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Neutrosophic Science

Since the world is full of indeterminacy, the Neutrosophics found
their place into contemporary research. We now introduce for the first
time the notions of Neutrosophic Crisp Sets and Neutrosophic Topology
on Crisp Sets. We develop the 2012 notion of Neutrosophic Topological
Spaces and give many practical examples. Neutrosophic Science means
development and applications of Neutrosophic Logic, Set, Measure,
Integral, Probability etc., and their applications in any field. It is possible
to define the neutrosophic measure and consequently the neutrosophic
integral and neutrosophic probability in many ways, because there are
various types of indeterminacies, depending on the problem we need to
solve.

Indeterminacy is different from randomness. Indeterminacy can be
caused by physical space, materials and type of construction, by items
involved in the space, or by other factors. In 1965 [51], Zadeh generalized
the concept of crisp set by introducing the concept of fuzzy set,
corresponding to the situation in which there is no precisely defined set;
there are increasing applications in various fields, including probability,
artificial intelligence, control systems, biology and economics. Thus,
developments in abstract mathematics using the idea of fuzzy sets
possess sound footing. In accordance, fuzzy topological spaces were
introduced by Chang [12] and Lowen [33]. After the development of
fuzzy sets, much attention has been paid to the generalization of basic
concepts of classical topology to fuzzy sets and accordingly developing a
theory of fuzzy topology [1-58]. In 1983, the intuitionistic fuzzy set was
introduced by K. Atanassov [55, 56, 57] as a generalization of the fuzzy
set, beyond the degree of membership and the degree of non-
membership of each element. In 1995, 1998, 1999 and 2002,
Smarandache [71, 72, 73, 74] defined the notion of Neutrosophic Set,
which is a generalization of Zadeh’s fuzzy set and Atanassov's
intuitionistic fuzzy set. Some neutrosophic concepts have been
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investigated by Salama et al. [61-70]. Forwarding the study of
neutrosophic sets, this book consists of seven chapters, targeting to:

= generalize the previous studies in [1-59], and [91-94] so to

define the neutrosopic crisp set and neutrosophic set
concepts;

= discuss their main properties;

= introduce and study some concepts of neutrosophic crisp

and neutrosophic topological spaces and deduce their
properties;

= deduce many types of functions and give the relationships

between different neutrosophic topological spaces, which
helps to build new properties of neutrosophic topological
spaces;

= stress once more the importance of Neutrosophic Ideal as a

nontrivial extension of neutrosophic set and neutrosophic
logic [71, 72,73, 74];

= propose applications on computer sciences by using

neutrosophic sets.

In the first chapter, further results on neutrosophic sets are given,
introducing and studying the concepts of a new types of crisp sets, called
the neutrosophic crisp set. After giving the fundamental definitions and
operations, we obtain several properties, and discuss the relationship
between neutrosophic crisp sets and other sets. Also, we advance and
examine the Neutrosophic Crisp Points, and analyze the relation between
two new neutrosophic crisp notions. Finally, we introduce and study the
notion of Neutrosophic Crisp Relations. In 1.1, we consider some possible
definitions for types of neutrosophic crisp sets. In 1.2, we define the
nature of the neutrosophic crisp set in X, called neutrosophic crisp point
in X, corresponding to an element X. In1.3, we introduce and explore the
relations on neutrosophic crisp sets and its properties. We point out that
results in this chapter were published in [61-70].

In the second chapter, we scrutinize the concept of neutrosophic
set. After giving the fundamental definitions and operations, we obtain
several properties, and discuss the relationship between neutrosophic
sets and other sets. Also, we introduce and converse about the
Generalized Neutrosophic Sets, and establish relation between two
neutrosophic notions. Finally, we consider the notion of Neutrosophic
Relations. In 2.1, we analyze several possible definitions for some types
of neutrosophic sets. In 2.2, we consider some possible definitions for
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basic concepts of the neutrosophic sets generated by Ng (characteristic

functions) and its operations. In 2.3, we introduce the concept of a-cut
levels for neutrosophic sets, and study some types of neutrosophic sets.
In 2.4, we introduce the distances between neutrosophic sets: the
Hamming distance, the normalized Hamming distance, the Euclidean
distance and normalized Euclidean distance. We extend the concepts of
distances to the case of Neutrosophic Hesitancy Degree. In2.5, we suggest
relations on neutrosophic sets and study properties. The results in
chapter 2 were published in [61-70].

In the third chapter, we generalize the Crisp Topological Spaces and
Intuitionistic Topological Space to the notion of Neutrosophic Crisp
Topological Space. In 3.1, we study the neutrosophic topological spaces
and build the basic concepts of the neutrosophic crisp topology. In 3.2,
we introduce the definitions of Neutrosophic Crisp Continuous Function
and we obtain some characterizations of Neutrosophic Continuity. In3.3,
we introduce the Neutrosophic Crisp Compact Spaces. Finally, some
characterizations concerning neutrosophic crisp compact spaces are
presented and one obtains several properties. In 3.4, we establish
definitions of Neutrosophic Crisp Nearly Open Sets, and we obtain
several properties and some characterizations. We point out that results
in chapter 3 were published in [64, 65, 66, 67, 68].

The purpose of the fourth chapter is to define the Neutrosophic
Crisp Ideals, and the Neutrosophic Crisp Filter. In 4.1, we introduce
neutrosophic crisp ideals and obtain their fundamental properties. In 4.2,
we define the Neutrosophic Crisp Local Functions. In 4.3, we introduce a
new notion of neutrosophic crisp sets via Neutrosophic Crisp Ideals and
investigate some basic operations and results in neutrosophic crisp
topological spaces. Also, Neutrosophic Crisp L-Openness and
Neutrosophic Crisp L-Continuity are considered as generalizations for
crisp and fuzzy concepts. Relationships between the new neutrosophic
crisp notions and other relevant classes are investigated. Finally, we
define and study two distinctive types of neutrosophic crisp functions. In
4.4, we advance the notion of filters on neutrosophic crisp set,
considered as a generalization of filters studies. Several relations
between various neutrosophic crisp filters and neutrosophic topologies
are also investigated here. We point out that results in chapter 4 were
accepted for publication in [64, 65, 66, 67].

In the fifth chapter, we extend the concepts of fuzzy topological
space [4] and intuitionistic fuzzy topological space [12, 65, 66] to the case
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of neutrosophic sets. We generalize the concept of fuzzy topological
space, first intuited by Chang [12] to the case of neutrosophic sets. In 5.1,
we introduce and study the neutrosophic topological spaces. In 5.2, some
neutrosophic topological notions of neutrosophic region are given and
we add some further definitions and propositions for a Neutrosophic
Topological Region. In 5.3, we explore a generalized neutrosophic
topological space. In 5.4, we initiate the concepts of Neutrosophic Closed
Set and Neutrosophic Continuous Function. Results in chapter 5 were
accepted for publication in [62, 63, 66].

In the sixth chapter, we extend the concept of intuitionistic fuzzy
ideal [58] and filters to the case of neutrosophic set. In 6.1, we introduce
the notion of Ideals on neutrosophic set, which is considered as a
generalization of ideals studies. Several relations between diverse
neutrosophic ideals and neutrosophic topologies are also examined here.
In 6.2, we introduce and study the Neutrosophic Local Functions. Several
relations between different neutrosophic topologies are also researched.
In 6.3, we introduce the notion of Filters on neutrosophic set which is
considered as a generalization of filters studies. Several relations
between different neutrosophic filters and neutrosophic topologies are
also studied here. We point out that results in chapter 6 are published in
[62, 63, 64, 70].

