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Neutrosophic Science 
 

Since the world is full of indeterminacy, the Neutrosophics found 
their place into contemporary research. We now introduce for the first 
time the notions of Neutrosophic Crisp Sets and Neutrosophic Topology 
on Crisp Sets. We develop the 2012 notion of Neutrosophic Topological 
Spaces and give many practical examples. Neutrosophic Science means 
development and applications of Neutrosophic Logic, Set, Measure, 
Integral, Probability etc., and their applications in any field. It is possible 
to define the neutrosophic measure and consequently the neutrosophic 
integral and neutrosophic probability in many ways, because there are 
various types of indeterminacies, depending on the problem we need to 
solve. 

Indeterminacy is different from randomness. Indeterminacy can be 
caused by physical space, materials and type of construction, by items 
involved in the space, or by other factors. In 1965 [51], Zadeh generalized 
the concept of crisp set by introducing the concept of fuzzy set, 
corresponding to the situation in which there is no precisely defined 
set;there are increasing applications in various fields, including 
probability, artificial intelligence, control systems, biology and 
economics. Thus, developments in abstract mathematics using the idea 
of fuzzy sets possess sound footing. In accordance, fuzzy topological 
spaces were introduced by Chang [12] and Lowen [33]. After the 
development of fuzzy sets, much attention has been paid to the 
generalization of basic concepts of classical topology to fuzzy sets and 
accordingly developing a theory of fuzzy topology [1-58]. In 1983, the 
intuitionistic fuzzy set was introduced by K. Atanassov [55, 56, 57] as a 
generalization of the fuzzy set, beyond the degree of membership and the 
degree of non-membership of each element. In 1999 and 2002, 
Smarandache [71, 72, 73, 74] defined the notion of Neutrosophic Sets, 
which is a generalization of Zadeh’s fuzzy set and Atanassov's 
intuitionistic fuzzy set.  Some neutrosophic concepts have been 
investigated by Salama et al. [61-70]. Forwarding the study of 
neutrosophic sets, this book consists of seven chapters, targeting to: 

 generalize the previous studies in [1-59], and[91-94] so to 
define the neutrosopic crisp set and neutrosophic set 
concepts;  

 discuss their main properties; 
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 introduce and study some concepts of neutrosophic crisp 
and neutrosophic topological spaces and deduce their 
properties; 

 deduce many types of functions and give the relationships 
between different neutrosophic topological spaces, which 
helps to build new properties of neutrosophic topological 
spaces; 

 stress once more the importance of Neutrosophic Ideal as a 
nontrivial extension of neutrosophic set and neutrosophic 
logic [71, 72, 73, 74]; 

 propose applications on computer sciences by using 
neutrosophic sets. 

In the first chapter, further results on neutrosophic sets are given, 
introducing and studying the concepts of a new types of crisp sets, called 
the neutrosophic crisp set. After giving the fundamental definitions and 
operations, we obtain several properties, and discuss the relationship 
between neutrosophic crisp sets and other sets. Also, we advance and 
examine the Neutrosophic Crisp Points, and analyze the relation between 
two new neutrosophic crisp notions. Finally, we introduce and study the 
notion of Neutrosophic Crisp Relations. In 1.1, we consider some possible 
definitions for types of neutrosophic crisp sets. In 1.2, we define the 
nature of the neutrosophic crisp set in X, called neutrosophic crisp point 
in X, corresponding to an element X. In1.3, we introduce and explore the 
relations on neutrosophic crisp sets and its properties. We point out that 
results in this chapter were published in [61-70]. 

In the second chapter, we scrutinize the concept of neutrosophic 
set. After giving the fundamental definitions and operations, we obtain 
several properties, and discuss the relationship between neutrosophic 
sets and other sets. Also, we introduce and converse about the 
Generalized Neutrosophic Sets, and establish relation between two 
neutrosophic notions. Finally, we consider the notion of Neutrosophic 
Relations. In 2.1, we analyze several possible definitions for some types 
of neutrosophic sets. In 2.2, we consider some possible definitions for 
basic concepts of the neutrosophic sets generated by Ng (characteristic 

functions) and its operations. In 2.3, we introduce the concept of α-cut 
levels for neutrosophic sets, and study some types of neutrosophic sets. 
In 2.4, we introduce the distances between neutrosophic sets: the 
Hamming distance, the normalized Hamming distance, the Euclidean 
distance and normalized Euclidean distance. We extend the concepts of 
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distances to the case of Neutrosophic Hesitancy Degree. In2.5, we suggest 
relations on neutrosophic sets and study properties. The results in 
chapter 2 were published in [61-70]. 

In the third chapter, we generalize the Crisp Topological Spaces and 
Intuitionistic Topological Space to the notion of Neutrosophic Crisp 
Topological Space. In 3.1, we study the neutrosophic topological spaces 
and build the basic concepts of the neutrosophic crisp topology. In 3.2, 
we introduce the definitions of Neutrosophic Crisp Continuous Function 
and we obtain some characterizations of Neutrosophic Continuity.  In3.3, 
we introduce the Neutrosophic Crisp Compact Spaces. Finally, some 
characterizations concerning neutrosophic crisp compact spaces are 
presented and one obtains several properties. In 3.4, we establish 
definitions of Neutrosophic Crisp Nearly Open Sets, and we obtain 
several properties and some characterizations. We point out that results 
in chapter 3 were published in [64, 65, 66, 67, 68]. 

The purpose of the fourth chapter is to define the Neutrosophic 
Crisp Ideals, and the Neutrosophic Crisp Filter. In 4.1, we introduce 
neutrosophic crisp ideals and obtain their fundamental properties. In 4.2, 
we define the Neutrosophic Crisp Local Functions. In 4.3, we introduce a 
new notion of neutrosophic crisp sets via Neutrosophic Crisp Ideals and 
investigate some basic operations and results in neutrosophic crisp 
topological spaces. Also, Neutrosophic Crisp L-Openness and 
Neutrosophic Crisp L-Continuity are considered as generalizations for 
crisp and fuzzy concepts. Relationships between the new neutrosophic 
crisp notions and other relevant classes are investigated. Finally, we 
define and study two distinctive types of neutrosophic crisp functions. In 
4.4, we advance the notion of filters on neutrosophic crisp set, 
considered as a generalization of filters studies. Several relations 
between various neutrosophic crisp filters and neutrosophic topologies 
are also investigated here. We point out that results in chapter 4 were 
accepted for publication in [64, 65, 66, 67]. 

In the fifth chapter, we extend the concepts of fuzzy topological 
space [4] and intuitionistic fuzzy topological space [12, 65, 66] to the case 
of neutrosophic sets. We generalize the concept of fuzzy topological 
space, first intuited by Chang [12] to the case of neutrosophic sets. In 5.1, 
we introduce and study the neutrosophic topological spaces. In 5.2, some 
neutrosophic topological notions of neutrosophic region are given and 
we add some further definitions and propositions for a Neutrosophic 
Topological Region. In 5.3, we explore a generalized neutrosophic 
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topological space. In 5.4, we initiate the concepts of Neutrosophic Closed 
Set and Neutrosophic Continuous Function. Results in chapter 5 were 
accepted for publication in [62, 63, 66]. 

In the sixth chapter, we extend the concept of intuitionistic fuzzy 
ideal [58] and filters to the case of neutrosophic set. In 6.1, we introduce 
the notion of Ideals on neutrosophic set, which is considered as a 
generalization of ideals studies. Several relations between diverse 
neutrosophic ideals and neutrosophic topologies are also examined here. 
In 6.2, we introduce and study the Neutrosophic Local Functions. Several 
relations between different neutrosophic topologies are also researched.  
In 6.3, we introduce the notion of Filters on neutrosophic set which is 
considered as a generalization of filters studies. Several relations 
between different neutrosophic filters and neutrosophic topologies are 
also studied here. We point out that results in chapter 6 are published in 
[62, 63, 64, 70]. 

In the seventh chapter, we propound some applications via 
neutrosophic sets. In 7.1, we introduce the concept of Neutrosophic 
Database. In 7.2, we suggest a security scheme based on Public Key 
Infrastructure (PKI) for distributing session keys between nodes. The 
length of those keys is decided using Neutrosophic Logic Manipulation. 
The proposed algorithm of Security Model is an adaptive neutrosophic 
logic-based algorithm (membership function, non-membership and 
indeterminacy) that can adapt itself according to the dynamic conditions 
of mobile hosts. The experimental results show that using of 
neutrosophic-based security one can enhance the security of MANETs. In 
7.3, we introduce and study the Probability of neutrosophic crisp sets. 
After giving the fundamental definitions and operations, we obtain 
several properties, and discuss the relationship between neutrosophic 
crisp sets and other sets. The purpose of the section 7.4 is to present the 
Social Learning Management System that integrates social activites in e-
Learning, and utilize neutrosophic sets in order to analyze social 
networks data conducted through learning activities. Results show that 
recommendations can be enhanced through using the proposed system. 
Section 7.5 talks about the Geographical Information Systems (GIS), 
giving fundamental concepts and properties of a neutrosophic spatial 
region. There is a need to model spatial regions with indeterminate 
boundary and under indeterminacy. We introduce a new theoretical 
framework via neutrosophic topology and we add some further 
definitions and schemes for a neutrosophic topological region. 
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1. Neutrosophic Crisp Set Theory 

 

1.1 Neutrosophic Crisp Set 

Let us consider some possible definitions for various types of 
neutrosophic crisp sets. 

Definition 1.1.1 

Let X  be a non-empty fixed sample space. A neutrosophic crisp set 
(NCS) A  is an object having the form 

321 ,, AAAA  where 321   and , AAA

are subsets of X. 

Definition 1.1.2 

The object having the form 
321 ,, AAAA   is called: 

(a) A neutrosophic crisp set of Type 1 (NCS-Type1) if satisfying

 21 AA ,  31 AA  and  32 AA . 

(b) A neutrosophic crisp set of Type2 (NCS-Type2) if satisfying 

 21 AA ,  31 AA ,  32 AA , .321 XAAA   

(c) A neutrosophic crisp set of Type 3 (NCS-Type3) if satisfying 
 321 AAA  and  .321 XAAA   

In this chapter, we introduce the basic properties of the 

concept of neutrosophic crisp set and investigate some new 

neutrosophic concepts. We obtain several properties, and 

discuss the relationship between neutrosophic crisp sets and 

other sets. Also, we introduce and study the neutrosophic 

crisp points and relation between new neutrosophic crisp 

notions. Conclusively, we explain the notion of neutrosophic 

crisp relations. In 1.1, we investigate some possible definitions 

for some types of neutrosophic crisp sets. In 1.2, we define a 

type of neutrosophic crisp set in X, called neutrosophic crisp 

point in X, corresponding to an element X. In 1.3, we 

introduce relations and study properties of the neutrosophic 

crisp sets. 
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Remark 1.1.1 

A neutrosophic crisp set 321 ,, AAAA   can be identified to an 

ordered triple 321 ,, AAA , subsets in X, and one can define several 

relations and operations between NCSs. 
Since our purpose is to construct the tools for developing 

neutrosophic crisp set, we must introduce types of CNS 𝜑𝑁 , 𝑋𝑁 in X. 
1) 𝜑𝑁 may be defined as the following  four types: 

(a) Type   1:𝜑𝑁 = 〈𝜑, 𝜑, 𝑋〉, 
(b) Type  2:𝜑𝑁 = 〈𝜑, 𝑋, 𝑋〉, 
(c) Type 3:𝜑𝑁 = 〈𝜑, 𝑋, 𝜑〉, 
(d) Type 4:𝜑𝑁 = 〈𝜑, 𝜑, 𝜑〉. 

2) 𝑋𝑁 may be defined as the following four types: 
(a) Type  1:𝑋𝑁 = 〈𝑋, 𝜑, 𝜑〉, 
(b) Type 2:𝑋𝑁 = 〈𝑋, 𝑋, 𝜑〉, 
(c) Type 3:𝑋𝑁 = 〈𝑋, 𝜑, 𝑋〉, 
(d) Type 4: 𝑋𝑁 = 〈𝑋, 𝑋, 𝑋〉. 

Every neutrosophic crisp set A on a non-empty set X is obviously 

NCS having the form 321 ,, AAAA 
. 

Definition 1.1.3 

Let 321 ,, AAAA   be a NCS in X, then the complement of the set 

A (Ac for short) may be defined as three kinds of complements: 
 1
C 321 ,, cccc AAAA  , or 
 2
C

123 ,, AAAAc   or 

 3
C 123 ,, AAAA cc  . 

One can define several relations and operations between NCS as it 
follows: 

Definition 1.1.4 

Let X be a non-empty set, and the NCSS A and B  be in the form 

321 ,, AAAA  ,
321 ,, BBBB  . We consider two possible definitions for 

subsets  A B . So  A B  may be defined as two types: 

Type 1. 
332211   and  , BABABABA  , 

Type 2. 332211   and  , BABABABA  . 
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Proposition1.1.1 

For any neutrosophic crisp set A, we hold the following: 

a) .   , NNN A    

b) .   , NNN XXXA   

Definition 1.1.5 

Let X be a non-empty set, and the NCSs A and B be of the form

321 ,, AAAA  ,
321 ,, BBBB   be NCSs. Then: 

1. A B  may be defined as two types: 

Type 1. 332211 ,, BABABABA  , 

Type 2. 332211 ,, BABABABA  . 

2. A B  may be defined as two types: 
Type 1.

332211 ,, BABABABA  , 

Type 2.
332211 ,, BABABABA  . 

3.  121 ,,]  [ cAAAA  . 

4.   323 ,, AAAA c .
 

Proposition 1.1.2 

For all two neutrosophic crisp sets A and B in X, the following 
assertions are true: 

  ;
c c cA B A B    

  .ccc
BABA   

We can easily generalize the operations of intersection and union in 
Definition 1.1.2 to an arbitrary family of neutrosophic crisp subsets as it 
follows: 

Proposition 1.1.3 

Let  JjA j :  be an arbitrary family of neutrosophic crisp subsets 

in X, then: 
1) jA may be defined as the following two types: 

(a) Type 1.
32

,,1 jjj AAAjA  , 

(b) Type 2.
32

,,1 jjj AAAjA  . 
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2) jA may be defined as the following types: 

(a) Type 1.
32

,,1 jjj AAAjA  , 

(b) Type 1.
32

,,1 jjj AAAjA  . 

Definition 1.1.6 

The product of two neutrosophic crisp sets A and B is a neutrosophic 

crisp set BA given by 332211 ,, BABABABA  . 

Definition 1.1.7 

A  NCS-Type1 
11

, NN X  in X may be defined as it follows: 

1. ϕN1 may be defined as three types: 

(a) Type1: ,,,
1

XN    

(b) Type2: ,,,
1

 XN   

(c) Type3:  ,,N . 

2. XN1 may be defined as one type: 

(a) Type1: ,,
1

XX N  . 

Definition 1.1.8 

A  NCS-Type2, 22
, NN X  in X may be defined it as follows: 

1) 
2N   may be defined as two types: 

(a) Type1: ,,,
2

XN    

(b) Type2:  ,,
2

XN  . 

2) 
2NX  may be defined as one type: 

(a) Type1: ,,
2

XX N  . 

Definition 1.1.9 

A NCS-Type 3, 33 , NN X  in X may be defined as it follows: 

1) 
3N   may be defined as three types: 

(a) Type1: ,,,3 XN   or 

(b) Type2: ,,,3  XN  or 

(c) Type3: .,,3 XXN    
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2) 
3NX  may be defined as three types: 

(a) Type1: ,,,3 XX N   

(b) Type2: ,,,3 XXX N   

(c) Type3: 3 , , .NX X X  

Corollary 1.1.1 

In general, 
(a) Every NCS-Type 1, 2, 3 is NCS. 
(b) Every NCS-Type 1 is not NCS-Type2, 3. 
(c) Every NCS-Type 2 is not NCS-Type1, 3. 
(d) Every NCS-Type 3 is not NCS-Type2, 1, 2. 
(e) Every crisp set is NCS. 

The following Venn diagram represents the relation between NCSs: 
 
 
 
 

 
 
 

 
 
 

 
 

Example 1.1.1 

Let },,,,,{ fedcbaX  , }{},{},,,,{ fedcbaA  , },{},,{},,{ dfcebaD   

be a NCS-Type 2, }{},{},,,{ edcbaB   be a NCT-Type1, but not NCS-

Type2, 3, },,{},,{},,{ afedcbaC   be a NCS-Type 3, but not NCS-Type1, 

2.  

Definition 1.1.10 

Let X be a non-empty set, 321 ,, AAAA  . 

Figure 1. Venn diagram representing the relation between NCSs. 
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1) If A is a NCS-Type1 in X, then the complement of the set A  ( cA ) 
may be defined as one kind of complement Type1: 

123 ,, AAAAc   . 

2) If A is a NCS-Type 2 in X, then the complement of the set A  ( cA ) 

may be defined as one kind of complement 123 ,, AAAAc  . 

3) If A is NCS-Type3 in X, then the complement of the set A  ( cA ) 
may be defined as one kind of complement defined as three kinds 
of complements: 

 1
C  Type1: 321 ,, cccc AAAA   

 2
C  Type2: 

123 ,, AAAAc   

 3
C  Type3: 

123 ,, AAAA cc   

Example 1.1.2 

Let },,,,,{ fedcbaX  , }{},{},,,,{ fedcbaA   be a NCS-Type 2, 

},{},{},,,{ edcbaB   be a NCS-Type1, },{},,{},,{ fedcbaC  be a NCS-

Type 3, then  
1) the complement }{},{},,,,{ fedcbaA  , 

},,,{},{},{ dcbaefAc   NCS-Type 2; 

2) the complement of },{},{},,,{ edcbaB  , 

},,{},{},,{ cbaedB c   NCS-Type1; 

3) the complement of },{},,{},,{ fedcbaC  may be defined as 

three types: 
Type 1: },,,{},,,,{},,,,{ dcbafebafedcC c  . 

Type 2: },{},,,,{},,{ bafebafeC c  , 

Type 3: },{},,{},,{ badcfeC c  . 

Proposition 1.1.4 

Let  JjA j :  be an arbitrary family of neutrosophic crisp subsets 

in X, then: 
1) jA   may be defined as two types: 

(a) Type1: 
321 ,, jjj AAAjA  , 

(b) Type2: 
321 ,, jjj AAAjA  . 
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2) jA   may be defined as two types: 

(a) Type1: 
321 ,, jjj AAAjA  , 

(b) Type2: 
321 ,, jjj AAAjA  . 

Definition 1.1.11 

If 
321 ,, BBBB   is a NCS in Y, then the preimage of B under ,f  

denoted by ),(1 Bf  is a NCS in X defined by .)(),(),()( 3
1

2
1

1
11 BfBfBfBf    

If 321 ,, AAAA   is a NCS in X, then the image of A under ,f denoted 

by ),(Af  is the a NCS in Y defined by .))(),(),()( 321
cAfAfAfAf   

 
Here we introduce the properties of images and preimages, some of 

which we frequently use in the following chapters. 

Corollary 1.1.2 

        Let A,  JiAi :
 be a family of NCS in X, and B,  KjB j : a NCS in Y, and 

YXf : a function. Then: 

(a) ),()( 2121 AfAfAA  ),()( 2

1

1

1

21 BfBfBB    
(b) ))((1 AffA   and if f is injective, then ))((1 AffA  , 

(c) BBff  ))((1  and if f is surjective, then ,))((1 BBff   

(d) ),())( 11

ii BfBf   ),())( 11

ii BfBf  
 

(e) );()( iiii
AfAf  );()( iiii

AfAf  and if f is injective, then  
);()( iiii

AfAf   
(f) ,)(1

NN XYf 

NNf   )(1

. 
(g) ,)( NNf   ,)( NN YXf   if f is subjective. 

Proof 

Obvious. 

1.2 Neutrosophic Crisp Points 

One can easily define the nature of neutrosophic crisp set in X, 
called neutrosophic crisp point in X, corresponding to an element X. 

Now we present some types of inclusion of a neutrosophic crisp point 
to a neutrosophic crisp set. 
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Definition 1.2.1 

Let 
321

,, AAAA   be a neutrosophic crisp set on a set X, then 

      ,,, 321 pppp  321 ppp  X  is called a neutrosophic crisp point. 

An NCP      1 2 3, ,p p p p belongs to a neutrosophic crisp set

321
,, AAAA  , of X, denoted by Ap , if it may be defined by two types: 

(a) Type 1: 
2211 }{,}{ ApAp  and 

33}{ Ap   

(b) Type 2: 
2211 }{,}{ ApAp  and

33}{ Ap  . 

Theorem 1.2.1 

   Let 
321

,, AAAA  and 
1 2 3, ,B B B B be neutrosophic crisp 

subsets of X. Then BA if Ap  and Bp for any neutrosophic crisp 

point p in X.  

Proof 

Let BA  and Ap . Then we have: 

(a) Type 1: 
2211 }{,}{ ApAp  and 

33}{ Ap  , or 

(b) Type 2: 
2211 }{,}{ ApAp  and

33}{ Ap  .  

Thus, Bp . Conversely, take any x in X. Let  
11 Ap   and 

22 Ap   

and 33 Ap  . Then p is a neutrosophic crisp point in X, and Ap . By the 

hypothesis, Bp . Thus
11 Bp  or Type 1: 

2211 }{,}{ BpBp  and 

33}{ Bp  or Type 2: 
2211 }{,}{ BpBp  and

33}{ Bp  . Hence, BA . 

Theorem 1.2.2 

Let
321

,, AAAA   be a neutrosophic crisp subset of X.  

Then  .: AppA  . 

Proof 

Since  : ,p p A  we get the following two types: 

(a) Type 1:    333222111 :,:},:{ AppAppApp  , or 

(b) Type 2:    333222111 :,:},:{ AppAppApp  . hence 
321

,, AAAA  . 

Proposition 1.2.1 

Let  JjA j :
 
be a family of NCSs in X. Then: 
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)( 1a      321 ,, pppp  j
Jj

A

 if

jAp  for each Jj . 

)( 2a
j

Jj
Ap


 if Jj  such that 

jAp  . 

Proposition 1.2.2 

Let  
321

,, AAAA   and 
321

,, BBBB   be two neutrosophic crisp sets 

in X. Then BA if   for each p we have BpAp   and for each p  we 

have BpAp  . If𝐴 = 𝐵  for each p we have BpAp   and for 

each p   we have BpAp  . 

Proposition 1.2.3 

Let  
321

,, AAAA   be a neutrosophic crisp set in X. Then: 

     333222111 :,:,: AppAppAppA  . 

Definition 1.2.2 

Let YXf : be a function and p be a neutrosophic crisp point in 

X. Then the image of p under f, denoted f(p), is defined by: 

   321 ,,)( qqqpf  , where )(),( 2211 pfqpfq  and )( 33 pfq  . 

It is easy to see that 𝑓(𝑝) is indeed a NCP in Y, namely qpf )( , 

where 𝑞 =  𝑓(𝑝), and it has exactly the same meaning of the image of a 
NCP under the function 𝑓. 

Definition 1.2.3 

Let X be a non-empty set and p∈X. Then the neutrosophic crisp 
point 𝑝𝑁 defined by    c

N ppp ,,  is called a neutrosophic crisp point 

(NCP) in X, where NCP is a triple ({only element in X}, empty set, {the 
complement of the same element in X}).  

The neutrosophic crisp points in X can sometimes be inconvenient 
when expressing the neutrosophic crisp set in X in terms of neutrosophic 
crisp points. This situation occurs if

321
,, AAAA  , 

1Ap , where
321 ,, AAA

are three subsets such that  21 AA ,  31 AA ,  321 AA .   

Therefore, we have to define "vanishing" neutrosophic crisp points. 
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Definition 1.2.4 

Let X be a non-empty set and Xp be a fixed element in X. The 

neutrosophic crisp set    c

N ppp
N

,,  is called "vanishing" 

neutrosophic crisp point (VNCP) in X, where VNCP is a triple (empty set, 
{only element in X}, {the complement of the same element in X}). 

Example 1.2.1 

Let  dcbaX ,,, and Xbp  . Then: 

   dcabpN ,,,, ,  

   dcabp
NN ,,,, ,  

   dabP },{, . 

Definition 1.2.5 

Let    c

N ppp ,,  be a NCP in X and 
321

,, AAAA  be a 

neutrosophic crisp set in X.  
(a) 

Np  is said to be contained in A  ( ApN  ) if 1Ap .  

(b)  
NNp  is VNCP in X and 

321
,, AAAA   a neutrosophic crisp set in 

X. Then 
NNp  is said to be contained in ( )

NNA p A if
3Ap . 

Proposition 1.2.4 

Let  JjA j :  
be a family of NCSs in X. Then: 

)( 1a j
Jj

N Ap

 if jN Ap  for each Jj . 

)( 2a j
JjNN Ap


 if

jNN Ap  for each Jj . 

)( 1b j
Jj

N Ap

 if Jj  such that 

jN Ap  . 

)( 2b j
JjNN Ap


 if Jj  such that jNN Ap  . 

Proof 

Straightforward. 

Proposition 1.2.5 

Let
321

,, AAAA   and 
321

,, BBBB 
 
be two neutrosophic crisp sets 

in X. Then: 
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(a) BA  if for each Np  we have BpAp NN   and for each 

NNp  we have BpAp
NNN  . 

(b) BA  if for each Np  we have BpAp NN   and for each 

NNp   we have BpAp
NN NN  . 

Proof 

Obvious. 

Proposition 1.2.6 

Let
321

,, AAAA  be a neutrosophic crisp set in X. Then: 

     AppAppA NNNNNN  :: . 

Proof 

It is sufficient to show the following equalities:  

     ApAppA NNN  ::}1  , 3A , and 

     AppAppA NN

c

N

c  :}{:}{3
, which are fairly 

obvious. 

Definition 1.2.6 

Let YXf : be a function and pN be a neutrosophic crisp point in 

X. Then the image of pN under f  denoted by )( Npf  is defined by 

   c
N qqpf ,,)(   where )( pfq  . Let pNN be a VNCP in X. Then the 

image of pNN under f denoted by ( )NNf p is defined by    c

NN qqpf ,,)(   

where )( pfq  . It is easy to observe that )( Npf  is indeed a NCP in Y, 

namely NN qpf )(  where )( pfq  , and it has exactly the same meaning 

of the image of a NCP under the function f . ( )NNf p is also a VNCP in Y, 

namely  ,)( NNNN qpf  where )( pfq  . 

Proposition 1.2.7 

We state that any NCS A in X can be written in the form: 

NNNNNN
AAAA 

 where 
 AppA NN

N
 :
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N
N
A 

 
 AppA NNNN

NNN
 :

 
It is easy to show that, if 

321
,, AAAA  , then: 

c

N
AAA

11 ,,
 

and 

2 3, , .
NN
A A A  

Proposition 1.2.8 

Let YXf :  be a function and 
321

,, AAAA   be a neutrosophic crisp 

set in X.  Then we have )()()()(
NNNNNN

AfAfAfAf  . 

Proof 

This is obvious from
NNNNNN

AAAA  . 

1.3 Neutrosophic Crisp Set Relations 

Here we give the definition of some relations on neutrosophic crisp 
sets and study their properties.  

Let X, Y and Z be three ordinary non-empty sets. 

Definition 1.3.1 

Let X and Y be two non-empty crisp sets and NCSS A  and B  in the 
form 321 ,, AAAA   in X, 

321 ,, BBBB  on Y. Then: 

(a) The product of two neutrosophic crisp sets A and B 
is a neutrosophic crisp set BA given by 

332211 ,, BABABABA  on YX  . 

(b) We call a neutrosophic crisp relation BAR  on 

the direct product YX  . 
(c) The collection of all neutrosophic crisp relations on 

YX  is denoted as )( YXNCR  . 

Definition 1.3.2 

Let R  be a neutrosophic crisp relation on YX  , then the inverse 

of R  is given by  1R  where BAR  on YX  , then ABR 1 on 

.XY   
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Example 1.3.1 

Let },,,{ dcbaX  , }{},{},,{ dcbaA  and { },{ },{ , } .B a c d b Then 

the product of two neutrosophic crisp sets is given by: 
)},(),,{()},,{()},,(),,{( bdddccabaaBA   and 

)},(),,{()},,{()},,(),,{( dbddccbaaaAB  , and 

)},{()},,{()},,{(1 ddccaaR  , 

BAR 1 on XX  , 

)},(),,{()},,{()},,{(2 dbddccbaR  ABR 2 on XX  , 

1
1


R = )},{()},,{()},,{( ddccaa AB  and 

)},(),,{()},,{()},,{(
1

2 bdddccabR 


AB .  

