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Abstract

Dempster-Shafer evidence theory is a primary methodologynulti-source information fusion
since it allows to deal with uncertain information. This dhe is based on Dempster’s rule of
combination to synthesize multiple evidences from variodisrmation sources. However, in some
cases, counter-intuitive results may be obtained basedemnpBter’s rule of combination. Lots of
improved or new methods have been proposed to suppress tiiecdintuitive results based on
a physical perspective that minimizes the lost or deviatbroriginal information. In this paper,
inspired by evolutionary game theory, a biological and etiohary perspective is considered to
study the combination of evidences. An evolutionary coratiom rule (ECR) is proposed to mimick
the evolution of propositions in a given population and findihd the biologically most supported
proposition which is called as evolutionarily stable prsiion (ESP) in this paper. Our proposed
ECR provides new insight for the combination of multi-sauiinformation. Experimental results

show that the proposed method is rational and effective.
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I. INTRODUCTION

Multi-source information fusion aims to integrate muléplata and knowledge from mul-
tiple information sources into a consistent, comprehensand useful estimation for objects
that beyond the performance of single information sourcanyissues in disciplines can
be translated to canonical multi-source information fogiwoblems. Because of that, multi-
source information fusion is extensively used in many fi¢lds[3]. A crucial issue in the
multi-source information fusion is that how to represerd dispose the imprecise, fuzzy, am-
biguous, even inconsistent and incomplete informatione&é branches of theories have been
proposed for the processing of uncertain information. daity, there are fuzzy set theory [4],
rough set theory [5], [6], possibility theory [7], and sotftarAmong these theories, Dempster-
Shafer evidence theory [8], [9] has attracted increasitgr@st from scientific communities
because of its inherent advantages in representing anditngunehcertain information [10]—
[17].

As a tool of reasoning in uncertain environment, Dempteaf&hevidence theory has
conceived a rounded system for the management of uncgrtlrthis theory, the data from
each information source is represented as a mass functi@ajled as evidence, Dempster’s
rule of combination is provided to combine multiple evidesdor the fusion of multi-source
information. However, the combination rule is controvaksiEven though it is of many
desirable characteristics, such as commutativity, agseity, and fast and clear convergence
towards a solution, but in some cases, especially when tliereses to be combined are
highly conflicting, Dempster’s rule of combination may lyiout counter-intuitive results.
Typical examples contains Zadeh's paradox [18], eviderta#tireg [19], [20], dictatorial
power of Dempster’s rule [21], [22], and so on.

For the reasons of producing counter-intuitive resultstetexists many debates, which lead
to various alternatives of Dempster’s rule or new methodgsHe combination of evidences,
for example conjunctive rule [23], disjunctive rule [24Rhutious conjunctive rule and bold
disjunctive rule [25], and so on [20], [26]—-[36]. Regarditing debate and improvement about
Dempster’s rule of combination [37]-[43], ones hold thainipster’s rule is inadequate so
that they modify the original rule or propose new rules totbgsize various information, ones
defend Dempster’s rule and advocate the modification orpoegs of original evidences [21].
Corporately, both of them are expected to bring out an exagththetic evidence which can
best represent the system consisting of all original evidenAt present, this is an traditional

and mainstream view. During the process of informationdsa primary hidden criterion is
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to minimize the lost or deviation between the informatioadlurded in the synthetic evidence
and that contained in original evidences. Essentially thia typical perspective of physics
or engineering.

Instead, inspired by evolutionary game theory, in this pape use a biological and
evolutionary perspective to study the information fusibhe process of combining evidences
to obtain the most acceptable conclusion is compared tovbleiteon of species to find the
individuals with the highest fithess who can survive in a pafion. During this process, evo-
lutionary game theory [44], [45] provides a theoreticahimwvork. Specifically, the supported
propositions in evidences are treated as strategies atlopiedividuals in a given population.
First, by interacting with others, each individual recsiymyoff which determines its fithess
in the population. Then, individuals with high fitness haverenchances to reproduce so as to
increase their rate in the population. Finally, throughekielution of population, individuals
with the highest fitness survive, and the strategy adoptethéy, i.e. proposition, wins out
to become the most supported or acceptable conclusion. idpoged method is called as
evolutionary combination rule (ECR). Here, even it is narasda rule, the ECR actually is
not a traditional combination rule which is expected to obta synthetic evidence, but just
want to find the most supported propositions in the given irewidence system. Because
it can directly find the object which has the highest fithesgeptially, the proposed ECR
provides a fast decision-making support for evidence-dbasealti-source information fusion
without relying on a transformation function between ewicke and probability distribution.

In the rest of this paper, it is organized as follows. Sectlagives a brief introduction to
Dempster-Shafer evidence theory and evolutionary ganmythi Section lll, the proposed
ECR is presented, which mainly contains five steps incluéwigence weighted averaging,
construction of Jaccard matrix game, evolutionary dynameégolution of averaging evidence,
and two-dimensional measure output. After that, sometrtitise examples are given to show
the effectiveness of the proposed method in Section IV.Ikin&ection V concludes this

paper.

[I. PRELIMINARIES
A. Dempster-Shafer evidence theory

Dempster-Shafer evidence theory [8], [9], also called DsteypShafer theory (DST) or
evidence theory, is used to handle uncertain informatitis Theory needs weaker conditions
than the Bayesian theory of probability, so it is often relgaras an extension of the Bayesian

theory — see discussion in [22]. As a theory of reasoning utte uncertain environment,
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DST has an advantage of directly expressing the “unceytabyt assigning the probability
to the subsets of the set composed of multiple objects, rafttae to each of the individual
objects. The probability assigned to each subset is limite@d lower bound and an upper
bound, which respectively measure the total belief anddted plausibility for the objects in
the subset. DST offers a method to combine distinct and tiwglyi independent bodies of
evidence. Recently, DST has attracted many concern froou&fields, such as parameter
estimation [46]—[48], classification and clustering [48]}, decision-making [52]-[56], etc
[57]-[61]. As an extension of this theory, Dezert-Smaram@aTheory (DSmT) of plausible
and paradoxical reasoning [62]-[64] is also given muchnéitia [36], [65]-[67].

For completeness of the explanation, a few basic concept®®n are introduced as
follows.