In the seventh chapter, we propound some applications via
neutrosophic sets. In 7.1, we introduce the concept of Neutrosophic
Database. In 7.2, we suggest a security scheme based on Public Key
Infrastructure (PKI) for distributing session keys between nodes. The
length of those keys is decided using Neutrosophic Logic Manipulation.
The proposed algorithm of Security Model is an adaptive neutrosophic
logic-based algorithm (membership function, non-membership and
indeterminacy) that can adapt itself according to the dynamic conditions
of mobile hosts. The experimental results show that using of
neutrosophic-based security one can enhance the security of MANETS. In
7.3, we introduce and study the Probability of neutrosophic crisp sets.
After giving the fundamental definitions and operations, we obtain
several properties, and discuss the relationship between neutrosophic
crisp sets and other sets. The purpose of the section 7.4 is to present the
Social Learning Management System that integrates social activites in e-
Learning, and utilize neutrosophic sets in order to analyze social
networks data conducted through learning activities. Results show that
recommendations can be enhanced through using the proposed system.
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Section 7.5 talks about the Geographical Information Systems (GIS),
giving fundamental concepts and properties of a neutrosophic spatial
region. There is a need to model spatial regions with indeterminate
boundary and under indeterminacy. We introduce a new theoretical
framework via neutrosophic topology and we add some further
definitions and schemes for a neutrosophic topological region.

In this chapter, we infroduce the basic properties of the
concept of neutrosophic crisp set and investigate some new
neutrosophic concepts. We obtain several properties, and
discuss the relationship between neufrosophic crisp sets and
other sets. Also, we infroduce and study the neutrosophic
crisp points and relation between new neutrosophic crisp
notions. Conclusively, we explain the notion of neutrosophic
crisp relations. In 1.1, we investigate some possible definitions
for some types of neutrosophic crisp sets. In 1.2, we define a
type of neutrosophic crisp set in X, called neutrosophic crisp
point in X, corresponding fo an element X. In 1.3, we
intfroduce relations and study properties of the neutfrosophic
crisp sets.

1. Neutrosophic Crisp Set Theory

1.1 Neutrosophic Crisp Set

Let us consider some possible definitions for various types of
neutrosophic crisp sets.

Definition 1.1.1

Let X be a non-empty fixed sample space. A neutrosophic crisp set
(NCS) A is an object having the form A=(A, A, A;)where A, A and A,

are subsets of X.
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The object having the form A=(A, A, A,) is called:

(a) A neutrosophic crisp set of Type 1 (NCS-Type1l) if satisfying
ANA=¢, AnA=¢gand ANA=9¢.

(b) A neutrosophic crisp set of Type2 (NCS-TypeZ2) if satisfying
ANA =g ANA=¢,ANA=¢AUAUA =X

(c) A neutrosophic crisp set of Type 3 (NCS-Type3) if satisfying
ANA NA =¢and AUA UA =X.

Remark 1.1.1
A neutrosophic crisp set A:<A1,A2,A3> can be identified to an
ordered triple (A;, Ay, A3) , subsets in X, and one can define several

relations and operations between NCSs.
Since our purpose is to construct the tools for developing

neutrosophic crisp set, we must introduce types of CNS ¢y, X in X.
1) @y may be defined as the following four types:

(a) Type 1: oy = (@, ¢, X),
(b) Type 2: (pN = ((P:X:X):
(c) Type 3: oy = (9, X, 9),
(d) Type 4: oy = (@, ¢, ®).
2) Xy may be defined as the following four types:

(a) Type 1: Xy = (X, ¢, 9),
(b) Type 2: XN = <X, X} (P),
(C) Type 3: XN = (X, (pr)ﬂ
(d) Type 4: Xy = (X, X, X).
Every neutrosophic crisp set A on a non-empty set X is obviously

NCS having the form A= <A1, A, A3>,

Definition 1.1.3
Let A= <A1, A,, A3> be a NCS in X, then the complement of the set
A (A< for short) may be defined as three kinds of complements:

(c,) A° =<A01, A°,, AC3>, or
(C,) A° =(A;, A, A) or
(C,) A° =<A3,AC2,A1>.
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One can define several relations and operations between NCS as it
follows:

Definition 1.1.4

Let X be a non-empty set, and the NCSS A and B be in the form
A=(A,A,A), B=(B,B,B,). We consider two possible definitions for

subsets (AcB).So (AcB) may be defined as two types:
Typel. AcB< A <B,,A, B, and A, o B,
Type2. AcB< A cB,,A, B, and A, o B;.

Proposition1.1.1
For any neutrosophic crisp set A, we hold the following:
a)¢N cA Iy Sy

Definition 1.1.5

Let X be a non-empty set, and the NCSs A and B be of the form
A=(A,A,A) B=(B,B,,B,) be NCSs. Then:

1. ANB may be defined as two types:
Type .AnB=(A NB,,A, NB,,A, UB,),
Type 2.ANB=(A NB, A, UB,, A, UB;).

2. AUB may be defined as two types:
Type 1.AUB=(A UB,A, NB, A UB;),

Type 2.AUB =(A UB,A,NB,,ANB;).
3. [1A=(A, Ay A%).
4 < A:<AC3,A2,A 3>-

Proposition 1.1.2

For all two neutrosophic crisp sets A and B in X, the following
assertions are true:

(ANB) = A°UBS;
(AUB) =A° nB".
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We can easily generalize the operations of intersection and union in
Definition 1.1.2 to an arbitrary family of neutrosophic crisp subsets as it

follows:

Proposition 1.1.3
Let {Aj je J} be an arbitrary family of neutrosophic crisp subsets

in X, then:
1) ~Ajmay be defined as the following two types:

(a) Type L.NA, = <m Aj,.NA, JUA, >
(b) Type 2.1 A, = <m Aj LA, A, >

2) UA;may be defined as the following types:
(a) Type LU A, =<u Aj,,NA, ,mAjs>,
(b) Type 1.U A} = (U Ajj UA, OA, ).

Definition 1.1.6
The product of two neutrosophic crisp sets A and B is a neutrosophic

crisp set Ax Bgiven by Ax B=(A x B, A, xB,, A, x B;).
Definition 1.1.7
A NCS-Typel ¢y, X, in X may be defined as it follows:
1. ¢n1may be defined as three types:
(a) Typel: gy, = (¢4, X),
(b) Type2: ¢y, = (¢, X,9),
(c) Type3: gy =(¢.4.9).

2. Xn1may be defined as one type:
(a) Typel: Xy, :<X,¢,¢>.

Definition 1.1.8
A NCS-Type2, ¢y,, Xy, in X may be defined it as follows:
1) ¢y, may be defined as two types:
(a) Typel: ¢y, = (¢4 X),
(b) Type2: ¢y, = (¢, X.4).
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2) Xy, may be defined as one type:
(a) Typel: Xy, = <X,¢,¢>.

Definition 1.1.9
A NCS-Type 3, ¢y3, X3 in X may be defined as it follows:

1) ¢y, may be defined as three types:
(a) Typel: ¢ys =(4,4, X ), or
(b) Type2: ¢ys5 = <¢, X'¢>7 or
(c) Type3: @y; :<¢, X,X>.

2) Xy, may be defined as three types:
() Typel: Xy3 = (X,4.4),
(b) Type2: X3 = <X , X,¢>,
(c) Type3: Xy, = <X,gp, X>.

Corollary 1.1.1
In general,

(a) Every NCS-Type 1, 2, 3 is NCS.