Example 1.3.2 

Let },,,,,{ fedcbaX  ,  

}{},{},,,,{ fedcbaA  ,  

},{},,{},,{ dfcebaD   be a NCS-Type 2, 

},{},{},,,{ edcbaB   be a NCS-Type1. 

},{},,{},,{ fedcbaC   be a NCS-Type 3. 

Then: 
)},(),,{()},,(),,{()},,(),,(),,(),,(),,(),,(),,(),,(),,{( dfffceeebdadbcacbbbbabbaaaDA 

)},(),,(),,(),,{()},,(),,(),,(),,{()},,(),,(),,(),,{( fdedffefdcccdecebbabbaaaCD 

and we can construct many types of relations on products. 
We now define the operations of neutrosophic crisp relation. 

Definition 1.3.3 

Let R  and S  be two neutrosophic crisp relations between X and Y 
for every YXyx ),(  and NCSS A  and B in the form 321 ,, AAAA   in 

X, 321 ,, BBBB  on Y. Then we can define the following operations: 

1. SR may be defined as two types: 

a) Type1: SR  ,11 SR
BA  ,22 SR

BA  SR BA 33  ; 

b) Type2: SR  ,11 SR
BA  ,22 SR BA  RS AB 33  . 

2. SR  may be defined as two types: 

a)  Type1: SR SRSRSR BABABA 332211 ,,  ; 
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b) Type2: SR SRSRSR BABABA 332211 ,,  . 

3. SR  may be defined as two types: 

a) Type1: SR SRSRSR BABABA 332211 ,,  ; 

b) Type2: SR SRSRSR BABABA 332211 ,,  . 

Theorem 1.3.1 

Let R , S and Q  be three neutrosophic crisp relations between X 

and Y for every YXyx ),( , then: 

i. .11   SRSR  

ii.   .111 
 SRSR  

iii.   .111 
 SRSR  

iv.   .
11 RR 
  

v.      QRSRQSR  . . 

vi.      QRSRQSR  . . 

vii. If ,RS  ,RQ  then RQS  . 

Proof 

Clear. 

Definition 1.3.4 

We have the neutrosophic crisp relation )( XXNCRI  ; the 

neutrosophic crisp relation of identity may be defined in two ways: 
Type1:   },{},{ AAAAI , 

Type2:   ,},{ AAI . 

Now we define two composite relations of neutrosophic crisp sets. 

Definition 1.3.5 

Let R  be a neutrosophic crisp relation in YX  , and S  be a 
neutrosophic crisp relation in ZY  . Then the composition of R  and S , 

SR  , which is a neutrosophic crisp relation in X x Z, as a definition may 
be defined in two ways: 

Type1: 

SR  ),)(( zxSR  })(){({ 2211 SR BABA  ,

},)(){( 2222 SR BABA   })(){( 3333 SR BABA . 

Type2: 



Neutrosophic Crisp Set Theory 

 

41 

SR  ),)(( zxSR  })(){({ 2211 SR BABA  ,

},)(){( 2222 SR BABA   })(){( 3333 SR BABA . 

Example 1.3.3 

Let },,,{ dcbaX  , }{},{},,{ dcbaA  and { },{ },{ , } .B a c d b Then 

the product of two events is given by: 
)},(),,{()},,{()},,(),,{( bdddccabaaBA  , 

)},(),,{()},,{()},,(),,{( dbddccbaaaAB  , 

)},{()},,{()},,{(1 ddccaaR  , BAR 1 on XX 

)},(),,{()},,{()},,{(2 dbddccbaR  ABR 2 on XX   

)},{()},,{()},,{()},{(21 ddccbaaaRR  )},{()},,{(},{ ddcc

}{)},,).(,).(,{()},.).(,).(,{(1 abbaaaabbaaaI A 

}{},{)},.).(,).(,{(2 abbaaaI A  . 

Theorem 1.3.2 

Let R  be a neutrosophic crisp relation in YX  , and S  be a 

neutrosophic crisp relation in ZY  , then 111)(   RSSR  . 

Proof 

Clear. 
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2. Neutrosophic Set Theory 

2.1 Neutrosophic Sets 

We now consider some possible definitions for the basic concepts of 
the neutrosophic set and its operations. 

Definition 2.1.1 

Let X be a non-empty fixed set. A neutrosophic set (NS) A is an 
object having the form  XxxxxA AAA  :)(),(),(  where    xx AA  ,  

and  A
x  represent the degree of membership function (denoted  xA ), 

the degree of indeterminacy (denoted  xA ), and the degree of non-

membership (denoted  A
x ) respectively of each element Xx to the set 

A. 
 

In this chapter, we introduce and study the concept of 

neutrosophic set. After granting the fundamental definitions 

and operations, we obtain several properties, and discuss the 

relationship between neutrosophic sets and other sets. Also, 

we usher in and investigate the generalized neutrosophic set 

and relations between neutrosophic notions. Eventually, we 

examine some neutrosophic relations. In 2.1, we consider 

some possible definitions for types of neutrosophic sets. In 2.2, 

we deem possible definitions for basic concepts of the 

neutrosophic sets, and their operations. In 2.3, we introduce 

the concept of α-cut levels for neutrosophic sets. Added to, 

we introduce and study some types of neutrosophic sets. In 

2.4, we establish the distances between neutrosophic sets: the 

Hamming distance, the normalized Hamming distance, the 

Euclidean distance and the normalized Euclidean distance. 

We extend the concepts of distances to the case of 

neutrosophic hesitancy degree. In 2.5, we determine the 

relations on neutrosophic sets and study their properties. 
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Remark 2.1.1 

A neutrosophic set  XxxxxA AAA  :)(),(),(   can be identified to 

an ordered triple  AAA  ,,  in 0,1  
   in X. 

Remark 2.1.2 

For simplicity, we use the symbol  )(),(),( xxxA AAA   for NS
 XxxxxA AAA  :)(),(),(  . 

Example 2.1.1 

Every IFS A, which is a non-empty set in X, is obviously a NS, having 
the form 

 XxxxxxA AAAA  :)()),()((1),(  . 

Since our main purpose is to construct the tools for developing 
neutrosophic set and neutrosophic topology, we must introduce the NSS 

N0   and N1  in X  as it follows: 

N0  may be defined as four types: 

 1
0 Type 1:   XxN  :1,0,00 ; 

 2
0  Type 2:  XxN  :1,1,00 ; 

 3
0  Type 3:  XxN  :0,1,00 ; 

 4
0  Type 4:  XxN  :0,0,00 . 

1
N

 may be defined as four types: 

 1
1  Type 1:   XxN  :0,0,11 ; 

 2
1  Type 2:   XxN  :1,0,11  ; 

 3
1  Type 3:   XxN  :0,1,11 ; 

 4
1  Type 4:   XxN  :1,1,11 . 

Definition 2.1.2 

Let  XxxxxA AAA  :)(),(),(   be a GNSS in X, then the 

complement of the set A  ( )(AC ) may be defined as three kinds of 

complements: 
(C1)  XxxxxAC AAA  :)(1),(1),(1)(  ; 

(C2)  XxxxxAC AAA  :)(),(),()(  ; 

(C3)  XxxxxAC AAA  :)(),(1),()(  . 

Let us define relations and operations between NSS as it follows: 

Definition 2.1.3 

Let X be a non-empty set, and NSS A, B in the form: 



A. A. Salama & Florentin  Smarandache 

 

44 

  )(),(),( xxxA AAA  ,  )(),(),( xxxB BBB  .  

We consider two definitions for subsets  A B : 

Type 1:      ,
A B A

A B x x x        and    A B
x x  x X  ; 

Type 2:        ,
A B A B

A B x x x x        and    A B
x x  . 

Proposition 2.1.1 

For any neutrosophic set A, we hold the following: 

1. 0 , 0 0
N N N

A  ; 

2. 1 , 1 1
N N N

A   . 

Definition 2.1.4 

Let X be a non-empty set, and  )(),(),( xxxA AAA  , 

 )(),(),( xxxB BBB    be a NSS. Then: 

1. A B  may  be defined as three types: 

 1
I Type1:        , . , . ,

A B A B
A B x x x x x       .

A B
x x   , 

 2
I Type 2:        , , ,

A B A B
A B x x x x x         A B

x x   , 

 3
I Type 3:        , , ,

A B A B
A B x x x x x         A B

x x   . 

2. A B  may be defined as two types : 

 1
U Type1:        , , ,

A B A B
A B x x x x x         A B

x x   , 

 2
U  Type 2:        , , ,

A B A B
A B x x x x x         A B

x x   . 

3.      , , ,1
A A A

A x x x x       ,      ,1 , ,
A A A

A x x x x       . 

We can easily generalize the operations of intersection and union to 
arbitrary family of NSS  as it follows: 

Definition 2.1.5 

Let  :Aj j J  be an arbitrary family of NSS  in X, then: 

1. Aj  may be defined as two types: 

Type 1:      , , ,
Aj Aj Aj

j J j J
Aj x x x x  

 
    ; 

Type 2:      , , ,
Aj Aj Aj

Aj x x x x      . 

2. Aj  may be defined as two types: 

Type1:  )(),(),( xxxA AAAj jj
 ; 

Type2:  )(),(),( xxxA AAAj jj
 . 

Definition 2.1.6 

Let A and B be two neutrosophic sets; then: 
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A B  may be defined as      , , ,
A B A B A B

A B x x x x        . 

Proposition 2.1.2 

For all two neutrosophic sets A, B, the following statements are true: 
(a)      C A B C A C B ; 

(b)      C A B C A C B . 

We now take into consideration some possible definitions for the 
generalized neutrosophic set. 

Definition 2.1.7 

Let X be a non-empty fixed set. A generalized neutrosophic set 
(GNS) A  is an object having the form  )(),(),( AA xxxA A , where 

   xx AA  ,  and  xA  represent the degree of membership function 

(denoted  xA ), the degree of indeterminacy (denoted  xA ), and the 

degree of non-membership (denoted  xA ) of each element 𝑥 ∈ 𝑋 of the 

set A, where the functions satisfy the condition       5.0 xxx AAA  . 

Remark 2.1.3 

A generalized neutrosophic  )(),(),( AA xxxA A  can be identified 

to an ordered triple  AAA  ,,  in   1,0  in X, where the triple functions 

satisfy the condition       5.0 xxx AAA  . 

Example 2.1.2 

Every GIFS A  (non-empty set in X) is a GNS, having the form: 

         , ,1 , :
A A A A

A x x x x x x X        
. 

Example 2.1.3 

Let  edcbaX ,,,,  and  )(),(),( AA xxxA A  given by:  

X  xA   xA  )(xA     xxx AAA   )(  

a 0.6 0.3 05 0.3 

b 0.5 0.3 0.6 0.3 

c 0.4 0.4 0.5 0.4 

d 0.3 0.5 0.3 0.3 

e 0.3 0.6 0.4 0.3 

Then A  is a GNS in X. 
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2.2 The Characteristic Function of a Neutrosophic Set 

Definition 2.2.1 

Let X be a non-empty fixed set. A neutrosophic set (NS) A is an 
object having the form )(),(),( xxxA AAA   where    xx AA  ,  and  A

x  

represent the degree of membership  function (denoted  xA ), the 

degree of indeterminacy (denoted  xA ), and the degree of non-

membership  (denoted  A
x ) respectively of each element Xx  to the 

set A, and also let IXg A  ]1,0[]1,0[: be a function, then  

 321 ,,,)(  xNgNg AA   
is called a genuine neutrosophic set in X,  if: 

 


 


otherwise      0

)(,,)( if  1
)(

32)(1 


xx
Ng

AxAA

A
 where   321 ,,,  x .  

Then the object  
)(),(),(,)( )()()( xxxxAG AGAGAG   

is a neutrosophic set generated by Ng , where: 

( ) ( ) }
1

sup
G A ANg   

 

 })(sup
2)(    AAG Ng  

 })(sup
3)(    AAG Ng . 

Proposition 2.2.1 

1) ).()( BGAGBA Ng   

2) )()( BGAGBA Ng  . 

Definition 2.2.2 

Let A be a neutrosophic set of X. Then the neutrosophic 

complement of A generated by Ng  denoted by NgcA if  cAG )( may be 

defined as it follows:  

)( 1cNg )(),(),( xxx A
c

A
c

A
c  ; 

)( 2cNg )(),(),( xxx AAA  ; 

)( 3cNg )(),(),( xxx AA
c

A  . 

Example 2.2.1 

Let }{xX  , ,6.0,7.0,5.0A 1ANg ,  0ANg ; then: 

 6.0,7.0,5.0)( AG . 
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Since our main purpose is to construct the tools for developing 
neutrosophic set and neutrosophic topology, we must introduce the )0( NG

and )1( NG  as it follows: 

)0( NG  may be defined as four types: 

(a) Type 1: 1,0,0)0( NG ; 

(b) Type 2:  1,1,0)0( NG ; 

(c) Type 3: 0,1,0)0( NG ; 

(d) Type 4: 0,0,0)0( NG . 

)1( NG  may be defined as four types: 

(a) Type 1. 0,0,1)1( NG ; 

(b) Type 2. 1,0,1)1( NG ; 

(c) Type 3. 0,1,1)1( NG ; 

(d) Type 4. 1,1,1)1( NG . 

We will define the following operations of intersection and union 

for neutrosophic sets generated by Ng denoted by Ng and Ng

respectively. 

Definition 2.2.3 

 Let )(),(),( xxxA AAA   and )(),(),( xxxB BBB   be two neutrosophic 

sets in X, and )(),(),()( )()()( xxxAG AGAGAG  , )(),(),()( )()()( xxxBG BGBGBG  . 

Then: 
1. BA Ng   may be defined as three types: 

Type 1:  )( BAG )()(),()(,)( )()()()()()( xxxxx BGAGBGAGBGAG    

Type 2:  )( BAG )()(),()(,)( )()()()()()( xxxxx BGAGBGAGBGAG    

Type 3:  )( BAG )()(),()(,)( )()()()()()( xxxxx BGAGBGAGBGAG   . 

2. BA Ng  may be  defined as two types: 

Type 1 :  )( BAG )()(),()(,)( )()()()()()( xxxxx BGAGBGAGBGAG    

Type 2:  )( BAG )()(),()(,)( )()()()()()( xxxxx BGAGBGAGBGAG    

Definition 2.2.4 

     Let )(),(),( xxxA AAA 
 
be a neutrosophic set, and 
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 )(),(),()( )()()( xxxAG AGAGAG  . Then: 

(a) ANg]    [ )(1),(),( )()()( xxx AGAGAG    

(b)  ANg
)(),(),(1 )()()( xxx AGAGAG   

Proposition 2.2.2 

For all two neutrosophic sets A and B in X generated by Ng , then the 

following are true  

1)   .cNgcNgcNg
BABA   

2)   .cNgcNgcNg
BABA   

We can easily generalize the operations of intersection and union to 
an arbitrary family of neutrosophic subsets generated by Ng  as it follows: 

Proposition 2.2.3 

  Let  JjAj :  be an arbitrary family of neutrosophic subsets in X 

generated by Ng , then: 

a) j
Ng A   may be defined as : 

Type I :  )( jAG )(),(),( )()()( xxx
jjj AGAGAG   , 

Type II:  )( jAG )(),(),( )()()( xxx
jjj AGAGAG   . 

b) j

Ng A   may be defined as two types : 

Type I:  )( jAG )(),(),( )()()( xxx
jjj AGAGAG   or 

Type II :  )( jAG )(),(),( )()()( xxx
jjj AGAGAG   . 

Definition 2.2.5 

Let YXf :  be a mapping. 

(a) The image of a neutrosophic set A generated by Ng  in X under f is 

a neutrosophic set B in Y generated by Ng  , denoted by f(A) whose 

reality function   1,0:  IIYgB
  satisfies the properties: 

 })(
1

sup
)(   ABG Ng

 

 })(sup
2)(    ABG Ng  

 })(sup
3)(    ABG Ng  
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(b) The preimage of a neutrosophic set B in Y generated by Ng  under 

f is a neutrosophic set A in X generated by Ng , denoted by )(1 Bf  , 

whose reality function  1,0:  IIXgA
 satisfies the property 

fBGAG )()(  . 

Proposition 2.2.4 

Let JjAj :  and  JjB j :  
be families of neutrosophic sets in X and 

Y generated by Ng respectively. Then, for a function YXf : , the 

following properties hold:  

1. If k

Ng

j AA 
; Jkj ,  , then )()( k

Ng
j AfAf    .  

2. If k
Ng

j BB  , for Jkj , , then )()( 11
k

Ng
j BfBf   .  

Proposition 2.2.5 

Let A and B be neutrosophic sets in X and Y generated by Ng , 

respectively. Then, for a mapping YXf : , we have: 

(a) )((1 AffA Ng    (if f is injective, the equality holds); 

(b) BBff Ng )(( 1  (if f is surjective, the equality holds); 

(c) )()]([ 11 NgcNgNgc BfBf   . 

2.3 Some Types of Neutrosophic Sets 

We introduce the concept of α-cut levels for neutrosophic sets. Added 
to, we bring in and study some types of neutrosophic sets. 

Definition 2.3.1 

Let  )(),(),( AA xxxA A  be a neutrosophic set of the set X. For

 1,0 , the α-cut of A is the crisp set A  defined by as two types:  

1. Type 1.    1)(or    )(),(either ,: AAA xxxXxxA , 










1,0
 

2. Type 2.    1)(or    )(,)(either ,: AAA xxxXxxA , 










1,0
 

Condition  )(A x ensures 
A ( ) 1 ,x   but not conversely. So, we 

can define cut of A as    1)( ,: A xXxxA . 
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Definition 2.3.2 

For a neutrosophic set A=  )(),(),( AA xxx A  the weak α-cut can be 

defined as two types: 

i) Type 1.    1)(or    )(),(either ,: AAA xxxXxxA , 











1,0  

or 

ii) Type 2.    1)(or    )()(either ,: AAA xxxXxxA , 











1,0  

The strong α-cut can be defined as two types: 

i) Type 1.    1)(or    )(),(either ,: AAA xxxXxxA , 











1,0  

or 
     ii)  Type 2.    1)(or    )(,)(either ,: AAA xxxXxxA , 













1,0  

Definition 2.3.3 

A neutrosophic set with ( ) 1, ( ) 1, ( ) 1A Ax x x      is called normal 

neutrosophic set. In other words, A is called normal neutrosophic set if 
and only if 1)(max)(max)(max 


xxx A

Xx
A

Xx
A

Xx
 . 

Definition 2.3.4 

 When the support set is a real number set and the following applies 
for all  bax ,  over any interval  ba, : 

;)()()( bax AAA   )()()( bax AAA    and ( ) ( ) ( ) ,A A Ax a b     

A is said to be neutrosophic convex. 

Definition 2.3.5 

When XA   and YB  , the neutrosophic subset BA  of YX   is the 
direct product of A and B. 

)()(),( xxyxBA BABA    ; 

)()(),( xxyx BABA   ; 

)()(),( xxyx BABA   . 

Making use of α-cut, the following relational equation is called the 
resolution principle. 
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Theorem 2.3.1 

 )()()()(
1,0

xSupxxx A
x

AAA 
 












; 

 )()()()( xSupxxx AAAA 
  . 

Proof 

Clear. 
 
The resolution principle is expressed in the form: 




AA











1,0

  

In other words, a neutrosophic set can be expressed in terms of the 
concept of α-cuts without resorting to grade functions μ, б and γ. 

This is what brings up the representation theorem. α-cuts are very 
convenient for the calculation of the operations and relational equations 
of neutrosophic sets. 

Subsequently, let us discuss the extension principle; we use the 
functions from X to Y. 

Definition 2.3.6 

Extending the function YXf : , the neutrosophic subset A of X is 

made to correspond to neutrosophic subset     AfAfAfAf  ,,)( )(  of Y in 

the following ways (Type1, 2): 



 




                           otherwise                         0

  (y)       )},(:)({
)(

11

)(




fifyfxx
y A

Af
 



 




                           otherwise                         1

  (y)       )},(:)({
)(

11

)(




fifyfxx
y A

Af
 



 




                           otherwise                         1

  (y)       )},(:)({
)(

11

)(




fifyfxx
y A

Af
 



 




                           otherwise                         0

  (y)       )},(:)({
)(

11

)(




fifyfxx
y A

Af
 



 




                           otherwise                         0

  (y)       )},(:)({
)(

11

)(




fifyfxx
y A

Af
 



 




                           otherwise                      1  

  (y)       )},(:)({
)(

11

)(




fifyfxx
y A

Af
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Let B be a neutrosophic set in Y. Then the preimage of B under f , 

denoted by  1 1 1

1

( ) ( ) ( )
( ) , , ,

f B f B f B
f B     

 
 
is defined by: 

 ,)(
)(1 Bf

Bf
   ,)(

)(1 Bf
Bf

   )(
)(1 Bf

Bf
 

. 

Theorem 2.3.2 

Let iAA,  in X,   jB and B , Ii , Jj  in Y, be neutrosophic subsets, 

and YXf :  be a function. Then: 

a. 
1 2 1 2( ) ( ),A A f A f A    

b. ),()( 2

1

1

1

21 BfBfBB    

c. ))(( 1 AffA  , the equality holds if f  is injective, 

d. BBff  ))(( 1 , the equality holds if f  is surjective, 

e. ),()( 11

jjjj BfBf    

f. ),()( 11

jjjj BfBf    

g. ( ) ( ).i i i if A f A   

Proof 

Clear. 

Definition 2.3.7 

A neutrosophic set A with 1)(,1)(  ,1)(  xxorx AA   is called 

normal neutrosophic set.  
In other words, A is called normal if and only if 




)(max xA
Xx
 


)(max xA

Xx
 1)(max 


xA

Xx
 . 

Definition 2.3.8 

A is said to be convex when the support set is a real number set and 

the following assertion applies for all  bax ,  over any interval  ba, : 
( ) ( ) ( ); ( ) ( ) ( ) ( ) ( ) ( ).A A A A A A A A Ax a b x a b and x a b               

Definition 2.3.9 

When XA  and YB  , the neutrosophic subset BA  of YX   is 
the direct product of A and B. 

)()(),( xxyxBA BABA   
 

)()(),( xxyx BABA    

)()(),( xxyx BABA  
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We must introduce now the concept of α-cut. 

Definition 2.3.10 

For a neutrosophic set  )(),(),( AA xxxA A  

   1)(or    )(),(either ,: AAA xxxXxxA ;










1,0  

 


 1)(or    )(),(either ,: AAA_ xxxXxxA ;










1,0  

are called the weak and strong α-cut respectively. 
Making use of α-cut, the following relational equation is called the 

resolution principle. 

Theorem 2.3.3 

 )()()()(
1,0

xSupxxx A
x

AAA 
 












 

 )()()()( xSupxxx AAAA 
   

Proof 

   )()(

)(,0

)(,0

)(,01,0

xSupxSup A

x

x

xx

A

A

A

A


































































 







































1),(

1),(

1),(

)(

x

x

x

A

A

A

A

xSup
















 

  0, ( )0, (

0, ( )

0, ( )

1 0) ( ) ( ) ( )

A
A

A

A

A A A

xx

x

x

Sup Sup Sup x x x

  

 

 

     






 

 
   
 
 

 
 
 

 
 

   
             

 

We defined the neutrosophic set A as: 

)()()( xxxA AAAA      





 




                           otherwise                         1

  (y)       )},(:)({
)(

11

)(



fifyfxx

y A
Af

 

Let B neutrosophic set in Y. Then the preimage of B  under f , 

denoted by  
 

)()()(

1
111 ,,)(

BfBfBf
Bf    

is defined by      )(,)(,)(
)()()( 111 BfBfBf

BfBfBf
  

. 
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2.4 Distances, Hesitancy Degree and Cardinality for 

Neutrosophic Sets 

We now extend the concepts of distances presented in [7] to the case 
of neutrosophic sets. 

Definition 2.4.1 

Let  XxxxxA AAA  )),(),(),((   and 

 XxxxxB BBB  )),(),(),((   in  nxxxxX ,...,,, 321 , then: 

The Hamming distance is equal to  

   



n

i

iBiAiBiAiBiANs xxxxxxBAd
1

)()()()()()(,  . 

The Euclidean distance is equal to: 

        



n

i

iBiAiBiAiBiANs xxxxxxBAe
1

222
)()()()()()(,  . 

The normalized Hamming distance is equal to:

   



n

i
iBiAiBiAiBiANs xxxxxx

n
BANH

1

)()()()()()(
2

1
,  . 

The normalized Euclidean distance is equal to: 

        



n

i

iBiAiBiAiBiANs xxxxxx
n

BANE
1

222
)()()()()()(

2

1
,  . 

Example 2.4.1 

Let us consider for simplicity the degenerated neutrosophic sets
FGDBA ,,,, in  .aX   A full description of each neutrosophic set, i.e.: 

 XaxxxA AAA  )),(),(),((  , may be exemplified by 

 XaA  ,0,0,1 ,  

 ,,0,1,0 XaB   

 ,,1,0,0 XaD   

 ,,0,5.0,5.0 XaG   

 0.25,0.25,0.0.5 ,E a X  . 

Let us calculate four distances between the above neutrosophic 
sets using the previous formulas. We obtain: 

 
2

1
, DAeNs ,  

2

1
, DBeNs ,  

2

1
, BAeNs ,  

2

1
, GAeNs ,   ,

2

1
, GBeNs  
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  ,
4

1
, GEeNs   ,

4

1
, GDeNs   ,1, BANENs   ,1, DANENs   ,1, DBNENs  

  ,
2

1
, GANE Ns   ,

2

1
, GBNE Ns   ,

2

1
, GBNENs   ,

4

3
, GENENs  

 
3

,
2

NsNE D G  .
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The triangle ABD in the Figure A geometrical neutrosophic 

interpretation has edges equal to 2   and      
2

1
,,,  BAeDBeDAe NsNsNs , 

and       DBNEDANEBANE NsNsNs ,,,     ,1,2,2  GBNEGANE NsNs  GENENs ,

equal to half of the height of triangle with all edges equal to 2 multiplied 

by 
2

1  i.e.  
4

3 . 

Example 2.4.2 

Let us consider the following neutrosophic sets A and B in 
 .,,,, edcbaX  ,  0,0,1,6.0,2.0,2.0,5.0,2.0,3.0,2.0,6.0,2.0,2.0,3.0,5.0A , 

 0,0,0,1.0,0,9.0,3.0,2.0,5.0,5.0,2.0,3.0,2.0,6.0,2.0B . 

Then   ,3, BAdNs   ,43.0, BANH Ns   49.1, BAeNs
 and   .55.0, BANENs

 

Remark 2.4.1 

These distances clearly satisfy the conditions of metric space. 

Figure 2: A geometrical neutrosophic interpretation 
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Remark 2.4.2 

           It is easy to notice that the following assertions are valid: 
a)   nBAdNs  ,0  

b)   1,0  BANH Ns
 

c)   nBAeNs  ,0  

d)   1,0  BANENs
. 

The representation of a neutrosophic set in Figure A three-
dimension representation of a Neutrosophic Set is a point of departure 
for neutrosophic crisp distances, and entropy of neutrosophic sets. 
 
 
 
 
 
 
 
 
 
 
 
 

We extend the concepts of distances to the case of neutrosophic 
hesitancy degree by taking into account the four parameters 
characterization of neutrosophic sets, 

i.e.  XxxxxxA AAAA  ,)(),(),(),(  . 

Definition 2.4.2 

     Let  XxxxxA AAA  )),(),(),((   and  XxxxxB BBB  )),(),(),((  on

 nxxxxX ,...,,, 321  . For a neutrosophic set  XxxxxA AAA  )),(),(),((  in X, 

we call   )()()(3 xxxx AAAA   , the neutrosophic index of x in A. İt is 

a hesitancy degree of x with respect to A; it is obvious that   30  xA . 

