the most supported object is eithera or c. Moreover, as

shown in Fig. 4, by using the Runge-Kutta method, we can trackthe evolutionary curve of

each proposition, and obtain the time required for reachingequilibrium. In this paper, we

assume that the replicator dynamics equation reaches equilibrium if the maximum increment

or decrement of propositions’ mass values is less than10−3 between two adjacent time points.

E. Two-dimensional measure

By using our proposed ECR method, an equilibrium state can beevolved for any given

evidences. It could be an ESP if the equilibrium state is stable, as mentioned above; oth-

erwise, it is an unstable equilibrium point, as while circles shown in Fig. 3. However, the

problem is not totally solved. Considering this case that two different evidences evolve to

a same equilibrium state, how can we distinguish them? An effective measure is necessary.

Fortunately, since the evolutionary process is dynamic, wefind that, the time evolving to the

stable or unstable equilibrium state provides a reasonablemeasure to reflect such difference.
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Fig. 5. The evolutionary process of propositions inm1 andm2 of Example 4

1) Case of evolving to an ESP:Let us first consider the case that the population evolves

to a stable equilibrium state, namely an ESP.

Example 4: Given two evidences, indicated bym1 andm2, on a FODΩ = {a, b},

m1(a) = 0.7, m1(b) = 0.1, m1(ab) = 0.2;

m2(a) = 0.5, m2(b) = 0.3, m2(ab) = 0.2.

The evolutionary process of propositions inm1 andm2 are shown in Fig. 5. For evidences

m1 andm2, the ESPs are botha, namelyESPm1
= a, ESPm2

= a. But the time evolving

to the equilibrium state are different. Form1 and m2, the time of reaching propositiona

are t1 = 13.0459 and t2 = 16.8553, respectively. From the view of evolution, these results

indicate thatm1 is more close to ESPa since propositiona is more supported inm1.

Example 5: Given a FODΩ = {a, b, c}, there is an evidencem shown as follows,

m(a) = x, m(b) = 0.9− x, m(bc) = 0.05, m(abc) = 0.05.

wherex ∈ [0, 0.9]. Now let us investigate the ESP ofm and the time evolving to that ESP

denoted astESP with the change ofx from 0 to 0.9 where every increment is 0.01.

Fig. 6 illustrates the results. From the figure, we can see that the ESP ofm is propositionb

if x ≤ 0.45, and propositiona if x ≥ 0.46. Whenx ≤ 0.45, tESP of evolving to proposition

b is increasing with the decline of the belief ofb due to the ascent ofx. Whenx ≥ 0.46,

ESPm = a, and the belief ofa increases with the rise ofx, as a resulttESP of evolving
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Fig. 6. Evolutionary results in Example 5

to ESPa decreases. This example shows that, regardless the ESP is either a or b, tESP is

changed with the initial configuration of evidencem. Also, even if two evidences evolve to

a same ESP,tESP is lower for this evidence which supports the associated ESPmore. In

other words, the higher fitness of ESP in an evidence leads to alower tESP of real evolving

to that ESP.

Therefore, we can say thattESP measures the temporal cost of an evidence evolving to its

associated ESP. From an biology perspective,tESP is an evolutionary distance from the given

evidence to its associated ESP. Based on this consideration, we usetESP to further depict

the relationship between an evidence and its associated ESP. A two-dimensional measure is

defined as follows.

Definition 3: Assume there aren evidences indicated bym1, · · ·, mn, let m be the average

of thesen evidences, ifm evolves to an ESP, the evolutionary output of using the proposed

ECR is represented as

< ESPm, tESP >= fECR(m1, · · · , mn) (30)

whereESPm is the ESP ofm, andtESP is the time ofm evolving to that ESP as a measure

of evolutionary distance.

Again, in the ECR, we just want to find the most supported proposition, but not an exactly

synthetical evidence, the time of evolving to an ESP provides a reference for the evolutionary
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distance between the averaging evidence and its associatedESP.