(b) Every NCS-Type 1 is not NCS-Type?2, 3.

(c) Every NCS-Type 2 is not NCS-Typel, 3.

(d) Every NCS-Type 3 is not NCS-Type2, 1, 2.

(e) Every crisp set is NCS.

The following Venn diagram represents the relation between NCSs:

NCS-Type 1

NCS

Figure 1. Venn diagram representing the relation between NCSs.



A. A. Salama & Florentin Smarandache
|

Example 1.1.1

LetX ={a,b,c,d,e, f}, A=({a,b,c,d} {e}.{f}), D={a b} {e.c}.{f . d})
be a NCS-Type 2, B=({a,b,c},{d}.{e}) be a NCT-Typel, but not NCS-
Type2, 3, C =({a,b}.{c,d}.{e, f,a}) be a NCS-Type 3, but not NCS-Typel,
2.

Definition 1.1.10
Let X be a non-empty set, A = <A1, A,, A3>.

1) If A is a NCS-Typel in X, then the complement of the set A (A°)
may be defined as one kind of complement Typel: A° =(A;, A, A) -

2) If A is a NCS-Type 2 in X, then the complement of the set A (A®)
may be defined as one kind of complement A® = <A3, A,, A1>

3) If A is NCS-Type3 in X, then the complement of the set A (A%)
may be defined as one kind of complement defined as three kinds
of complements:

(C,) Typel: ac :<A01,A°2,AC3>
(C.) Type2: A® =(Aq, Ay, A)
(C) Type3: A° = (A, A%, A,)

Example 1.1.2
Let X ={a,b,c,d,e, f}, A:({a,b,c,d},{e},{f}) be a NCS-Type 2,
B=<{a,b,c},{¢},{d,e}> be a NCS-Typel, C =<{a, b},{c,d}{e, f}) be a NCS-

Type 3, then
1) the complement A=({a,b,c,d}.{e}.{f}),

A® =({f}{e}.{a,b,c,d}) NCS-Type 2;
2) the complement of B =({a,b,c}{¢}{d,€}),
B® ={{d,e}.{#}.{a,b,c}) NCS-Typel;
3) the complement of C =({a,b},{c,d},{e, f}) may be defined as

three types:
Type 1:C° =({c,d,e, f}.{a,b,e, f},{a,b,c,d}).

Type 2:C° =({e, f}.{a,b,e, f},{a,b}),
Type 3:C° = ({e, f}.{c.d}.{a,b}).
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Proposition 1.1.4
Let {Aj cjeld } be an arbitrary family of neutrosophic crisp subsets

in X, then:
1) nA; may be defined as two types:

(a) Typel: A, = <m Aj1.NA,, ,uAj3>,
(b) Type2: n A = <m Ajj, LA, VA, > .
2) UA; may be defined as two types:

(b) Type2: u A= <U A VA, ,mAj3> '

Definition 1.1.11
If g = (8,8, 8,) is a NCS in Y, then the preimage of B under f,

denoted by f(B),is a NCS in X defined by @ =(1'®).r ®).f ®)
If A=<A1,AZ,A3> is a NCS in X, then the image of A under f, denoted
by f(A), is thea NCS in Y defined by f(a)=(f(a),f(A), f(A)°) ).

Here we introduce the properties of images and preimages, some of
which we frequently use in the following chapters.

Corollary 1.1.2
Let A, {A:ieJ} be a family of NCS in X, and B, {B;:jek|a NCS in Y, and
f : X > Y afunction. Then:
(a) AchA, < f(A)c f(A,) B,cB, e f(B)c f7(B,)
(b) Ac f*(f(A) andif f isinjective, then A= f*(f(A) ),
() t*(f(B)) c B andif f issurjective, then f*(f(B) )=B,
(d) F(B))= 17(B), f*(B) )=nf(B),
(e) FOA) =UT(A) T(OA) < f(A) gnd if f is injective, then
f(nA) =N T(A)
(f) fﬁl(YN) :XNv f71(¢N) :¢N_
(&) t(s,) =¢,., F(X,) =V,, if f issubjective.
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Proof
Obvious.

1.2 Neutrosophic Crisp Points

One can easily define the nature of neutrosophic crisp set in X,
called neutrosophic crisp point in X, corresponding to an element X.

Now we present some types of inclusion of a neutrosophic crisp point
to a neutrosophic crisp set.

Definition 1.2.1

Let A= <A1 A A3> be a neutrosophic crisp set on a set X, then
p=({p.}.{p,}{p;}) p. # p, # p, €X is called a neutrosophic crisp point.

An NCP p=({p}.{P.) P belongs to a neutrosophic crisp set
A= <A1 A LA >, of X, denoted by p € A, if it may be defined by two types:

(@) Type 1: {p,} c A, ,{p,} < A,and {p,} c A,
(b) Type 2: {p,} < A, ,{p,} 2 A,and{p } c A,.

Theorem 1.2.1

Let A=<A1,A2 , A3> and B=<<Bl, Bszs>> be neutrosophic crisp
subsets of X. Then A c B if pe A and p € B for any neutrosophic crisp
point P in X.

Proof
Let Ac B and pe A. Then we have:

(@) Type 1: {p,} < A, {p,}c A,and {p,} c A, Or
(b) Type 2: {p,} = A, .{p,} 2 A,and{p,} c A,.

Thus, p e B. Conversely, take any x in X. Let p, e A and p, € A,
and p, € A,. Then p is a neutrosophic crisp point in X, and p € A. By the
hypothesis, peB . Thus p, eB, or Type 1: {p,}c B,,{p,}< B, and
{p,}< B,or Type 2: {p,} c B,,{p,} 2 B,and{p,} < B,. Hence, Ac B.

Theorem 1.2.2
LetA= <A1 A A3> be a neutrosophic crisp subset of X.

Then A=U{p:pe A}.
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Proof
Since U {p: p e A}, we get the following two types:

(a) Type 1: (U{p: p e AL AP, P, € ALpy: Py € A), OT
(b) Type 2:(Ufp,: p, € A}A{p, : . € A(p;: p, € AJ)- hence A<(AAA).

Proposition 1.2.1
Let {Aj je J} be a family of NCSs in X. Then:
(a1) p={p){p}ip)) € ol Ajifp eA foreach jeJ.

(@) p eu AjifEIj e J suchthat p A,
jed

Proposition 1.2.2

Let A:<A1,A2,A3> and B=<Bl’Bz’Bs> be two neutrosophic crisp sets
in X. Then Ac Bif for each p we have p eA < p eB and for each pwe
havep eA =p eB. IfA = B for each p we have p ¢A =peB and for

each p wehavep €A < p <B.

Proposition 1.2.3
Let A=(A A A ) beaneutrosophic crisp set in X. Then:

A:U<{p1: P eA}!{pz P, EAZ}’{ps P EAS}

Definition 1.2.2

Let f : X - Y be a function and p be a neutrosophic crisp point in
X. Then the image of p under f, denoted f{p), is defined by:

t(p) = (fa,} {a,}.{a, ), whereq, = (p,),q, = f(p,) and g,=f(p,).

It is easy to see that f(p) is indeed a NCP in Y, namely f(p) =q,

where g = f(p), and it has exactly the same meaning of the image of a
NCP under the function f.

Definition 1.2.3
Let X be a non-empty set and p€X. Then the neutrosophic crisp
point py defined by p - <{p},¢, {p}°> is called a neutrosophic crisp point

(NCP) in X, where NCP is a triple ({only element in X}, empty set, {the
complement of the same element in X}).
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The neutrosophic crisp points in X can sometimes be inconvenient
when expressing the neutrosophic crisp set in X in terms of neutrosophic
crisp points. This situation occurs ifA:<A1 A LA > pe A ,whereA A A

are three subsets such thatA, ~n A, = ¢, AnA =9, A, NA =¢.