Definition 2.4.3 

Let  XxxxxA AAA  )),(),(),((   and  XxxxxB BBB  )),(),(),((   in

 nxxxxX ,...,,, 321  then: 

Figure 3: A three-dimension representation of a Neutrosophic Set. 
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i) The Hamming distance is equal to  

      



n

i

iBiAiBiAiBiAiBiANs xxxxxxxxBAd
1

)()()()()()(, 

Taking into account that: 
  )()()(3 iAiAiAiA xxxx    and 
  )()()(3 iBiBiBiB xxxx    

we have  
  )()()(3)()()(3)( iBiBiAiAiAiAiBiA xxxxxxxx    

)()()()()()( iAiBiAiBiAiB xxxxxx   . 

ii) The Euclidean distance is equal to 

             



n

i

iBiAiBiAiBiAiBiANs xxxxxxxxBAe
1

2222
)()()()()()(, 

we have 
 

     
2

iBiA xx    2))()()(()()( iBiBiBiAiAiA xxxxxx   =

  
22 )()())()(( iBiAiAiB xxxx  2))()(( iBiA xx    

+  )()()()((2 iBiAiAiB xxxx   ))()(( iAiB xx    

iii)  The  normalized Hamming distance is equal to 

      



n

i
BiAiBiAiBiAiBiANs xxxxxxxx

n
BANH

1
1)()()()()()(

2

1
, 

 
iv)  The  normalized Euclidean distance is equal to 

             



n

i
iBiAiBiAiBiAiBiANs xxxxxxxx

n
BANE

1

2222
)()()()()()(

2

1
, 

 
Remark 2.4.3 

           It is easy to notice that for the formulas above the following 
assertions are valid: 

a)   nBAd Ns 2,0   

b)   2,0  BANH Ns  

c)   nBAeNs 2,0   

d)   2,0  BANENs . 

In our further considerations on entropy for neutrosophic sets the 
concept of Cardinality of a neutrosophic set is also useful. 
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Definition 2.4.4 

Let  XxxxxA AAA  )),(),(),((   be a neutrosophic set in X. We 

define two cardinalities of a neutrosophic set: 
 The least (sure) cardinality of A  is equal to the so-called sigma-

count, and it is called here the  
    




11

)(min
i

iA
i

iA xxAcont  . 

 The biggest cardinality of A, which is possible due to  xA is 

equal to     ))())(()(max
11

iA
i

iAiA
i

iA xxxxAcont    


 and 

clearly for cA we have     



11

)(min
i

iA
i

iA
c xxAcont  , 

    ))())(()(max
11

iA
i

iAiA
i

iA
c xxxxAcont    



.  

Then the cardinality of neutrosophic set is defined as the interval 
   )(max),(min)( AContAContACard . 

2.5 Neutrosophic Relations 

Let X, Y and Z be three ordinary finite non-empty sets. 

Definition 2.5.1 

We call a neutrosophic relation R from set X to set Y (or between X 
and Y) a neutrosophic subset of the direct product  

  , : , .X Y x y x X y Y     

That is   , , ( , ), ( , ), ( , ) : , ,R R RR x y x y x y x y x X y Y       where (x, y) is 

characterized by the degree of membership function )(xR , the degree of 

indeterminacy )(xR , and the degree of non-membership )(xR

respectively of each element YyXx  ,  to the set X and Y, where 











1,0: YXR
,











1,0: YXR , and 










1,0: YXR . 

We have the sets  mxxxX ,,, 21  ,  nyyyY ,,, 21  . A neutrosophic 

relation in X×Y can be expressed by a m×n matrix. This kind of matrix 
expressing a neutrosophic relation is called neutrosophic matrix.  

Since the triple  RRR  ,,  has values within the interval]
− +
0 1

[, the 

elements of the neutrosophic matrix also have values within ]
− +
0 1

[  in 

order to express neutrosophic relation R for 
 ),(),,(),,( iiRiiRiiR yxyxyx  . 



Neutrosophic Crisp Set Theory 

 

59 

The neutrosophic relation is defined as neutrosophic subsets of 
X×Y, having the form  },:),(),,(),,(,,{ YyXxyxyxyxyxR iiRiiRiiR   , 

where the triple  RRR  ,,  has values within the interval]
− +
0 1

[ , and the 

elements of the neutrosophic matrix also have values within]
− +
0 1

[. 

Definition 2.5.2 

Given a neutrosophic relation between X and Y, we can define 1R  
between Y and X by means of 

YXyxyxxyyxxyyxxy RRRRRR
  ),(),(),(),,(),(),,(),( 111  , 

which we call inverse neutrosophic relation of R. 

Example 2.5.1 

When a neutrosophic relation R in X= {a, b, c} is 
),,)(1.0,2.0,6.0(),,)(7.0,1.0,4.0(),,)(0,2.0,1(),,)(3.0,4.0,2.0(),,( bbcabaaayxR 

),)(1.0,4.0,2.0(),,)(6.0,2.0,3.0( cccb , 

the neutrosophic matrix for R is as shown:  















6.0,2.0,3.06.0,2.0,3.01.0,2.0,6.0

7.0,1.0,4.00,2.0,13.0,4.0,2.0
R . 

Example 2.5.2 

Let X be a real number set. For Xyx , , the neutrosophic relation 

R can be characterized by the following assertions: 





























 yx

xy

yx

yxR
;

10
1

1

;0

),( 2

 




























 yx

xy

yx

yxR
;

2
1

1

;0

),(  





























 yx

xy

yx

yxR
;

2
1

1

;0

),( 2
 

As a generalization of neutrosophic relations, the n-array 
neutrosophic relation R in 

nXXXX  321
 is given by: 
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 
1 2 3

1 2 1 2 1 2( , , , ), ( , , , ), ( , , , ) ,

n

R n R n R n i

X X X X

R x x x x x x x x x x X  
  

   

and we get the following: 











1,0: 21 nR XXX   











1,0: 21 nR XXX   











1,0: 21 nR XXX   

When n=1, R is an unary neutrosophic relation, and this is clearly a 
neutrosophic set in X. Other ways of expressing neutrosophic relations 
include matrices. 

We can define the operations of neutrosophic relations. 

Definition 2.5.3 

Let R and S be two neutrosophic relations between X and Y for 

every   YXyx , .  

1. SR   may be defined as two types 

(a) Type 1:  SR ),(),(),,(),(),,(),( yxyxyxyxyxyx SRSRSR    

(b) Type 2:  SR ),(),(),,(),(),,(),( yxyxyxyxyxyx SRSRSR    

2. SR  may be defined as two types 

(a) Type 1: 
 }),(),(),,(),(),,(),(,,{  yxyxyxyxyxyxyxSR SRSRSR   

(b) Type 2: 
 }),(),(),,(),(),,(),(,,{  yxyxyxyxyxyxyxSR SRSRSR 

 
3. SR may be defined as types: 

(a) Type 1: 
 }),(),(),,(),(),,(),(,,{  yxyxyxyxyxyxyxSR SRSRSR   

(b) Type 2: 
 }),(),(),,(),(),,(),(,,{  yxyxyxyxyxyxyxSR SRSRSR   

 4.  The complement of neutrosophic relation R ( cR ) may be 
defined as three types:  
(a) Type 1:  { , , ( , ), ( , ), ( , ) };c c c c

R R RR x y x y x y x y       

(b) Type 2:  { , , ( , ), ( , ), ( , ) };c c

R R RR x y x y x y x y       

(c) Type 3:   { , , ( , ), ( , ), ( , ) }.c

R R RR x y x y x y x y       
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Theorem 2.5.1 

      Let R, S and Q be three neutrosophic relations on )( YXN  , then: 

i) 11   SRSR , 

ii)   111 
 SRSR , 

iii)   111 
 SRSR  

iv)   RR 
 11 . 

v)      QRSRQSR  . 

vi)      QRSRQSR  . 

vii) If ,, RQRS  then  .RQS   

viii) If ,, QRSR  then  .QSR   

Proof 

If SR  then ),,(),(),(),( 11 xyyxyxxy
SSRR    for every ),( yx

of .X Y Analogously ),(),(),(1 yxyxxy SRR
 

or ),( yxS  and 

),(),(),(),( 11 xyyxyxxy
SSRR     for every ),( yx  of YX  . 

  
),(),(),(),(),( 111)(

xyyxyxyxxy
SRSRSRSR

 ),(),( 11 xyxy
SR    . 

The proof for: 
),(),( 111)(

yxxy
SRSR  

 and ),(),( 111)(
yxxy

SRSR  
  , 

can be done in a similar way.  
The others are clear from the definition of the operators   and . 

Definition 2.5.4 

(1) The  neutrosophic relation )( XXNRI   is called relation of identity 

and it is represented by the symbol 1 II if  










y         xif  0

y         xif  1
),( yxI XXyx  ),(  










y         xif  0

y         xif  1
),( yxI

XXyx  ),(  or 









y         xif  1

y         xif  0
),( yxI  

XXyx  ),(  










y         xif  1

y         xif  0
),( yxI XXyx  ),(  

(2)  The complementary neutrosophic relation cI is defined by: 










y         xif  1

y         xif  0
),( yxcI

 XXyx  ),(  
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








y    xif  1

y    xif  0
),( yxcI

 XXyx  ),( or 









y      xif  0

y      xif  1
),( yxcI

  or 










y     xif  1

y      xif  0
),( yxcI

 XXyx  ),(  










y         xif  0

y         xif  1
),( yxcI

 XXyx  ),(  

Note that 1)(  cc II . 

We can defined some types of neutrosophic relations. 

Definition 2.5.5 

The neutrosophic relation )( XXNRR  is called: 

(1) Neutrosophic reflexive relation, if for every Xx , 1),( xxR , 

and 0),( xxR or 1),( xxR . Note 0),( xxR .Xx  

(2) Anti-reflexive neutrosophic relation if for every Xx ,  















1),(

  1),(or   ,0),(

0),(

xx

xxxx

xx

R

RR

R






. 

Theorem 2.5.2 

Let R be a reflexive neutrosophic relation in XX  . Then: 

(1) 1

1

R  is a reflexive neutrosophic relation; 

(2) 
21 RR   is a reflexive neutrosophic relation for every 

)(2 XXNRR  ; 

(3) 21 RR  is a reflexive neutrosophic relation

)(2 XXNRR   is a reflexive neutrosophic relation. 

Proof 

Clear. Note that: 

1),(1),(),(),(
22121

 xxxxxxxx RRRRR   

1),(1),(),(),(
22121

 xxxxxxxx RRRRR   or  

),(),(0
22

xxxx RR    

),(),(1),(),(),(
222121

xxxxxxxxxx RRRRRR  

),(),(1),(),(),(
222121

xxxxxxxxxx RRRRRR    

or 0),(0
2

 xxR . 
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Definition 2.5.6 

The neutrosophic relation )( XXNRR  is called symmetric if
1 RR , that is for every YXyx ),(  

 

 

 

 

We consider the neutrosophic relation )( XXNRR  an anti-

symmetrical neutrosophic relation if YXyx  ),( . The definition of 

anti-symmetrical neutrosophic relation is justified by the following 

argument: yx R  if and only if the neutrosophic relation )( XXNRR   

is reflexive and anti-symmetrical. 

Theorem 2.5.3 

Let )( XXNRR  .  R is an anti-symmetrical neutrosophic relation 

if and only if YXyx  ),( , with yx  , then ),(),( xyyx RR   . 

Proof 

As ),(),( yxyx R
c

R   YXyx  ),( , then ),(),( xyyx RR   if and 

only if 














),(),(

 ),( ),(  ),( ),(

),(),(

xyyx

xyyxorxyyx

xyyx

RR

RRRR

RR







. 

Definition 2.5.7 

Let )( XXNRR  . We call a transitive neutrosophic closure of R to 

the minimum neutrosophic relation T on XX  which contains R and it is 
transitive, that is to say: 

(a) TR   
(b) If ),,(, XXNPR  PR  and P is transitive, then .PT   

Theorem 2.5.4 

Let )(,,, XXNRSTPR  and PR  and ,TR  SR  , then ST  . 

Proof 

Clear from Definitions. 















),(),(

 ),( ),(

),(),(

xyxx

xyyx

xyyx

RR

RR

RR






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Definition 2.5.8 

If R is a neutrosophic relation in X×Y and S is a neutrosophic 
relation in Y×Z, the composition of R and S, SR  , is a neutrosophic 
relation in X×Z, as defined below: 
1          ),(),(,),(),(,),(),(, zyyxzyyxzyyxzxSRSR SR

y
SR

y
SR

y
    

2          ),(),(,),(),(,),(),(, zyyxzyyxzyyxzxSRSR SR
y

SR
y

SR
y

    

Definition 2.5.9 

A neutrosophic relation R on the Cartesian set XX   is called  
(a) A neutrosophic tolerance relation on XX  if R is 

reflexive and symmetric; 
(b) A neutrosophic similarity (equivalence) relation on 

XX  if R is reflexive, symmetric and transitive. 

Example 2.5.3 

Consider the neutrosophic tolerance relation T on  4321 ,,, xxxxX   

 x1 x2 x3 x4 

x1 <1,0,0> <0.8,0.2,0.1> <0.6,0.1,0.2> <0.3,0.3,0.4> 

x2 <0.8,0.2,0.1> <1,0,0> <0.4,0.4,0.5> <0.5,0.2,0.3> 

x3 <0.6,0.1,0.2> <0.4,0.4,0.5> <1,0,0> <0.6,0.2,0.3> 

x4 <0.3,0.3,0.4> <0.5,0.2,0.3> <0.6,0.2,0.3> <1,0,0> 

It can be computed that for ,1 the partition of X determined by 

T  given by ,}{},{},{},{ 4321 xxxx for ,9.0  the partition of X determined 

by T  given by ,}{},{},,{ 4321 xxxx ,8.0  the partition of X determined by 

T  given by ,}{},,,{ 4321 xxxx ,7.0  the partition of X determined by T  

given by 1 2 3 4{ , , , } .x x x x  

Moreover, we see that when ]1,9.0(  the partition of X 

determined by T  is given by ,}{},{},{},{ 4321 xxxx when ],9.0,8.0(  the 

partition of X determined by T  given by  ,}{},,,{ 4321 xxxx when

],8.0,7.0(  the partition of X determined by T  given by ,}{},,,{ 4321 xxxx

when ],7.0,0(  the partition of X determined by T  given by

 1 2 3 4{ , , },{ } .x x x x  
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3. Introduction to Neutrosophic Crisp 

Topological Spaces 

3.1 Neutrosophic Crisp Topological Spaces 

We extend the concepts of topological space and intuitionistic 
topological space to the case of neutrosophic crisp sets. 

Definition 3.1.1 

A neutrosophic crisp topology (NCT) in a non-empty set X  is a 
family   of neutrosophic crisp subsets in X  satisfying the axioms: 

(a) NN X, . 

(b)  21 AA  for any 1A and 2A . 

(c)  jA    JjA j : .  

The pair  ,X  is called a neutrosophic crisp topological space 

(NCTS) in X . The elements in are called neutrosophic crisp open sets 
(NCOSs) in X . A neutrosophic crisp set F is closed if and only if its 

complement CF  is an open neutrosophic crisp set. 

In this chapter, we generalize the crisp topological 

spaces and intuitionistic topological space to neutrosophic 

crisp topological space. In 3.1, we introduce and study the 

neutrosophic topological spaces and construct the basic 

concept of neutrosophic crisp topology. In 3.2, we define 

the neutrosophic crisp continuous function and we obtain 

some characterizations of neutrosophic continuity. In 3.3, 

we develop the neutrosophic crisp compact spaces. 

Characterization and properties of neutrosophic crisp 

compact spaces are framed. In 3.4, we approach the 

neutrosophic crisp nearly open sets and their properties. 
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Remark 3.1.1 

The neutrosophic crisp topological spaces are generalizations of 
topological spaces and intuitionistic topological spaces, and they allow 
more general functions to be members of topology. 
 

 

 

 

 

 

 

Example3.1.1 

Let  dcbaX ,,, , and NN X, be any type of universal and empty 

subset, and A, B be two neutrosophic crisp subsets on X  defined by 
(a)      cdbaA ,,, ; 

(b)      cbaB ,, . 

The family  BAX NN ,,,   is a neutrosophic crisp topology in X. 

Example 3.1.2 

Let  ,X be a topological space such that   is not indiscrete. 

Suppose  JiGi :  is a family, and    JiGX i  :,  . Then we can 

construct the following topologies: 
1) Two intuitionistic topologies: 

(a)    JiGX iII  ,,,1  ; 

(b)    JiGX c

iII  ,,,2  . 

2) Four neutrosophic crisp topologies: 

(a)    JiGX c

iNN  ,,,,1  ; 

(b)    JiGX iNN  ,,,,2  ; 

Figure 4: Neutrosophic Crisp Topological Spaces are generalizations of topological 

spaces and intuitionistic topological spaces 
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(c)    JiGGX c

iiNN  ,,,,3  ; 

(d)    JiGX c

iNN  ,,,,4  . 

Definition 3.1.2 

Let    21 ,,,  XX be two neutrosophic crisp topological spaces in X. 

Then 1  is contained in 2  (symbolized 
21  ) if 

2G  for each
1G . 

In this case, we say that 1  is coarser than
2 . 

Proposition 3.1.1 

        Let :
j

j J  be a family of NCTs on X . Then 
j   is a neutrosophic 

crisp topology in X. Furthermore, 
j  is the coarsest NCT in X containing 

all topologies. 

Proof 

Obvious. 
 
Now, we define the neutrosophic crisp closure and neutrosophic crisp 

interior operations in neutrosophic crisp topological spaces. 

Definition 3.1.3 

Let  ,X  be NCTS and 
321 ,, AAAA   be a NCS in X. Then the 

neutrosophic crisp closure of A (NCCl(A), for short) and neutrosophic 
interior crisp (NCInt(A), for short) of A  are defined by: 

(a)  KA and Xin   NCSan   is  :)(  KKANCCl , 

(b)  AG and Xin    NCOSan   is  :)(  GGANCInt , 

where NCS is a neutrosophic crisp set and NCOS is a neutrosophic crisp 
open set. It can be also shown that NCCl(A) is a NCCS (neutrosophic crisp 
closed set) and NCInt(A) is a CNOS in X. 

Remark 3.1.2 

For any neutrosophic set A in X, we have 

(a) AANCCl )( . 

(b) A  is a NCCS in X  if and only if AANCInt )( . 

Proposition 3.1.2 

For any neutrosophic crisp set A  in  ,X , we have: 
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(a) ,))(()( cc ANCIntANCCl   

(b) .))(()( cc ANCClANCInt   

Proof 

Let 
1 2 3, , ,A A A A  and suppose that the family of neutrosophic 

crisp subsets contained in A  are indexed by the family; if NCSs contained 
in A  are indexed by the family  JiAAAA jjj  :,,

321
, then we have 

either 

 
31

,,)(
2 jjj AAAANCInt , or 

 
31

,,)(
2 jjj AAAANCInt , hence 

 
31

,,))((
2 jjj

c AAAANCInt , or  

 
321

,,))(( jjj
c AAAANCInt , hence 

,))(()( cc ANCIntANCCl   analogously. 

Proposition 3.1.3 

Let  ,X  be a NCTS and A, B be two neutrosophic crisp sets in X

holding the following properties: 

1) ,)( AANCInt   

2) ),(ANCClA   

3) ),()( BNCIntANCIntBA   

4) ),()( BNCClANCClBA   

5) ),()()( BNCIntANCIntBANCInt   

6) ),()()( BNCClANCClBANCCl   
7) ,)( NN XXNCInt   

8) 
NNNCCl  )( . 

Proof 

(a), (b) and (e) are obvious, (c) follows from (a), and from 
Definitions. 

3.2 Neutrosophic Crisp Continuity 

  The basic definitions are: 
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Definition 3.2.1 

If 
321 ,, BBBB   is a NCS in Y, then the preimage of  B under ,f  denoted 

),(1 Bf  is a NCS in X defined by .)(),(),()( 3
1

2
1

1
11 BfBfBfBf    If 321 ,, AAAA   is a 

NCS in X, then the image of A under ,f denoted ),(Af  is a NCS in Y defined 

by .))(),(),()( 321

cAfAfAfAf   

We introduce the properties of images and preimages, some of which 
we frequently use in the following sections. 

Corollary 3.2.1 

Let A,  JiAi : , be NCSs in X, and B,  KjB j : , a NCS in Y, and 

YXf : a function.  

We have: 
),()( 2121 AfAfAA   

),()( 2

1

1

1

21 BfBfBB    

))((1 AffA  . 

If f is injective, then: 
1( ( ))A f f A ; 

BBff  ))((1 . 

If f is surjective, then:  

,))((1 BBff 
),())( 11

ii BfBf    

),())( 11

ii BfBf    

);()( ii AfAf  );()( ii AfAf   

If f is injective, then:  
);()( ii AfAf   

,)(1

NN XYf 

NNf   )(1 . ,)( NNf   ,)( NN YXf   

if f is subjective. 

Proof 

Obvious.  

Definition 3.2.2 

Let  1,X  and  2,Y  be two NCTSs, and let YXf : be a function; 

f  is said to be continuous if the preimage of each NCS in 
2  is a NCS in 1 . 
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Definition 3.2.3 

Let  1,X  and  2,Y  be two NCTSs, and let YXf : be a function; 

f  is said to be open if the image of each NCS in 2  is a NCS in 1 . 

Example 3.2.1 

Let  oX ,  and  oY ,  be two NCTSs. 

If YXf :  is continuous in the usual sense, then f  is continuous. 

Here we consider the NCTs in X and Y, respectively, as it follows: 

 o

c GGG  :,,1   and  o

c HHH  :,,2  . 

In this case, we have for each 
2,, cHH  ,

oH  ,  

)(),(),(,, 1111 cc HffHfHHf    1

1 ))((),(,   cHffHf  . 

If YXf :  is open in the usual sense, then in this case, f  is open 

in the sense of Definition 3.2.1. 
Now we obtain some characterizations of neutrosophic continuity. 

Proposition 3.2.1 

Let ),(),(: 21  YXf . Then f is neutrosophic continuous if the 

preimage of each crisp neutrosophic closed set (CNCS) in 2  is a CNCS in

2 . 

Proposition 3.2.2 

The following are equivalent to each other: 

(a) ),(),(: 21  YXf  is neutrosophic continuous. 

(b) ))(()(( 11 BfCNIntBCNIntf    for each CNS B in Y. 

(c) ))(())(( 11 BCNClfBfCNCl    for each CNC B in Y. 

Example 3.2.2 

Let  2,Y  be a NCTS and YXf : be a function. In this case,

 2

1

1 :)(   HHf  is a NCT in X. Indeed, it is the coarsest NCT in X, 

which makes the function YXf :  continuous. One may call it the 

initial neutrosophic crisp topology with respect to .f  

3.3 Neutrosophic Crisp Compact Space (NCCS) 

Let us firstly discuss the basic concepts. 
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Definition 3.3.1 

Let  ,X  be an NCTS. 

If a family  JiGGG iii :,,
321

 of NCOSs in X satisfies the condition 

  ,:,,,
321 Niii XJiGGGX  then it is called a neutrosophic open cover of X.  

(a) A finite subfamily of an open cover  JiGGG iii :,,
321

 in X, 

which is also a neutrosophic open cover of x, is called a 
neutrosophic finite subcover JiGGG iii :,,

321

. 

(b) A family  JiKKK iii :,,
321

 of NCCSs in X satisfies the Finite 

Intersection Property (FIP) if every finite subfamily 

 niKKK iii ,...,2,1:,,
321

  of the family satisfies the condition

  Niii JiKKK  :,,
321

. 

Definition 3.3.2 

A NCTS  ,X  is called neutrosophic crisp compact if each crisp 

neutrosophic open cover of X has a finite subcover. 

Example 3.3.1 

Let X  and let us consider the NCSs (neutrosophic crisp sets) 
given below: 

  ,,,,...4,3,21 A     ,1,,,...4,32 A     ,2,1,,,...6,5,43 A

   1,...3,2,1,,,...3,2,1  nnnnAn  . 

Then    ,...5,4,3, :  nNN AX  is a NCT in X and  ,X   is a 

neutrosophic crisp compact. 

Let  1,0X  and let’s take the NCSs    
nn

n
nnA 111 ,0,,,  , ,...5,4,3n

in X.  In this case    ,...5,4,3, :  nNN AX  is an NCT in X, which is not 

a neutrosophic crisp compact. 

Corollary 3.3.1 

A NCTS  ,X   is a neutrosophic crisp compact if every family 

 JiGGGX iii :,,,
321

 of NCCSs in X satisfying the FIP has a non-empty 

intersection. 
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Corollary 3.3.2 

Let  1,X ,  2,Y  be NCTSs and YXf : be a continuous surjection. 

If  1,X is a neutrosophic crisp compact, then so is  2,Y . 

Definition 3.3.3 

If a family  JiGGG iii :,,
321

 of NCCSs in X satisfies the condition

 JiGGGA iii  :,,
321

 , then it is called a neutrosophic crisp open 

cover of A.  
Let us consider a finite subfamily of a neutrosophic crisp subcover 

of JiGGG iii :,,
321

. 

A neutrosophic crisp set
321 ,, AAAA   in a NCTS  ,X  is called 

neutrosophic crisp compact if every neutrosophic crisp open cover of A 
has a finite neutrosophic crisp subcover. 

Corollary 3.3.3 

Let  1,X ,  2,Y  be NCTSs and YXf : be a continuous surjection. 

If A is a neutrosophic crisp compact in  1,X , then so is )(Af  in  2, .Y   

3.4 Nearly Neutrosophic Crisp Open Sets 

Definition 3.4.1 

A neutrosophic crisp topology (NCT) in a non-empty set X  is a 
family   of neutrosophic crisp subsets in X satisfying the following 
axioms: 

(a)  NN X, ; 

(b)  21 AA  for any 1A and 2A ; 

(c)  jA     JjAj : . 

In this case, the pair  ,X  is called a neutrosophic crisp topological 

space (NCTS) in X. The elements in are called neutrosophic crisp open 
sets (NCOSs) in X.  A neutrosophic crisp set F is closed if and only if its 

complement CF  is an open neutrosophic crisp set. Let  ,X  be  a NCTS 

(identified with its class of neutrosophic crisp open sets), and NCint and 
NCcl denoting neutrosophic interior crisp set and neutrosophic crisp 
closure with respect to neutrosophic crisp topology. 
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Definition 3.4.2 

Let  ,X  be a NCTS and
321 ,, AAAA   be a NCS in X, then A is called: 

(a) Neutrosophic crisp  open set if
))),int((int( ANCNCclNCA   

(b) Neutrosophic crisp   open set if

)).int(( ANCNCclA   

(c) Neutrosophic crisp semi-open set if
)).(int( ANCclNCA   

We denote the class of all neutrosophic crisp  open sets NC , 
all neutrosophic crisp  open sets NC , and the class of all 

neutrosophic crisp semi-open sets sNC . 

Remark 3.4.1 

A class consists of exactly all neutrosophic crisp α-structure (resp. 

NC β-structure). Evidently,   NCNCNC  . 

We notice that every non-empty neutrosophic crisp β-open has NC
 non-empty interior. 

If all neutrosophic crisp sets following IiiB }{  are NC β-open sets, 

then ))int((}{ iIii
Ii

BNCNCclB 

 ))int(( iBNCNCcl , that is a NC β-structure 

is a neutrosophic closed with respect to arbitrary neutrosophic crisp 
unions. 

We now characterize NC in terms NC . 

Theorem 3.4.1 

Let  ,X  be a NCTS. NC  consists of exactly those neutrosophic 

crisp set A for which   BA NC for NCB . 

Proof 

Let NCA , NCB , ,p A B  and U be a neutrosophic 

crisp neighbourhood (NCnbd) of p. 
Clearly, int( ( int( )))U NC NCcl NC A  is a neutrosophic crisp 

open neighbourhood of p. 
So ( int( ( int(A)))) int(B)V U NC NCcl NC NC   is a non-

empty.  Since ( int( )),V NCcl NC A we imply that 

))int()int(( BNCANCU  = NANCV  )int( . 
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It follows that  
))int()int(( BNCANcNCclBA  = ))int(( BANCNCcl  i.e. 

NCBA  . 

Conversely, let NCBA  for all NCB , in particular
NCA .  

Assume that cANCANCclNCAp )))int()(int((  .  