2) Case of evolving to an unstable equilibrium state:It is mentioned that, by using the

ECR, the averaging evidencem may do not evolve to a ESP, but to a state where two or

more propositions coexist. Mathematically, those states correspond to unstable fixed points,

graphically illustrated as the white circles in Fig. 3. A very slight disturbance will cause that

m deviates such unstable equilibrium states and goes to an ESP. Therefore, the probability

of evolving to such states is very small in general. Even so, considering the completeness of

methodology, we also give a definition to formalize the output of ECR in this situation.

Definition 4: Givenn evidencesm1, · · ·, mn, for their averaging evidencem which will

evolves to an unstable equilibrium state, the evolutionaryoutput of using the proposed ECR

can be expressed as

< Pm, tES >= fECR(m1, · · · , mn) (31)

wherePm is set of existent propositions in this unstable equilibrium state, andtES is the

time of m evolving to that equilibrium state.

Examples will be given in the following section. It is worthynoticed that, sometimes,

if the population evolves to an unstable equilibrium state,it implies that there are highly

conflicting information among the original evidencesm1, · · ·, mn. In this sense, the unstable

equilibrium state sometimes can act as an alarm to report theexistence of high conflict.

IV. I LLUSTRATIVE EXAMPLES AND ANALYSIS

A. Combination of highly conflicting evidences

Conflicting evidence combination [86], [87] is a main concern to verify the effectiveness

of combination rules in multi-sources information fusion.Here we will give several classical

cases in DST for the verification of the proposed ECR.

Example 6: Zadeh’s paradox [18]. Two doctors diagnose a patient, and they agree that

the patient suffers from one of these three diseases including meningitis (M), brain tumor

(T), and concussion (C). Hence, a FOD is determined asΩ = {M,T, C}. Both of these

doctors think that a tumor is unlikely, but they hold different opinions for the likely cause.

Two diagnosis are given as follows.

m1(M) = 0.9, m1(T ) = 0.1, m1(C) = 0.0.

m2(M) = 0.0, m2(T ) = 0.1, m2(C) = 0.9.

We can find that these two evidences are highly conflicting. Ifusing the classical Dempter’s

rule of combination to combine them, as shown in Eqs.(7) and (8), the combination result is
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Fig. 7. Evolutionary result of Zadeh’s paradox

m⊕(M) = 0, m⊕(T ) = 1, m⊕(T ) = 0.

and the conflict coefficientK = 0.99. This is an apparently counter-intuitive result. The

patient most likely does not suffer from tumor in each doctor’s diagnosis, but the synthesizing

result shows that the patient suffers from tumor with 100%. So it is counter-intuitive. This

classical example is first given by Zadeh to show the doubts onthe validity of Dempster’s

rule when information are highly conflicting [18].

Now, let’s use the proposed ECR to integrate these two evidences. Assume the weight

factor of each doctor is identical, the averaging evidence is calculated asm(M) = 0.45,

m(T ) = 0.1, m(C) = 0.45. The evolutionary process of each proposition inm is shown in

Fig. 7. From this figure, we can find that with the increase of evolutionary time the belief of

T goes to 0, and finally propositionsM andC averagely share the total belief 1. At the end

of evolution, the belief of each proposition becomesm(M) = 0.5, m(T ) = 0.0, m(C) = 0.5,

which means thatM andC coexist finally. The time of evolving to this unstable equilibrium

stable istES = 8.7759. Besides, the instability of this equilibrium stable implies that there

are highly conflicting information inm caused by the original evidencesm1 andm2. The

ECR effectively identifies this situation.

Example 7: Modified Zadeh’s paradox. Regarding Zadeh’s paradox, now let us assume

that the two doctors give two outright conflicting diagnosisas follows.
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Fig. 8. Evolutionary result of modified Zadeh’s paradox

m1(M) = 1, m1(T ) = 0, m1(C) = 0.

m2(M) = 0, m2(T ) = 0, m2(C) = 1.

Now there is not any agreement betweenm1 andm2. According to Dempster’s rule of

combination, the conflict coefficientK = 1. In this situation, Dempster’s rule becomes invalid

and can not be used to synthesize them. Instead, let us consider them by using the proposed

ECR. The averaging evidence ism(M) = 0.5, m(C) = 0.5. The evolutionary results are

shown in Fig. 8. From that figure, we can find that the belief of each proposition inm does

not show any change, as the evolutionary time increases. Theaverage evidencem is exact

located at an unstable equilibrium point. Therefore, as a measure of evolutionary distance,

the time reaching the equilibrium state istES = 0 in this case.