Therefore, we have to define "vanishing" neutrosophic crisp points.

Definition 1.2.4
Let X be a non-empty set and p € X be a fixed element in X. The
neutrosophic crisp set p, :<¢,{p},{p}°> is called "vanishing"

neutrosophic crisp point (VNCP) in X, where VNCP is a triple (empty set,
{only element in X}, {the complement of the same element in X}).

Example 1.2.1
LetX ={a,b,c,d}and p=be X . Then:
p =({bl 4. fac.dl),
py, =(a. bl fac.df),
P =({{o}.{a}{d}).
Definition 1.2.5
Let p, = ({p}¢.{p}) be a NCP in X and A=(A A A) be a

neutrosophic crisp set in X.
(a) p, issaid to be contained in A (p,eA)ifpeA.

(b) py, isVNCPinXand A= <A1 A A3> a neutrosophic crisp set in
X. Then py, is said to be contained in A(p, < A)ifpeA,.

Proposition 1.2.4
Let {a; : j <y be afamily of NCSs in X. Then:

(a1) PN € jQJ Ajif Py EAJ- for each jeJ.
(az) PNy € JQJ Ajifpy, ea;foreach jeJ.
(b1) PN ej\ejJ A;jif3jeJ suchthat p e Aj-

(b2) Py € ,QJ Ajif3j € J suchthat pyy €A;.
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Proof
Straightforward.

Proposition 1.2.5
LetA=<A1 A A3> and B =<|31 B, Ba> be two neutrosophic crisp sets

in X. Then:
(a) AcBifforeach p, wehave p, € A < p, €B and for each

Py, wehave p, €A = p, €B.
(b) A=Bifforeach py wehave p, € A = p, €B and for each

Py, wehavep, €A < p, €B.

Proof
Obvious.

Proposition 1.2.6
LetA= <A1 , A2 , A3> be a neutrosophic crisp set in X. Then:

A:(U{pN - P EA})U(U{pNN - P EA})'

Proof
It is sufficient to show the following equalities:

A =(Ulp 3:py e A)U(Ulg: pyy €A)), A, =4, and
A, =(m {{p ¥ipye A})m(m {{p}C "Pwn € A}) which are fairly
obvious.

Definition 1.2.6
Let f : X —Y be a function and pn be a neutrosophic crisp point in
X. Then the image of pn under f denoted by f(py) is defined by

f(pN)=<{q},¢, {q}°> where g= f(p ). Let pnny be a VNCP in X. Then the
image of pny under fdenoted by f(p,,)is defined by f(p,,)= <¢, {a}, {q}°>
whereq= f(p ). It is easy to observe that f(p,) is indeed a NCP in Y,
namely f(py)=qy whereq= f(p ), and it has exactly the same meaning

of the image of a NCP under the function f . f(p,,)is alsoa VNCP in,
namely f(pyy)=0y, where q=1(p).
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We state that any NCS A in X can be written in the form:
A=Au AU A
N NN NNN where

@=U{DN py €Al
A:
A PN

A = : A
NAN U{pNN PNN € }

It is easy to show that, if A:<A1,A2,A3>, then:

A= (A7)
and

A=(p. A A).

Proposition 1.2.8
Let f:X —»Y bea functionand a- <A1, A2’A3> be a neutrosophic crisp

setin X. Then we have f(A)=f(A)Uf(A)UT( A).
N NN NNN

Proof

This is obvious from A= AU AU A .
N NN NNN

1.3 Neutrosophic Crisp Set Relations

Here we give the definition of some relations on neutrosophic crisp
sets and study their properties.
Let X, Y and Z be three ordinary non-empty sets.

Definition 1.3.1
Let X and Y be two non-empty crisp sets and NCSS A and B in the
form A=(A,A, A;) inX, B=(B,,B,,B;)on Y. Then:

(a) The product of two neutrosophic crisp sets A and B
is a neutrosophic crisp set AxB given by
AxB=<A_L><Bl,A2><BZ,A3><B3>0n XxY.

(b) We call a neutrosophic crisp relation R < Ax B on
the direct product X xY .
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(c) The collection of all neutrosophic crisp relations on
X xY is denoted as NCR(X xY).

Definition 1.3.2

Let R be a neutrosophic crisp relation on X xY , then the inverse
of R is given by R™ where Rc AxB on X xY , then R* = Bx A on
Y x X.

Example 1.3.1
Let X ={a,b,c,d} , A=({a,b}.{c}.{d}) and B=({a},{c}.{d.b}). Then
the product of two neutrosophic crisp sets is given by:

AxB=({{(a a),(ba)}{(c,c)}{(d,d),(d,b)}) and

Bx A={{(a a),(a,h)}{(c.c)}{(d,d),(b,d)}), and

R, ={(@a)}{(c.0}{(d.d)}),

R, c AxBon X x X,

R, ={(ab)}{(c.0)}.{(d,d),(b,d)}) R, = BxAon X x X,

R =({(a,@)}{(c.01{(d,0)}) < Bx A and
R, " =({(b, Q)}{(c,0)}{(d. d).(d,b)})  BxA.

Example 1.3.2
Let X ={a,b,c,d,e, f},
A={{a,b,c,d}{e.{f}),
D =({a,b}.{e,c}{f,d}) be a NCS-Type 2,
B=({a,b,c},{s}{d,e}) be a NCS-Typel.
C = ({a,b}.{c.d}.{e, 13) be a NCS-Type 3.
Then:
AxD=({(aa),(a,b),(b,a),(b,b), (b,b),(c,a),(c,b),(d,a),(d,b)},{(ee), (e, )}.{(F, f),(F,d)})
D xC =({(a a),(a,b),(b,a), (b,b)}.{(e,c), (e.d), (c,c), (c,d)}.{(f.e).(f, F).(d,e).(d, F)})

and we can construct many types of relations on products.
We now define the operations of neutrosophic crisp relation.
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Definition 1.3.3
Let R andS be two neutrosophic crisp relations between X and Y
for every (x,y)e X xY and NCSS A and Binthe form A=(A, A, A;) in

X, B=(B,,B,,B;)on Y. Then we can define the following operations:
1. Rc S may be defined as two types:
a) Typel:RcS & A, B, , Ay, B, , Ajg 2Byg;
b) Type2:RcS < A, = Bjg, Ajg 2Bys, By < Asg.
2. RuUS may be defined as two types:
a) Typel:RUS =(Ag UBs, Ajg UB,s, Ajg N By );
b) Type2: RUS =(Ag UBys, Ajg N Byg, Agg M By ).
3. RS may be defined as two types:
a) Typel:RnS =(Ag NBys, Ajg UB,s, Ajg UBg );
b) Type2: RnS =(Ag NBys, Ajg N Byg, Agg U By ).

Theorem 1.3.1
LetR, S and Q be three neutrosophic crisp relations between X
and Y for every(x,y) e X xY, then:
ii RcS=R'cs™
ii. (RuS)'=R'us?
ii. (RNS)'=R'nS™
iv. (RY'=r
v. Rn(SuQ)=(RnS)uU(RNQ).
vi Ru(SnQ)=(RuUS)n(RUQ).
vii. IfScR,QcR,then SUQCcR.

Proof
Clear.