Then ),(BNCclp  where cANCNCcl )))int((( .  

Clearly ,}{ NCBp  and consequently .}}{{ NCBpA   

But }{}}{{ pBpA  .  Hence }{p  is a neutrosophic crisp open. 

As ))int((( ANCNCclp , this implies that )))int((int( ANCNCclNCp , 

contrary to assumption. Because Ap , ))int(( ANCNCclp and
NCA .   

The proof is complete.  

Thus, we have found that NC is completely determined by 
NC i.e. all neutrosophic crisp topologies with the same NC β-structure 

also determine the same NC α-structure, explicitly given.  
We converse all neutrosophic crisp topologies with the same NC α-

structure, so that NC is completely determined by NC . 

Theorem 3.4.2 

Every neutrosophic crisp NC α-structure is a neutrosophic crisp 
topology. 

Proof 
NC contains the neutrosophic crisp empty set and is closed with 

respect to arbitrary unions. A standard result gives the class of those 

neutrosophic crisp sets A for which NCBA  for all NCB

constitutes a neutrosophic crisp topology, hence the theorem. Onwards, 
we also use the term NC α-topology for NC α-structure; two neutrosophic 
crisp topologies deterring the same NC α-structure are called NC α-
equivalent, and the equivalence classes are called NC α-classes.  

We now characterize NC in terms of NC . 
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Proposition 3.4.1 

Let  ,X  be a NCTS. Then NC = NC and hence NCα-

equivalent topologies determine the same NC β-structure. 

Proof 

Let NC cl and NC int denote thee neutrosophic closure and the 

neutrosophic crisp interior with respect to NC .  If NCBp  and
NCBp  , then NBNCANCNCclNC  ))int()))int((int(( , since 

)))int((int( ANCNCclNC is a crisp neutrosophic neighbourhood of point 

p. So certainly, )int(BNC meets ))int(( ANCNCcl and therefore (bing 

neutrosophic open) meets )int(ANC , proving NBNCA  )int( . This 

means ))int(( BNCclNCB  i.e. NCB .  

On the other hand, let NCA , Ap and NCVp  . As 
NCV  and ))int(( ANCNCclp , we have NANCV  )int( and 

there exists a neutrosophic crisp set W such that 
.)int( AANCVW    

In other words, NANCV  )int( and ))int(( ANCNCclp . Thus 

we have verified   NCNC  , and the proof is complete. We get
  NCNC  . 

Corollary 3.4.1 

A neutrosophic crisp topology NC is a NC topology if
 NCNC  . Thus, a NC topology belongs to the NC class if all 

determinants are neutrosophic crisp topologies, and if it is the finest 

topology of finest neutrosophic topology of this class. Evidently  NC  

is a neutrosophic crisp topology if   NCNC  . 

In this case,   NCNC  = NC . 

Corollary 3.4.2 

If NC structure B is a neutrosophic crisp topology, then 

.    

We proceed giving some results of the neutrosophic structure of 
neutrosophic crisp NC topology. 
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Proposition 3.4.2 

The NC open sets with respect to a given neutrosophic crisp 
topology are exactly those sets which may be written as a difference 
between a neutrosophic crisp open set and a neutrosophic crisp nowhere 
dense set. 

If NCA , we have: 

 ))int((int(( ANCNCclNCA CCAANCNCclNC )))int((int((  , 

where )))int((int(( CAANCNCclNC   is clearly neutrosophic crisp 

nowhere dense set; we easily see that ))int(( ANCNCclB  and 

consequently int( ( int( )),A B NC NCcl NC A   so the proof is complete. 

Corollary 3.4.3 

A neutrosophic crisp topology is a NC topology if all 
neutrosophic crisp nowhere dense sets are neutrosophic crisp closed. 

A neutrosophic crisp NC topology may be characterized as 
neutrosophic crisp topology when the difference between neutrosophic 
crisp open and neutrosophic crisp nowhere dense set is again a 
neutrosophic crisp open, and evidently, this is equivalent to the stated 
condition. 

Proposition 3.4.3 

The neutrosophic crisp topologies which are NC equivalent 
determine the same class of neutrosophic crisp nowhere dense sets. 

Definition 3.4.3 

We recall that a neutrosophic crisp topology is a neutrosophic crisp 
extremely disconnected if the neutrosophic crisp closure of every 
neutrosophic crisp open set is a neutrosophic crisp open. 

Proposition 3.4.4 

If NC structure B is a neutrosophic crisp topology, all 
neutrosophic crisp topologies  for which     are neutrosophic 
crisp extremely disconnected.   

In particular: Either all or none of the neutrosophic crisp topologies 
of a NC class are extremely disconnected.   
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Proof  

Let    , and suppose there is a A such that )(ANCcl . 

Let CANCclNCANCclp ))(int(()(   with ))(int(}{ ANCclNCp  ,

 CANCclNCM ))(int( . 

We have  CANCclNCMp ))(int(}{  ),int(( MNCNCcl  

))(int(()(}{ ANCclNCNCclANCclp  ))int(( BNCNCcl  

hence both  and M are in  . The intersection }{pM   is not 

neutrosophic crisp open since CMANCclp  )( , hence not NC  open, 

so     is not a neutrosophic crisp topology. Now suppose  is not a 

topology, and    . There is a   such that   . Assume that
 )int((NCNCcl . Then  )int((  NCNCcl ))int((int( NCNCclNC

i.e.   , contrary to assumption. Thus, we have produced an open set 
whose closure is not open, which completes the proof. 

Corollary 3.4.4 

A neutrosophic crisp topology   is a neutrosophic crisp extremely 

disconnected if and only if  is a neutrosophic crisp topology.  
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4. Neutrosophic Crisp Topological Ideal 

Spaces &Neutrosophic Crisp Filters 

4.1 Neutrosophic Crisp Ideals 

Definition 4.1.1 

Let X be a non-empty set and L a non-empty family of NCSs. We call 
L a neutrosophic crisp ideal (NCL) in X if  

(a)   and A L B A B L    [heredity],  

(b) LL and   BABLA [finite additivity]. 
A neutrosophic crisp ideal L is called a  - neutrosophic crisp ideal 

if  j j
A L


 , which implies that A j

j J
L


  (countable additivity). 

The smallest and the largest neutrosophic crisp ideals in a non-

empty set X are  ,N and NSs in X. Also, f c. L , NC. LNC denote the 

neutrosophic crisp ideals (NCL for short) of neutrosophic subsets having 

The purpose of this chapter is to specify and 

characterize the neutrosophic crisp ideal (in 4.1) and the 

neutrosophic crisp filter (in 4.2). We also define the 

neutrosophic crisp local functions, and introduce the notion 

of neutrosophic crisp sets via neutrosophic crisp ideals, 

distinguishing basic operations and results in neutrosophic 

crisp topological spaces (in 4.3). Neutrosophic crisp L-

openness and neutrosophic crisp L-continuity are 

considered as generalizations for crisp and fuzzy concepts. 

Relationships between the above new neutrosophic crisp 

notions and other relevant classes are investigated. 

Conclusively, we individualize two different types of 

neutrosophic crisp functions. In 4.4, we familiarize the reader 

with Filters on neutrosophic crisp set, considered as a 

generalization of filters studies. Several relations between 

different neutrosophic crisp filters and neutrosophic 

topologies are also studied here. 
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finite and countable support of X, respectively. Moreover, if A is a non-
empty NS in X, then  ABNCSB  :  is an NCL in X. This is called the 

principal NCL of all NCSs, denoted by NCL A . 

Remark 4.1.1 

(a) ;N L   

(b) If ,NX L then L is called a neutrosophic crisp proper ideal. 

(c) If ,NX L then L is called a neutrosophic crisp improper ideal. 

Example 4.1.1 

Let  dcbaX ,,, ,      dcbaA ,,, ,       ,,, cdaB        ,,, cbaC 

      ,,, bcaD        ,,,, cbadE        ,,, dcaF       dcbaG ,,, , then the 

family  GFEDBAL
N

,,,,, ,  of NCSs is an NCL in X. 

Definition 4.1.2 

Let L1 and L2 be two NCL in X. Then L2 is said to be finer than L1 or 

L1 is coarser than L2 if L1 L2. If also L1 L2, then L2 is said to be strictly 
finer than L1 or L1 is strictly coarser than L2. 

Two NCL are comparable, if one is finer than the other. The set of 
all NCL in X is ordered by the relation L1 coarser than L2; this relation is 
induced by the inclusion in NCSs. 

The next Proposition is considered as a useful result in this sequel, 

whose proof is clear:
1 2 3
, , .j j j jL A A A  

Proposition 4.1.1 

Let  JjL j :  be any non-empty family of the neutrosophic crisp 

ideals in a set X. Then 
Jj

jL


 and 
Jj

jL


 are neutrosophic crisp ideal in X, 

where 

321
,, j

Jj
j

Jj
j

Jj
j

Jj
AAAL




 

321
,, j

Jj
j

Jj
j

Jj
j

Jj
AAAL




 

321
,, j

Jj
j

Jj
j

Jj
j

Jj
AAAL




 

1 2 3
, ,j j j j

j J j J j J j J
L A A A

   
     . 
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In fact, L is the smallest upper bound of the set of the Lj in the 
ordered set of all neutrosophic crisp ideals in X. 

Remark 4.1.2 

The neutrosophic crisp ideal of the single neutrosophic set NO  is 

the smallest element of the ordered set of all neutrosophic crisp ideals in 
X. 

Proposition 4.1.2 

A neutrosophic crisp set
321

,, AAAA  in neutrosophic crisp ideal L 

in X is a base of L if every member of L contained in A. 

Proof 

(Necessity) Suppose A is a base of L. Then clearly every member of 
L contained in A. 

(Sufficiency) Suppose the necessary condition holds. Then the set of 
neutrosophic crisp subset in X contained in A coincides with L by the 
Definition 4.3. 

Proposition 4.1.3 

For a neutrosophic crisp ideal L1 with base
321

,, AAAA  , is finer 

than a fuzzy ideal L2 with base 
321

,, BBBB  if every member of B 

contained in A. 

Proof 

Immediate outcome of Definitions. 

Corollary 4.1.1 

Two neutrosophic crisp ideals bases A, B, in X are equivalent if 
every member of A is contained in B and vice versa. 

Theorem 4.1.1 

Let JjAAA jjj  :,,
321

 be a non-empty collection of neutrosophic   

crisp subsets of X. Then there exists a neutrosophic crisp ideal 












j
Jj

AANCSAL :)(  in X for some finite collection  njA j ,...,2,1: . 

Proof 

Clear.  



Neutrosophic Crisp Set Theory 

 

81 

Remark 4.1.3 

The neutrosophic crisp ideal L () defined above is said to be 

generated by , and  is called the sub-base of   L(). 

Corollary 4.1.2 

Let L1 be a neutrosophic crisp ideal in X and A  NCSs, then there 

is a neutrosophic crisp ideal L2 which is finer than L1 such that A  L2 if

2LBA   for each B L1. 

Proof 

Clear. 

Theorem 4.1.2 

If  ,NL  1 2, 3A ,A ,A  is a neutrosophic crisp ideal in X, in the 

same way: 
(a)    c

N AAAL 3,21 ,,,  is a neutrosophic crisp ideal in X. 

(b)  c

N AAAL 1,23 ,,,  is a neutrosophic crisp ideal in X. 

Proof 

Obvious. 

Theorem 4.1.3 

Let 1321
,, LAAAA  , and ,,, 2321

LBBBB  where L1 and L2  are 

neutrosophic crisp ideals in X; then we have the neutrosophic crisp set

332211
,, BABABABA  where  33221111

,, BABABABA  , 

 33221122
,, BABABABA   and  33221133

,, BABABABA  . 

4.2 Neutrosophic Crisp Local Functions 

Definition 4.2.1 

Let p be a neutrosophic crisp point of a neutrosophic crisp 
topological space  ,X . A neutrosophic crisp neighbourhood (NCNBD) is 

a neutrosophic crisp point p if there exists a neutrosophic crisp open set 
(NCOS) B in X such that .p B A   
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Theorem 4.2.1 

 Let  ,X  be a neutrosophic crisp topological space (NCTS) of X. 

Then the neutrosophic crisp set A of X is NCOS if A is a NCNBD of p for 
every neutrosophic crisp set .p A  

Proof 

Let A be NCOS of X. Clearly A is a NCBD of any .p A  Conversely, let 

.p A  Since A is a NCBD of  p, there is a NCOS B in X such that .p B A   

So we have  AppA  :  : ,B p A A    hence  : .A B p A  

Subsequently, each B is NCOS. 

Definition 4.2.2 

Let  ,X  be a neutrosophic crisp topological space (NCTS) and L be 

a neutrosophic crisp ideal (NCL) in X. Let A be any NCS of X. Then the 
neutrosophic crisp local function  ,LNCA  of A is the union of all 

neutrosophic crisp points (NCP)      1 2 3, , ,P p p p  such that if 

 U N ( ) ,p  and: 

 *( , ) : A U   for every U nbd of N(P) , ( , )NA L p X L NCA L    

being called a neutrosophic crisp local function of A with respect to 

 and L,  which we symbolize by ),( LNCA , or simply  L .NCA  

Example 4.2.1 

    One may easily verify that: 
(a) If L= )(),(C N then  },{ ANCclLAN   , for any neutrosophic crisp set

NCSsA  in X. 

(b) If  L all NCSs on X  then NC ( , ) NA L    , for any NCSsA  

in X. 

Theorem 4.2.2 

Let  ,X  be a NCTS and 21, LL  two topological neutrosophic crisp 

ideals in X. Then for any neutrosophic crisp sets A, B of X, the following 
statements are verified: 

(a) ( , ) ( , )A B NCA L NCB L     . 

(b) ),(),( 1221  LNCALNCALL   . 

(c) )()( ANCclANCclNCA   . 
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(d)  NCANCA ** . 

(e)   
 NCBNCABANC . 

(f) ).()()()( LNCBLNCALBANC    

(g)   .

 NCAANCL   

(h) ),( LNCA  is a neutrosophic crisp closed set. 

Proof 

Since BA  , let    321 ,, pppp   1
* LNCA  then LUA   for every

 pNU  . By hypothesis, we get LUB  , then    321 ,, pppp   1
* LNB .  

Clearly, 21 LL   implies ),(),( 12  LNCALNCA    as there may be other 

IFSs which belong to 2L  so that for GIFP    321 ,, pppp   1
* LNCA  but P 

may not be contained in  2LNCA . 

Since   LN   for any NCL in X, therefore by (b) and Example 4.2.1, 

     )(ANCclONCALNCA N    for any NCS A in X.  

Suppose        *

1 1 2 3 1, , ( )P p p p NCcl A L  . So for every  1PNCU  , 

,)( NUANC   there exists        *

2 1 2 3 1, ,P q q q NCA L U    such that for 

every VNCNBD of   .,22 LUAPNP   

Since  2pNVU   then   LVUA   which leads to LUA  , for 

every )( 1PNU   therefore  )( *
1 LANCP   and so     NCANANCcl , while the 

other inclusion follows directly, hence )(   NCANCclNCA , but the inequality

)(   NCANclNCA . 

The inclusion    BANCNCBNCA  follows directly from (a). To 

show the other implication, let   BANCp  then for every ),(pNCU 

  ,., eiLUBA      .LUBUA   We have two cases: LUA   and 

LUB   or the converse, this means that exist  PNUU 21,  such that

1 1 2, ,A U L B U L A U L      , and LUB  2 . Then   LUUA  21  and 

 1 2 .B U U L    This gives      1 2 1 2, ( )A B U U L U U N C P       which 

contradicts the hypothesis. Hence the equality holds in various cases. 

By (c), we have   )(NCANCclNCA
  NCANCANCcl )( . 

Let  ,X  be a NCTS and L be NCL in X. Let us define the 

neutrosophic crisp closure operator )()(   ANCAANCcl  for any NCS A of 
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X. Clearly, let )(ANCcl   be a neutrosophic crisp operator. Let )(LNC    be 

NCT generated by NCcl  i.e.    : ( ) .c cNC L A NCcl A A     

Now      NL NCcl A A NCA A NCcl A        for every neutrosophic 

crisp set A. So,  ( ) .NN     Again    NCSs on XL all    ,AANCcl   

because NNCA *  for every neutrosophic crisp set A. So  *NC L  is the 

neutrosophic crisp discrete topology in X. We can conclude that 

   *( ) ,NNC NC L     i.e.  * NCNC   for any neutrosophic ideal 1L  in X. 

In particular, we have two topological neutrosophic ideals 1L  and 2L  in X,

   2
*

1
*

21 LNCLNCLL   . 

Theorem 4.2.3 

Let 𝜏1, 𝜏2 be two neutrosophic crisp topologies in X. Then for any 
topological neutrosophic crisp ideal L in X, 𝜏1 ≤ 𝜏2 , which implies

),(),( 12  LNALNA    for every ,A L  then 𝑁𝐶𝜏1
∗ ⊆ 𝑁𝐶𝜏2

∗. 

Proof 

Clear. 
A basis  ,NC L   for )(LNC   can be described as: 

   ,LNC  LBABA  ,:  . 

Then we have the following theorem: 

Theorem 4.2.4 

  ,LNC  LBABA  ,:   forms a basis for the generated NT of 

the NCT  ,X  with topological neutrosophic crisp ideal  L in X. 

Proof 

Straightforward. 
 

The relationship between NC  and NC )(L establishes throughout 

the following result, to which have an immediate proof. 
 



Neutrosophic Crisp Set Theory 

 

85 

Theorem 4.2.5 

Let 21,  be two neutrosophic crisp topologies in X. Then for any 

topological neutrosophic ideal L in X, 21   which implies that 

21

.NC NC    

Theorem 4.2.6 

Let   ,  be a NCTS and 21  , LL  be two neutrosophic crisp ideals in X. 

Then for any neutrosophic crisp set A in X, we have: 
     1 2 1 1 2 2, , ( ) , ( )NCA L L NCA L NC L NCA L NC L          

    )(()()()( 122121 LLNCLLNCLLNC
   . 

Proof 

Let  1 2 , ;p L L    this means that there exists  PNU p   such that 

 1 2 ,pA U L L    i.e. there exists 11 L  and 22 L  such that 

 21  UA  because of the heredity of L1, and assuming NO 21  . Thus, 

we have   1 2A U    and   2 1,pA U    therefore   221 LAU   and

  112 LAU   . Hence   2 1,p NCA L NC L   or   1 2,P NCA L NC L   

because p  must belong to either 1  or 2 , but not to both. This gives

     1 2 1 1 2 2, , ( ) , ( ) .NCA L L NCA L NC L NCA L NC L         To show the 

second inclusion, let us assume   1 2, .P NCA L NC L   This implies that there 

exist  PNU   and 22 L  such that  2 1.pU A L   By the heredity of 2L , 

if we assume that A2  and define   AU  21  , then we have

  2121 LLUA   .  

Thus,      .)(,)(,, 221121 LNCLNCALNCLNCALLNCA     and 

similarly, we can get    1 2 2 1, , ( )NCA L L NCA L L     .  This gives the other 

inclusion, which complete the proof. 

Corollary 4.2.1 

Let   ,  be a NCTS with topological neutrosophic crisp ideal L in 

X. Then: 
)())(()(NC and ),(),( LLNCNCLLNCALNCA     

   1 2 1 2( ) ( ) ( )NC L L NC L NC L       . 
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Proof 

It follows by applying the previous statement.  

4.3 Neutrosophic Crisp L-Open Sets and Neutrosophic 

Crisp L-Continuity 

Definition 4.3.1 

Let (X,τ) be a NCTS with neutrosophic crisp ideal L in X ; A is called 
a neutrosophic crisp L-open set if there exists ζ τ such that A   ζ   

NCA*. We denote the family of all neutrosophic crisp L-open sets by 
NCLO(X). 

Theorem 4.3.1 

Let (X, τ) be a NCTS with a neutrosophic crisp ideal L, then 
ANCLO(X) if A NCint(NCA*). 

Proof 

Let us assume that ANCLO(X). Then, by Definition 3.1, there exists 
ζ τ such that A   ζ  NCA*. But NCint (NCA*)  NCA*, and ζ = NCint 

(NCA*), hence A  NCint (NCA*). Conversely, A  NCint (NCA*)  NCA*. 

Then there exists ζ =NCint (NCA*)  τ, hence ANCLO(X). 

Remark 4.3.1 

For a NCTS (X,τ) with a neutrosophic crisp ideal L and A a 

neutrosophic crisp set in X, the following holds: If A NCLO(X), then  
NCint (𝐴) ⊆NCA*. 

Theorem 4.3.2 

Let (X,τ) be a NCTS with a neutrosophic crisp ideal L in X and A, B 
be neutrosophic crisp sets such that ANCLO(X), B τ; then A B   
NCLO(X). 

Proof 

From the assumption A B  NCint(NCA*)∩B=NCint(NCA*∩B), we 

have A∩B   NCintNC(A∩B)*,  and this completes the proof. 



Neutrosophic Crisp Set Theory 

 

87 

Corollary 4. 3.1 

If {Aj} Jj is a neutrosophic crisp L-open set in NCTS (X,τ) with a 

neutrosophic crisp ideal  L, then {Aj} Jj   is a neutrosophic crisp L-open 

set. 

Corollary 4.3.2 

For a NCTS (X,τ) with neutrosophic crisp ideal L, and neutrosophic 

crisp set A in X and ANCLO(X),  then NCA* = NC(NCintNC(NCA*)) and 
NCcl*(A))=NCint (NCA*). 

Proof 

It’s clear. 

Definition 4.3.2 

A NCTS (X,τ) with a neutrosophic crisp ideal L in X and the 
neutrosophic crisp set A are given.  Then A is said to be: 

(i) A neutrosophic crisp τ* -closed (or NC*-closed) if NCA*≤A; 
(ii) A neutrosophic crisp L–dense–in–itself (or NC*–dense –in–itself) 

if A⊆NCA*; 
(iii) A neutrosophic crisp *-perfect if A is NC* -closed and NC* -

dense –in–itself. 

Theorem 4.3.3 

Let NCTS (X,τ) with a neutrosophic crisp ideal L be given, and let A 
be a neutrosophic crisp set in X; then: 

(i) NC *-closed if NCcl*(A)=A. 
(ii) NC * -dense–in–itself if NCcl*(A)=NCA*.  
(iii) NC * -perfect if NCcl*(A) =NCA*=A. 

Proof 

It follows directly from the neutrosophic crisp closure operator 
NCcl* for a neutrosophic crisp topology τ*(L) (NCτ*).  

Remark 4.3.2 

One can deduce that: 
(a) Every NC*-dense–in–itself is a neutrosophic crisp dense set.  
(b) Every neutrosophic crisp closed (resp. neutrosophic crisp 

open) set is N*-closed (resp. NCτ*-open). 
(c) Every neutrosophic crisp L-open set is NC*-dense–in–itself. 
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Corollary 4.3.3 

We have a NCTS (X,τ) with a neutrosophic crisp ideal  L in X, and A

τ, then: 
(a) If A is NC* -closed then A*  NCint (A) NC cl (A); 

(b) If A is NC* -dense–in-itself then Nint(A) NCA*; 

(c) If A is NC* -perfect then NCint(A)=NCcl(A)=NCA*. 

Proof 

Obvious. 
 
We give the relationship between neutrosophic crisp L-open set and 

some known neutrosophic crisp openness. 

Theorem 4.3.4 

There are given a NCTS (X,τ) with a neutrosophic crisp ideal L, and 
a neutrosophic crisp set A in X; then  the following assertions holds: 

(a) If A is both a neutrosophic crisp L-open and a NC*-perfect, then A 
is a neutrosophic crisp open. 

(b) If A is both a neutrosophic crisp open and a NC*-dense–in–itself, 
then A is a neutrosophic crisp L-open. 

Proof 

Following from the Definitions. 

Corollary 4.3.4 

For a neutrosophic crisp subset A of a NCTS (X,τ) with a 
neutrosophic crisp ideal  L in X, we have: 

(a) If A  is a NC*-closed and a NL*-open, then  NCint(A)=NCint(NCA*); 
(b) If A is a NC*-perfect and a NL-open, then A=NCint (NCA*). 

Remark 4.3.3 

One can deduce that the intersection of two neutrosophic crisp L-
open sets is a neutrosophic crisp L-open. 

Corollary 4.3.5 

Let (X,τ) be a NCTS with neutrosophic crisp ideal L and a 
neutrosophic crisp set A in X.  If L= {Nx}, then NCA*(L) = N and hence A 

is a neutrosophic crisp L-open if A = N . 
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Proof 

It’s obvious. 

Definition 4.3.3 

There are given a NCTS (X,τ) with a neutrosophic crisp ideal L, and 
a neutrosophic crisp set A; then the neutrosophic crisp ideal interior of A 
is defined as the largest neutrosophic crisp L-open set contained in A; we 
denoted by NCL-NCint(A). 

Theorem 4.3.5 

If (X,τ) is a NCTS with a neutrosophic crisp ideal L and a 
neutrosophic crisp set A, then: 

(a) ANint (NCA*) is a neutrosophic crisp L-open set. 
(b) NL-Nint (A)=0Nif  Nint (NCA*)= 0N. 

Proof 

(a) Since NCint NCA* = NCA*NCint(NCA*), then NCint NCA* 
=NCA*NCint (NCA*)   NC(ANCA*)*. Thus ANCA*   

(AANCint NC(NCA*))*   NCint NC(ANCint NC(NCA*)*.  

Hence ANCint NCA*NCLO(X). 
(b) Let NCL-NCint(A) = N , then AA*= N , it implies NCcl (A 

NCint(NCA*)= N  and so ANintA*= N . Conversely, we assume 

that NCint NCA*= N , then ANCint(NCA*)= N .  Hence NCL-

NCint (A)= N .  

Theorem 4.3.6 

If (X,τ) is a NCTS with a neutrosophic crisp ideal L and A is a 
neutrosophic crisp set in X, then  NCL-NCint(A)=ANCint(NCA*). 

Proof 

The first implication is ANCA*  NCL-NCint (A). (1)  

For the reverse inclusion, if ζNCLO(X) and ζ A, then NCζ* NCA* 

and hence NC int(NCζ*)  NCint(NCA*). This implies ζ=ζ NCint(NCζ*)

ANCA*.   
Thus NCL-NCint (A) ANCint(NCA*). (2)  

From (1) and (2) we have the result. 



A. A. Salama & Florentin  Smarandache 

 

90 

Corollary 4.3.6 

For a NCTS (X,τ) with a neutrosophic crisp ideal L and a 
neutrosophic crisp set A in X, the following holds: 

(a) If A is NC*-closed then NL-Nint (A) A. 

(b) If A is NC*-dense–in-itself then NL-Nint (A) A*. 

(c) If A is NC*-perfect set then NCL-NCint (A) NCA*. 

Definition 4.3.4 

Let (X,τ) be a NCTS with a neutrosophic crisp ideal L and ζ be a 
neutrosophic crisp set in X; ζ is called a neutrosophic crisp L-closed set if 
its complement is a neutrosophic crisp L-open set. We denote the family 
of the neutrosophic crisp L-closed sets by NLCC(X). 

Theorem 4.3.7 

Let (X,τ) be a NCTS with a neutrosophic crisp ideal L and ζ be a 
neutrosophic crisp set in X. ζ is a neutrosophic crisp L-closed, then 
NC(NCintζ)*≤ ζ. 

Proof 

It’s clear. 

Theorem 4.3.8 

Let (X,τ) be a NCTS with a neutrosophic crisp ideal  L in X and ζ be 

a neutrosophic crisp set in X, such that NC(NCintζ)*c=NCintζc*, then ζ 
NLC(X)  if  NC(NCintζ)* ζ. 

Proof 

(Necessity) It follows immediately from the above Theorem. 
(Sufficiency) Let NC)NCintζ)*  ζ, then ζc   NC(NCintζ)*c = NCint 

(NCζ)c* from the hypothesis.  Hence ζcNCLO(X).  Thus ζNLCC(X). 

Corollary 4.3.7 

For a NCTS (X,τ) with a neutrosophic crisp ideal  L in X, the 
following holds: 

(a) The union of a neutrosophic crisp L-closed set and a neutrosophic 
crisp closed set is a neutrosophic crisp L-closed set. 