Let 2 be a set of mutually exclusive and collectively exhaustivents, indicated by
Q:{E17E27”'aEia'”7EN} (1)

where sef) is called a frame of discernment (FOD). The power seRa$ indicated by2*,

namely
2Q = {@7 {El}a Ty {EN}7 {E17E2}7 T {E1>E27 te '7EZ'}7 o 7Q} (2)

The elements oR® or subset ofQ) are called propositions. For exampleAf € 29, A is
called a proposition.
For a FODQ = {E,, E,,---, Ex}, a mass function is a mapping from 2% to [0, 1],
formally defined by:
m: 2% —[0,1] (3)

which satisfies the following condition:

m(@) =0 and Y m(A)=1 4)

Ag2®

In DST, a mass function is also called a basic probabilitygassent (BPA), or a belief

function, or a piece of evidences. The assigned probability) measures the belief exactly

assigned tod and represents how strongly the evidence suppbrté m(A) > 0, A is called

a focal element, and the union of all focal elements is calfedcore of the mass function.
Associated with each mass function is the belief measurepsakibility measureBel

function andP! function respectively. For a propositiofi C €2, the belief functionBel :

22 — [0,1] is defined as

Bel(A) = Y m(B) (5)

BCA
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Fig. 1. The relationship of belief and plausibility.

The plausibility functionPl : 29 — [0, 1] is defined as

PI(A)=1—Bel(A)= 3 m(B) (6)
BNA#0

where A = 0\ A,

Obviously, PI(A) > Bel(A), these functiong3el and Pl are the lower limit function and
upper limit function of the probability to which propositioA is supported, respectively.
According to Shafer's explanation [9], the difference betw the belief and the plausibility
of a propositionA expresses the ignorance of the assessment for the propoditiThe
relationship of belief and plausibility is shown in Fig. 1.

Consider two independent pieces of evidence charactebydateir BPAsm; andm, on
the FODY(2, in DST, m; andm, are combined with Dempster’s rule of combination, denoted

by m = m; & m,, defined as follows:

) — | TR i, MBI, A2, -
0, A=10.
with
K= > m(B)my(C) (8)

BNC=0
where K is a normalization constant, called conflict coefficientwen the two BPAs. Note

that Dempster’s rule of combination is only applicable talstwo BPAs which satisfy the
condition K < 1. Dempster’s rule of combination is the core of DST, it sastommutative
and associative properties, i.e., i)y & my = my & my and (i) (m; & mo) ® mz = my &

(my @ m3). Thus if there exist multiple belief structures, the conalbion of them can be
carried out in a pairwise way with any order. The vacuous BRAY) = 1 is neutral element

of Dempster’s rule.
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B. Evolutionary game theory

Evolutionary game theory (EGT) [44], [45] has been devetbipg John Maynard Smith to
study the interaction among different players or poputetion recent years, EGT has become
a paradigmatic framework to understand the emergence aidtien of cooperation among
unrelated individuals [68]-[81]. The main idea of the EGTtastrack the change of each
strategy’s frequency in the population during the evohaigy process. In EGT, evolutionarily
stable strategy (ESS) [44] and replicator equation (RE), [[83] are the two central and key
concepts.

1) Evolutionarily stable strategy (ESSh a given environment, an ESS is such a strategy,
adopted by a population, that can not be invaded by any ottesnative strategy which is
initially rare. The condition required by an ESS can be fdated as [44], [45]:

E(S,S)> E(T,95), 9)

or
E(S,S)=E(T,S), and  E(S,T)> E(T,T), (10)

for all T # S, where strategys is an ESS,T" is an alternative strategy, and(7, S) is the
payoff of strategyl” playing against strategy.

An evolutionarily stable strategy biologically means thatan not be successfully invaded
by any mutant strategies. In game theory, there are two laohdgategies, pure strategies and
mixed strategies. A pure strategy defines an absolutelpioeaction or move that a player
will play in every possible attainable situation in a ganrecbntrast, a mixed strategy is an
assignment of a probability to pure strategies so as to adlguiayer to randomly select a
pure strategy. In other words, in a mixed strategy, therev@oeor more pure strategies that
can be selected by chance. If the evolutionarily stableegiya(ESS)S is a pure strategys
is called a pure ESS. On the contrary, orités a mixed strategys becomes the so-called
mixed ESS. In [45], it has been proven that a game with two gtraegies always has an
ESS (pure ESS or mixed ESS).

Hawk-Dove game is a classical and paradigmatic exampleref @d mixed ESS. Assume
there is a population of animals, in which each individuajragsiveness is different during
the interaction with others. Accordingly, their behaviaen be divided into two types: the
aggressive type and the cooperative type. The aggresgigectyrresponds to strategy “Hawk”
(H), the cooperative type is associated with strategy “Dovej. (Within each interaction,

two animals meet and compete for a resourcél” > 0). When two Hawks meet, they will
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fight so that both of them have the opportunity to get— C')/2, whereC' is the cost of
injury in the fight. When two Doves meet, they will share theawrce, which means each
individual obtainsV'/2. If, however, a Hawk meets a Dove, the former will fight and the
latter can only escape. As a result, the Hawk obtains theeergsource without any cost of
injury, the Dove is left with nothing. In this sense, the pfiyoatrix of Hawk-Dove game

is shown in Eq. (11).

H D
A= H V-0)2 V (11)
D 0 V)2

Here, E(H,H) = (V—-C)/2, E(H,D) =V, E(D,H) = 0, E(D,D) = V/2, where
E(s1,s9) is the payoff ofs; playing againsts;. In the Hawk-Dove game, there are two
pure strategies, namelly and D, and innumerable mixed strategie¥ + (1 — ¢) D where
qg € (0,1). According to the condition of ESS, in this game, stratdgyis a pure ESS if
V' > C becauset(H, H) > E(D, H). Conversely, if < C, the mixed strategy* = V/C
which means thaf/ and D are respectively selected with probabilityand1 —p*, is a mixed
ESS becausefp € (0,1) andp # p*, E(p*,p*) = E(p,p*) and E(p*,p) > E(p,p), Where
E(p*,p) = y(1-§), E(p,p*) = Y(1=8), E(p*,p) = 5(1+&—2p), E(p,p) = ¥ (1-Fp°).

It is noted that the payoff of mixed strategy= (p,1 — p) playing against mixed payoff
7= (q,1 — q) is calculated by7Aq.