Definition 1.3.4
We have the neutrosophic crisp relation | e NCR(X x X) ; the
neutrosophic crisp relation of identity may be defined in two ways:
Typel: | = {<{Ax A},{Ax A}, ¢ >},
Type2: | = {<{Ax A}, ¢, ¢ >}.
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Now we define two composite relations of neutrosophic crisp sets.

Definition 1.3.5

Let R be a neutrosophic crisp relation in X xY , and S be a
neutrosophic crisp relation inY x Z . Then the composition of R andS§S,
RS, which is a neutrosophic crisp relation in X x Z, as a definition may
be defined in two ways:

Typel:

ReS e (RoS)(x,2) = A<{(A xBy)g N (A xB;)s},
{(Ay xB,)g M (A; xBy)s} {(A3 xBs)g M (A3 xBg)s}>.
Type2:
RoS <« (RoS)(x,2) = {<{(A xB))g U(A, xB,)s},
{(A; xBy)gr U(A; xBy) s} {(Ag x By)g W (A3 xB3)g}>.

Example 1.3.3
Let X ={a,b,c,d}, A=({a,b},{c}.{d}) and B =({a}.{c}{d,b}). Then
the product of two events is given by:

AxB=({(aa),(b,a)}.{(c,0)}.{(d,d),(d,b)}),
Bx A=({(a,a),(a,b)}{(c.c)}.{(d,d),(b,d)}),
Ry ={(a.a)}{(c.0)}{(d,d)}),R, < AxBon X x X
R, ={(a,b)}{(c,c)}{(d,d),(b,d)}) R, = BxAon X x X
Ry o R, =u{(a, @)} n{(a,b)}{(c.0)}.{(d. d)}) = {{}.{(c.0)}.{(d,d)})
| ={(a,2).(a,b).(b2)}{(a,2).(a,b).(0, a)}.{¢})
|2 =({(a,).(a,b).(b:2)}{#}.{4})

Theorem 1.3.2

Let R be a neutrosophic crisp relation in X xY , and S be a
neutrosophic crisp relation inY xZ, then(Ro ) ' =S 1o R
Proof
Clear.

41
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2. Neutrosophic Set Theory

In this chapter, we intfroduce and study the concept of
neutrosophic set. After granting the fundamental definitions
and operations, we obtain several properties, and discuss the
relationship between neutrosophic sets and other sets. Also,
we usher in and investigate the generalized neutfrosophic set
and relations between neufrosophic notions. Eventually, we
examine some neutrosophic relations. In 2.1, we consider
some possible definitions for types of neutrosophic sefs. In 2.2,
we deem possible definitions for basic concepts of the
neutrosophic sets, and their operations. In 2.3, we infroduce
the concept of a-cut levels for neutrosophic sets. Added to,
we introduce and study some types of neutrosophic sets. In
2.4, we establish the distances between neutrosophic sefs: the
Hamming distance, the normalized Hamming distance, the
Euclidean distance and the normalized Euclidean distance.
We extend the concepts of distances to the case of
neutrosophic hesitancy degree. In 2.5, we determine the
relations on neutrosophic sets and study their properties.

2.1 Neutrosophic Sets

We now consider some possible definitions for the basic concepts of
the neutrosophic set and its operations.

Definition 2.1.1
Let X be a non-empty fixed set. A neutrosophic set (NS) A is an
object having the form A= {< 1,(x),,(X),7,(X) > x € X jwhere z,(x),c,(x)

and y,(x) represent the degree of membership function (denoted 1,(x)),
the degree of indeterminacy (denoted O'A(X) ), and the degree of non-
membership (denotedy, (x)) respectively of each elementx e X to the set
A.



Neutrosophic Crisp Set Theory

Remark 2.1.1
A neutrosophic set A={< u,(x),o4(x),74(x) > xe X} can be identified to
an ordered triple < u,,04,7, > in | 017 inX.

Remark 2.1.2

For simplicity, we use the symbol A=<, (x),oc,(x),7.(x)> for NS
A= {< up(x),02 (0,74 (X) > X € X},
Example 2.1.1

Every IFS A, which is a non-empty set in X, is obviously a NS, having
the form
A={< 1p()L= (ua(X) + 7 a(X), 7 (X) > x e X}

Since our main purpose is to construct the tools for developing
neutrosophic set and neutrosophic topology, we must introduce the NSS
0y and 1, in X as it follows:

0, may be defined as four types:
(0,) Type 1: 0y ={(0,01):xe X };
(0,) Type 2: 0y = {011): x e X ;
(0,) Type 3: 0y = {(0.10): x e X |;
(0,) Type 4: 0y ={0,00):x e X .
1, may be defined as four types:
(L) Type 1: 1y = {10,0):xe X };
(1) Type 2: 1y = {(L00):xe X} ;
() Type 3: 1 = {110):xe X |;
(1,) Type 4: 1, = {111):xe X /.
Definition 2.1.2
Let A={<up(x),07(x),7a(x)>xeX} be a GNSS in X, then the
complement of the set A (C(A) ) may be defined as three kinds of
complements:
(C1) C(A) = {<1— a(N) 1= oA () 1-ya(X) > x € X };
(C2) C(A) = {< ya(X), oA (X), 14 (X) > x € X };
(C3) C(A) =< 7a (1= 0 (%), 2 (¥) > x€ X},
Let us define relations and operations between NSS as it follows:

Definition 2.1.3
Let X be a non-empty set, and NSS A, B in the form:
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A=< ,uA(X)lO-A(X)J/A(X) >y B =< t5(x),05(X), 75(X) >+
We consider two definitions for subsets(A cB):

Type 1: AcB < u, (X)< gt (X )74 (x) 27 andaA( X)<og(x) VX eX ;
Type 2: AcB < p, (X )<t (X )74 (X) 275 (x) and o, (x )20, (x) .
Proposition 2.1.1
For any neutrosophic set A, we hold the following:
1. 0o, cA, 0,c0,;
2. Acl,, 1, cl,.

Definition 2.1.4
Let X be a non-empty set, and A=<ux(X),04(X),7a(X)> ,
B =< 15 (X),05(x),75(X) > be a NSS. Then:
1. ANB may be defined as three types:
(1,) Typel: ANB =<x,u, (X ).ty ()04 (X ).og (X), 74 (X )7 (X ) >
(1,) Type 2: ANB =<x,u, (X) Aty (X ),o0 (X ) A0 (X), 70 (X )V 75 (X)) >,
(1,) Type 3: ANB =<x, 1, (X ) A st (X ), 0 (X )V oy (X), 74 (X)V 75 (X) >+
2. AUB may be defined as two types:
(U,) Typel: AUB =<x,u, (X )v 5 (X ).00 (X )V oy (X ), 74 (X) A7 (X)>,
(U,) Type 2: AUB =<x,u, (X )V ptg (X )00 (X ) A 0g (X), 7a(X) A7 (X) >
3. [ JA=<x,m (x).o0(x )1 p, (x )> <>A=<x1-7,(x),00 (X )74 (X)>+
We can easily generalize the operatzons of intersection and union to
arbitrary family of Nss as it follows:
Definition 2.1.5
Let {Aj:jeJ} be an arbitrary family of Nss in X, then:
1. NAj may be defined as two types:

Type 1: NAj :<X,J_/E\J Hy (X ),J_/e\J Oy (X ),\/;/Aj (X )>,
Type 2: NAj :<X Ay (X ), v (X)) vg (x )> .