(b) The union of a neutrosophic crisp L-closed and a neutrosophic 
crisp L-closed is a neutrosophic crisp perfect. 
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By employing the notion of NL open sets, we establish a class of 
neutrosophic crisp L-continuous function. Many characterizations and 
properties of this concept are investigated. 

Definition 4.3.5 

A function f : (X,τ)   (Y, σ) with a neutrosophic crisp ideal  L in X 

is said to be neutrosophic crisp L-continuous if for every ζσ, f -1(ζ) 

NCLO(X). 

Theorem 4.3.9 

For a function f : (X,τ)   (Y,σ) with  a neutrosophic crisp ideal  L 

in X, the following are equivalent: 
i. f is a neutrosophic crisp L-continuous. 

ii. For a neutrosophic crisp point p in X and each ζσ containing f

(p), there exists  ANCLO(X) containing  p  such that f (A) σ. 

iii. For each neutrosophic crisp point p in X and ζσ containing f (p),  

( f -1(ζ))* is a neutrosophic crisp nbd of  p. 

iv. The inverse image of each neutrosophic crisp closed set in Y is a 
neutrosophic crisp L-closed.  

Proof 

(i) → (ii) Since ζσ containing f (p), then by (i) f -1(ζ)  NCLO(X), 

by putting  A = f -1(ζ)  containing p , we have f (A) σ. 

(ii) → (iii). Let ζσ containing f (p). Then by (ii) there exists A 

NCLO(X) containing p such that f(A)≤ σ, so pA  NCint(NCA*)≤ NCint 

( f -1(ζ))*  ( f -1(ζ))*. Hence f -1(ζ))* is a neutrosophic crisp nbd of p. 

(iii) → (i) Let ζσ, since ( f -1(ζ)) is a neutrosophic crisp nbd of any 

point 1f (ζ), every point xϵ ( f -1(ζ))* is a neutrosophic crisp interior 

point of f -1(ζ)*. Then f -1(ζ)   NCint NC ( f -1(ζ))* and hence f is a 

neutrosophic crisp L-continuous. 
(i)→ (iv) Let ζy be a neutrosophic crisp closed set.  Then ζc is a 

neutrosophic crisp open set, by f -1(ζc) =( f -1(ζc) NCLO(X). Thus f-1(ζ) 

is a neutrosophic crisp L-closed set. 
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The following theorem establish the relationship between the 
neutrosophic crisp L-continuous and the neutrosophic crisp continuous by 
using the previous neutrosophic crisp notions. 

Theorem 4.3.10 

Let f: (X,τ) → (Y,σ) be a  function with a neutrosophic crisp ideal  L 
in X;  then we have f a neutrosophic crisp L-continuous of each 
neutrosophic crisp *-perfect set in X, then f is a neutrosophic crisp 
continuous. 

Proof 

Obvious. 

Corollary 4.3.8 

Given a function f: (X,τ) → (Y,τ) and each member of X being a 
neutrosophic crisp NC*-dense–in–itself, then we have that every 
neutrosophic crisp continuous function is a neutrosophic crisp NCL-
continuous. 

Proof 

It’s clear. 
  
We now define and study two different types of neutrosophic crisp 

functions. 

Definition 4.3.6 

A function     ,,: YXf   with neutrosophic crisp ideal L in Y is  

called neutrosophic crisp L-open  (resp. neutrosophic crisp  NCL- closed) ,  
if for each A (resp. A is neutrosophic crisp closed in X), 

)()( YNCLOAf  (resp. )(Af is NCL-closed). 

Theorem 4.3.11 

Let     ,,: YXf   be a function with neutrosophic crisp ideal L in Y. 

Then the following are equivalent: 

(a) f  is a neutrosophic crisp L-open. 

(b) For each p in X and each neutrosophic crisp  NCNBD A  of  p,   

there exists a neutrosophic crisp L-open set YIB  
containing  f p  such that  AfB  . 
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Proof 

Obvious. 

Theorem 4.3.12 

Let a neutrosophic crisp function     ,,: YXf   with a 

neutrosophic crisp ideal L in Y be a neutrosophic crisp L-open (resp. 
neutrosophic crisp L-closed), if  A in Y and B in X  is a neutrosophic crisp 
closed (resp. neutrosophic crisp open)  set C in Y containing A such that 

 1 .f C B   

Proof 

Assume that   BfA XY  11 , since   BCf 1    and CA   then C is 

a neutrosophic crisp L-closed and      BAffCf XX   11 11 . 

Theorem 4.3.13 

If a function     ,,: YXf   with a neutrosophic crisp ideal L in 

Y is a neutrosophic crisp L-open, then        AfNCANCNCf 11 int  such 

that  Af 1  is a neutrosophic crisp *-dense-in-itself and A in Y. 

Proof 

Since A in Y,    AfNC 1  is a neutrosophic crisp closed in X 

containing  Af 1  , f is a neutrosophic crisp L-open, then, by using 

Theorem 4.4, there is a neutrosophic crisp L-closed set  BA  such that, 

            intint 1111 NCNCfBNCfBfAf . 

Corollary 4.3.9 

For any bijective function     ,,: YXf   with neutrosophic crisp 

ideal L in Y, the following are equivalent: 

(a)     ,,:1 XYf   is a neutrosophic crisp L-continuous. 

(b) f is a neutrosophic crisp L-open. 
(c) f is a neutrosophic crisp L-closed. 

Proof 

It follows directly from Definitions. 
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4.4 Neutrosophic Crisp Filters 

Definition 4.4.1 

Let   be a neutrosophic crisp subsets  in a set X. Then  is called 
a neutrosophic crisp filter in X, if it satisfies  the following conditions: 

(a)  1N Every neutrosophic crisp set in X containing a member 

of   belongs to ; 
(b)  2N Every finite intersection of members of   belongs to

 ; 
(c)  3N N  not in . 

In this case, the pair  ,X  is called neutrosophic crisp filtered by

 . It follows from  2N  and  3N that every finite intersection of 

members of   is not .N  Furthermore, there is no neutrosophic crisp set. 

We obtain the following results. 

Proposition 4.4.1 

The condition  2N  is equivalent to the following two conditions 

 aN2 . The intersection of two members of  belongs to .  

 bN2 NX  belongs to . 

Proposition 4.4.2 

       Let   be a non-empty neutrosophic crisp subsets  in X satisfying  1N . 

Then,  

(1) if  

(2) if  all neutrosophic crisp subsets of  X. 

From above Propositions, we can characterize the concept of 
neutrosophic crisp filter. 

Theorem 4.4.1 

Let  be a neutrosophic crisp subsets  in a set X. Then  is a 
neutrosophic crisp filter in X, if and only if it is satisfies the following 
conditions: 

(i) Every neutrosophic crisp set in X containing a member of 
 belongs to . 

(ii) If , then . 

(iii) . 

NX N 

 N 

 

 

BA,  BA

N
X  



Neutrosophic Crisp Set Theory 

 

95 

Proof 

It ̓s clear. 

Theorem 4.4.2 

Let , then the set is a neutrosophic crisp filter in X. 

Moreover if A is a non-empty neutrosophic crisp set in X, then 

 is a neutrosophic crisp filter in X. 

Proof 

Let . Since and .   

Suppose , then . Thus ,  or 

 and   for all 𝑥 ∈ 𝑋.  

So  and  hence  

Definition 4.4.2 

Let  and  be two neutrosophic crisp filters in a set X. Then  

is said to be finer than  or coarser than  if . 

If also , then is said to be strictly finer than or is 

strictly coarser than . 

Two neutrosophic crisp filters are said to be comparable, if one is 
finer than the other. The set of all neutrosophic crisp filters in X is 
ordered by the relation  coarser than ; this relation is induced by 

the inclusion relation in . 

Proposition 4.4.3 

Let  be any non-empty family of neutrosophic crisp filters 

in X. Then  is a neutrosophic crisp filter in X. In fact Ψ is the 

greatest lower bound of the neutrosophic crisp set in the ordered 

set of all neutrosophic crisp filters in X. 

Remark 4.4.1 

The neutrosophic crisp filter by the single neutrosophic set  is 

the smallest element of the ordered set of all neutrosophic crisp filters in 
X.  

X  NX

 BAB X  :

 BABN X  : NX , N
X

N  

VU , VAUA  , 111 VUA  222 VUA 

222 VUA  333 VUA 

VUA  .NVU 

1 2 2

1 1 2 21  

21   2 1 1

2

1 2

X

Jjj )(

jJj  

Jjj )(

NX
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Theorem 4.4.3 

Let be a neutrosophic crisp set in X. Then there exists a 
nutrosophic filter  in X containing A if for any finite subset 

 of , . In fact  is the coarsest neutrosophic 

crisp filter containing . 

Proof 

Suppose there exists a nutrosophic filter in X containing

. Let B be the set of all the finite intersections of members of . Then 
by , . By , . Thus for each member of B, 

hence the necessary condition holds. 
Suppose the necessary condition holds. Let 

 where B is the family of all the 

finite intersections of members  of A. Then we can easily check that   

satisfies the conditions in Definition 3.4. The neutrosophic crisp filter
 defined above is said to be generated by A, and A is called a sub - 

base of . 

Corollary 4.4.1 

Let  be a neutrosophic crisp filter in a set X and A neutrosophic 

set. Then there is a neutrosophic crisp filter which is finer than and 

such that if and A neutrosophic set. Then there is a neutrosophic 

crisp filter which is finer than Ψ and such that if for  

each . 

Corollary 4.4.2 

A set  of a neutrosophic crisp filter in a non-empty set X has at 

least the upper bound in the set of all neutrosophic crisp filters in X, for 
all finite sequence of elements of and all 

. 

Corollary 4.4.3 

The ordered set of all neutrosophic crisp filters in a non-empty set 
X is inductive. 

If  is a sub-base of a neutrosophic filter in X, then  is not in 
general the set of neutrosophic sets in X containing an element of ; for



)(

 nSSS ,...,, 21  Nii S  1 )(



)( )(

A A

 2N )(B  3N )(NO B

)(

 B ofmember  a  contains  :)( AAA X 

)(A

)(AN

)(AN



/ 

/A
/ /A NUA 

U

N

njJjj  0,)( N ),1( njA jj 

Njj A  1

  


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 to have this property it is necessary and sufficient that every finite 
intersection of members of  contains an element of .  

Henceforth, we have the following result: 

Theorem 4.4.4 

Let  be a set of neutrosophic crisp sets in a set X. Then the set of 

neutrosophic crisp sets in X containing an element of  is a neutrosophic 

crisp filter in X if meets the following two conditions: 

The intersection of two members of  contains a member of .  

and . 

Definition 4.4.3 

Let and be two neutrosophic crisp sets in X satisfying 

conditions and , and the base of the neutrosophic crisp filter it 

generates. Two neutrosophic bases are said to be equivalent if they 
generate the same neutrosophic crisp filter. 

Remark 4.4.2 

Let  be a sub-base of a neutrosophic filter . Then the set of a 

finite intersections of members of  is a base of a neutrosophic filter . 

Proposition 4.4.4 

A subset of a neutrosophic crisp filter  in X is a base of Ψ if 

every member of  Ψ contains a member of . 

Proof 

Suppose is a base of . Then clearly, every member of 

contains an element of . 

 Suppose the necessary condition holds. Then the set of 
neutrosophic sets in X containing a member of coincides with  by 

reason of . 

Proposition 4.4.5 

In a set X, a neutrosophic crisp filter with base is finer than a 

neutrosophic crisp filter Ψ with base if every member of contains a 

member of .  



 







)( 1  

)( 2 N   N

 

)( 1 )( 2

  

 

 



)(   



)(

 

Jjj )(

/ /

 

/
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Proof 

This is an immediate consequence of Definitions 2.4 and 4.4. 

Proposition 4.4.6 

Two neutrosophic crisp filters bases and  in a set X are 

equivalent if every member of contains a member of and every 

member of and every member of contains a member of . 

Definition 4.4.4 

A neutrosophic crisp ultra-filter in a set X is a neutrosophic crisp 
filter  such that there is no neutrosophic crisp filter in X which is strictly 
finer than  (in other words, a maximal element in the ordered set of all 
neutrosophic crisp filters in X). 

Since the ordered set of all the neutrosophic crisp filters in X are 
inductive, Zorn's lemma shows that: 

Theorem 4.4.5 

If  is any neutrosophic crisp  ultra-filter in a set X, then there is a 
neutrosophic crisp ultra-filter than . 

Proposition 4.4.7 

Let  be a neutrosophic crisp ultra-filter in a set X. If and are 
two neutrosophic subsets such that , then or . 

Proof 

Suppose not. Then there exist neutrosophic sets A and B in X such 
that and  Let .  

It is straightforward to check that  is a neutrosophic crisp filter 
in X, and  is strictly finer than , since . This contradict the 
hypothesis that is a neutrosophic crisp ultra-filter. 

Corollary 4.4.4 

Let  be a neutrosophic crisp ultra-filter in a set X and let  

be a finite sequence of neutrosophic sets in X. If , then at least 

one of the belongs to . 

 /

 /

/ / 









 A B

 BA A B

  BA , .BA    MAM X :



  B



 njj 1)(

 


j
j 1

j 
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Definition 4.4.5 

Let  be a neutrosophic crisp set in a set X. If is any neutrosophic 

crisp set in X, then the neutrosophic crisp set is called trace of an 
A and denoted by . For all neutrosophic crisp sets and V in X, we 

have  

Definition 4.4.6 

Let  be a neutrosophic crisp set in a set X. Then the set of 

traces of members of  is called the trace of  on . 

Proposition 4.4.8 

Let  be a neutrosophic crisp filter in a set X and . Then the 
trace of  of an A is a neutrosophic crisp filter if each member of  

intersect to A. 

Proof 

From the results, we see that  satisfies . If 

then . Thus satisfies . Hence is a neutrosophic 

crisp filter if it satisfies , i.e. if each member of  intersect to A. 

Definition 4.4.7 

Let  be a neutrosophic crisp filter in a set X and . If we have 
the trace of  on A, then  is said to be induced by on A. 

Proposition 4.4.9 

Let  be a neutrosophic crisp filter in a set X induced by a 

neutrosophic filter  where . Then the trace  on A of a base 

of  is a base of . 

 U

UA U

AU U

  .AAA VUVU 

 A

X   

 X

A  

A  2N ,APAM 

  APMP  A  1N A

 3N 

 X

A  A 



A
X A

  A
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5. Introduction to Neutrosophic 

Topological Spaces 

5.1 Neutrosophic Topological Spaces 

Here we extend the concepts of fuzzy topological space [4], and 
intuitionistic fuzzy topological space [5, 7] to the case of neutrosophic sets. 

Definition 5.1.1 

A neutrosophic topology (NT) in a non-empty set X is a family  of 

neutrosophic subsets in X satisfying the following axioms: 

,   

 for any , 

 

In this case the pair  is called a neutrosophic topological 

space (NTS) and any neutrosophic set in is known as neutrosophic open 

set (NOS) in X. The elements of  are called open neutrosophic sets. A 

neutrosophic set F is closed if and only if it C (F) is neutrosophic open.  



 1
NT ,1

N N
O 

 2
NT

1 2
G G  1 2

,G G 

 3
NT  :

i i
G G i J    

 ,X 





The purpose of this chapter is to extend the concepts of 

fuzzy topological space [4], and intuitionistic fuzzy topological 

space [5, 6] to the case of neutrosophic sets. Here we 

generalize the concept of fuzzy topological space, first 

introduced by Chang to the case of neutrosophic sets. In 5.1, 

we introduce and study the neutrosophic topological spaces. 

In 5.2, some neutrosophic topological notions of neutrosophic 

region are given and we add some further definitions and 

propositions for a neutrosophic topological region. In 5.3, we 

introduce and study the generalized neutrosophic topological 

space. In 5.4, we initiate and analyze the concepts of 

neutrosophic closed set and neutrosophic continuous 

function. 
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Example 5.1.1 

Any fuzzy topological space  in the sense of Chang is 

obviously a  in the form  wherever we identify a fuzzy 

set in X whose membership function is  with its counterpart. 

Remark 5.1.1 

The neutrosophic topological spaces are very natural 
generalizations of fuzzy topological spaces allowing more general 
functions to be members of fuzzy topology. 

Example 5.1.2 

Let  and 

 

 

 

 

Then the family  of NSs in X is a neutrosophic 

topology in X. 

Example 5.1.3 

Let  be a fuzzy topological space, such that is not 

indiscrete; suppose now that ; then we can 

construct two  in X as it follows: 
. 

. 

Proposition 5.1.1 

Let  be a NTS in X; then we can also construct several  in 

X in the following way: 
 

 

Proof 

a)  and  are easy. 
 3
NT  Let . 

 0
,X 

NTS  0
:

A
A   

A


 xX 

 ,0.5,0.5,0.4 :A x x X 

 ,0.4,0.6,0.8 :B x x X 

 ,0.5,0.6,0.4 :D x x X 

 ,0.4,0.5,0.8 :C x x X 

 ,1 , , , ,
n n

O A B C D 

 0,X 0

   JjV jNN  : 1,00

NTSS

    :0),(,, 1,00 JjxVx jNN  

   JjVxVx jjNN  :1),(,0, ,1,0 0 

 ,X  NTSS

 ,:] [ 1,   GGo

 .:2,   GGo

 1
NT  2

NT

  1,0,:] [   jj GJjG
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 3
NT  Since

, 

we have 
 

b) This is similar to (a). 

Definition 5.1.2 

Let  be two neutrosophic topological spaces on X. Then 

 is said be contained in  (in symbols ) if  for each . In 

this case, we also say that   is coarser than . 

Proposition 5.1.2 

Let  be a family of NTSS in X. Then ∩ 𝑇𝑗  is a neutrosophic 

topology in X. Furthermore,  is the coarsest  in X containing all . 

Proof 

Obvious. 

Definition 5.1.3 

The complement of A (C(A) for short) of NOS  is called a 
neutrosophic closed set (NCS) in X. 

Now, we define neutrosophic closure and interior operations in 
neutrosophic topological spaces: 

Definition 5.1.4 

Let  be  and  be a NS in X. 

Then the neutrosophic closer and neutrosophic interior of A are 
defined by: 

 

. 

It can be also shown that  is  and  is a  in X: 

is in  if and only if   

is in  if and only if . 

Proposition 5.1.3 

For any neutrosophic set  in  we have: 

       
jjjjjjjjj GGGGGGGGGj xorxorxG ,,,   ,,,   ,,, 

      1,0 )1(,,,   )1(,, , ] [  
jjjjjj GGGGGGj xorxG

   21 ,,,  XX

1 2 21  
2G 1G

1 2

 Jjj : 

j NT j

A

 ,X  NTS  )(),(),( AA xxxA A

 KA and Xin  NCSan   is  :)(  KKANCl

 AG and Xin  NOSan   is  :)(  GGANInt

)(ANCl NCS )(ANInt NOS

A X )(ANCl

A NCS X AANInt )(

A  ,x 
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(a)  

(b)  

Proof 

Let  and suppose that the family of neutrosophic 

subsets contained in A is indexed by the family if NSS contained in A are 
indexed by the family . Then we see that: 

 and hence 

.   

Since C(A) and  and  for each , we obtain

.  

Proposition 5.1.4 

Let  be a and A, B be two neutrosophic sets in X. Then the 

following properties hold: 
(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

(g)  

(h) 𝑁𝐶𝑙(𝑂𝑁) = 𝑂𝑁. 

Proof 

(a), (b) and (e) are obvious; (c) follows from (a) and Definitions.   
 
Now we shall define the image and preimage of NSS. Let X and Y be 

two non-empty sets and  be a function. 

Definition 5.1.5 

a) If  is a NS in Y, then the preimage of B under f, 

denoted by , is the NS in X defined by 

 

),(()(( ANIntCACNCl 

)).(())(( ANClCACNInt 

 )(),(),( AA xxxA A

  :,, JiA
ii GiGG  

 
ii GiGGANInt  ,,)(

 
ii GiGGANIntC  ,, ))((

AiG   AiG   Ji

  ,, ))(( 
ii GiGGACNCl 

 ,x  NTS

,)( AANInt 

),(ANClA 

),()( BNIntANIntBA 

),()( BNClANClBA 

),()())(( BNIntANIntANIntNInt 

),()()( BNClANClBANCl 

,1)1( NNNInt 

:f x y

      , , , :
y y y

B B B
B x y X   

 1f B

   
 

 
 

 
  1 1 1 1, , , :

x x x

B B B
f B x f f f x X      
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b) If  is a NS in X, then the image of  A under f, 

denoted by , is the NS in Y, defined by 

, where 

 

 

.

 

5.2 Some Neutrosophic Topological Notions of 

Neutrosophic Region 

Now, we add some further definitions and propositions for a 
neutrosophic topological region. 

Corollary 5.2.1 

Let  and  be two neutrosophic 

sets in a neutrosophic topological space (𝑋, 𝜏), holding the following: 
(a) 𝑁int(𝐴) ∩ 𝑁int(𝐵) = 𝑁int(𝐴 ∩ 𝐵), 
(b) 𝑁cl(𝐴) ∩ 𝑁cl(𝐵) = 𝑁int(𝐴 ∪ 𝐵), 
(c) 𝑁int(𝐴) ⊆ 𝐴 ⊆ 𝑁cl(𝐴), 

(d) (𝑁int(𝐴))
𝑐

∩ 𝑁cl(𝐴𝑐), (𝑁cl(𝐴))
𝑐

= 𝑁int(𝐴𝑐). 

Definition 5.2.1 

We define a neutrosophic boundary (NB) of a neutrosophic set
  by: . 

The following theorem shows the intersection method no longer 
guarantees a unique solution. 

Corollary 5.2.2 

 if is crisp (i.e.  or ). 

      , , , :
x x x

A A A
A x x X   

 f A

   
 

 
 

  
 

, , , 1 1 :
yy y

A A A
f A y f f f y Y  

 
    
 

 
 

 
 

 

1

1

sup
y

A y

y

A y

if f

f x f

o other wise

 







 
 
 

  
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Proof 

Obvious. 

Definition 5.2.2 

Let  be a neutrosophic set in a neutrosophic 

topological space .  Suppose that the family of neutrosophic open 

sets contained in A is indexed by the family  and the 

family of neutrosophic open subsets containing A is indexed by the family
. 

Then two neutrosophic interior sets - closure and boundaries -, are 
defined as it follows: 

a)  may be defined as two types  

i) Type 1.  

ii) Type 2.  

b)  may be defined as two types  

iii) Type 1. =  

iv)  Type 2. =  

c) may be defined as two types 

i) Type 1. =  

ii) Type 2. =  

d) may be defined as two types 

i) Type 1. =  

ii) Type 2 = . 

e) A neutrosophic boundaries may be defined as  

i)  

ii)  

Proposition 5.2.1 

a) , 

b)  

c) and  

 )(),(),( AA xxxA A

 ,X

Iixxx
iG  :)(),(),(

iGiG 

Jjxxx
jK  :)(),(),(

j
KjK 

]  [)int(AN

]  [)int(AN       )(1 min ,)(max ,)(max
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Proof 

We must only prove (c), as the others are obvious.  
or =

 
Based on knowing that then 

or 

=  

In a similar way one can prove the others. 

Proposition 5.2.2 

a)  

b)  

Proof 

Obvious. 

Definition 5.2.3 

Let   be a neutrosophic set in a neutrosophic 

topological space . We define neutrosophic exterior of A as it follows:

. 

Definition 5.2.4 

Let   be a neutrosophic open set and

  be a neutrosophic set in a neutrosophic topological 

space  then: 

a) A is called neutrosophic regular open if  

b)  If then B is called neutrosophic regular closed 

if  

Now, we obtain a formal model for simple spatial neutrosophic 
region based on neutrosophic connectedness. 

Definition 5.2.5 

Let  be a neutrosophic set in a neutrosophic 

topological space . Then A is called a simple neutrosophic region in 

connected NTS, such that: 

)int( ]   [ AN       )(max1  ,)(max ,)(max
iGiG xxx
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i)  and are neutrosophic 

regular closed. 

ii) and are neutrosophic 

regular open. 

iii) and are neutrosophically 

connected. 

Having  ,

are and for two neutrosophic regions, we are able 

to find relationships between two neutrosophic regions. 

5.3 Generalized Neutrosophic Topological Spaces 

Definition 5.3.1 

A generalized neutrosophic topology (GNT) in a non-empty set X is 
a family τ of generalized neutrosophic subsets in X satisfying the 
following axioms: 

(GNT1) 0N, 1N∈ τ, 
(GNT2) G1∩G2∈ τ, for any G1, G2∈ τ, 
(GNT3)∪Gi∈ τ ∀{G𝑖: i ∈ J} ⊆ τ. 

In this case, the pair  is called a generalized neutrosophic 

topological space (GNTS) and any neutrosophic set in τ is known as 
neutrosophic open set (NOS) in X. The elements of τ are called open 
generalized neutrosophic sets. A generalized neutrosophic set F is closed 
if and only if C (F) is a generalized neutrosophic open.  

Remark 5.3.1 

The generalized neutrosophic topological spaces are very natural 
generalizations of intuitionistic fuzzy topological spaces, allowing more 
general functions to be members of intuitionistic fuzzy topology. 

Example 5.3.1 

Let X = {𝑥} and 

 

 

 

 

),(ANcl ,)( ]  [ANcl   )(ANcl

),int(AN ,)int( ]  [AN   )int(AN

),(A ,)( ]  [A    )(A

),(ANcl ,)( ]  [ANcl   )(ANcl ),int(AN ,)int( ]  [AN
  )int(AN

),(A ,)( ]  [A    )(A

),( X

 ,0.5,0.5,0.4 :A x x X 

 ,0.4,0.6,0.8 :B x x X 

 ,0.5,0.6,0.4 :D x x X 

 ,0.4,0.5,0.8 :C x x X 
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Then the family  of GNSs in X is a generalized 

neutrosophic topology in X. 

Example 5.3.2 

Let  be a fuzzy topological space in changes [4] sense such that 

 is not indiscrete; suppose now that  then we 

can construct two GNTSS in X as it follows: 
 

Proposition 5.3.1 

Let  be a GNT in X, then we can also construct several GNTSS in X 

in the following way: 
 

 

Proof 

 and  are easy. 

(GNT3) Let . 

Since , 

we have  

This is similar to (a). 

Definition 5.3.2 

Let  be two generalized neutrosophic topological 

spaces in X. Then τ1 is said to be contained in  (in symbols ) if  

for each G∈τ. In this case, we also say that τ1 is coarser than . 

Proposition 5.3.2 

Let  be a family of NTSS in X. Then ∩τj is a generalized 

neutrosophic topology in X. Furthermore, ∩τj is the coarsest NT in X 
containing all τj. 

Proof 

Obvious. 

 ,1 , , , ,
n n

O A B C D 

 ,X

0    JjV jNN  :1,00

   JjxVx jNN  :0),(,,1,00     JjVxVx jjNN  :1),(,0,,1,00 

 ,X

 ,:] [1,   GGo

 ,:2,   GGo
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jjjjjjjjj GGGGGGGGGj xorxorxG ,,,  ,,,  ,,,
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jjjjjj GGGGGGj xorxG

   21 ,,,  XX

2 21   2G

2

 Jjj :



Neutrosophic Crisp Set Theory 

 

109 

Definition 5.3.3 

The complement of A (C(A)) of NOS A is called a generalized 
neutrosophic closed set (GNCS) in X. 

 
Now, we define the generalized neutrosophic closure and interior 

operations in generalized neutrosophic topological spaces. 
 

Definition 5.3.4 

Let  be GNTS and  be a GNS in X. 

Then the generalized neutrosophic closer and generalized 
neutrosophic interior of A are defined by: 

 

. 

It can be also shown that NCl(A) is NCS and NInt(A) is a GNOS in X. 
A is in X if and only if GNCl(A). 
A is GNC  in X if and only if GNInt(A)=A. 

Proposition 5.3.3 

For any generalized neutrosophic set A in  we have 

(a)  

(b)  

Proof 

Let  and suppose that the family of 

generalized neutrosophic subsets contained in  are indexed by the 
family if GNSS contained in A are indexed by the family

.  

Then, we see that and hence

. Since  and  and for 

each , we obtain i.e. . Hence 

it immediately follows. 

This is analogous to (a). 