2) Replicator equation (RE)In EGT, the replicator equation (RE) [82], [83] plays a key
role to determine the evolutionary process of populatiohictv has provided a frequency-
dependent evolutionary dynamics to a well-mixed popufatio

Assume there exists strategies in a well-mixed population. A game payoff matfix=
la;;] determines the payoff of a player with strategy he meets another player who carries

out strategy;. The fitness of strategyis defined by:
fz'zzxjaz‘j, t=1,---,n (12)
j=1

wherez; is the relative frequency of strategyin the population. The average fitness of all

strategies is denoted @s which is defined by:
o= Z T fi (13)
i=1

The relative frequency of strategy namelyz;, is changed with time by this following

differential equation:
dl’i

dt
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Eq.(14) is the so called replicator equation, which imptiegt the change of; depends
on the fitness of strategyandx; itself. By soIving% =0,7=1,---,n, the fixed points of
this evolutionary system, denoted @s, - - -, z;), can be found. The stability of each fixed
point is the most focus of concern. Regarding the stabilitgach fixed point(z,-- -, z7),

a theorem is usually used to verify whether the fixed pointtable or not, which is given
as below.

Theorem 1: [83] Given a set of replicator equatior% =uz(fi—¢), i=1,---,n,the
fixed pointp* = (x7,---,x}) is asymptotically stable if all eigenvalues associatech wit
are negative numbers or have negative real parts.

For more details on Theorem 1, please refer to [83]. Sincerdipicator equation is
nonlinear, an exact solution is difficult to find. Hofbaueda&igmund have proved that each
ESS of A is definitely an asymptotically stable point of the replaragéquation [83]. So the

ESSs are often taken as the asymptotically stable solutibtise replicator equation.

[1l. EVOLUTIONARY COMBINATION RULE (ECR)

The evolution of species abides by natural selection whiokiides an excellent mechanism
to find individuals with higher fitness. Analogously, infaatron fusion aims to find the most
supported proposition by roundly synthesizing informatmming from multiple sources.
If the information is expressed by the means of probabilistributions, the state with
the biggest probability is always concerned intensely. IBTDsince the introduction of
subjective or epistemic uncertainty, the mass functiasg aehlled evidence or basic probability
assignment (BPA), is employed to represent the uncertédmnration.

Traditional solution of combining evidences aims to obtairmass function that best
synthesizes all information. Then, based on the obtainathsyic evidence, a decision can
be made. In this paper, instead of seeking the best syntnatience, our purpose is to find
the best supported proposition (of course, it can also be asean evidence who only has
a focal element), analogous to find the most probable stapecibability theory. Obviously,
it is not rational that simply let the proposition with theghest belief be the candidate,
because this approach ignores the interaction betweemgitmms. Natural selection and the
concept of fitness have inspired us consider this problem fadbiological and evolutionary
standpoint.

In this paper, we propose a new method to combine evidenaesngofrom different
information sources based on evolutionary game theory. prbposed method is called as

evolutionary combination rule (ECR). In the ECR, propasis in the FOD are naturally
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Evidence m; Evidence m; Evidence m,
with |  seeses with |  seeees with
weight w; weight w; weight w,

input

A,

Cl. Evidence weighted averaging>

Frame of discernment Q ¥

2. Construction of Averaging evidence m

Jaccard matrix

game
(@, o) Averaging evidence m
Y Y v
3. Evolutionary dm/dt 4. Evolution of ESPy, 5. Two-dimensional
dynamics averaging evidence t measure output

Evolutionary combination rule (ECR)

Fig. 2. Framework of the proposed evolutionary combinatigie

seen as strategies that can be adopted by a population giveemaronment. Through
an evolutionary process of strategies, propositions whiin highest fithess can be found
so as to facilitate the subsequent analysis and decisign.2Fshows a framework of the
proposed ECR. Mainly, there are five steps including evidemeighted averaging, construc-
tion of Jaccard matrix game, evolutionary dynamics, evotubf averaging evidence, two-
dimensional measure output, which will be detailed in thétang content of this section,
respectively. Most notably, in the proposed ECR, there @ lhasic problems: (i) what
are the interactive relationships between propositiotratégies) ? (ii) how do propositions

evolve in a population? These questions will also be ansvierehe following content.

A. Evidence weighted averaging

Given multiple evidences from different information saescin accord with the traditional
assumption, these evidences are mutually independenthése independent evidences, by

considering the difference of importance among informraources, the weighted averaging
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approach is used to integrate multiple evidences.
Given a FODY2, assume there are evidences or BPAs indicated by, - - -, m,, each
evidence has a weighting factor indicateduay f} w; = 1. the averaging evidence is denoted

=1
asm, which is obtained by

m(A) = iwimi(A), ACQ. (15)

B. Jaccard matrix game (JMG)

In the ECR, propositions, subsets of the FOD, are treatettategies. A key problem is to
define the interaction rule between these propositionserias FODS?2, suppose proposition
A meets propositio3, how many payoff will be obtained fa#, and forB as well? To solve
this issue, in this paper the similarity degree between isetised to express the payoffs of
propositions since propositions are represented as d@tsidea is based on that an individual
can obtain more benefit if he interacts with individuals lgegimilar with him. In biology,
there is a so-called greenbeard effect which shows thateratipe behaviors more likely
appear between individuals with similar phenotypes [84rEfore, each proposition obtains
more if similar propositions meet, but less if not similapeSially, in a pair interaction, each
can obtain 1 if these two propositions are identical, coseigrO if they are totally different.
Mathematically, Jaccard similarity coefficient gives thmitarity degree between two sets
[85]. In this paper, a Jaccard matrix game (JMG) is proposetbtmalize the interaction
relationship between propositions. The definition of theGIM given as follows.

Definition 1: Given a FODS?2, a Jaccard matrix game (JMG) éhis defined as
['=(Q,Jo) (16)

where the set of strategies is composed by propositioned&@D (i.e., the nonempty subsets
of ), the payoff matrix isJo = [Ja(A, B)|, zcq IN Which Jo(A, B) represents the payoff

of proposition A playing against propositios, and it is defined by the Jaccard similarity

_ |AnB|
~ JAUB|®

Next, an example is given to show the JMG.

coefficient between setd and B, i.e., Jo(A, B)

Example 1: Given a FOD with two element®; = {a,b}, a JMG onf2,, denoted as

(24, Jo, ), can be constructed. In this game, the set of all potentiatesjies is{a, b, ab} (for
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the sake of presentation, sgt, y} is abbreviated asy), and the payoff matrix is calculated

easily
a b ab
a 1 0 1/2
Jo, = / (17)
b 0 1 1/2

ab 1/2 1/2 1
Similarly, given a FOD with three element3, = {a,b,c}, a new IMG (£, Jq,) is

obtained, where the set of strategiegdsb, ¢, ab, ac, be, abc}, and the payoff matrix is shown

as follows.
a b ¢ ab ac bec abe
a 1 0 0 1/2 1/2 0 1/3
0 1 0o 1/2 0 1/2 1/3
c 0 0 1 0 1/2 1/2 1/3
Ja, = /2 12 1 (18)
ab 1/2 1/2 0 1 1/3 1/3 2/3

ac | 1/2 0 1/2 1/3 1 1/3 2/3
be 0 1/2 1/2 1/3 1/3 1 2/3
abe | 1/3 1/3 1/3 2/3 2/3 2/3 1

Again, for each propositiom C €2 in DST, it is equivalent to a pure strategy in a JMG.