2. UAj may be defined as two types:
Typel: UA; =< Vi, (X).A0p (X)AYa(X) >

Type2: UA; =< Vi, (X),VUAj (X),A7A(X) >

Definition 2.1.6
Let A and B be two neutrosophic sets; then:
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Al may be defined asA[B =(x,u, A7y.0, (X)o (X )74 v 225 (X)) -

Proposition 2.1.2

For all two neutrosophic sets A, B, the following statements are true:

(a) c(AnB)=C(A)UC(B);
(b) c(aUB)=Cc(A)NC(B).
We now take into consideration some possible definitions for the
generalized neutrosophic set.
Definition 2.1.7
Let X be a non-empty fixed set. A generalized neutrosophic set
(GNS) A is an object having the form A=<y, (x),04(X),va(x)>, where
un(x)oa(x) and v,(x) represent the degree of membership function
(denoted x,(x)), the degree of indeterminacy (denoted,(x)), and the
degree of non-membership (denoted VA(X)) of each element x € X of the
set A, where the functions satisfy the condition 4, (x)A o ,(x)Av,(x)<0.5.

Remark 2.1.3

A generalized neutrosophic A=< 4, (x),o,(x),v,(x) > can be identified
to an ordered triple < 4,,5,,v, > In b’,l*[ in X, where the triple functions
satisfy the condition u,(x)A o5(x)AvA(x)<0.5.

Example 2.1.2
Every GIFS A (non-empty set in X) is a GNS, having the form:

A ={ <X (3). 2= (1 ()47 (X)) 7a (x) > €X |

Example 2.1.3
Let X ={a,b,c,d,e} and A=<pa(x),c5(X),va(X)> given by:
X | #a(x) | valx) | 0a(X) | sa()nvix)n (%)
al| 0.6 0.3 05 0.3
b| 0.5 0.3 0.6 0.3
c| 04 0.4 0.5 0.4
d| 0.3 0.5 0.3 0.3
e| 0.3 0.6 0.4 0.3

Then Aisa GNSin X.
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2.2 The Characteristic Function of a Neutrosophic Set

Definition 2.2.1

Let X be a non-empty fixed set. A neutrosophic set (NS) A is an
object having the form A= (4,(x),o,(x),v,(x)) Where u,(x)oa(x) and , (x)
represent the degree of membership function (denoted u,(x)), the
degree of indeterminacy (denoted o,(x) ), and the degree of non-
membership (denoted y,(x)) respectively of each element X e X to the
set A, and also let g,:Xx[01]—[01]=1 be a function, then
Ng , (1) = Ng A(<X, A, ,12,/13>) is called a genuine neutrosophic set in X, if:

Lif 1y (X) = 4,0 p = A Va(X) =
NgAM):{O otherwise N ® where ; - (00 212, 20))
Then the object
G (A) = <X'/uG(A)(X)1 O-G(A)(X)l VG(A)(X)>

is a neutrosophic set generated by ng, where:

He(a) =Supﬂl {NgA(i)/\i}

Og(a) = SUP 4, {Ng A(A) A A}

Vo =Sup , {Ng , (1) A A}.
Proposition 2.2.1
1) Ac™ B < G(A) < G(B).
2) A=" B < G(A)=G(B).
Definition 2.2.2
Let A be a neutrosophic set of X. Then the neutrosophic
complement of A generated by Ng denoted by A" if [G(A)] may be
defined as it follows:
(Ng®) </ICA(X),O'CA(X),VCA(X)>;
(Ng?) (V4(X),0 A (%), 10 (%))
(Ng®3) (v (X), & (X), 1, (X))
Example 2.2.1
LetX ={x}, A=(0.5,0.7,0.6), Ngp =1, Ng, =0; then:
G(A) =((0.5,0.7,0.6)).
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Since our main purpose is to construct the tools for developing
neutrosophic set and neutrosophic topology, we must introduce the G(0,)

and G(1,) as it follows:
G(0y) may be defined as four types:
(a) Type 1: G(0,) =(0,01);
(b) Type 2: G(0,) =(011);
(c) Type 3: G(0,) =(01,0);
(d) Type 4: G(0,) =(0,0,0).
G(l,) may be defined as four types:
(a) Type 1.G(L,) =(1,0,0);
(b) Type 2.G(1,) = (1,0.1);
(c) Type 3.G(1,) = (11,0);
(d) Type 4.G(1,) = (1,11).
We will define the following operations of intersection and union
for neutrosophic sets generated by Ng denoted by n"¢ and U"

respectively.
Definition 2.2.3

Let A=(1,(x),0,(.va(¥)) and B=(u5(x),05(x),v5(X)) be two neutrosophic
setsin X, and G(A) :<IUG(A)(X):O-G(A)(X)vVG(A)(X)> ’G(B):</UG(B) (X),06(8) (%), Ve(e) (X)>-

Then:
1. AN B may be defined as three types:

Type 1 G(AN B) = (o (¥) A Hs(ey T (¥ A Gy (X Vs (9 V Vi) (X))

Type 2: G(ANB) = (1) (X) A o6y Togay () V Ty (X): Vs () V V(e (X))

Type 3: G(AN B) = (s (X)X o ey Toay () X Ty (X, Vs (X)X Vs gy (X)) -
2. AU“B may be defined as two types:

Type 1: GAUB) = (o (X) v Ho(eys Tsin (X) A Tae) (X, Vi () AV (X))

Type 2: g(auB) = <,UG(A)(X) V Hg ey Ty (X) V O @ (X), Ve (a) (X) A VG(B)(X)>

Definition 2.2.4
Let A=(u,(x),04(x),v4(¥) be a neutrosophic set, and

47
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G(A) = <ﬂG(A)(X)v O-G(A)(X)’VG(A)(X)>' Then:
@[ 1A= </uG(A)(X)1O-G(A)(X)vl_VG(A)(X)>
(b) <" A= <1_/uG(A)(X)io-G(A)(X)iVG(A)(X)>

Proposition 2.2.2
For all two neutrosophic sets A and B in X generated by Ng , then the

following are true
1) (AnB)™ = AN U B™,
2) (AUB)™ =A™ A B™,
We can easily generalize the operations of intersection and union to
an arbitrary family of neutrosophic subsets generated by Ng as it follows:

Proposition 2.2.3
Let {Aj je J} be an arbitrary family of neutrosophic subsets in X

generated by Ng , then:
a) n"9A; may be defined as:
Type I G(NA)) = (A thggs) (A Ty Vg, ()
Type I1: G(nA)) = (A Hogn) (VO (Vi) () -
b) U A, may be defined as two types :
Type L:G(UA,) = (V tigga) (AT, (Ve (X)) OF
Type I1: G(UA)) = (v tioga (I ega) ()M (9):

Definition 2.2.5
Let f : X > Y be a mapping.
(a) The image of a neutrosophic set A generated by Ng in X under fis
aneutrosophic set Bin Y generated by Ng , denoted by f{A) whose
reality function gg:Y x1 —1=[0]] satisfies the properties:

Moy = Sup /11 {Ng A(A) A A}
Og(s) =SUP,, {Ng A(A) A A}

Vo =SUp,, NG, (1) A 2}
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(b) The preimage of a neutrosophic set B in Y generated by Ng under
fis a neutrosophic set A in X generated by Ng , denoted by f*(B),
whose reality function g,: X x| -1 = [0,1] satisfies the property
G(A)=G(B)o f.

Proposition 2.2.4
Let {Aj :jed}and B, : j e 3} be families of neutrosophic sets in X and

Y generated by Ng respectively. Then, for a function f:X —Y , the
following properties hold:

Ng
1. IfAi'; Ak; j.ked ,then f(A)cN f(A) .
2. IfB; =™ B, for j,ke J,then f *(B;) =™ f(B,).