Proposition 5.3.4 

Let  be a GNTS and  be two neutrosophic sets in X. Then 

the following properties hold: 

 ,X  )(),(),( AA xxxA A

 KA and Xin  NCSan   is  :)(  KKAGNCl

 AG and Xin  NOSan   is  :)(  GGAGNInt

 ,X

),(()(( AGNIntCACGNCl 

)).(())(( AGNClCACGNInt 

 XxA AAA  :,, 

A

 JiA
ii GiGG  :,, 

 
ii GiGGxAGNInt  ,,,)(

 
ii GiGGxAGNIntC  ,,,))(( )(AC

AGi
  AGi

 

Ji )(AC  
ii GiGGxACGNCl  ,,,))((

),(()(( AGNIntCACGNCl 

 ,X BA,
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a)  

b)  

c)  

d)  

e)  

f)  

g)  

h)  

Proof 

 (a), (b) and (e) are obvious (c) follows from (a) and Definitions.   

5.4 Neutrosophic Closed Set and Neutrosophic Continuous 

Functions 

Definition 5.4.1 

Let (,) be a neutrosophic topological space. A neutrosophic set A 

in (,) is said to be neutrosophic closed (N-closed).   If Ncl (A)  G 

whenever A  G and G is neutrosophic open; the complement of 
neutrosophic closed set is neutrosophic open. 

Proposition 5.4.1 

If A and B are neutrosophic closed sets, then AB is a neutrosophic 
closed set. 

Remark 5.4.1 

The intersection of two neutrosophic closed (N-closed) sets does 
not need to be a neutrosophic closed set. 

Example 5.4.1 

Let  = {a, b, c} and 
          A = <(0.5,0.5,0.5) , (0.4,0.5,0.5) , (0.4,0.5,0.5)> 
          B = <(0.3,0.4,0.4) , (0.7,0.5,0.5) , (0.3,0.4,0.4)> 

Then  = { 0N ,1N ,  A, B} is a neutrosophic topology in . We define 
the two neutrosophic sets  and as it follows, 

= <(0.5,0.5,0.5),(0.6,0.5,0.5),(0.6,0.5,0.5)> 

= <(0.7,0.6,0.6((0.3,0.5,0.5),(0.7,0.6,0.6)> 

,)( AAGNInt 

),(AGNClA 

),()( BGNIntAGNIntBA 

),()( BGNClAGNClBA 

),()())(( BGNIntAGNIntAGNIntGNInt 

),()()( BGNClAGNClBAGNCl 

,1)1( NNGNInt 

,)( NN OOGNCl 

1A 2A

1A

2A



Neutrosophic Crisp Set Theory 

 

111 

 and are neutrosophic closed set but   is not a 

neutrosophic closed set. 

Proposition 5.4.2 

Let (,) be a neutrosophic topological space. If B is neutrosophic 

closed set and  B  A  Ncl (B), then A is N-closed. 

Proposition 5.4.3 

In a neutrosophic topological space (,) , = (the family of all 

neutrosophic closed sets) if every neutrosophic subset of (,) is a 
neutrosophic closed set. 

Proof 

Suppose that every neutrosophic set A of (,) is N-closed. Let 
A, since A A and A is N-closed, Ncl (A)  A. But A  Ncl (A). Hence, 
Ncl (A) =A. Thus, A . Therefore, T . If B  then 1-B . and 
hence B. That is, . Therefore = conversely, suppose that A be a 
neutrosophic set in (,). Let B be a neutrosophic open set in (,), such 

that A  B. By hypothesis, B is neutrosophic N-closed. By definition of 
neutrosophic closure, Ncl (A)  B. Therefore A is N-closed. 

Proposition 5.4.4 

Let (,) be a neutrosophic topological space. A neutrosophic set A 

is neutrosophic open if B Nint(A), whenever B is neutrosophic closed 
and B  A. 

Proof 

Let A be a neutrosophic open set and B be a N-closed, such that B  
A. Now, B  A 1A 1B and 1A is a neutrosophic closed set  Ncl 
(1A)  1B. That is, B=1(1B)  1Ncl (1A). But 1Ncl (1A) = Nint 
(A). Thus, B Nint (A).  Conversely, suppose that A is a neutrosophic set, 
such that B Nint (A) whenever B is neutrosophic closed and B  A. Let 
1A  B  1B  A. Hence by assumption 1B Nint (A). That is, 1Nint 
(A)  B. But 1Nint (A) =Ncl (1A). Hence Ncl(1A)  B. That is 1A is 
neutrosophic closed set. Therefore, A is neutrosophic open set. 

1A 2A 1A 2A
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Proposition 5.4.5 

If Nint (A)  B  A and if A is neutrosophic open set then B is also 
neutrosophic open set. 

Definition 5.4.2 

i) If  is a NS in Y, then the preimage of B under  

denoted by is a NS in X defined by  

ii) If  is a NS in X, then the image of A under denoted 

by  is the a NS in Y defined by  

Here we introduce the properties of images and preimages, some of 
which we frequently use in the following sections. 

Corollary 5.4.1 

Let A  be a NS in X, and B  be a NS in Y, and 

be a function. Then: 

(a)  

(b)  and if is injective, then , 

(c)  and if is surjective, then  

(d)  

(e)  

and  if  is injective, then   

(f) , 

(g)  if is subjective. 

Proof 

Obvious.  

Definition 5.4.3 

      Let  and  be two NTSs, and let be a function. 

Then f is said to be continuous if the preimage of each NCS in  is a NS 

in . 

BBBB  ,,
,f

),(1 Bf 
.)(),(),()( 1111
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1
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))((1 AffA  f ))((1 AffA 

BBff  ))((1 f ,))((1 BBff 

),())( 11
ii BfBf   ),())( 11

ii BfBf  

);()( ii AfAf  );()( ii AfAf 

f );()( ii AfAf 

NNf 1)(!1 
NNf 0)0(1 

,0)0( NNf  NNf 1)1(  f

 1,X  2,Y YXf :

2
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Definition 5.4.4 

Let  and  be two NTSs and let be a function. 

Then f is said to be open if the image of each NS in  is a NS in . 

Example 5.4.2 

Let and  be two NTSs. 

(a) If  is continuous in the usual sense, then in 

this case is Continuous. Here we consider the NTs in X and Y, 

respectively, as it follows:   
 and . 

In this case, we have for each , ,

. 

(b) If  is neutrosophic open in the usual sense, then 

in this case,  is neutrosophic open in the sense of Definition 

3.2. 
Now we obtain some characterizations of neutrosophic continuity:  

Proposition 5.4.6 

Let , where f is a neutrosophic continuous if the 

preimage of each NS (neutrosophic closed set) in  is a NS in . 

Proposition 5.4.7 

The following are equivalent to each other: 
1.  is neutrosophic continuous. 

2.  for each CNS B in Y. 

3.  for each NCB in Y. 

Example 5.4.3 

Let be a NTS and be a function. In this case 

 is a NT in X. Indeed, it is the coarsest NT in X which 

makes the function continuous. One may call it the initial 

neutrosophic crisp topology with respect to  

Definition 5.4.5 

 Let (,) and (,S) be two neutrosophic topological spaces, then: 

 1,X  2,Y YXf :

1 2

 oX ,  oY ,

YXf :

f

 o

c

GG G  :,0,1   o

c

HH H  :,0,2 

2,0,  c
HH oH 

)(),0(),(,0, 1111 c

HH

c

HH ffff    1
1 )((),0(,    c

H fff

YXf :

f

),(),(: 21  YXf 

2 2

),(),(: 21  YXf

))(()(( 11 BfNIntBNIntf  
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 2,Y YXf :

 2

1

1 :)(   HHf

YXf :

.f



A. A. Salama & Florentin  Smarandache 

 

114 

 (a) A map  : (,)  (,S) is called N-continuous if the inverse 

image of every closed set in (,S) is neutrosophic closed in (,). 

(b) A map :(,) (,S) is called neutrosophic-gc irresolute if the 

inverse image of every neutrosophic closed set in (,S) is neutrosophic 

closed in (,). Equivalently if the inverse image of every neutrosophic 

open set in (,S) is neutrosophic open in (,). 

(c) A map :(,) (,S) is said to be strongly neutrosophic 

continuous if 1(A) is both neutrosophic open and neutrosophic closed 
in (,) for each neutrosophic  set A in (,S). 

(d) A map   : (,)  (,S) is said to be Perfectly neutrosophic 

continuous if 1 (A) is both neutrosophic open and neutrosophic closed 
in (,) for each neutrosophic open set A in (,S). 

(e) A map :(,)(,S) is said to be Strongly N-Continuous if the 

inverse image of every neutrosophic open set in (,S) is neutrosophic 

open in (,). 

(f) A map :(,)(,S) is said to be perfectly N-continuous if the 

inverse image of every neutrosophic open set in (,S) is both 

neutrosophic open and neutrosophic closed in (,). 

Proposition 5.4.8 

Let (,) and (,S) be any two neutrosophic topological spaces.  

Let  : (,)  (,S) be generalized neutrosophic continuous. Then for 

every neutrosophic set A in  ,  (Ncl(A))  Ncl((A)). 

Proposition 5.4.9 

Let (,) and (,S) be any two neutrosophic topological spaces.  

Let  : (,)  (,S) be generalized neutrosophic continuous. Then for 

every neutrosophic set A in , Ncl(1(A)) 1(Ncl(A)). 

Proposition 5.4.10 

Let (,) and (, S) be any two neutrosophic topological spaces. If 

A is a neutrosophic closed set in (,) and if :(,)  (, S) is 

neutrosophic continuous and neutrosophic closed, then (A) is 
neutrosophic closed in (, S). 
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Proof 

Let G be a neutrosophic open in (,S). If (A)  G, then A 1(G) in 

(,). Since A is neutrosophic closed and 1(G) is neutrosophic open in 

(,), Ncl(A) 1(G),i.e. (Ncl(A)G. Now by assumption ,(Ncl(A)) is 

neutrosophic closed and Ncl((A))  Ncl((Ncl(A))) = (Ncl(A))  G. 
Hence (A) is N-closed. 

Proposition 5.4.11 

Let (,) and (,S) be any two neutrosophic topological spaces. If 

 : (,)  (,S) is neutrosophic continuous, then it is N-continuous. 

The converse of Proposition is not true. See Example. 

Example 5.4.4 

Let  =a,b,c and  =a,b,c. We define the neutrosophic sets A 
and B as it follows:  

 

Then the family  = 0N,1N, A is a neutrosophic topology in  and S = 

0N,1N, B is a neutrosophic topology in . Thus (,) and (,S) are 

neutrosophic topological spaces. We define   : (,)  (,S) as (a) = 

b ,(b) = a,(c) = c. Clearly, f is N-continuous. Now  is not neutrosophic 

continuous, since 1(B)  for B  S. 

Example 5.4.5 

Let  = a, b, c. We define the neutrosophic sets A and B as it 
follows: 

 

 
 = 0N,1N, A ,Band S = 0N,1N, C are neutrosophic topologies in . Thus 

(,) and (,S) are neutrosophic topological spaces. We define : (,) 

 (,S) as it follows:(a) = b,(b) = b,(c) = c. Clearly,  is N-continuous. 
Since is neutrosophic open in 

(,S),1(D) is not neutrosophic open in (,). 

    .5)(0.4,0.4,0 , 30.2,0.4,0. , 50.4,0.4,0.A 

     60.4,0.5,0. , 30.3,0.2,0. , 6.0,5.0,4.0B

     4.0,5.0,4.0 , 50.5,0.5,0. , 4.0,5.0,4.0A

     50.3,0.4,0. , 50.3,0.4,0. , 5.0,6.0,7.0B

     50.5,0.5,0. , 50.4,0.5,0. , 5.0,5.0,5.0C

  .7)(0.6,0.6,0 , .3)(0.4,0.4,0 , 7.0,6.0,6.0D
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Proposition 5.4.12 

Let (,) and (,S) be any two neutrosophic topological spaces. If 

: (,)  (,S) is strongly N-continuous, then  is neutrosophic 
continuous. 

The converse of Proposition is not true. See Example. 

Example 5.4.6 

Let  =a, b, c. We define the neutrosophic sets A and B as it 
follows: 

 

 

 

 = 0N, 1N, A ,B and S = 0N,1N, C are neutrosophic topologies in . 

Thus (,) and (,S) are neutrosophic topological spaces. Also, we 

define  :(,) (,S) as it follows:(a) = a,(b) = c,(c) = b. Clearly,  is 

neutrosophic continuous. But  is not strongly N-continuous. Since D = 
is an neutrosophic open set in 

(,S),1(D) is not neutrosophic open in (,). 

Proposition 5.4.13 

Let (,) and (, S) be any two neutrosophic topological spaces.  If 

: (,)  ( S) is perfectly N-continuous, then  is strongly N-
continuous. 

The converse of Proposition is not true. See Example. 

Example 5.4.7 

Let  = a, b, c. We define the neutrosophic sets A and B as it 
follows: 

,

 

 

 = 0N,1N, A ,B and S = 0N,1N, C are neutrosophic topologies space in 

. Thus (,) and (X, S) are neutrosophic topological spaces. Also we 

define  :  (,)  (,S) as it follows:(a) = a,(b) = (c) = b. Clearly,  is 

.9)(0.9,0.9,0 , .1)(0.1,0.1,0 , .9)(0.9,0.9,0A

.8)(0.9,0.1,0 , )(0.1,0.1,0 , .9)(0.9,0.9,0B

.9)(0.9,0.9,0 , )(0.1,0,0.1 , .9)(0.9,0.9,0C

  .99)(0.9,0.9,0 , 01)(0.05,0,0. , 99.0,9.0,9.0

.9)(0.9,0.9,0 , .1)(0.1,0.1,0 , .9)(0.9,0.9,0A

,0.99)(0.99,0.99 , (0.01,0,0) , ,0.99)(0.99,0.99B

.9)(0.9,0.9,0 , .05)(0.1,0.1,0 , .9)(0.9,0.9,0C
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strongly N-continuous. But  is not perfectly N-continuous. Since 

is a neutrosophic open set in 

(,S),1(D) is neutrosophic open and not neutrosophic closed in (,). 

Proposition 5.4.14 

Let (,) and (,S) be any neutrosophic topological spaces. If : 

(,)  (,S) is strongly neutrosophic continuous, then  is strongly N-
continuous. 

The converse of Proposition is not true. See Example. 

Example 5.4.8 

Let  = a, b, c. We define the neutrosophic sets A and B as it 
follows. 

 

 

 

 = 0N,1N, A ,B and S = 0N,1N, C are neutrosophic topologies in . 

Thus (,) and(X, S) are neutrosophic topological spaces. Also, we define 

 :  (,)  (,S) as it follows: (a) = a,(b) = (c) = b. Clearly,  is 

strongly N-continuous. But  is not strongly neutrosophic continuous. 

Since , a neutrosophic set in 

(,S),1(D) is neutrosophic open and not neutrosophic closed in (,). 

Proposition 5.4.15 

Let (,),(,S) and (,R) be any three neutrosophic topological 

spaces. Suppose  : (,)  (,S), g : (,S)  (,R) be maps. Assume  is 

neutrosophic gc-irresolute and g is N-continuous then g  is N-
continuous. 

Proposition 5.4.16 

Let (,)  , (,S) and (,R) be any three neutrosophic topological 

spaces. Let  :  (,)  (,S), g : (,S)  (,R) be map, such that  is 

strongly  N-continuous and g is N-continuous. Then the composition g  
is neutrosophic continuous. 

.9)(0.9,0.9,0 , )(0.1,0.1,0 , )9.0,9.0,9.0(D

.9)(0.9,0.9,0 , .1)(0.1,0.1,0 , .9)(0.9,0.9,0A

,0.99)(0.99,0.99 , (0.01,0,0) , ,0.99)(0.99,0.99B

.9)(0.9,0.9,0 , .05)(0.1,0.1,0 , .9)(0.9,0.9,0C

.9)(0.9,0.9,0 , )(0.1,0.1,0 , )9.0,9.0,9.0(D
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Definition 5.4.6 

A neutrosophic topological space (,) is said to be neutrosophic 

1/2 if every neutrosophic closed set in (,) is neutrosophic closed in 

(,). 

Proposition 5.4.17 

Let (,),(,S) and (,R) be any neutrosophic topological spaces.      

Let  :  (,)  (,S) and  g : (,S)  (,R) be mapping and (,S) be 

neutrosophic 1/2 if  and g are N-continuous then the composition g  
is N-continuous. 

The proposition 4.11 is not valid if (, S) is not neutrosophic 1/2. 

Example 5.4.9 

Let  = a,b,c. We define the neutrosophic sets A, B and C as it 
follows: 

A =  

B =  

C =  

Then the family  = 0N ,1N, A, S = 0N,1N, B and R = 0N,1N, C are 

neutrosophic topologies on . Thus (,),(,S) and (,R) are 

neutrosophic topological spaces. Also, we define  :  (,)  (,S) as (a) 

= b,(b) = a,(c) = c and g : (,S)  (,R) as g(a) = b, g(b) = c, g(c) = b. 

Clearly,  and g are N-continuous function. But g  is not N-continuous. 
For 1  C is neutrosophic closed in (, R). 1(g1(1C)) is not N-closed in 

(,). g  is not N-continuous.  
 

 

 

 

 

 

 

 

 

.3)(0.4,0.4,0 , .6)(0.4,0.4,0

.3)(0.3,0.4,0 , .6)(0.4,0.5,0

.4)(0.5,0.3,0 , .5)(0.4,0.6,0



Neutrosophic Crisp Set Theory 

 

119 

6. Neutrosophic Ideal Topological Spaces 

& Neutrosophic Filters 

6.1 Neutrosophic Ideals 

Definition 6.1.1 

Let X be a non-empty set and L a non–empty family of NSs. We call 
L a topological neutrosophic ideal (NL) in X if: 

(a) [heredity],  

(b) [finite additivity]. 
A topological neutrosophic ideal L is called a σ-topological 

neutrosophic ideal if , which implies 

(countable additivity). 

The smallest and the largest topological neutrosophic ideals in a 
non-empty set X are , NSs in X. Also, stand for the 

topological neutrosophic ideals of neutrosophic subsets having finite and 
countable support in X. Moreover, if A is a non-empty NS in X, then 

 is a NL in X. This is called the principal NL of all NSs, and 

is denoted by NL . 

LBABLA   and  

LL and   BABLA

  LA
jj 


  

LjA
Jj





 N0 cf L N.  ,L .N

 ABNSB  :

A

In this chapter, we extend the concept of intuitionistic 

fuzzy ideal [8] and fuzzy filters to the case of neutrosophic sets. 

In 6.1 we pioneer the notion of ideals on neutrosophic set, 

pondered as a generalization of ideals studies. Several 

relations between different neutrosophic ideals and 

neutrosophic topologies are also studied here. In 6.2 we 

introduce and study the neutrosophic local functions. Several 

relations between different neutrosophic topologies are also 

discussed.  In 6.3 we develop the notion of filters on 

neutrosophic set, as a generalization of filters studies, the 

important neutrosophic filters been given. Several relations 

between distinctive neutrosophic filters and neutrosophic 

topologies are also examined here. 

 

In this Chapter, we extend the concept of intuitionistic 

fuzzy ideal [8] and fuzzy filters to the case of Neutrosophic 

Sets. In 6.1 we, introduce the notion of ideals on Neutrosophic 

Setwhich is considered as a generalization of ideals studies, 

the important neutrosophic ideals has been given. Several 

relations between diferent neutrosophic ideals and 

neutrosophic topologies are also studied here. In 6.2 we, 

introduce and study the neutrosophic local functions. Several 

relations between diferent neutrosophic topologies are also 

studied here.  In 6.3 we, introduce the notion of filters on 

Neutrosophic Setwhich is considered as a generalization of 

filters studies, the important neutrosophic filters has been 

given. Several relations between diferent neutrosophic filters 

and neutrosophic topologies are also studied here. 
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Remark 6.1.1 

(a) If , then L is called a neutrosophic proper ideal. 

(b) If , then L is called a neutrosophic improper ideal. 

(c) . 

Example 6.1.1 

Any intuitionistic fuzzy ideal  in X in the sense of Salama is 

obviously a NL of the form  

Example 6.1.2 

Let , , and , 

then the family  of NSs is a NL in X. 

Example 6.1.3 

Let  and  be given by:  

X    

 0.6 0.4 0.3 

 0.5 0.3 0.3 

 0.4 0.6 0.4 

 0.3 0.8 0.5 

 0.3 0.7 0.6 

Then the family  is an NL in X. 

Definition 6.1.2 

Let L1 and L2 be two NL in X. Then L2 is said to be finer than L1 or L1 

is coarser than L2 if L1 L2. If also L1 L2, then L2 is said to be strictly finer 
than L1 or L1 is strictly coarser than L2. Two NL are comparable if one is 
finer than the other. The set of all NL in X is ordered by the relation L1 
coarser than L2. This relation is prompted by the inclusion in NSs. 

The next Proposition is considered as a useful result in this sequel, 
whose Proof is clear. 

LN 1

LN 1

LON 



 .,,,:  AAAxAAL 

 cbaX ,, 6.0,5.0,2.0,xA  8.0,7.0,5.0,xB  8.0,6.0,5.0,xD 

 DBAOL
N

,, ,

 edcbaX ,,,, AAAxA  ,,,

 xA  xA  xA

a

b

c

d

e

 AOL N ,
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Proposition 6.1.1 

   Let  be any non-empty family of topological neutrosophic 

ideals in a set X.  
Then  and  are topological neutrosophic ideals in X. 

In fact, L is the smallest upper bound of the set of the Lj in the 
ordered set of all topological neutrosophic ideals in X. 

Remark 6.1.2 

The topological neutrosophic ideal by the single neutrosophic set

 is the smallest element of the ordered set of all topological 
neutrosophic ideals in X. 

Proposition 6.1.2 

A neutrosophic set A in a topological neutrosophic ideal L in X is 
a base of L if every member of L contained in A. 

Proof 

(Necessity) Suppose A is a base of L. Then clearly every member of 
L is contained in A. 

(Sufficiency) Suppose the necessary condition holds. Then the set of 
neutrosophic subset in X contained in A coincides with L by the Definition 
4.3. 

Proposition 6.1.3 

A topological neutrosophic ideal L1 with base A is finer than a fuzzy 
ideal L2 with base B if every member of B contained in A. 

Proof 

Immediate consequence of Definitions. 

Corollary 6.1.1 

Two topological neutrosophic ideals bases A, B in X are equivalent 
if every member of A contained in B and viceversa. 

Theorem 6.1.1 

Let  be a non-empty collection of neutrosophic 

subsets of X. Then there exists a topological neutrosophic ideal L () = {A 

 NSs: A  Aj} in X for some finite collection {Aj: j = 1,2, ..., n }. 

 JjL j :


Jj

jL



Jj

jL


NO

 Jjjjj  :,, 
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Proof 

Evident.  

Remark 6.1.3 

The neutrosophic ideal L () defined above is said to be generated 

by  and  is called the sub-base of L(). 

Corollary 6.1.2 

Let L1 be a neutrosophic ideal in X and A  NSs; then there is a 

neutrosophic ideal L2 which is finer than L1, such that A  L2 if A  B  

L2, for each B L1. 

Corollary 6.1.3 

Let  and , where  and 

 are topological neutrosophic ideals in the set X.  

The neutrosophic set  in X,  

where  may be = ,  

or  and . 

6.2 Neutrosophic Local Functions 

Definition 6.2.1 

Let (X,) be a neutrosophic topological spaces (NTS) and L be 
neutrosophic ideal (NL) in X. Let A be any NS of X. Then the neutrosophic 
local function  of A is the union of all neutrosophic points (NP)

 such that  

, ,  

called a neutrosophic local function of A with respect to  which 

we denote by , or simply . 

Example 6.2.1 

One may easily verify that if L= , for 

any neutrosophic set  in X.  
As well, if , for any  in X. 

AAAxA  ,,, 1L BBBxB  ,,, 2L 1L

2L

   xxxBA
BABA

BA  
** ),(,*


 21 LL 

       )(,: * xXxxxx BABA
BA

 


 )()( xx BA  

 )()( xx BA         Xxxxx BABA



:

 ,LNA

  ,,C    ,,CNU 

 ),,C( of nbd every Ufor   :),,(),(*  LUAXCLNA  ),( LNA

L and  

),( LNA   LNA

)(),( N then  },0{ ANclLAN  

NSsA

  NLA 0),(N      then  Xon  NSs all L    NSsA
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Theorem 6.2.1 

Let  be a NTS and be two topological neutrosophic 

ideals in X. Then for any neutrosophic sets A, of X, the following 
statements are verified: 

(a)  
(b) . 

(c) . 

(d) . 

(e) . 

(f)  

(g)  

(h)  is neutrosophic closed set. 

Proof 

a. Since , let   then  for every . 

By hypothesis, we get , then .  

b. Clearly.  which implies  as there may 

be other IFSs which belong to  so that for GIFP 

 but  may not be contained in 

. 

c. Since  for any NL in X, therefore by (b), 

 for any NS A in X.  

Suppose . So for every , 

 there exists  such that for 

every  of  Since  then 

 which leads to , for every  

therefore  and so  while the 

other inclusion follows directly. Hence , but the 

inequality . 

d. The inclusion  follows directly by (a). To 

show the other implication, let  then for 
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every  Then, 

we have two cases  and  or the converse, this 
means that exist  such that , 

 and . Then  and 

; this gives  

which contradicts the hypothesis. Hence the equality holds in 
various cases. 

e. By (c), we have  

Let  be a GIFTS and L be GIFL in X. Let us define the 

neutrosophic closure operator  for any GIFS A of X. 

Clearly,  is a neutrosophic operator.  

Let   be NT generated by  i.e.: 

 

Now  for every neutrosophic 

set A. So, .  

Again  because , for every 

neutrosophic set A, so  is the neutrosophic discrete topology in X.  

So we can conclude that  i.e.  , for any 

neutrosophic ideal  in X. In particular, we have for two topological 

neutrosophic ideals  and  in X,  

. 

Theorem 6.2.2 

 Let  be two neutrosophic topologies in X. Then for any 

topological neutrosophic ideal L in X, we have , 

for every A  then . 

Proof 

Clear. 
 
A basis  for  can be described as it follows: 

 

Therefore, we have the following theorem: 
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Theorem 6.2.3 

 forms a basis for the generated NT of 

the  NT  with a topological neutrosophic ideal L in X. 

Proof 

Straightforward. 

The relationship between  and  establishes throughout the 

following result which have an immediate proof. 

Theorem 6.2.4 

Let  be two neutrosophic topologies in X. Then for any 

topological neutrosophic ideal L in X,  ; it implies that . 

Theorem 6.2.5 

 Let  be a NTS and  be two neutrosophic ideals in X. Then 

for any neutrosophic set A in X, we have  
(a)  

(b)  

Proof 

Let  this means that there exists  

such that i.e. There exists  and  such that 

 because of the heredity of L1, and assuming . 

Thus, we have  and   

Therefore and .  

Hence  or  

because  must belong to either   or  but not to both. This gives 

. 

To show the second inclusion, let us assume 
. 

This implies that there exist  and  such that 

. By the heredity of ,we assume that  and define 

.  

Then we have .  
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Thus,  and similarly, we 

can get .   

This gives the other inclusion, which complete the proof. 

Corollary 6.1.1 

Let  be a NTS with topological neutrosophic ideal L in X. Then: 

(a)  

(b)  

Proof 

It follows by applying the previous statement. 

6.3 Neutrosophic Filters 

Definition 6.3.1 

Let be a neutrosophic subsets in a set X. Then is called a 
neutrosophic filter in X, if it satisfies the following conditions: 

(a) Every neutrosophic set in X containing a member of 

belongs to . 
(b) Every finite intersection of members of  belongs to

. 
(c) not in . 

In this case, the pair is neutrosophically filtered by N. It 

follows from and that every finite intersection of members of 

is not . Furthermore, there is no neutrosophic set. We obtain the 

following results: 

Proposition 6.3.1 

The condition is equivalent to the following two conditions: 

The intersection of two members of belongs to . 

 belongs to . 

Proposition 6.3.2 

Le be a non-empty neutrosophic subsets in X satisfying 
.Then, if  and if all neutrosophic subsets of 

X. 
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From the above, we can characterize the concept of neutrosophic 
filter. 