For example, given a FOB = {q, b}, there are three propositiomas b ab, each is a pure
strategies in the IM&, J,,). All propositions consist of the set of pure strategies aeldp
by a population. Moreover, in a JMG, a pure strategy cornedpdo a proposition which
also can be seen as a mass function who only has a focal eleameh&i mixed strategy is
associated with a set of propositions which is a mass fumatioh multiple focal elements.
As shown in the above example, a JMG can be constructed if a iB@©en. Formally, the
complication of a JMG is determined by the size of the giverDF@ However, regardless
of the size of(), some self-evident corollaries about the JMG are obtained.

Corollary 1: A JMG (€2, Jg) is symmetric, namely/o(A, B) = Jo(B, A).

Corollary 2: Let A5Z° be the set of all ESSs (evolutionarily stable strategies) MG
(Q, Jg), then

AESS = [A|A C Q, A +# 0}

Corollary 2 shows a one-to-one correspondence betweersprategies and ESSs in IMGs.
Due to the equivalence between propositions and pure gieaten JIMGs, in this paper we
also call the evolutionarily stable strategy (ESS) as diatarily stable proposition (ESP).
Assume the set of ESPs in a JMG is indicatedA¥°”, then we haveA55” < AESS,
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C. Replicator dynamics on the JMG

Once the interaction relationship between propositions been determined, the next
problem is that how the propositions evolve. In other wondbat kind of evolutionary
dynamics is adopted in this population? To address thigjgke replicator equation is used to
mimick the evolutionary process of population based on wasons. At first, it commendably
simulates the evolution of population in a well-mixed eoniment where individuals could
randomly interact with other members of the populationsréMonportant, the replicator
equation is mathematically equivalent to the Lotka-Vaetieequation of ecology [83] which
describes the dynamics of species in an interacting bicébgystem. The Lotka-\Volterra
equation is very close to real facts since it does not relyhenrationality assumption which
is fundamental but challenged in the classical game theédwy.the equivalent replicator
equation also gets rid of the puzzle caused by the contriaveegionality assumption. The
replicator dynamics on a JMG is defined as follows.

Definition 2: Given an evidencen on a FODS2, the belief or basic probability for
proposition A, i.e. m(A), evolves in time according to the equation

dm(A)
dt

where f4 is the fitness of propositiod, and it is given in terms of a IM&2, J,) by

=m(A) (fa—¢), ACQA#D (19)

fa= ). m(B)Ja(A, B) (20)

BCQ,B£0

whereas the average fitness of propositions in the popul&io
¢ =2 > m(A)Jo(A Bym(B), A,BCQ,and A B#0 (21)
A B

Regarding the differential dynamic system shown in Eq3-:(22), people are mainly
concerned with the asymptotically stable points (ASPs¥bHEoer and Sigmund [83] provided
a theorem to show the relationship between the ASPs of egpliclynamics and ESSs of a
symmetric two-player game.

Theorem 2: [83] Given a symmetric two-player gam@, strategyz* is an ESS ofG if
and only ifz* is an ASP of the replicator equation evolving 6h

Theorem 2 shows that there is an one-to-one correspondesteedn ASPs and ESSs
in a symmetric two-player game. Let us denote the set of ASRReoreplicator equation
in a IMG by A3°7, evolutionarily stable propositions (ESPs) t°F. Since JMGs are
symmetric, the following corollary is naturally satisfied.

Corollary 3: In IMGs,m* € AES? if and only if m* € ASST,
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Here, an example is given to help understand this relatipnsh
Example 2: Given a FODQ2 = {a, b}, a IMGI" = (12, Jg) is constructed, its payoff matrix

Jq is shown as follows.

a b ab
1 0 1/2

Joo © / (22)
b 0 1 1/2

ab 1/2 1/2 1
Now let us study the replicator dynamics on the gardn this JMG, there are three
pure strategiess, b, andab. For the sake of presentation, let the basic probabilitiehese
propositions ben(a) = x, m(b) = y, m(ab) = z, wherex + y + z = 1. According to the

replicator equation, we can write (replacing, as usualtitne derivatives ofr, vy, z by #,

Y 2),
i =z(fe — ¢)
y=ylfy—¢) (23)
z=z(f. — ¢)
where
fe=x+2/2
fy :y+z/2 (24)
f=x/24+y/2+ =
and

¢ = (z,y,2)Jalr,y,2)" =a(@+2/2) +yly+2/2) + 2(z/2+y/2+2)  (25)

According to the stability theory of differential equatgrthe fixed point of the replicator
dynamic system represented by Egs. (23)-(25) should gatisf 0, y = 0, 2 = 0, where
r +y+ 2z = 1. So all fixed points can be obtained, they drg,y;,2;) = (1,0,0),
(23,45, 25) = (0,1,0), (3,95, 2) = (0,0,1), (a5, v}, 25) = (0,05,05), (3,93, 2) =
(0.5,0.5,0), (x§, v, 25) = (0.5,0,0.5). The stability of each fixed point can be checked

by a Jacobian matrix/M, as follows.

0i  0b i
oxr Oy Oz
= | % 9%y 9y
JM e & o (26)
0:  9: 0z
dr Oy Oz

Let us take(x}, y7, 27) as an example. For this fixed point,

-1 0 —05
A=JM|gsst ymyt,2=en=| 0 -1 0 |. (27)
0 0 —05
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TABLE |

FIXED POINTS AND THEIR STABILITY IN EXAMPLE 2

Fixed points (Beliefs of a, b and ab)| Associated eigenvalueg Stablity
(1, 0, 0) -1,-1,-05 stable (ASP)
(0, 1, 0) -1, -1, -05 stable (ASP)
(0, 0, 1) -1, -0.5, -0.5 stable (ASP)

(0, 0.5, 0.5) -0.75, -0.5, 0.25 unstable

(0.5, 0.5, 0) -0.5, 0, 0.5 unstable

(0.5, 0, 0.5) -0.75, -0.5, 0.25 unstable

The stability of fixed point(x}, yi, z) is determined by the eigenvalues of the following
characteristic equation
det(A —\) =0 (28)

where det is the determinant of a matrix, ahds an identity matrix. So, the eigenvalue
A can be readily calculated, and they atg= —1, Ay = —1, A3 = —0.5. According to
Theorem 1 [83], the fixed points, yi, z7) is an asymptotically stable point (ASP) since all
eigenvalues are negative numbers. Meanwhile, A8Py, ;) corresponds ten(a) = 1, so
we say proposition is an evolutionarily stable proposition (ESP).