Proposition 2.2.5
Let A and B be neutrosophic sets in X and Y generated by Ng,
respectively. Then, for a mapping f : X —> Y, we have:
(@) Ac™ f1(f(A) (if f isinjective, the equality holds);
(b) f(f *(B)c™ B (if f is surjective, the equality holds);
(0 [T < 14(8™)

2.3 Some Types of Neutrosophic Sets
We introduce the concept of a-cut levels for neutrosophic sets. Added
to, we bring in and study some types of neutrosophic sets.
Definition 2.3.1
Let A=< u,(x),0,(X),v,(X) > be a neutrosophic set of the set X. For
a €[0,1], the a-cut of A is the crisp set A, defined by as two types:
1. Type 1. A, ={x:xe X,either z,(X),05(X) 2 orv (x)<l-af, , e}é,i{

2. Type 2. A, ={x:xe X,either u, (X) 2,0, (X) <a orv,(x)<l-a}, “EH

Condition x, (x) >« ensures v, (x) <1-«, but not conversely. So, we
can define & —cutof Aas A, = {x:xe X, v, (x)<1l-a}.
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Definition 2.3.2
For a neutrosophic set A=< 4, (x),0, (x),v,(x) > the weak a-cut can be
defined as two types:

i) Type 1. A, ={x:xe X, either up (x),05 (X) >a orva(x)<l-af, ae}éi{

or
ii) Type 2. A, ={x:xe X,either ua (X) >oa(X) <a 0Orvp(x)<l-a}, ae}oi{

The strong a-cut can be defined as two types:

i) Type 1. A, ={x:xe X, either ua (x),op(X) 2 a orva(x)<l-af, ae}éi{

or
ii) Type 2. A, ={x:xe X,either u, (X) 2,0, (X) < orv,(x)<l-a}, ae}(’)j{

Definition 2.3.3

A neutrosophic set with 4, (x)=10,(x)=1 y(x)=1 is called normal
neutrosophic set. In other words, A is called normal neutrosophic set if
and only if max Uy (Xx)= max o, (x)= max 7a(x)=1.

Definition 2.3.4
When the support set is a real number set and the following applies
for all x [a,b] over any intervall[a,b]:
w3 (0) 2 1,(@) A 11, (0); 7a(¥)272(@ A7a () and o, ()20, (@) A0, (0),
A is said to be neutrosophic convex.

Definition 2.3.5
When Ac x and BcY, the neutrosophic subset Ax B of X xY isthe
direct product of A and B.
AxB > ppg (X% Y) =pa(X) A pg(X) ;
oas(XY)=0a(X) Aog(X);
7 (X Y)=7a(X) Ayg(X).
Making use of a-cut, the following relational equation is called the
resolution principle.
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Theorem 2.3.1
=750 =N == Sup, ¢ lor 7 20, (0

H3(X) = 5, (X) = 74 (X) = Supler A 1, (X)]-

Proof
Clear.

The resolution principle is expressed in the form:
A=U [ ..aA,
[o4]

In other words, a neutrosophic set can be expressed in terms of the
concept of a-cuts without resorting to grade functions y, 6 and .

This is what brings up the representation theorem. a-cuts are very
convenient for the calculation of the operations and relational equations
of neutrosophic sets.

Subsequently, let us discuss the extension principle; we use the
functions from X to Y.

Definition 2.3.6

Extending the function f : X — Y, the neutrosophic subset A of X is
made to correspond to neutrosophic subset f (A) =(u, 4,0 (a7 () Of Y ID
the following ways (Typel, 2):
v{u () xe FH ()} if ) =¢

Hiw () = 0 otherwise

Cron () = {A{aA(x) xe fH (it 17 =4
1 otherwise
AMya():ixe fH(y)} it f7(y)=2g

Vi (Y)=
1 otherwise

i (3) = {v ) :ixe iy}, if fly)ze

0 otherwise
v{o () :xe fH(y)}, if fr(y)=¢
T (Y) = {0 otherwise
AMra(x)ixe f3(y)} if fH(y)=¢
Viw(¥) = { otherwise
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Let B be a neutrosophic set in Y. Then the preimage of B under f,

denoted by (B) = (ﬂf 6T , is defined by:

NORA 1(3))
Hergy = H(F(B)) o1y =0(F(B)) 7,1 =7(F(B)):

Theorem 2.3.2
Let A A in X, B and B, iel, jeJ in Y, be neutrosophic subsets,
and f:X —Y be a function. Then:
AcA=1f(A)=f(A)
B,c B, = f (B,)c f(B,),
Ac f(f*(A)),the equality holdsif f isinjective,
f (f *(B)) c B, the equality holds if f is surjective,
f7(u;B;)=u, f(B)),
f(n,B,) =N, F(8,),
F(U,A)=U, f(A).

@ ™ e o0 o

Proof
Clear.

Definition 2.3.7
A neutrosophic set A with 4, (x)=1, or o,(x)=1, y(x)=1 is called
normal neutrosophic set.
In other words, A is called normal if and only if
max s, (X) = max o, (x) = max y,(x) =1.

Definition 2.3.8
Ais said to be convex when the support set is a real number set and
the following assertion applies for all X e [a, b] over any interval [a, b]:
Ha(X) 2 11(3) A 2, (0); 0 (X) 2 55 (8) ATy (b)and 7, (X) = 7, (8) A 74 (D).

Definition 2.3.9

When Ac X andB c Y, the neutrosophic subset AxB of X xY is
the direct product of A and B.

AXB <> 155 (X, Y) = 114 (X) A 25 (X)
Ops (X Y) =0, (X) Aog(X)
Vae (X Y)=7a(X) A yg(X)
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We must introduce now the concept of a-cut.

Definition 2.3.10
For a neutrosophic set A =< 1, (x),o,(X),v,(X) >

A, ={x:xe X, either u, (x),0,(X) >a orv,(x)<l-a ,ae} {

A {x X e X,either u, (x),0,(X) =2 orv,(x)<1- a},ae}o 1{

a

are called the weak and strong a-cut respectively.
Making use of a-cut, the following relational equation is called the
resolution principle.

Theorem 2.3.3
) = 0509 =700 =S, ¢ lor 7 s, (¥)]

HA(X) =0, (X) = 74 (X) = Supla A 7, (¥)]

Proof
Supla A Zn (x)]= Sup |or A Xa (x)]= supla A 7, (%)]
xe}éi[ ag| 0.up5 (X) aeEyAa(x),I)

ael 0,05 (X) a€l aAE(X),I]
ae[a,my (X)J ae(;/AE (x),I]
= Sup[a /\qv Sup[a /\O)} =Sup a = (X)=0,(X)=y.(X)
(050 (%) agl 0,up(x)
e 0,04(%)
ae fm(x)]

We defined the neutrosophic set oA, as:
B, > o, =@ A L ()= (9=, (X
. -1 H -1
()= {lA{yA(x) xe fHy)} it Fly) =4

otherwise
Let B neutrosophic set in Y. Then the preimage of B under f,
denoted by
8)=ly, @) Tt 1(3))

is defined by 1 , . = u(f(B)), 0, =(f(B))7, 1 =7(f(B))-
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2.4 Distances, Hesitancy Degree and Cardinality for
Neutrosophic Sets
We now extend the concepts of distances presented in [7] to the case
of neutrosophic sets.
Definition 2.4.1
Let A={(14(%),v4(%),74(x)),x € X} and
B={(u (x).vs (0,75 (¥), x € X} INX ={x,%,,%,.... X, }, then:
The Hamming distance is equal to
0 (A B) = 2 (12a.06) = 1 06)| +[va (%) = ()] + 70 (%) = 76 (%))
i=1
The Euclidean distance is equal to:

ey (A, B)=\/i((mxi)—us(xi))z+(vA(xi)—vB(xi))2 +(ra06) = 7 (X))

i=1

The normalized Hamming distance is equal to:
1 n
NH s (A, B)= %Eﬂm (%) — pg (X, )‘ + ‘VA(Xi) —vg (X )‘ + ‘7A (Xi) = 7 (X; )D

The normalized Euclidean distance is equal to:

NE (3 8)= 3 (000 - s 00T + 0= 80 + (40607 0)F )

i=1

Example 2.4.1

Let us consider for simplicity the degenerated neutrosophic sets
A,B,D,G,F in X ={a}. A full description of each neutrosophic set, i.e.:

A= {(yA(X),VA(X), 7a(X)),ae X }, may be exemplified by
A={100)aeX}

{(0.1,0),ae x|

{0,01),ae x},

{o.5,o.5,o>,a e X}
{(0.25,0.25,0.0.5),a e X } .