These above two examples clearly show that the proposed ECR is effective for these

cases where Dempster’s rule is questionable. Moreover, by using the ECR, Zadeh’s paradox

is transformed to a simple mathematical problem, and then explained by the instability of

equilibrium point. Even Zadeh’s paradox is objectively existent, but it is extremely unstable,

and a slight numerical change of the inputs could break away from this dilemma.
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B. More illustrative examples

In the following content, we will examine the proposed ECR byusing more examples.

Example 8: In [21], [22], the authors have presented an emblematic example to show

the inadequate behavior of Dempster’s rule of combination.The authors called that behavior

as thedictatorial power (DP) of Dempster’s rule. Specifically, in that example the level of

conflict can be chosen at any low or high value, which means that the example is not related

to the level of conflict between evidences. A simple version [20] of that example is shown

as follows.

Given a FODΘ = {θ1, θ2, θ3}, there are four evidences as below:

m1(θ1) = a, m1(θ1θ2) = 1− a.

mi(θ3) = b, mi(Θ) = 1− b, wherei = 2, 3, 4.

When using Dempster’s rule of combination, one gets:

m⊕(θ1) = a = m1(θ1), m⊕(θ1θ2) = 1− a = m1(θ1θ2).

It clearly shows that Dempster’s rule is not responding to the combination of different

evidences. It seems that evidencem1 dominates other evidences since the combination result

is alwaysm1, which does not accord with people’s expectation or intuition.

Now let us reconsider this example by using the proposed ECR.Moreover, for the sake of

comparison, several improved methods for the combination of evidences, including Murphy’s

simple average [28], Deng’s weighted average [29], Han’s sequential weighted combination

[20], proportional conflict redistribution (PCR6) rule [63], have also been used to test the

results. Because PCR6 is not associative, to get optimal results, the PCR6 rule is implemented

in this paper by combining all evidences altogether at the same time. Here, assumea = 0.7,

b = 0.6. The results are listed in Tab. II. As illustrated in that table, the combination results

are always the same asm1 if using Dempster’s rule of combination, which is counter-intuitive.

However, the counter-intuitive results have been eliminated in the results of Murphy’s simple

average, Deng’s weighted average, Han’s sequential weighted combination, and PCR6 rule.

Similarly, in the proposed ECR, the counter-intuitive behaviors are also suppressed, which

shows the advantage of the proposed method. In every case of combination, the most sup-

ported proposition obtained by the ECR totally accords withthe results obtained by other

reasonable methods. Moreover, the decrease oftESP indicates that the evolutionary distance

to theESP is reducing with the accumulation of evidences, which further coincides with

people’s expectation.

Example 9: In [20], the authors studied the problem of target recognition in a multi-

sensor system. In a multisensor-based automatic target recognition system, assume the FOD
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TABLE II

RESULTS FOREXAMPLE 8

Evidences m1, m2 m1, m2, m3 m1, m2, m3, m4

Dempster’s rule of combination
m(θ1) = 0.7000, m(θ1) = 0.7000, m(θ1) = 0.7000,

m(θ1θ2) = 0.3000. m(θ1θ2) = 0.3000. m(θ1θ2) = 0.3000.

Murphy’s simple average

m(θ1) = 0.5250, m(θ1) = 0.3379, m(θ1) = 0.1794,

m(θ1θ2) = 0.1179, m(θ1θ2) = 0.0615, m(θ1θ2) = 0.0292,

m(θ3) = 0.3000, m(θ3) = 0.5622, m(θ3) = 0.7711,

m(Θ) = 0.0571. m(Θ) = 0.0384. m(Θ) = 0.0203.