By means of this approach, the stability of other fixed poaats be found. The results are
shown in Tab. I. As shown in Tab. I, there are three ASPs, naméh) = 1, m(b) = 1 and
m(ab) = 1, which are in one-one corresponding with ESPs, ;" = AA5P. Graphically,

a two-dimensional space, called simplex, can clearly ssprethe evolutionary dynamics of
propositionsa, b andab, as shown in Fig. 3. In the simplex, every vertex of meansttee
only exists a sole proposition (i.e., strategy) in the papah, edges represent that at least a
proposition is missing in the population. The interior oé timplex corresponds to the case
of all propositions coexistence. At each point of the simpke sum of the belief of all
propositions is 1. In addition, in Fig. 3, arrows represémd tlirections of evolution, black
circles indicate ASPs, white circles are unstable fixed fgoiRrom Fig. 3, it clearly shows
that there are three ASPs that are precisely ESHS, aihd three unstable fixed points that

are located on the midpoints of there edges.
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Fig. 3. Evolutionary dynamics of propositions a, b and ab xar&ple 2

D. Evolution of averaging evidence

As aforementioned, given an evidence which is usually theraame of multiple evidences
in multi-source information fusion, the replicator dynasidetermines which proposition this
evidence will evolve to. Here is an example to show the ewmhatry process.

Example 3: Given an evidence: on a FODS2 = {a, b, ¢},

m(a) = 0.25, m(b) = 0.25, m(c) = 0.25,

m(ab) = 0.05, m(ac) = 0.1, m(bc) = 0.05, m(abc) = 0.05.

We want to determine which is the most possible object amdnectsa, b, ¢, in terms
of m. As we see, the support degrees for object$ and ¢ are very similar inm. Facing
this situation, we use the proposed ECR for analysis.rhéte the initial configuration of
this population at = 0, andm,(A) be the mass value of.(A) at timet¢, where A C Q.
The evolutionary process is illustrated by

dmt (A)
dt

In this paper, we simulate the evolutionary process of eacpgsition by using the fourth-

mesar(A) = mi(A) + At (29)

order Runge-Kutta method, as shown in Fig. 4, where the boté axis “Time” indicates

time points in the Runge-Kutta method. According to Fig. Weg an initial configuration
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Fig. 4. The evolutionary process of propositions in Exangle

determined by evidence:, in the end of evolution, propositionc survives and finally
occupies the population, while other propositions beconten@&. So, ac is the only ESP
for evidencem, denoted ask'SP,, = ac. It implies that propositiomuc has the highest
fithess. As a result, it suggests that the most supportedtoigj@ithera or c. Moreover, as
shown in Fig. 4, by using the Runge-Kutta method, we can tthekevolutionary curve of
each proposition, and obtain the time required for reacl@ggilibrium. In this paper, we
assume that the replicator dynamics equation reacheskegunit if the maximum increment

or decrement of propositions’ mass values is less tiiai between two adjacent time points.

E. Two-dimensional measure

By using our proposed ECR method, an equilibrium state caevioésed for any given
evidences. It could be an ESP if the equilibrium state islstads mentioned above; oth-
erwise, it is an unstable equilibrium point, as while cischown in Fig. 3. However, the
problem is not totally solved. Considering this case thai tlifferent evidences evolve to
a same equilibrium state, how can we distinguish them? Aectife measure is necessary.
Fortunately, since the evolutionary process is dynamicfimgthat, the time evolving to the

stable or unstable equilibrium state provides a reasomabksure to reflect such difference.
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1) Case of evolving to an ESR:et us first consider the case that the population evolves
to a stable equilibrium state, namely an ESP.

Example 4: Given two evidences, indicated by, andm,, on a FODS2 = {a, b},

my(a) = 0.7, my(b) = 0.1, my(ab) = 0.2;

ma(a) = 0.5, ma(b) = 0.3, ma(ab) = 0.2.

The evolutionary process of propositionsrin andms, are shown in Fig. 5. For evidences
my andms, the ESPs are both, namelyESP,,, = a, ESP,,, = a. But the time evolving
to the equilibrium state are different. Fat; andm,, the time of reaching propositiom
aret; = 13.0459 andt, = 16.8553, respectively. From the view of evolution, these results
indicate thatm, is more close to ESR since propositior: is more supported imz;.

Example 5: Given a FODS2 = {a, b, ¢}, there is an evidence: shown as follows,

m(a) =z, m(b) = 0.9 — z, m(bc) = 0.05, m(abc) = 0.05.

wherez € [0,0.9]. Now let us investigate the ESP of and the time evolving to that ESP
denoted asysp with the change of: from 0 to 0.9 where every increment is 0.01.

Fig. 6 illustrates the results. From the figure, we can seethieaESP ofn is propositionh
if x <0.45, and propositior: if = > 0.46. Whenz < 0.45, tpgp Of evolving to proposition
b is increasing with the decline of the belief bfdue to the ascent of. Whenz > 0.46,

ESP,, = a, and the belief ofz increases with the rise aof, as a resultzsp of evolving
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to ESPa decreases. This example shows that, regardless the EStas«eor b, tpsp IS
changed with the initial configuration of evidenge Also, even if two evidences evolve to
a same ESP.zsp is lower for this evidence which supports the associated ESRe. In
other words, the higher fitness of ESP in an evidence leadddwex ¢ ;5p Of real evolving
to that ESP.

Therefore, we can say thats measures the temporal cost of an evidence evolving to its
associated ESP. From an biology perspectiyep is an evolutionary distance from the given
evidence to its associated ESP. Based on this considerat®mmsetzsp to further depict
the relationship between an evidence and its associatedAS®-dimensional measure is
defined as follows.