Theorem 6.3.1 

Let  be a neutrosophic subsets in a set X. Then  is neutrosophic 
filter in X, if and only if it is satisfies the following conditions: 

(a) Every neutrosophic set in X containing a member of 
belongs to . 

(b) If , then . 

(c) . 

Proof 

It ̓s clear. 

Theorem 6.3.2 

Let . Then the set is a neutrosophic filter in X. Moreover if 

A is a non-empty neutrosophic set in X, then is a 

neutrosophic filter in X. 

Proof 

Let . Since and .  

Suppose , then .  

Thus 
,  

 or  

 and   

 for all .  

So and hence  

Definition 6.3.2 

Let and be two neutrosophic filters in a set X. Then  is 

said to be finer than or coarser than if . If also , 

then is said to be strictly finer than or  is strictly coarser than

. Two neutrosophic filters are said to be comparable, if one is finer 

than the other. The set of all neutrosophic filters in X is ordered by the 
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relation  which is coarser than ; this relation is induced by the 

inclusion relation in . 

Proposition 6.3.3 

Let  be any non-empty family of neutrosophic filters in X. 

Then is a neutrosophic filter in X. In fact is the greatest 

lower bound of the neutrosophic set in the ordered set of all 

neutrosophic filters in X.  

Remark 6.3.1 

The neutrosophic filter by the single neutrosophic set is the 

smallest element of the ordered set of all neutrosophic filters in X.  

Theorem 6.3.3 

Let  be a neutrosophic set in X. Then there exists a neutrosophic 
filter  in X containing A if for any finite subset  of , 

. In fact  is the coarsest neutrosophic filter containing A. 

Proof 

Suppose there exists a neutrosophic filter in X containing

. Let B be the set of all the finite intersections of members of . Then 

by , . By , . Thus for each member of B, 

hence the necessary condition holds. 

Suppose the necessary condition holds.  

Let ,where B is the 

family of all the finite intersections of members of A. Then we can easily 
check that  satisfies the conditions in Definition. 

 
The neutrosophic filter  defined above is said to be generated by 

A and A is called a sub - base of .  

Corollary 6.3.1 

 Let be a neutrosophic filter in a set X and let A be a neutrosophic 

set. Then there is a neutrosophic filter which is finer than  such that 

if A is a neutrosophic set. Then there is a neutrosophic filter

which is finer than  such that if for each . 
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Corollary 6.3.2 

A set of a neutrosophic filter in a non-empty set X, has a least the 

upper bound in the set of all neutrosophic filters in X if for all finite 

sequence of elements of and all 

 

Corollary 6.3.3 

The ordered set of all neutrosophic filters in a non-empty set X is 
inductive. If  is a sub-base of a neutrosophic filter in X, then  is not 
in general the set of neutrosophic sets in X containing an element of ; 
for  to have this property, it is necessary and sufficient that every finite 
intersection of members of  contains an element of .  

Hence we have the following result:  

Theorem 6.3.4 

Let be a set of neutrosophic sets in a set X. Then the set of 

neutrosophic sets in X containing an element of  is a neutrosophic filter 

in X if  holds the following two conditions: 

The intersection of two members of  contains a member of . 

and . 

Definition 6.3.3 

 Let and be the neutrosophic sets in X satisfying conditions 

and , called the base of neutrosophic filter it generates. Two 

neutrosophic bases are said to be equivalent if they generate the same 
neutrosophic filter. 

Remark 6.3.2 

Let  be a sub-base of neutrosophic filter N. Then the set of finite 

intersections of members of  is a base of filter . 

Proposition 6.3.4 

 A subset of a neutrosophic filter in X is a base of if every 

member of N contains a member of . 
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Proof 

Suppose  is a base of N. Then, clearly, every member of N 

contains an element of .  Suppose the necessary condition holds. 

Then the set of neutrosophic sets in X containing a member of 

coincides with  by reason of . 

Proposition 6.3.5 

On a set X, a neutrosophic filter with base is finer than a 

neutrosophic filter with base if every member of contains a 

member of . 

Proof 

This is an immediate consequence of Definitions.  

Proposition 6.3.6 

Two neutrosophic filters bases and   in a set X are equivalent if 

every member of contains a member of and every member of 

and every member of contains a member of . 

Definition 6.3.4 

A neutrosophic ultrafilter in a set X is a neutrosophic filter such 
that there is no neutrosophic filter in X which is strictly finer than (in 
other words, a maximal element in the ordered set of all neutrosophic 
filters in X). 

Since the ordered set of all the neutrosophic filters in X is inductive, 
Zorn's lemma shows that: 

Theorem 6.3.5 

If N is any neutrosophic ultrafilter in a set X, then there is a 
neutrosophic ultrafilter than N. 

Proposition 6.3.7 

 Let  be a neutrosophic ultrafilter in a set X. If  and are two 
neutrosophic subsets such that , then or . 

Proof 

Suppose not. Then there exists the neutrosophic sets and in X 

such that and Let .  
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It is straightforward to check that  is a neutrosophic filter in X, 
and  is strictly finer than N, since . This contradicts the hypothesis 
that is a neutrosophic ultrafilter. 

Corollary 6.3.4 

Let  be a neutrosophic ultrafilter in a set X and let  be a 

finite sequence of neutrosophic sets in X. If , then at least one 

of the belongs to N. 

Definition 6.3.5 

Let  be a neutrosophic set in a set X. If is any neutrosophic set 
in X, then the neutrosophic set is called trace of an A and is 
denoted by . For all neutrosophic sets and in X, we have 

 

Definition 6.3.6 

Let  be a neutrosophic set in a set X. Then the set  of traces 

of member of  is called the trace of  on . 

Proposition 6.3.8 

Let  be a neutrosophic filter in a set X and . Then the trace 
of  of N on A is a neutrosophic filter if each member of  meets . 

Proof 

From the results in Definition, we see that  satisfies . If 

then . Thus satisfies . Hence 

is a neutrosophic filter if it satisfies  i.e. if each member of  

meets . 

Definition 6.3.7 

Let  be a neutrosophic filter in a set X and . If the trace 
of an , then  is said to be induced by an . 

Proposition 6.3.9 

Let  be a neutrosophic filter in a set X induced by the 

neutrosophic filter on . Then the trace  on  of a base  

of  is a base of . 
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7. Applications 

 
 

In this chapter, we discuss some applications via 

neutrosophic sets. In 7.1, we introduce the concept of 

neutrosophic database. In 7.2 we suggest a security scheme 

based on Public Key Infrastructure (PKI) for distributing session 

keys between nodes. The length of those keys is determined 

by neutrosophic logic manipulation. The proposed algorithm 

of Security model is an adaptive neutrosophic logic –

membership, non-membership and indeterminacy – based 

algorithm that can adjust itself according to the dynamic 

conditions of mobile hosts. The experimental results prove that 

using of neutrosophic based security can enhance the 

security of MANETs. In 7.3, we acquaint the reader with the 

study of probability of neutrosophic crisp sets. We give the 

fundamental definitions and operations, and we obtain 

several properties, examining the relationship between 

neutrosophic crisp sets and others sets. The purpose of section 

7.4 is to bestow the Neutrosophic Set Theory to analyze social 

networks data conducted through learning activities in a 

Social Learning Management System – that integrates social 

activities in e-Learning. The section 7.5 imparts basic 

concepts and properties of a neutrosophic spatial region, 

responding to the need to model spatial regions with 

indeterminate boundary under indeterminacy in 

Geographical Information Systems (GIS). We lead into a new 

theoretical framework via neutrosophic topology and we 

add some further definitions and propositions for a 

neutrosophic topological region. 
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7.1 Neutrosophic Database 

Definition A.7.1.1 

A neutrosophic database relation R is a subset of cross product 

where . 

Definition A.7.1.2 

Let be a neutrosophic database relation. A 

neutrosophic set tuple (with respect to R) is an element of R. Let 
be a neutrosophic tuple. An interpolation of t is a tuple 

where for each domain  If is the neutrosophic 

tolerance relation, then the membership function is given by: 
, 

the non-membership function is given by: 
 

and indeterminacy: . 

Let us make a hypothetical case study below. 
We consider a criminal data file. Suppose that one murder has 

taken place at some area in deem light. The police suspects that the 
murderer is also from the same area and so police refer to a data file of 
all the suspected criminals of that area. Listening to the eye-witness, the 
police has discovered that the criminal for that murder case has more or 
less or non-more and less curly hair texture and he is moderately large 
built. Form the criminal data file, the information table with attributes 
"Hair Coverage", "Hair Texture", and "Build" is given by: 
 

,2...22 21 mDDD
  122

DD j

,2...22 21 mDDD
R 

 
miiii dddt ,...,,

21


 maaa ..., 21 ijj da  .jD jT

]1,0[:  jjjT DD

]1,0[:  jjjT DD

]1,0[:  jjjT DD

Name Hair Coverage Hair Texture Build 
Soso Full Small (FS) Stc Large 
Toto Rec. Wavy Very Small(VS) 
Koko Full Small(FS) Straight(Str.) Small(S) 

Momo Bald Curly Average(A) 
Wowo Bald Wavy Average(A) 
Bobo Full Big (FB) Stc. Very large(VL) 
Hoho Full Small Straight Small(S) 
Vovo Rec. Curly Average(A) 
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   Now, consider the neutrosophic tolerance relation where 

="Hair Coverage", which is given by: 

 FB FS Rec. Bald 

FB <1,0,0> <0.8,0.3,0.1> <0.4,0,0.4> <0,0.2,1> 

FS <0.8,0.3,0.1> <1,0,0> <0.5,0,0.4> <0,0,0.9> 

Rec. <0.4,0,0.4> <0.5,0,0.4> <1,0,0> <0.4,0,0.4> 

Bald <0,0.2,1> <0,0,0.9> <0.4,0,0.4> <1,0,0> 

where Hair Coverage= . 

The neutrosophic tolerance relation where ="Hair Texture" 

is given by: 

 Str. Stc. Wavy Curly 

Str. <1,0,0> <0.7,0.2,0.3> 
 

<o.2,0.2,0.7> 
 

<o.1,0.2,0.7> 

Stc. <0.7,0.2,0.3> <1,0,0> <0.3,0,0.4> 
 

<0.5,0,0.2> 

Wavy <o.2,0.2,0.7> <0.3,0,0.4> <1,0,0> 
 

<0.4,0,0.4> 
Bald <o.1,0.2,0.7> <0.5,0,0.2> <0.4,0,0.4> <1,0,0> 

where Hair Texture= {Str., Stc., Wavy, Curly }. 
Also, neutrosophic tolerance relation where ="Build" is 

given by: 

 Vl L A S Vs 

Vl 
 

<1,0,0> <0.8,0,0.2> <0.5,0,0.4> <0.3,0,0.6> <0,1,1> 

L <0.8,0,0.2> <1,0,0> <0.6,0,0.4> <0.4,0,0.5> <0,0,0.9> 

A  
<0.5,0,0.4> 

<0.6,0,0.4> <1,0,0> <0.6,0,0.3> <0.3,0,0.6> 

S <0.3,0,0.6> <0.4,0,0.5> <0.5,0,0.4> <1,0,0> <0.8,0,0.2> 

Vs <0,1,1> <0,0,0.9> <0.3,0,0.6> <0.8,0,0.2> <1,0,0> 

where Build = { Vl, L, A, S, Vs }. 

1DT 1D

 BaldRec.,FS,FB,

2DT 2D

3DT 3D
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Now, the job is to find out a list of those criminals who resemble 
with more or less or non-big hair coverage with more or less or non-curly 
hair texture and moderately large built. This list will be useful to the 
police for further investigation. It can be translated into relational 
algebra in the following form: 

   Project (Select (CRIMINALS DATA FILE) 
          Where HAIR COVERAGE="FULL BIG", 
                HAIR TEXRURE="CURLY" 
                BUILLD="LARG" 
          With (HAIR COVERAGE) =0.8 

(HAIR TEXRURE) =0.8 
(BUILLD) =0.7 

          With (NAME) =0.0 
     With (HAIR COVERAGE) =0.8 

(HAIR TEXRURE) =0.8 
(BUILLD) =0.7 

giving LIKELY MURDERER) 
 

Result: It can be computed that the above neutrosophic query gives 
rise to the following relation: 

LIKELY MURDERER 
NAME HAIR 

COVERAGE 
HAIR 
TEXRURE 

BUILLD 

{SOSO, 
BOBO} 

{FULL BIG, FULL 
SMALL} 

{CURLY, STC.} {LARG,VERY 
LARG} 

Therefore, according to the information obtained from the eye-
witness, police concludes that Soso or Bobo are the likely murderers, and 
further investigation now is to be done on them only, instead of dealing 
with huge list of criminals. 

Conclusion 

Neutrosophic Set Theory takes care of such indeterministic part in 
connection with each references point of its universe. In the 
presentsection, we have introduced the concept of Neutrosophic 
Database (NDB) and have exemplified the usefulness of neutrosophic 
queries on a neutrosophic database.  

LEVEL

LEVEL

LEVEL

LEVEL

LEVEL

LEVEL

LEVEL
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7.2 Security Model for MANET via Neutrosophic Data 

In this section, we will now extend the concepts presented in [75-
90] to the case of neutrosophic sets, and we propose a security scheme 
based on Public Key infrastructure (PKI) for distributing session keys 
between nodes. The length of those keys is decided using Neutrosophic 
Logic Manipulation. The proposed algorithm of Security Model is an 
adaptive Neutrosophic Logic-based Algorithm - membership function, 
non-membership and indeterminacy -that can adapt itself according to 
the dynamic conditions of mobile hosts. The experimental results show 
that the using of Neutrosophic-based Security can enhance the security 
of MANETs. The rest of the section is organized as it follows: some 
backgrounds are given in part 1. Part 2 provides the propositioned 
security mechanism. Thereafter, a comparison of the mechanism with 
some of the current security mechanisms is provided. Finally, we provide 
conclusions and envisage future work. 

Introduction 

Adhoc is a Latin word that means "for this or that only". AdHoc 
Networks, as its name indicates, are "intended to be" temporary. The idea 
is to completely remove any Base Station. Imagine a scenario in a relief 
operation when the event of timely communication is a very important 
factor, aid workers in the area are without the need of any existing 
infrastructure, just turn on the phone and start communicating with each 
other during movement and the execution of rescue operations. A major 
challenge in the design of these networks is their vulnerability to security 
attacks. This section presents an overview of the security and ad hoc 
networks, and security threats applicable to ad hoc networks. There are a 
wide range of military and commercial applications for MANET.  

For example, a unit of soldiers that moves in the battlefield cannot 
afford to install a base station every time they go to a new area. Similarly, 
it applies to the creation of a communication infrastructure for an 
informal and spontaneous conference meeting between a small numbers 
of people that cannot be economically justified otherwise [5]. It is 
relevant even for robot-based networks in which multiple robots work 
at the same time, or for smart homes orauto-routing vehicles. In addition, 
MANET can be the perfect tool for disaster recovery or emergency 
situations, when the existing communications infrastructure is 
destroyed or disabled.  
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Mobile ad hoc Networks are self-organized, temporary networks 
consisting of a set of wireless nodes. The nodes can move in an arbitrary 
manner, and communicate with each other by forming a multi-hop radio 
network, maintaining connectivity in a decentralized manner. Each node 
in MANETs plays both the role of routers and terminals. Such devices can 
communicate with another device that is immediately within their radio 
range or one that is outside their radio range not relying on access point. 
A mobile ad hoc network is self-organizing, self-discipline and self-
adaptive. The main characteristics of mobile ad hoc network are: 

 Lack of Infrastructure: (Dynamic Topology), since nodes 
in the network can move arbitrarily, the topology of the 
network also changes. 

 Limitations on the Bandwidth:  The bandwidth of the link 
is constrained and the capacity of the network is also 
tremendouslyvariable [8]. Because of the dynamic 
topology, the output of each relay node will vary in time 
and then the link capacity will change with the link change. 

 Power considerations: it is a serious factor. Because of the 
mobility characteristic of the network, devices use battery 
as their power supply. As a result, the advanced power 
conservation techniques are very necessary in designing 
a system. 

 Security precautions: The security is limited in physical 
aspect. The mobile network is easier to be attacked than 
the fixed network. Overcoming the weakness in security 
and the new security trouble in wireless network is on 
demand. 

A side effect of the flexibility is the ease with which a node can join 
or leave a MANET. Lack of any fixed physical and, sometimes, 
administrative infrastructure in these networks makes the task of 
securing these networks extremely challenging. 

In MANETs it is very important to address the security issues 
related to the dynamically changing topology of the MANET; these issues 
may be defined as: 

1. Confidentiality. The primary confidentiality threat in the 
context of MANET is to the privacy of the information being 
transmitted between nodes, which lead to a secondary privacy 
threat to information such as the network topology, 
geographical location, etc. 
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2. Integrity. The integrity of data over a network depends on all 
nodes in the network. Therefore threats to integrity are those 
which either introduce incorrect information or alter existing 
information. 

3. Availability. This is defined as access information at all times 
upon demand. If a mobile node exists, then any node should be 
able to get information when they require it. Related to this, a 
node should be able to carry out normal operations without 
excessive interference caused by the routing protocol or 
security. 

4. Authorization. An unauthorized node is one which is not 
allowed to have access to information, or is not authorized to 
participate in the ad hoc network. There is no assumption that 
there is an explicit and formal protocol, but simply an abstract 
notion of authorization.However, formal identity 
authentication is a very important security requirement, 
needed to provide access control services within the ad hoc 
network.  

5. Dependability and Reliability. One of the most common 
applications for ad hoc networks is in emergency situations 
when the use of wired infrastructure is infeasible. Hence, 
MANET must be reliable, and emergency procedures may be 
required. For example, if a routing table becomes full due to 
memory constraints, a reactive protocol should still be able to 
find an emergency solution. 

6. Accountability. This will be required so that any actions 
affecting security can be selectively logged and protected, 
allowing for appropriate reaction against attacks. The 
misbehaviors demonstrated by different types of nodes will 
need to be detected, if not prevented. Event logging will also 
help provide non-repudiation, preventing a node from 
repudiating involvement in a security violation. 

7. Non-repudiation. Ensures that the origin of a message cannot 
deny having sent the message. 

Neutrosophic sets can be viewed as a generalization of fuzzy sets 
that may better model imperfect information which is omnipresent in 
any conscious decision making. 
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Public Key Security 

The distinctive technique used in public key cryptography is the 
use of asymmetric key algorithms, where the key used to encrypt a 
message is not the same as the key used to decrypt it. Each user has a pair 
of cryptographic keys - a public encryption key and a private decryption 
key. The provision of public key cryptography is widely distributed, 
while the private-decryption key is known only to the recipient. 
Messages are encrypted with the recipient's public key and can only be 
decrypted with the corresponding private key.The keys are 
mathematically related, but the parameters are chosen so that the 
determination of the private key of the public key is prohibitively 
expensive. The discovery of algorithms that can produce pairs of public 
/ private key revolutionized the practice of cryptography in mid-1970. 
By contrast, symmetric key algorithms, variations of which have been 
used for thousands of years, uses a single secret key - that should be 
shared and kept private by the sender and receiver - for encryption and 
decryption. To use a symmetric encryption scheme, the sender and 
receiver must share the key securely in advance. Because symmetric key 
algorithms are almost always much less computationally intensive, it is 
common to exchange a key using a key exchange algorithm and transmit 
data using that key and symmetric key algorithm. Family PGP and SSL / 
TLS schemes do this, for example, and therefore speak of hybrid crypto 
system. 

The two main branches of public key cryptography are: 
 Public Key Encryption: a message encrypted with the 

recipient's public key can be decrypted by anyone except 
a holder of the corresponding private key - presumably 
this will be the owner of that key and the person 
associated with the public key used. This is used for 
confidentiality. 

 Digital Signatures (Authentication): a signed message 
with the sender's private key can be verified by anyone 
with access to the sender's public key, which shows that 
the sender had access to the private key (and therefore 
likely to be the person associated with the public key 
used), and part of the message has not been tampered 
with. On the question of authenticity, see also the 
summary of the message. 
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The main idea behind public-key (or asymmetric) cryptosystems is 
the following: 

One entity has a pair of keys which are called the private key and 
the public key (by contrast to the symmetric cryptosystems). These two 
parts of the key pair are always related in some mathematical sense. As 
for using them, the owner of such a key pair may publish the public key, 
but it is crucial to keepsecretive the private key. Let (sk, pk) be such a key 
pair, where sk is the Secret private Key for node (A) and pk is the 
corresponding public key [18]. If a second node wants to securely send a 
message to (A), it computes: C = encrypt (M, pk), where encrypt denotes 
the so-called encryption function which is also publicly known  as shown 
in Figure Asymmetric Key encryption / decryption. 

 
 
 

 
 

This function is a one-way function with a trap-door. In other 
words, the trap-door allows for the creation of the secret key sk, which 
in turn enables the beneficiary to easily invert the encryption function. 
We call C the cipher text. Obtaining M from C can be done easily using the 
(publicly known) decryption function decrypt and the beneficiary 
private key (sk). On the other hand, it is much harder to decrypt without 
having any knowledge of the private key. As already mentioned, the great 
advantage of this approach is that no secure key exchange is necessary 
before a message is transmitted. 

The proposed model for security 

In this section, a Security algorithm applied to MANETs is 
presented. This algorithm may be viewed as a two stages: firstly, a 
neutrosophic model to decide the key length for the current session, then 
the key distribution between nodes in MANET; both stages are 
illustrated furthermore. 

Figure 5: Asymmetric Key encryption / decryption 
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Neutrosophic Model (Key Size Determination Function) 

The security offered by the algorithm is based on the difficulty of 
discovering the secret key through a brute force attack. Mobile Status 
(MS) Security Level is the correlative factor being analyzed with three 
considerations: 

(a) The longer the password, the harder to withstand a severe 
attack of brute force. In this research, the key lengths from 
16 to 512 are assumed. 

(b) The quickest way to change passwords, the more secure 
the mobile host. It is more difficult to decipher the key in 
a shorter time. A mobile host to change the secret key is 
often safer than a mobile host using a constant secret key. 

(c) The neighbor hosting the mobile host has the more 
potential attacker. i.e. the possibility of attack is greater.  

There are many other factors affecting the safety of mobile hosts, 
such as bandwidth. The security level of mobile hosts is a function with 
multiple variables and affects more than one condition.  

At this point, a neutrosophic logic system is defined. Inputs of the 
neutrosophic logic system are the frequency of changing keys (f) and the 
number of neighbor hosts (n).  

Output of the neutrosophic logic system is the Security Level of MS. 
It is assumed that the three factors are independent with each other. The 
relationship of them is as following:  

 α   Formula 1 

It means that the Security-Level of MH is in direct proportion to the 
length of the key and the frequency of changing keys, in inverse 
proportion to the number of neighbor hosts. The S value is updated by 
the neutrosophic logic system. When the key length is short, the Security-
Level of MH should be low; otherwise the Security-Level of MS should be 
high. 

1. The first input parameter to the neutrosophic variable “the 
number of neighbor hosts” has three neutrosophic sets, few, 
normal and many. Membership function, non-membership and 
indeterminacy of n is illustrated in Figure Membership function, 
non-membership and indeterminacy of Neutrosophic Set with 
variable n. 

S
n

fl
1

..
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2. The input neutrosophic variable “the frequency of changing keys” 
has two neutrosophic sets, slow and fast and none of them. The 
membership functions , non-membership  and indeterminacy of f  
is put below: 
  

Formula 2 

 

3. The output neutrosophic variable “the Security-Level of MS” has 
five neutrosophic sets containing the set and its complementary 
set. These sets are: lowest, low, normal, high and highest. It should 
be noted that modifying the membership functions, non-
membership and indeterminacy will change the sensitivity of the 
neutrosophic logic system’s output to its inputs. Also increasing 
the number of neutrosophic sets of the variables will provide 
better sensitivity control, but also increases computational 
complexity of the system. Table The neutrosophic system rules 
shows the rules used in the neutrosophic system. 











fast)non(slow,   acy       Indetermin   

  variableisKey  secret    thefast      

constant  isKey  secret        theslow

f

Figure 6: Membership function, non-membership and indeterminacy 

of Neutrosophic Set with variable n. 
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Input Output 
F N I S 

Slow Few non(Slow, Few)  (Low , ~Low, I) 
Slow Normal non(Slow, Normal)  (Lowest , ~Lowest, I) 
Slow Many non(Slow, Many)  (Lowest , ~ Lowest, I) 
Fast Few non(Fast, Few)  (Normal , ~ Normal, I) 
Fast Normal non(Fast, Normal)  (Low , ~ Low, I) 
Fast Many non(Fast, Many)  (Low , ~Low, I) 
Slow Few non(Slow, Few)  (High , ~High, I) 
Slow Normal non(Slow, Normal)  (Normal , ~ Normal, I) 
Slow Many non(Slow, Many)  (Low , ~ Low, I) 
Fast Few non(Fast, Few)  (Highest, ~ Highest, I) 
Fast Normal non(Fast, Normal)  (High , ~ High, I) 
Fast Many non(Fast, Many)  (High , ~ High, I) 

Table 1: The neutrosophic system rules 

The output of that system determines the number of bits used and 
the security level required for the current situation varying the number 
of bits between 16 and 256 bits. This determination is based on the NS 
analysis whish passes the three parameters of  

where  and  which represent the degree of membership 

function (namely ), the degree of indeterminacy (namely ), and 

the degree of non-membership  (namely ) respectively of each 

element  to the set  where and

, then based on that analysis the system 

decides the accurate key size in each situation. 

Key Distribution 

Once the neutrosophic set has decided the length of the session key 
based on its criteria the problem of key creation and distribution arises. 
The nature of MANET poses great challenges due to the lake of 
infrastructure and control over the network. To overcome such 
problems, the use of PK scheme is used to distribute the key under the 
assumption that one node (let us say the first node that originates the 
network) is responsible for the creation of session keys. If that node is 
going to leave the network, it must transfer the process of key creation 
to another trusted node in the network.  

)(),(),(, xxxxA AAA 

   xx AA  ,  xA

 xA  xA

 xA

Xx A   1)(),(),(0 xxx AAA 
  3)()()(0 xxx AAA 
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a     b 

1) Each node sends a message (Session Key Request SKR) 
encrypted with its private key (that message contains a key 
request and a timer) to the key creator node which owns a 
table that contains the public key for each node in the network, 
as in the Figure, where the direction of the arrow’s head 
denotes the private key used encryption is the originating node. 

2) The key creator node simply decrypts the message and 
retrieves the request and the timer with one of the following 
scenarios occurs:  

a. The timer was expired or the message is unreadable 
the message is neglected. 

b. The timer is valid and the decryption of the message 
using the corresponding Public Key gives a readable 
request. The key creator node sends a message to 
that node containing the current session key. That 
message is encrypted two times first using the key 
creator’s private key (for authentication) then using 
the destination’s public key. Where the direction of 
the arrow’s head denotes the private key used 
encryption is the trusted node then with 
thedestination node’s public key. 

 
 
 
 
 
 
 
            

 
 

3) Any time the neutrosophic model reports that the network 
condition changes, the key creator node sends a jamming 
message for every node currently in the network asking them 
to send a key request message. 

4) Any authenticated node (including the Trusted node) on the 
network knowing the current session key can send messages 
either to every node or to a single node on the network, simply 
by encrypting the message using the current session key. 

Trusted 
Node

Node B

Node CNode 
D

Node A

Trusted 
Node

Node B

Node CNode 
D

Node A

Figure 7: Key Distribution: (a) SK Request (b) SK Response 
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Experimental Results 

In this research a new security algorithm for MANETs is presented; 
this algorithm is based on the idea of periodically changing the 
encryption key, thus make it harder for any attacker to track that 
changing key. The algorithm is divided into stages, key size 
determination function and key distribution. In this section, we talk 
about the set of experimental results for the attempts to decide the way 
for creating a more secured MANETs. These experiments are clarified.  

Neutrosophic vs. Key size determination membership, non-

membership functions and indeterminacy 

The first type of experiments had taken place to decide the key size 
for the encryption process. To accomplish this job the ordinary 
mechanism of KNN is used as a neutrosophic technique. Given the same 
parameters, we pass to the membership function, non-membership 
function and indeterminacy. The performance is measured with 
evaluation criteria, which are the average security-level and the key 
creation time. The performance criteria are demonstrated in the following 
sections. 