Deng’s weighted average

m(θ1) = 0.5250, m(θ1) = 0.1032, m(θ1) = 0.1032,

m(θ1θ2) = 0.1179, m(θ1θ2) = 0.0290, m(θ1θ2) = 0.0093,

m(θ3) = 0.3000, m(θ3) = 0.8122, m(θ3) = 0.9344,

m(Θ) = 0.0571. m(Θ) = 0.0555. m(Θ) = 0.0246.

Han’s sequential weighted combination

m(θ1) = 0.5250, m(θ1) = 0.2362, m(θ1) = 0.0676,

m(θ1θ2) = 0.1179, m(θ1θ2) = 0.0363, m(θ1θ2) = 0.0089,

m(θ3) = 0.3000, m(θ3) = 0.6369, m(θ3) = 0.8298,

m(Θ) = 0.0571. m(Θ) = 0.0906. m(Θ) = 0.0937.

PCR6 rule

m(θ1) = 0.5062, m(θ1) = 0.3432, m(θ1) = 0.2464,

m(θ1θ2) = 0.1800, m(θ1θ2) = 0.1028, m(θ1θ2) = 0.0642,

m(θ3) = 0.3138. m(θ3) = 0.4306, m(θ3) = 0.4921,

m(Θ) = 0.1234. m(Θ) = 0.1973.

The proposed ECR
< ESP = θ1, < ESP = θ3, < ESP = θ3,

tESP = 21.4913 > tESP = 21.6188 > tESP = 16.0809 >

is Θ = {θ1, θ2, θ3}. For an unknown target, the system has collected five evidences shown

as follows.

m1(θ1) = 0.60, m1(θ2) = 0.10, m1(θ2, θ3) = 0.30.

m2(θ1) = 0.65, m2(θ2) = 0.10, m2(θ3) = 0.25.

m3(θ1) = 0.00, m3(θ2) = 0.90, m3(θ2, θ3) = 0.10.

m4(θ1) = 0.55, m4(θ2) = 0.10, m4(θ2, θ3) = 0.35.

m5(θ1) = 0.55, m5(θ2) = 0.10, m5(θ2, θ3) = 0.35.

By using different methods, the combination results are derived, as shown in Tab. III.

From Tab. III, in the combination results based on Dempter’srule, m(θ1) always equals to
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TABLE III

RESULTS FOREXAMPLE 9

Evidences m1, m2 m1, m2, m3 m1, m2, m3, m4 m1, m2, m3, m4, m5

Dempster’s rule of m(θ1) = 0.7723, m(θ1) = 0.0000, m(θ1) = 0.0000, m(θ1) = 0.0000,

combination
m(θ2) = 0.0792, m(θ2) = 0.8421, m(θ2) = 0.8727, m(θ2) = 0.8981,

m(θ3) = 0.1485. m(θ3) = 0.1579. m(θ3) = 0.1273. m(θ3) = 0.1019.

Murphy’s simple average

m(θ1) = 0.7716, m(θ1) = 0.3526, m(θ1) = 0.5167, m(θ1) = 0.6706,

m(θ2) = 0.0790, m(θ2) = 0.5978, m(θ2) = 0.4573, m(θ2) = 0.3169,

m(θ3) = 0.1049, m(θ3) = 0.0380, m(θ3) = 0.0189, m(θ3) = 0.0088,

m(θ2θ3) = 0.0444. m(θ2θ3) = 0.0116. m(θ2θ3) = 0.0071. m(θ2θ3) = 0.0037.

Deng’s weighted average

m(θ1) = 0.7716, m(θ1) = 0.6013, m(θ1) = 0.7987, m(θ1) = 0.8975,

m(θ2) = 0.0790, m(θ2) = 0.3302, m(θ2) = 0.1698, m(θ2) = 0.0897,

m(θ3) = 0.1049, m(θ3) = 0.0532, m(θ3) = 0.0227, m(θ3) = 0.0088,

m(θ2θ3) = 0.0444. m(θ2θ3) = 0.0153. m(θ2θ3) = 0.0088. m(θ2θ3) = 0.0040.

m(θ1) = 0.7716, m(θ1) = 0.5591, m(θ1) = 0.6781, m(θ1) = 0.8103,

Han’s sequential m(θ2) = 0.0790, m(θ2) = 0.4021, m(θ2) = 0.3054, m(θ2) = 0.1797,

weighted combination m(θ3) = 0.1049, m(θ3) = 0.0297, m(θ3) = 0.0071, m(θ3) = 0.0014,

m(θ2θ3) = 0.0444. m(θ2θ3) = 0.0091. m(θ2θ3) = 0.0093. m(θ2θ3) = 0.0086.