Definition 3: Assume there are evidences indicated by, - - -, m,,, let m be the average
of thesen evidences, ifn evolves to an ESP, the evolutionary output of using the mego

ECR is represented as
< ESP,,tpsp >= fecr(ma, -+, my) (30)

where ESP,, is the ESP ofn, andtgsp is the time ofm evolving to that ESP as a measure
of evolutionary distance.
Again, in the ECR, we just want to find the most supported psajmm, but not an exactly

synthetical evidence, the time of evolving to an ESP pravaeeference for the evolutionary
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distance between the averaging evidence and its asso&i&ted

2) Case of evolving to an unstable equilibrium stateis mentioned that, by using the
ECR, the averaging evidenee may do not evolve to a ESP, but to a state where two or
more propositions coexist. Mathematically, those statesespond to unstable fixed points,
graphically illustrated as the white circles in Fig. 3. A yatight disturbance will cause that
m deviates such unstable equilibrium states and goes to anTH®Refore, the probability
of evolving to such states is very small in general. Even sasitlering the completeness of
methodology, we also give a definition to formalize the ottpuECR in this situation.

Definition 4: Givenn evidencesn,, ---, m,, for their averaging evidence: which will
evolves to an unstable equilibrium state, the evolutiormarput of using the proposed ECR
can be expressed as

< P tgs >= feer(ma, -+, my) (31)

where P, is set of existent propositions in this unstable equilibristate, and s is the
time of m evolving to that equilibrium state.

Examples will be given in the following section. It is wortmpticed that, sometimes,
if the population evolves to an unstable equilibrium stétemplies that there are highly
conflicting information among the original evidences, - - -, m,,. In this sense, the unstable

equilibrium state sometimes can act as an alarm to repomtistence of high conflict.

IV. [LLUSTRATIVE EXAMPLES AND ANALYSIS
A. Combination of highly conflicting evidences

Conflicting evidence combination [86], [87] is a main comcén verify the effectiveness
of combination rules in multi-sources information fusidiere we will give several classical
cases in DST for the verification of the proposed ECR.

Example 6: Zadeh’s paradox [18]. Two doctors diagnose a patient, any #gree that
the patient suffers from one of these three diseases imguatieningitis (M), brain tumor
(T), and concussion (C). Hence, a FOD is determined2as {M,T,C}. Both of these
doctors think that a tumor is unlikely, but they hold diffeteopinions for the likely cause.
Two diagnosis are given as follows.

mi(M) =0.9, mi(T) = 0.1, m(C) = 0.0.

ma(M) = 0.0, my(T) = 0.1, ma(C) = 0.9.

We can find that these two evidences are highly conflictingsiiig the classical Dempter’s

rule of combination to combine them, as shown in Eqs.(7) &)dthe combination result is
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me(M) =0, mg(T) =1, mg(T) = 0.

and the conflict coefficieni = 0.99. This is an apparently counter-intuitive result. The
patient most likely does not suffer from tumor in each ddstdiagnosis, but the synthesizing
result shows that the patient suffers from tumor with 100%.itSs counter-intuitive. This
classical example is first given by Zadeh to show the doubtthervalidity of Dempster’s
rule when information are highly conflicting [18].

Now, let's use the proposed ECR to integrate these two ewatenAssume the weight
factor of each doctor is identical, the averaging eviderscealculated asn(M) = 0.45,
m(T) = 0.1, m(C) = 0.45. The evolutionary process of each propositiominis shown in
Fig. 7. From this figure, we can find that with the increase af@wonary time the belief of
T goes to 0, and finally propositiong andC averagely share the total belief 1. At the end
of evolution, the belief of each proposition becomeg)/) = 0.5, m(T") = 0.0, m(C) = 0.5,
which means thad/ andC' coexist finally. The time of evolving to this unstable eduilum
stable istps = 8.7759. Besides, the instability of this equilibrium stable ingdithat there
are highly conflicting information inn caused by the original evidences, and m,. The
ECR effectively identifies this situation.

Example 7: Modified Zadeh’s paradox. Regarding Zadeh’s paradox, navadeassume

that the two doctors give two outright conflicting diagnoassfollows.
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Fig. 8. Evolutionary result of modified Zadeh’s paradox

my(M) =1, my(T) =0, m(C) = 0.

mo(M) =0, ma(T) =0, ma(C) = 1.

Now there is not any agreement between and m,. According to Dempster’s rule of
combination, the conflict coefficierit = 1. In this situation, Dempster’s rule becomes invalid
and can not be used to synthesize them. Instead, let us eonk&m by using the proposed
ECR. The averaging evidenceis()M) = 0.5, m(C') = 0.5. The evolutionary results are
shown in Fig. 8. From that figure, we can find that the beliefadheproposition inn does
not show any change, as the evolutionary time increasesavéeage evidence: is exact
located at an unstable equilibrium point. Therefore, as asme of evolutionary distance,
the time reaching the equilibrium statetiss = 0 in this case.

These above two examples clearly show that the proposed EGHfdactive for these
cases where Dempster’s rule is questionable. Moreovershmguhe ECR, Zadeh’s paradox
is transformed to a simple mathematical problem, and thgaged by the instability of
equilibrium point. Even Zadeh'’s paradox is objectivelyst&nt, but it is extremely unstable,

and a slight numerical change of the inputs could break away this dilemma.
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B. More illustrative examples

In the following content, we will examine the proposed ECRuUsyng more examples.
Example 8: In [21], [22], the authors have presented an emblematic plaro show
the inadequate behavior of Dempster’s rule of combinaflére authors called that behavior

as thedictatorial power (DP) of Dempster’s rule. Specifically, in that example theeleof
conflict can be chosen at any low or high value, which mearnsttigaexample is not related
to the level of conflict between evidences. A simple versid@) [of that example is shown
as follows.

Given a FODO = {64, 6,05}, there are four evidences as below:

m1(6h) = a, my(01602) =1 — a.

m;i(03) = b, m;(©) =1—b, wherei = 2,3, 4.

When using Dempster’s rule of combination, one gets:

me(01) = a =mq(01), mg(6162) =1 — a = my(6165).

It clearly shows that Dempster’s rule is not responding t® tlombination of different
evidences. It seems that evidenage dominates other evidences since the combination result
is alwaysm;, which does not accord with people’s expectation or intuiti

Now let us reconsider this example by using the proposed BGReover, for the sake of
comparison, several improved methods for the combinati@vioences, including Murphy’s
simple average [28], Deng’s weighted average [29], Hantgisrtial weighted combination
[20], proportional conflict redistribution (PCR6) rule dhave also been used to test the
results. Because PCR6 is not associative, to get optimaltsethe PCR6 rule is implemented
in this paper by combining all evidences altogether at tmesame. Here, assume= 0.7,

b = 0.6. The results are listed in Tab. Il. As illustrated in thatlégatihe combination results
are always the same as, if using Dempster’s rule of combination, which is countetuitive.
However, the counter-intuitive results have been elingdan the results of Murphy’s simple
average, Deng’s weighted average, Han’s sequential wegtdmbination, and PCR6 rule.
Similarly, in the proposed ECR, the counter-intuitive bebes are also suppressed, which
shows the advantage of the proposed method. In every casadfiation, the most sup-
ported proposition obtained by the ECR totally accords fith results obtained by other
reasonable methods. Moreover, the decreade @f indicates that the evolutionary distance
to the ESP is reducing with the accumulation of evidences, which fartboincides with
people’s expectation.