The Percentage Average Security-Level 

Average security level is measured for both techniques as the 
corresponding key provided how much strength given the number of 
nodes; the results are scaled from 0 to 5; these results are shown in Table 
ASL of membership vs. non-membership and indeterminacy classifi-
cation and Figure The Neutrosophic Average Precentage Security Level. 

 
No. nodes 25 50 75 100 125 150 175 200 225 250 

Percentage 
Average of 
Classification 

0.026 0.021 0.025 0.022 0.015 0.017 0.014 0.023 0.02 0.015 

Percentage 
Average of 
nonClassification 

0.034 0.036 0.038 0.038 0.004 0.004 0.004 0.004 0.004 0.004 

indeterminacy 0.94 0.943 0.937 0.939 0.981 0.979 0.982 0.973 0.976 0.981 

Tabel 1: ASL of membership vs. non-membership and indeterminacy classification 
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Figure 8: The Neutrosophic Average Percentage Security Level 
 
Figure The Neutrosophic Average Precentage Security Level and 

Table ASL of membership vs. non-membership and indeterminacy 
classification shows the average percentage security level with the 
number of mobile nodes between 25 and 250. As shown in the figure and 
the table, the average security-level of the Neutrosophic Classifier (NC) 
is much higher than the average security-level of the membership, non-
membership and indeterminacy classifier, especially for many mobile 
nodes. This is an expected result since the neutrosophic classifier adapts 
its self upon the whole set of criteria. 

The key creation time 

The time required to generate the key in both cases are measured, 
the results are scaled from 0 to 1 and are shown in Table KCR of 
membership, non-membership and indeterminacy and Figure 
Neutrosophic Key Creation Time. 

 
No. nodes 25 50 75 100 125 150 175 200 225 250 

Non-
membership 
Classification 

0.95 0.93 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

membership 
Classification 

 
0.93 0.9 0.85 0.92 0.93 0.94 0.94 0.94 0.94 0.94 

indeterminacy -0.88 -0.83 -0.8 -0.88 -0.89 -0.89 -0.9 -0.9 -0.9 -0.9 

Table 2: KCR of membership, non-membership and indeterminacy (Neutrosophic Classifiers) 
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Figure 9: Neutrosophic Key Creation Time 

Table KCR of membership, non-membership and indeterminacy 
and Figure Neutrosophic Key Cereation Time show the key creation time 
with the number of mobile nodes between 25 and 250. The speed of key 
creation is very high (mostly above 0.94) for all two techniques. However, 
the neutrosophic technique has some faster key creation time, especially 
with few mobile nodes. The reason is that the smaller the number of 
nodes with the same amount of calculation the bigger the time taken. 

PKI vs. non-PKI and indeterminacy distribution 

After the key size had been determined via the Key size 
determination function, the final problem is to distribute that key among 
nodes on the network. There were two approaches for the key 
distribution problem, either PKI or non-PKI. In this subsection the results 
of applying PKI and non-PKI and indeterminacy (neutrosophic) 
techniques are illustrated as applied in terms of security and processing 
time. 

Neutrosophic Security 

The PKI presents more overall security than ordinary non-PKI 

(single key) that is illustrated by applying both techniques over the 

network and recording the results regarding to the time required for an 

external attacker to break the session key. Table Security of PKI vs. non-

PKI and indeterminacy and Figure Neutrosophic Security Data of PKI 

show that results under the assumption of using small public-private key 

pairs. 
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No. nodes 25 50 75 100 125 150 175 200 225 250 

Non-PKI 0.15 0.2 0.23 0.26 0.3 0.32 0.36 0.4 0.44 0.45 

PKI 
 

0.85 0.85 0.85 0.92 0.93 0.94 0.94 0.94 0.94 0.94 

indeterminacy 0 -0.05 -0.08 -0.18 -0.23 -0.26 -0.3 -0.38 -0.38 0.55 

Table 3: Security of PKI vs. non-PKI and indeterminacy 

 
Figure 10: Neutrosophic Security Data of PKI 

Table Security of PKI vs. non-PKI and indeterminacy and Figure 
Neutrosophic Security Data of PKI show the huge difference in the 
security level provided by the PKI technique over the Non-PKI 
mechanism given the same experimental conditions. 

Processing time of neutrosophic data 

Another factor had been taken into consideration while developing 
the model, that is: time required to process the key and distribute it. 
Table Processing time of PKI vs. non-PKI and indeterminacy and Figure 
Processing Time of Neutrosophic Data PKI show that results under the 
assumption of using small public-private key pairs. 

No. nodes 25 50 75 100 125 150 175 200 225 250 

Non-PKI 0.3 0.32 0.35 0.37 0.4 0.44 0.47 0.51 0.55 0.58 

PKI 
 

0.2 0.35 0.5 0.6 0.68 0.75 0.83 0.87 0.93 0.97 

indeterminacy 0.5 0.33 0.15 0.03 -0.08 -0.19 -0.3 -0.38 -0.46 -0.55 

Table 4: Processing time of PKI vs. non-PKI and indeterminacy 
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Figure 11: Processing Time of Neutrosophic Data PKI 

Table Processing time of PKI vs. non-PKI and indeterminacy and 
Figure Processing Time of Neutrosophic Data PKI showthat Non-PKI 
techniques provide relatively small amount of processing time 
comparing to PKI and indeterminacy, due to the amount of modular 
arithmetic performed in the PKI mechanisms. However, the difference in 
the processing time is neglectable comparing to the security level 
provided by the PKI under the same conditions. 

Conclusions 

MANETs require a reliable, efficient, scalable, and most importantly, 
a secure protocol, as they are highly insecure, self-organizing, rapidly 
deployed, and they use dynamic routing. In this section, we discussed the 
vulnerable nature of the mobile ad hoc network. Also, the security 
attributes and the various challenges to the security of MANET had been 
covered. The new security mechanism which combines the advantages 
of both neutrosophic classification and the public key infrastructure had 
been demonstrated. The advantages of the proposed mechanism 
comparing to other existing mechanisms had been shown firstlyby 
comparing the neutrosophic to the non-classification, showing that 
neutrosophic is more adaptable and provides a better response in 
MANET. Also, the PKI is compared to the non-PKI and indeterminacy 
showing that it provides a far better security with a neglect table amount 
of delay.  
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7.3 Non-Classical Sets via Probability Neutrosophic 

Components 

The purpose of this application is to introduce and study the 
probability of neutrosophic crisp sets. After giving the fundamental 
definitions and operations, we obtain several properties, and discuss the 
relationship between neutrosophic crisp sets and other sets.   

The neutrosophic experiments are experiments that produce 
indeterminacy. Collecting all results, including the indeterminacy, we get 
the neutrosophic sample space (or the neutrosophic probability space) 
of the experiment. The neutrosophic power set of the neutrosophic 
sample space is formed by all different collections (that may or may not 
include the indeterminacy) of possible results. These collections are 
called Neutrosophic Events.  

In classical experimental probability, we have: 

 

Similarly, Smarandache introduced Neutrosophic Experimental 
Probability in [74]: 

 
Probability of NCS is a generalization of the classical probability in 

which the chance that event  occurs is 

 

on a sample space X, then probability of NCS 

space the universal set, endowed with a neutrosophic probability 
defined for each of its subset, from a probability neutrosophic crisp space.  

Definition A.7.3.1 

Let X be a non-empty set and A be any type of neutrosophic crisp 
set in a space X, then the probability is a mapping ,  

 
The probability of a neutrosophic crisp set has the following property: 
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Remark A.7.3.1 

1. In caseif we have NCS-Type 1, then: 

. 

2. In case if we have NCS, then: 

. 

3. The Probability of NCS-Type2 is a neutrosophic set, where: 

. 

4. The Probability of NCS-Type2 is a neutrosophic set,where: 

. 

Probability axioms of NCS 

The probability of intuitionistic neutrosophic crisp and NCS Type3s 
A in X is expressed as: 

, 
where  

, 
or  

.

 

1. The probability of intuitionistic neutrosophic crisp and NCS-

Type3s A in X where 

. 

2. Bonding the probability of intuitionistic neutrosophic crisp and 

NCS-Type3s where 

 

3. Additional law for any two intuitionistic neutrosophic crisp sets or 
NCS-Type3: 

 
 

if , then . 
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Since our main purpose is to construct the tools for developing the 
neutrosophic probability, we must introduce the following: 

1. Probability of neutrosophic crisp empty set with three types 
( ) may be defined as four types: 

(a) Type 1:  

(Type 1: intuitionistic neutrosophic crisp empty); 

(b) Type 2: 

(Type 1: ultra neutrosophic crisp empty); 

(c) Type 3:  

(Type 2: intuitionistic neutrosophic crisp empty); 

(d) Type 4:  

(Type 3: intuitionistic neutrosophic crisp empty). 
2. Probability of intuitionistic neutrosophic crisp universal and 

NCS-Type3 universal sets ( ) may be defined as four types: 

(a) Type 1:   

(Type 1: intuitionistic neutrosophic crisp universal)  
(b) Type 2:  

(Type 1: NCS Type3 universal) 
(c) Type 3:  

(Type 2: NCS Type3 universal) 

(d) Type 4:  

(Type 3: NCS Type3 universal) 

Remark A.7.3.2 

, where  are in Definition 2.1 [6], 

or equals any type for . 

Definition A.7.3.2 (Monotonicity) 

Let be a non-empty set, and NCSS and in the form: 
, with , 

, 

then we may consider two possible definitions for subsets ( ): 
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1) Type1: 
 

2) Type2: 
. 

Definition A.7.3.3 

Let X be a non-empty set, and NCSs A, B in the form ,

be NCSs.  Then: 

1)  may be defined  two types as: 

Type1: or 

Type2:  

2)  may be defined two types as: 

Type1:  or 

Type 2:  

3) may be defined by three types  

Type1: = or 

Type2: or 

Type3: . 

Proposition A.7.3.1 

Let  and in the form , be NCSs in a 

non-empty set X.  Then: 

1) . Or Type (iii) of or = any 

types for . 

2) 

 

3)  

Proposition A.7.3.2 

Let  and  in the form ,  be NCSs in a 

non-empty set X, and p, pN be NCSs. Then: 
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i)  

ii)  

Example A.7.3.1 

1) Let , and , be two neutrosophic crisp events in X 

defined by , , . 

We observe that: 

 
and one can compute all probabilities from definitions. 
2) If and  are intuitionistic neutrosophic 

crisp sets in X, then: 

Type1: , and ,   

Type2: and . 

Example A.7.3.2 

Let , 

,  be a NCS-Type 2, 

 be a NCT-Type1 but not NCS-Type2, 3, 

 be a NCS-Type 3, but not NCS-Type1, 2, 

 
We can compute the probabilities for NCSs by the following: 

 

Example A.7.3.3 

Let , , be NCS-

Type1 in X and , be NCS-

Type3 in X, then  we can find the following operations: 
Union, intersection, complement, difference and its probabilities. 

Type1: , and 
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Type2,3: ,  . 

may be equals. 

Type1: , 

Type 2: ,  

Type 3: ,   

Type2: ,  

and  

Type 2: . 

Type1: 
 

NCS-Type3 set in X, . 

Type2:  

NCS-Type3 in X,   

Type3:  

NCS-Type3 in X,  . 

Type1:  

NCS-Type3 in X ,  

Type2: 
 

NCS-Type1 in X, and . 

Type3: 
 

NCS-Type3 in X and . 

Type 1: 
 

NCS-Type 3:  

Type2:
 

NCS-Type3,  

Type1:  

NCS-Type3, 
 

Type2:  

NCS-Type3, and  
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Type 1: ,  

NCS-Type3 and  

Type 2: ,  

NCS-Type3 and  

Type3: ,  

NCS-Type3 and . 

Type1:  

NCS-Type3 and ,               

Type2:  

NCS-Type3 and ,  

Type3:  

NCS-Type3. . 

Probabilities for events:  

, 

, 
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, 

 

Probabilities for Products: 
The product of two events is given by  

,  

and  

 
and

, 

and

and  

7.4 Social Network Analysis e-Learning Systems via 

Neutrosophic Set 

The purpose of this section is to put on view a Social Learning 
Management System that integrates social activites in e-Learning, 
employing neutrosophic set to analyze social networks data conducted 
through learning activities. Results show that recommendations can be 
enhanced through utilizing proposed system.  

We will now extend the concepts of Social Learning Management 
System that integrates social activites in e-Learning  presented in [95-
107] to the case of neutrosophic sets. 

Introduction 

E-learning can be thought of as structured learning conducted over 
an electronic platform. One of the recommendations of Clayton 
Christensen’s Disrupting Class is to take a “student-centric” approach to 
education, one that responds to students’ unique learning styles and 
preferences.   

This is difficult in face-to-face setting with our usual educational 
model as it is formed in very systematic “teacher-centric” way. Nowadays, 
is indirectly designed to mold every student with the same method, on 
the same path, in same pace, and with teacher as the standard mold. E.A. 
Ross describes education as “the most effective means of control.” 
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Teacher is the most significant agency, even in this era that many 
countries’ governments are highly promoted “student-centric” as a key 
strategy for education. The word “program” is commonly used in terms 
of conducting curriculum. Such fact make many conclude that “education 
is all about control.”  

Ideally, education always means right and freedom, as reaffirmed 
by many international organizations’ articles such as UNESCO’s. It is such 
a big dilemma to set education in controlled way for making result with 
the freedom. Stanford University’s Dr. Moe mentioned, in American 
Experiment luncheon in August 2009, Technology is always an answer for 
education.  

He particularly mentioned that technology is E-learning. E-learning 
is promised to give freedom to learners in many aspects, such as learning 
at any place and at any time. While many aim that E-learning is a 
revolutionize tool for education, it has delivered lower impact than 
expected.  More than 70% of e-learning courses existed are designed to, 
more or less, duplicate face-to-face learning, which are more than half in 
presentation style. BYU’s Clark Gilbert observed that most existed e-
learning style with “the lack of meaningful content and quality standards 
in many dot-com publications”. Most online courses are “flexible from a 
schedule standpoint, but not the best learning experience”. 

Good online courses would require “innovative, first-rate course 
designs and strategies for engaging students.” Most online courses 
reflected the assumption that instruction is either all in the classroom or 
all from online. In fact, a hybrid course also effectively reaches to 
students with differing learning styles.  

A combination of both online and in-class instruction allows the 
various learning activities to be conducted via more effective medium. 
Many activities traditionally done in classroom, such as listening to a 
lecture or taking a test, can be effectively conducted online. Even an 
instructor-led discussion may be better if it occurs both in-class and 
online, allowing shy students to make their points in the more 
anonymous online setting.  

Online technology is not just to make learning more efficient, but to 
enhance it by allowing students and professors to better prepare for 
face-to-face or online learning experiences. With all mentioned 
potentials, now-a-day, online learning is on the rise across all areas of 
education. For higher education in the U.S., 79% of students access 
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course-specific materials at least once a week.  So, to achieve freedom in 
learning system, teacher control and peers interaction advantages.  

We propose system of learning management system (LMS) that 
incorporates within its beneath social networks and makes use of social 
network analysis in understanding students behavior and helps shaping 
their learning path. 

Related work 

Social networks are graph structures whose nodes or vertices 
represent people or other entities embedded in a social context, and 
whose edges represent interaction or collaboration between these 
entities. As Clayton M. Christensen and Henry J. Eyring mentioned “most 
online courses allow students to work at their own pace but provided no 
student-to-student interaction until social media came along.  

In 2004, Mark Zuckerberg developed a website which was the first 
iteration of the Facebook and social networking phenomena. Social 
network has been raised to mutuality in very short ages from the tools 
for communication in the close circle to the medium of communication 
for all, thanks to rapid development of mobile communication and 
information technology. As of today, social network has developed to 
become a new and true definition of "sharing", “collaborating", and 
“conversation" in the new form. While social networking means 
conversation, share, and collaborate, it is naturally in opposite polar from 
highly controlled education. Therefore integrating social networking to 
exist controlled programs of e-learning suggests chaos, especially in 
already-unstable world of e-learning.   

Social networks are highly dynamic, evolving relationships among 
people or other entities. This dynamic property of social networks makes 
studying these graphs a challenging task. A lot of research has been done 
recently to study different properties of these networks. Such complex 
analysis of large, heterogeneous, multi-relational social networks has led 
to an interesting field of study known as Social Network Analysis (SNA). 
Social network analysis, which can be applied to analysis of the structure 
and the property of personal relationship, web page links, and the spread 
of messages, is a research field in sociology.   

Recently social network analysis has attracted increasing attention 
in the data mining research community. From the viewpoint of data 
mining, a social network is a heterogeneous and multi-relational dataset 
represented by graph.  
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Tools used to support social media in e-learning cover a wide range 
of different applications. They include discussion forums, chat, file 
sharing, video conferences, shared whiteboards, e-portfolios, weblogs 
and wikis. Such tools can be used to support different activities involved 
in the learning process.  

The question of organizing e-learning tools involves the problem of 
integration vs. separation and distribution.  

A logic in which each proposition is estimated to have the 
percentage of truth in a subset T, the percentage of indeterminacy in a 
subset I, and the percentage of falsity in a subset F, where T, I, F are 
defined above, is called neutrosophic logic in [71-74].  

We use a subset of truth (or indeterminacy, or falsity), instead of a 
number only, because in many cases we are not able to exactly determine 
the percentages of truth and of falsity but to approximate them: for 
example a proposition is between 0.30-0.40 true and between 0.60-0.70 
false, even worst: between 0.30-0.40 or 0.45-0.50 true (according to 
various analyzers), and 0.60 or between 0.66-0.70 false.  

The subsets are not necessary intervals, but any sets (discrete, 
continuous, open or closed or half-open/half-closed interval, 
intersections or unions of the previous sets, etc.) in accordance with the 
given proposition. A subset may have one element only in special cases 
of this logic. Constants: (T, I, F) truth-values, where T, I, F are standard or 
non-standard subsets of the non-standard interval ] -0, 1+ [, where ninf = 
inf T + inf I + inf F   ≥ -0, and nsup = sup T + sup I + sup F ≤ 3+. 

Atomic formulas: a, b, c, … . 
Arbitrary formulas: A, B, C, … . 

Proposed Framework 

The Figure Social LMS Componentsbelow presents our proposed 
Social LMS that incorporates social networks in the e-Learning system. 
Social LMS consists of two main components:  

 Learning System, and  
 Social Network.  

Proposed system incorporates traditional learning activities as 
depicted in the Figure Traditional e-Learning Activities. 

Learning System 

 Use LMS  that is responsible for learning activities; 

 Use synchronous and asynchronous e-learning: 
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o Enable Synchronous e-learning: any learning event 

delivered in real time to remote learners, such as e-mail, 

comments, downloadable learning materials; 

o Enable Asynchronous e-learning: learning situations in 

which the learning event does not take place in real-

time, such as multicast webinars, chat, tele-video 

conferencing. 

Social Network 

 Use relationship between teacher and students (one-to-many); 
 Use Graph Theory Clustering Algorithm; 
 Use video and voice conference and electronic posts and 

exams with high level quality. 
 

 

Figure 12: Social LMS Components 
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Figure 13: Traditional e-Learning Activities 

In our proposed Social LMS, we utilize Graph Theory in analyzing 
the relations between students on social networks such as Facebook and 
twitter. Basically Graph theory clustering algorithm uses objects and 
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links among objects (data classes) to make clustering analysis. Similarly, 
social network also includes objects and links among these objects. [16] 
The Figure A sample of social network presents a sample of social 
network representation using nodes and edges. 
 

 
Figure 14: A sample of social network 

In view of the same pre-condition, the Business System Planning 
(BSP) clustering algorithm can be used in social network clustering 
analysis. According to graph theory, social network is a direct graph 
composed by objects and their relationship. In Figure A sample of social 
network, the circle represents an object; the line with arrow is an edge of 
the graph, and it represents direct link between two objects, so a social 
network is a direct graph. In the same Figure, let Oi be an object in social 
network ( i = 1...m ), and let Ej meaning direct link between two objects 
be a direct edge of the graph ( j = 1...n ). 

After definition of objects and direct edges, let also define reachable 
relation between two objects. There are two kinds of reachable relation 
among objects, shown as following: 

(a) One-step reachable relation: if there exists a direct link from 
Oi to Oj through one and only one direct edge, then Oi to Oj is 
a one-step reachable relation. For instance in Figure Social 
LMS Components there exists a direct link from O1 to O2 
through the direct edge E1, O1 to O2 is one-step reachable 
relation. 

(b) Multi-steps reachable relation: if there exists a direct link 
from Oi to Oj through two or more direct edges, then Oi to  j 
is a multi-steps reachable relation.  
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For instance in Figure A sample of social network has a direct link 
from O1 to O4 through direct edges E1 and E5, then O1 to O4 is a 2-steps 
reachable relation. 

To Generate edge creation matrix and edge pointed matrix, we can 
consume the following steps. The Figure Example of graph theoryshows 
an example of a graph that will have graph theory applied upon. First 
according to the objects and edges in the graph, define two matrixes Lc 
and Lp. Let Lc be a m× n matrix which means the creation of edges. In the 
matrix, Lc (i, j) =1 denotes object Oi connects with the tail of edge Ej , 
which means that object Oi creates the direct edge Ej . L (i, j) c =0 denotes 
Oi doesn’t connect with the tail of edge Ej, which means Ej isn’t created 
by object Oi. 
 

 

Figure 15: Example of graph theory 

 
 a b c d e f 

A 0 1 0 0 0 0 

B 1 0 1 0 0 0 

C 0 1 0 1 1 0 

D 0 0 1 0 1 0 

E 0 0 1 1 0 1 

F 0 0 0 0 1 0 

Table 5: Adjacency matrix for graph in Figure above 

a b

c

d

e f
a b

c

d

e f
a b

c

d

e f
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Experimental Results and Comments on Results 

We have developed an Excel package to be utilized for calculating 
neutrosophic data and analyze them. We have used Excel as it is a 
powerful tool that is widely accepted and used for statistical analysis. 
The Figure Neutrosophic Package Class Diagram shows Class Diagram of 
the implemented package. The Figure Neutrosophic Package Interface 
and Calculating Complement presents a working example of the package 
interface calculating the complement. Our implemented neutrosophic 
package can calculate intersection, union, and complement of the 
neutrosophic set. The Figure Neutrosophic Chart presents our 
neutrosophic package capability to draw figures of presented 
neutrosophic set. The Figure Neutrosophic Package Union Chart 
presents charting of union operation calculation, and the Figure 
Neutrosophic Package Intersection Chart, the intersection operation.  

The neutrosophic set are characterized by its efficiency as it takes 
into consideration the three data items: True, Intermediate, and False. It 
is believed that integrating neutrosophic calculation in e-Learning will 
yield more accurate results in the overall learning process for different 
activities as will be followed in the future work. 
 

 
Figure 16: Neutrosophic Package Class Diagram 
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Figure 17: Neutrosophic Package Interface and Calculating Complement 

 
Figure 18: Neutrosophic Chart 

 
Figure 19: Neutrosophic Package Union Chart 
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Figure 20: Neutrosophic Package Intersection Chart 

 

Conclusion and Future Work 

e-Learning is moving rapidly towards integrating social network 
activities in presented enhanced learning experience to students. Social 
Networks are dominating nowadays, and students spend long times 
there. In this section, we presented an effective e-Learning model that 
integrates social networks activities in e-Learning. We have presented an 
effective e-Learning system that utilizes the newly presented 
Neutrosophic Setting analysis of social network data integrated in e-
Learning. Identifying relationships between students is important for 
learning. Future work include incorporating the results we have 
achieved in customizing course contents to students, and recommending 
new learning objects more suitable for personalized learning. 

7.5 Some Neutrosophic Topological Notions of 

Neutrosophic Region 

In Geographical information systems (GIS) there is a need to model 
spatial regions with indeterminate boundary and under indeterminacy. 
This section gives fundamental concepts and properties of a 
neutrosophic spatial region. We introduce a new theoretical framework. 

For the start, let us add some further definitions and propositions for 
a neutrosophic topological region. 

Corollary A.7.4.1 

Let   and  be two neutrosophic 

sets on a neutrosophic topological space  then the following holds: 

 )(),(),( AA xxxA A  )(),(),( B xxxB BB 

 ,X
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i)  

ii)  

iii)  

iv) . 

Definition A.7.4.1 

We define the neutrosophic boundary (NB) of a neutrosophic set

 by: . 

The following theorem shows that the intersection method no longer 
guarantees a unique solution. 

Corollary A.7.4.2 

if is crisp, i.e.  or . 

Proof 

Obvious. 

Definition A.7.4.2 

Let  be a neutrosophic set in a neutrosophic 

topological space . Suppose that the family of neutrosophic open 

sets contained in A is indexed by the family  and 

the family of neutrosophic open subsets containing A is indexed by the 

family . Then two neutrosophic interior, closer 

and boundaries, are defined as it follows: 

1.  may be defined as two types  

Type 1.  

Type 2.  

2.  may be defined as two types  

Type 1. =  

Type 2. =  

3. may be defined as two types 

Type 1. =  

),int()int()int( BANBNAN 

),int()()( BANBNclANcl 

),()int( ANclAAN 

  ),()int( cc
ANclAN    )int()( cc

ANANcl 

 )(),(),( AA xxxA A )()( cANclANclA 

NOANA  )int( )int(AN
NOAN )int( NAN 1)int( 

 )(),(),( AA xxxA A

 ,X

Iixxx
iG  :)(),(),(

iGiG 

Jjxxx
jK  :)(),(),(

j
KjK 

]  [)int(AN

]  [)int(AN       )(1 min ,)(max ,)(max
iGiG xxx

iG

]  [)int(AN       )(1 min ,)(min ,)(max
iGiG xxx

iG

  )int(AN

  )int(AN       )( min ,)(max ,)(1max
iGiG xxx

iG

  )int(AN       )( min ,)(min ,)(1max
iGiG xxx

iG

]  [)(ANcl

]  [)(ANcl       )(1 max ,)(min ,)(max
jKjK xxx

jK
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Type 2. =  

4. may be defined as two types 

Type 1. =  

Type 2 = . 

5. The neutrosophic boundaries may be defined as: 

 

 

Proposition A.7.4.1 

(a) , 

(b)  

(c) and

 

Proof 

We shall only prove (c), and the others are obvious.  

 
or =  

Based on knowing that then 

 
or =  

In a similar way one can provethe others. 

Proposition A.7.4.2 

 

 

Proof 

Obvious. 

]  [)(ANcl       )(1 max ,)(max ,)(max
jKjK xxx
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Definition A.7.4.3 

Let  be a neutrosophic set in a neutrosophic 

topological space . We define neutrosophic exterior of A as it follows:

. 

Definition A.7.4.4 

Let  be a neutrosophic open set, and 

be a neutrosophic set in a neutrosophic 

topological space , then: 

1) A is called a neutrosophic regular open if  

2) If then B is called a neutrosophic regular closed if

 

Now, we obtain a formal model for simple spatial neutrosophic 
region based on neutrosophic connectedness. 

Definition A.7.4.5 

Let  be a neutrosophic sets on a neutrosophic 

topological space . A is called a simple neutrosophic region in 

connected NTS, such that: 

 and are neutrosophic regular closed; 

and are neutrosophic regular open; 

and are neutrosophically connected, having: 

, , 

which are and for two neutrosophic regions, so we 

are able to find relationships between two neutrosophic regions. 
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Graphs: The Relation between 

Neutrosophic Notions and Fuzzy Notions 
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Since the world is full of indeterminacy, the Neutrosophics found their 

place into contemporary research. We now introduce for the first 

time the notions of Neutrosophic Crisp Sets and Neutrosophic 

Topology on Crisp Sets. We develop the 2012 notion of Neutrosophic 

Topological Spaces and give many practical examples. 

Neutrosophic Science means development and applications of 

Neutrosophics Logic / Set / Measure / Integral / Probability etc. and 

their applications in any field. It is possible to define the Neutrosophic 

Measure and consequently the Neutrosophic Integral and 

Neutrosophic Probability in many ways, because there are various 

types of indeterminacies, depending on the problem we need to 

solve. Indeterminacy is different from randomness. Indeterminacy 

can be caused by physical space materials and type of 

construction, by items involved in the space, or by other factors. 