PCR6 rule

m(θ1) = 0.7371, m(θ1) = 0.4224, m(θ1) = 0.4755, m(θ1) = 0.5111,

m(θ2) = 0.0644, m(θ2) = 0.4729, m(θ2) = 0.3849, m(θ2) = 0.3244,

m(θ3) = 0.1370, m(θ3) = 0.0483, m(θ3) = 0.0351, m(θ3) = 0.0276,

m(θ2θ3) = 0.0615. m(θ2θ3) = 0.0564. m(θ2θ3) = 0.1045. m(θ2θ3) = 0.1369.

The proposed ECR
< ESP = θ1, < ESP = θ2, < ESP = θ1, < ESP = θ1,

tESP = 7.5708 > tESP = 19.3900 > tESP = 11.5065 > tESP = 10.6493 >

0 after combiningm3, while regardless of the support forθ1 in m4 andm5. Evidently, this

is counter-intuitive. In contrast, as we can see in Tab. III,based on the other four methods,

the counter-intuitive results are suppressed. In Deng’s weighted average and Han’s sequential

weighted combination, the most supported is alwaysθ1 for any case, and the support forθ1

is increasing after the arrival ofm4 andm5. For Murphy’s simple average, PCR6 rule, and

the proposed ECR, even though the most supported isθ2 in the case of combiningm1, m2

andm3, but it promptly changes toθ1 as soon as the arrival ofm4, which also overcomes

the counter-intuitive behavior. Moreover, in the proposedECR, the increase of the support
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TABLE IV

RESULTS FOREXAMPLE 10

The number of evidencesl l = 10 l = 25 l = 50

Dempster’s rule of combination
m(θ1) = 0.4614, m(θ1) = 0.7871, m(θ1) = 0.9547,

m(Θ) = 0.5386. m(Θ) = 0.2129. m(Θ) = 0.0453.

Murphy’s simple average
m(θ1) = 0.4614, m(θ1) = 0.7871, m(θ1) = 0.9547,

m(Θ) = 0.5386. m(Θ) = 0.2129. m(Θ) = 0.0453.

Deng’s weighted average
m(θ1) = 0.4614, m(θ1) = 0.7871, m(θ1) = 0.9547,

m(Θ) = 0.5386. m(Θ) = 0.2129. m(Θ) = 0.0453.

Han’s sequential weighted combination
m(θ1) = 0.3195, m(θ1) = 0.3684, m(θ1) = 0.3924,

m(Θ) = 0.6805. m(Θ) = 0.6316. m(Θ) = 0.6076.

PCR6 rule
m(θ1) = 0.4614, m(θ1) = 0.7871, m(θ1) = 0.9547,

m(Θ) = 0.5386. m(Θ) = 0.2129. m(Θ) = 0.0453.

The proposed ECR
< ESP = Θ, < ESP = Θ, < ESP = Θ,

tESP = 6.4296 > tESP = 6.4296 > tESP = 6.4296 >

for θ1 is expressed by means of the decline oftESP which implies the evolutionary distance

to θ1 is reduced. Therefore, our proposed ECR is still effective in this example.

Example 10: Evidence shifting paradox [19], [20] describes another counter-intuitive

behavior in Demspter-Shafer evidence theory. Let us consider this scene that a target is

evaluated byl different experts with the same importance. The FOD isΘ = {θ1, θ2, θ3}.

Each expert gives an identical assessment as below.

mi(θ1) = 0.06, mi(Θ) = 0.94, wherei = 1, · · · , l.

By using Dempster’s rule, the combination result is shown asfollows.

m⊕(θ1) = 1− 0.94l, m⊕(Θ) = 0.94l.