Example 9: In [20], the authors studied the problem of target recognitin a multi-

sensor system. In a multisensor-based automatic targegméion system, assume the FOD
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TABLE I

RESULTS FOREXAMPLE 8

Evidences

mi, m2

mzi, m2, M3

mi, m2, ms, Mg

Dempster’s rule of combination

m(61) = 0.7000,

m(6162) = 0.3000.

m(61) = 0.7000,

m(6162) = 0.3000.

m(61) = 0.7000,

m(6162) = 0.3000.

Murphy’s simple average

m(61) = 0.5250,
m(@lﬁg) = 0.1179,
m(6s) = 0.3000,

m(©) = 0.0571.

m(6:1) = 0.3379,
m(9102) = 0.0615,
m(fs) = 0.5622,

m(©) = 0.0384.

m(61) = 0.1794,
m(0102) = 0.0292,
m(fs) = 0.7711,

m(©) = 0.0203.

Deng’s weighted average

m(61) = 0.5250,
m(@lﬁg) = 0.1179,
m(6s) = 0.3000,

m(©) = 0.0571.

m(61) = 0.1032,
m(9102) = 0.0290,
m(fs) = 0.8122,

m(©) = 0.0555.

m(6:) = 0.1032,
m(0102) = 0.0093,
m(63) = 0.9344,

m(©) = 0.0246.

Han’s sequential weighted combinatig

n

m(61) = 0.5250,
m(616) = 0.1179,
m(63) = 0.3000,

m(©) = 0.0571.

m(61) = 0.2362,
m(6162) = 0.0363,
m(63) = 0.6369,

m(©) = 0.0906.

m(61) = 0.0676,
m(6162) = 0.0089,

m(©) = 0.0937.

m(61) = 0.5062,

m(@lﬁg) = 0.1800,

m(6:) = 0.3432,

m(9102) = 0.1028,

m(6:) = 0.2464,

m(0102) = 0.0642,

PCRG6 rule
m(03) = 0.3138. m(603) = 0.4306, m(03) = 0.4921,
m(0) = 0.1234. m(©) = 0.1973.
< ESP = 6., < ESP = 03, < ESP = 03,

The proposed ECR

tesp = 21.4913 >

tesp = 21.6188 >

tgsp = 16.0809 >

is © = {6,,0-,03}. For an unknown target, the system has collected five evedesbown

as follows.

mq(01) = 0.60, m(6s)
2(01) = 0.65, may(6s)
(62)
(62)

3

0.10,
0.10,
0.90,

my 91) = 055, n 92 = 010,

62, 65) = 0.30.

63) = 0.25.

m(
ma(
ms(6s, 63) = 0.10.
ma(6s, 65) = 0.35.

(
(
m3(01) = 0.00, ms(6s
(
(

ms 81) == 055, m5(82) == 010, m5(t92,¢93> = 0.35.
By using different methods, the combination results arevddr as shown in Tab. Ill.

From Tab. Ill, in the combination results based on Dempters, m(¢,) always equals to
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RESULTS FOREXAMPLE 9

TABLE 11l

Evidences

mi, M2

mi, m2, M3

mi, M2, M3, M4

mi, m2, M3, M4, M5

Dempster’s rule of

combination

m(6:) = 0.7723,
m(62) = 0.0792,

m(63) = 0.1485.

m(6:) = 0.0000,
m(62) = 0.8421,

m(63) = 0.1579.

m(61) = 0.0000,
m(62) = 0.8727,

m(fs) = 0.1273.

m(61) = 0.0000,
m(2) = 0.8981,

m(3) = 0.1019.

Murphy’s simple average

m(61) = 0.7716,
m(62) = 0.0790,

m(61) = 0.3526,
m(62) = 0.5978,
m(63) = 0.0380,

m(6y) = 0.5167,
m(62) = 0.4573,
m(63) = 0.0189,

m(0203) = 0.0071.

m(61) = 0.6706,
m(62) = 0.3169,
m(63) = 0.0088,

m(6203) = 0.0037.

Deng’s weighted averag

3%

m(6:) = 0.7716,
m(62) = 0.0790,

m(63) = 0.1049,

m(0203) = 0.0444.

m(6:) = 0.6013,
m(62) = 0.3302,
m(63) = 0.0532,

m(0203) = 0.0153.

m(6:) = 0.7987,
m(f2) = 0.1698,
m(s) = 0.0227,

m(@z 93) = 0.0088.

m(6,) = 0.8975,
m(2) = 0.0897,
m(63) = 0.0088,

m(@z 93) = 0.0040.

Han’s sequential

weighted combination

m(6:) = 0.7716,
m(62) = 0.0790,

m(63) = 0.1049,

m(0203) = 0.0444.

m(6:) = 0.5591,
m(62) = 0.4021,
m(63) = 0.0297,

m(0203) = 0.0091.

m(6:) = 0.6781,
m(2) = 0.3054,
m(f3) = 0.0071,

m(@z 93) = 0.0093.

m(6:) = 0.8103,
m(62) = 0.1797,
m(fs) = 0.0014,

m(@z 93) = 0.0086.

PCR6 rule

m(61) = 0.7371,
m(62) = 0.0644,

m(61) = 0.4224,
m(6a) = 0.4729,

m(6y) = 0.4755,
m(62) = 0.3849,
m(63) = 0.0351,

m(6203) = 0.1045.

m(6y) = 0.5111,
m(62) = 0.3244,
m(6s) = 0.0276,

m(0203) = 0.1369.