If l is a big number, for example 100,m⊕(θ1) = 1− 0.94100 = 0.9979 which is very large

although for each evidence to be combinedmi(θ1) = 0.06 which is very small. The result

shows that the aggregation of the wisdom of crowds may generate counter-intuitive results

by using Dempster’s rule of combination.

Now, let’s study this paradox by using the proposed ECR as well as other improved

methods. The results derived based on different methods arelisted in Tab. IV. As illustrated

in Tab. IV, with the rise of the number of evidences to be combined, Dempster’s rule

of combination, Murphy’s simple average, Deng’s weighted average, and PCR6 rule all
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generate counter-intuitive results. Although Han’s sequential weighted combination brings

out reasonable results, but in that methodm(θ1) has a rising trend asl increases. A counter-

intuitive result thatm(θ1) > 0.5 would also produce whenl becomes large enough. Only

the proposed ECR brings out the most reasonable result that the most supported proposition

is alwaysΘ, and the evolutionary time also does not change with the increase ofl. Here,

the ECR presents a similarly idempotent character which helps to settle the evidence shifting

paradox.

V. CONCLUSION

In this paper, we have proposed an evolutionary combinationrule (ECR) for the evidence-

based multi-source information fusion from an evolutionary game theory perspective. Within

the proposed framework of ECR, original evidences are averaged by their weights, and a

Jaccard matrix game is presented to formalize the interaction relationship between proposi-

tions, then we use the replicator dynamics equation to mimick the evolution of population,

finally a proposition with the highest fitness is identified asthe biologically most supported

or possible conclusion. Experimental results show that theproposed ECR has suppressed

the counter-intuitive results caused by the classical Dempster’s rule of combination, which

demonstrates the rationality and effectiveness of the proposed method.

In this work, we import a biological and evolutionary idea into DST, which is not presented

in previous studies and contributes a new insight for multi-source information fusion. Based

on our proposed ECR, the most supported proposition, in the biological sense, can be found

for decision-making. Of course, the ECR is still of some problems to be solved in the future

research. We summarized several noticeable issues as follows.

Firstly, the ECR is not associative, all evidences must be combined together at the same

time. Two main reasons, average mechanism and replicator equation, lead to the non-associativity.

In the initial stage of ECR, multi-source information is synthesized by average mechanism

which is also used in many existing evidence combination approaches, such as Murphy’s

simple average [28], Deng’s weighted average [29], Han’s sequential weighted combination

[20]. As a result, all these approaches are not associative.In addition, the replicator equation

ruling the evolution of mass value of each proposition does not meet associativity as well.

Secondly, the ECR does not preserve the neutrality for a vacuous evidencemv(Θ) = 1

whereΘ is the FOD, namelym ⊕ECR mv 6= m. In the framework of ECR, as same as

other propositionA ⊆ Θ, the FODΘ is regarded as a strategy which can be adopted by

individuals in an assumed population. The vacuous evidencemv(Θ) = 1 does not means
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totally unknown, but means that every individual adopts strategyΘ in the population. So,

the ECR does not meet the neutrality.

Thirdly, some counter-intuitive results are still hard to interpret in the framework of ECR

at present. For example, in [37] the author presented an example that combinesm1(A) =

m1(B,C) = 0.5 andm2(C) = m2(A,B) = 0.5. Dempster’s rule givesm(A) = m(B) =

m(C) = 1/3. As reported by Voorbraak [37], this result is counter-intuitive, since intuitively

B seems to share twice a probability mass of 0.5, while bothA andC only have to share once

0.5 with B and are once assigned 0.5 individually. So intuitively,B is less confirmed than

A andC, but they are equally confirmed by Dempster’s rule. By using the proposed ECR,

we obtainm(AB) = 0.5, m(BC) = 0.5 which corresponds to an unstable equilibrium state.

The results seem to also be counter-intuitive, but the ECR isunable to interpret currently.

In summary, although there are some drawbacks in the proposed ECR at present, this work

is still meaningful and innovative because of the exploiting of biological and evolutionary

standpoint for evidence combination. In many cases, it is effective and useful. In the future

research, we will continue to improve and perfect the framework of ECR.
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