The proposed ECR

< ESP =04,

tesp = 7.5708 >

< ESP =05,

tgsp = 19.3900 >

< ESP =04,

tesp = 11.5065 >

< ESP =04,

tesp = 10.6493 >

0 after combiningngs, while regardless of the support fér in m, andms. Evidently, this

is counter-intuitive. In contrast, as we can see in Tab.b#sed on the other four methods,
the counter-intuitive results are suppressed. In Dengighted average and Han’s sequential
weighted combination, the most supported is alwéy$or any case, and the support fér

is increasing after the arrival of,, andms. For Murphy’s simple average, PCR6 rule, and
the proposed ECR, even though the most supportéd is the case of combiningu;, m»
andmg, but it promptly changes t6; as soon as the arrival of,, which also overcomes

the counter-intuitive behavior. Moreover, in the propo&s€iR, the increase of the support
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TABLE IV

RESULTS FOREXAMPLE 10

The number of evidenced

=10

=25

=50

Dempster’s rule of combination

m(6y) = 0.4614,

m(©) = 0.5386.

m(61) = 0.7871,

m(©) = 0.2129.

m(61) = 0.9547,

m(©) = 0.0453.

Murphy’s simple average

m(6:) = 0.4614,

m(©) = 0.5386.

m(6:) = 0.7871,

m(©) = 0.2129.

m(61) = 0.9547,

m(©) = 0.0453.

Deng’s weighted average

m(6,) = 0.4614,

m(©) = 0.5386.

m(6,) = 0.7871,

m(©) = 0.2129.

m(61) = 0.9547,

m(©) = 0.0453.

Han’s sequential weighted combinatig

m(6y) = 0.3195,

n

m(61) = 0.3684,

m(6:) = 0.3924,

m(©) = 0.6805. m(©) = 0.6316. m(©) = 0.6076.

m(01) = 0.4614, | m(6:1) = 0.7871, | m(6:1) = 0.9547,
PCR®6 rule

m(©) = 0.5386. | m(©) =0.2129. | m(©) = 0.0453.

< ESP =0, < ESP =0, < ESP =0,

The proposed ECR

tesp = 6.4296 > tesp = 6.4296 > tesp = 6.4296 >

for 6, is expressed by means of the decling g§» which implies the evolutionary distance
to 6, is reduced. Therefore, our proposed ECR is still effectivéhis example.

Example 10: Evidence shifting paradox [19], [20] describes anotherntemintuitive
behavior in Demspter-Shafer evidence theory. Let us cendigis scene that a target is
evaluated byl different experts with the same importance. The FODBis= {6, 05, 05}.
Each expert gives an identical assessment as below.

m;(01) = 0.06, m;(©) = 0.94, wherei =1,--- 1.

By using Dempster’s rule, the combination result is showiodews.

me(01) =1 —0.94!, mg(0) = 0.94%.

If 1 is a big number, for example 108y (0;) = 1 —0.94'% = 0.9979 which is very large
although for each evidence to be combined6,) = 0.06 which is very small. The result
shows that the aggregation of the wisdom of crowds may geme@unter-intuitive results
by using Dempster’s rule of combination.

Now, let’s study this paradox by using the proposed ECR ad aglother improved
methods. The results derived based on different methodkséed in Tab. IV. As illustrated
in Tab. IV, with the rise of the number of evidences to be carmatli Dempster’s rule

of combination, Murphy’s simple average, Deng’s weightegrage, and PCR6 rule all
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generate counter-intuitive results. Although Han’s sedaé weighted combination brings
out reasonable results, but in that metho(b, ) has a rising trend akincreases. A counter-
intuitive result thatm(#,) > 0.5 would also produce wheh becomes large enough. Only
the proposed ECR brings out the most reasonable resultitbahost supported proposition
is always©, and the evolutionary time also does not change with theeass ofl. Here,

the ECR presents a similarly idempotent character whichshel settle the evidence shifting

paradox.

V. CONCLUSION

In this paper, we have proposed an evolutionary combinatien(ECR) for the evidence-
based multi-source information fusion from an evolutigngame theory perspective. Within
the proposed framework of ECR, original evidences are geerdy their weights, and a
Jaccard matrix game is presented to formalize the interactlationship between proposi-
tions, then we use the replicator dynamics equation to nkirtiie evolution of population,
finally a proposition with the highest fitness is identifiedtlas biologically most supported
or possible conclusion. Experimental results show thatpituwosed ECR has suppressed
the counter-intuitive results caused by the classical Dsternjs rule of combination, which
demonstrates the rationality and effectiveness of theqeep method.

In this work, we import a biological and evolutionary ide&iDST, which is not presented
in previous studies and contributes a new insight for medtice information fusion. Based
on our proposed ECR, the most supported proposition, in iibledical sense, can be found
for decision-making. Of course, the ECR is still of some peais to be solved in the future
research. We summarized several noticeable issues awdollo

Firstly, the ECR is not associative, all evidences must balined together at the same
time. Two main reasons, average mechanism and replicatatieq, lead to the non-associativity.
In the initial stage of ECR, multi-source information is Hyesized by average mechanism
which is also used in many existing evidence combinationr@ghes, such as Murphy’s
simple average [28], Deng’s weighted average [29], Hantgisgtial weighted combination
[20]. As a result, all these approaches are not associ&tivadition, the replicator equation
ruling the evolution of mass value of each proposition dogismmeet associativity as well.

Secondly, the ECR does not preserve the neutrality for aowecevidencen,(©) = 1
where © is the FOD, namelyn ®gcr m, # m. In the framework of ECR, as same as
other propositionA C ©, the FODO is regarded as a strategy which can be adopted by

individuals in an assumed population. The vacuous evideng®) = 1 does not means
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totally unknown, but means that every individual adoptatstgy © in the population. So,
the ECR does not meet the neutrality.

Thirdly, some counter-intuitive results are still hard merpret in the framework of ECR
at present. For example, in [37] the author presented an @rathat combinesn;(A) =
my(B,C) = 0.5 andmy(C) = ma(A, B) = 0.5. Dempster's rule givesn(A) = m(B) =
m(C) = 1/3. As reported by Voorbraak [37], this result is counter-itive, since intuitively
B seems to share twice a probability mass of 0.5, while bb#mdC' only have to share once
0.5 with B and are once assigned 0.5 individually. So intuitivédyjs less confirmed than
A and C, but they are equally confirmed by Dempster’s rule. By usimg proposed ECR,
we obtainm(AB) = 0.5, m(BC') = 0.5 which corresponds to an unstable equilibrium state.
The results seem to also be counter-intuitive, but the ECihable to interpret currently.

In summary, although there are some drawbacks in the prddeS® at present, this work
is still meaningful and innovative because of the explgitof biological and evolutionary
standpoint for evidence combination. In many cases, itfescé¥e and useful. In the future

research, we will continue to improve and perfect the fraorévof ECR.
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