Let us calculate four distances between the above neutrosophic
sets using the previous formulas. We obtain:

1 1 1 1
ens (A D)ZE; eNs(BvD):E' ens (A B)ZE' eNs(A'G):E' eNs(BvG):%v

B
D
G
E=
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eNs(E,G):%, eNS(D,G)=%, NEns(A B)=1, NEys(A D)=1, NE\(B,D)=1,

V3

1 1
NEns(AG)==, NENS(B,G)=E, NENS(B,G)=E, NENS(E,G)zT,

N |-

NE,, (D,G)=

N &

D(0, 0, 1)

A(1,0,0) G B(0, 1, 0)

Figure 2: A geometrical neutrosophic interpretation

The triangle ABD in the Figure A geometrical neutrosophic

interpretation has edges equal to v2 ande,(A D)=ey(B.D)=eys(A B):%,

and  NEp(A B)=NEys(A D)= NEys(B,D)= 2NE s (A G)=2NE s (B,G)=1, NEy,(E,G)
equal to half of the height of triangle with all edges equal to +/2 multiplied
by 1 i.e. REN

NG 4

Example 2.4.2

Let us consider the following neutrosophic sets A and B in
X ={a,b,c,d,e}:, A={(050.30.2),(0.2,0.6,0.2),(0.3,0.2,0.5),(0.2,0.2,0.6),(1,0,0)},
B

{(0.2,0.6,0.2),(0.3,0.2,0.5),(0.5,0.2,0.3),(0.9,0,0.1),(0,0,0)}..
Then d, (A B)=3, NH, (A B)=043, e, (A B)=1.49 and NE, (A B)=0.55.

Remark 2.4.1
These distances clearly satisfy the conditions of metric space.

55
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Remark 2.4.2
It is easy to notice that the following assertions are valid:
a) 0<d,(AB)<n
b) 0<NH, (A B)<1
c) 0<e,(AB)<+n
d) 0<NE,(AB)<1.
The representation of a neutrosophic set in Figure A three-

dimension representation of a Neutrosophic Set is a point of departure
for neutrosophic crisp distances, and entropy of neutrosophic sets.

F‘I E’(0,0,17)

-

A’(0,0,0)

C’ D’(0,17,70)

Figure 3: A three-dimension representation of a Neutrosophic Set.

We extend the concepts of distances to the case of neutrosophic
hesitancy degree by taking into account the four parameters
characterization of neutrosophic sets,

L& A={< 11, ()., (X), 7, (X), 5 (X) > X € X .

Definition 2.4.2

Let A={(ua(x),va(x),7(0).x e X} and B ={(ug(x).vg(x).7g(x)).x € X} ON
X ={X, %, ... ,} For aneutrosophic set A={(x,(x),v,(x),74(x)).xe X }in X,
we call z,(x)=3— 1, (x) = v, (X) — 7,(x), the neutrosophic index of x in A. It is
a hesitancy degree of x with respect to A; it is obvious that0< 7,(x)<3.

Definition 2.4.3

Let A={(up(),va(X),74(x), xe X} and B ={(ug (X),vg(X), 75 (X)), x € X} in
X ={X;, Xy, X3,..., X, } then:
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i) The Hamming distance is equal to
0 (A.B) = D (11a.06) = 15 ()] v (%) = v ()| [7a (%) = 7 (1) a0 = 75 (x )

i=1
Taking into account that:

74(4) = 3= 11,(%) = VA (%) = 74 (%) and
”B(Xi):?’_ﬂs(xi) —vg (%) = 7s(X)
we have
|77A(Xi)_775(xi)| =|3_ﬂA(Xi)_VA(Xi)_7A(Xi)_3+/1A(Xi)+VB(Xi)+7B(Xi)|
< |/uB(Xi) _/UA(Xi)|+|VB(Xi)_VA(Xi)|+|7/B(Xi) _VA(Xi)|-
ii) The Euclidean distance is equal to

eNs(A’ B)= \/Zn:((:“A(Xi)_:“B (Xi))2 +(VA(Xi)_VB(Xi))2 +(7A(Xi)_75(xi))2 +(77A(Xi)_”s(xi ))2)

i=1

we have
(74 (% )= 75 () = (_ﬂA(Xi)_VA(Xi)_7A(Xi)+ﬂs(xi)+VB(Xi)+7/B(Xi))2 =
(1t (X)) = #14 (%; )? + (VA(Xi )—ve(X ))2 + (74 (%) =75 (X))
+ 2045 (%) = 10 () (V4 (6) = v (%)) (76 (%) = 74 (%))
iii) The normalized Hamming distance is equal to
NH Ns(A: B):%éQﬂA(Xi)—ﬂB(Xi)‘+‘VA(Xi)—VB (Xi)‘+‘7/A(Xi)_yB(Xi)"’"ﬂ'A(Xi)_”B(XlX)

iv) The normalized Euclidean distance is equal to

NEy (8= | o & () s 060 + (a5 OF + 000 70 () + g ) 7505

Remark 2.4.3
It is easy to notice that for the formulas above the following
assertions are valid:
a) 0<dy(AB)<2n
<

b) 0<NH,(AB)<2
c) 0<ey(AB)<+2n
d) 0<NE(AB)<+2.

In our further considerations on entropy for neutrosophic sets the
concept of Cardinality of a neutrosophic set is also useful.
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Definition 2.4.4
Let A= {(,uA(x),vA(x),;/A(x)),x € X} be a neutrosophic set in X. We
define two cardinalities of a neutrosophic set:

e The least (sure) cardinality of A is equal to the so-called sigma-
count, and it is called here the

min ¥ cont(A) = _leuA(Xi )+ _zlvA(xi ).
i= i=
e The biggest cardinality of A, which is possible due to 7,(x)is
equal to max £.cont(A) = % (ua (%) + 74 (%)) + valx; )+ 74(x) and
i=1 i=1

clearly for A°we have MINTcont(A®) = £y (X )+ Zvalx )
i=1 i=1
Max £.eont(A%) = £ (7 (% )+ 74 () + Zva (%) + 74 (%))

Then the cardinality of neutrosophic set is defined as the interval
Card(A) = [minx Cont(A), max Cont(A)].

2.5 Neutrosophic Relations
Let X, Y and Z be three ordinary finite non-empty sets.

Definition 2.5.1

We call a neutrosophic relation R from set X to set Y (or between X
and Y) a neutrosophic subset of the direct product
XxY ={(xy):xeX,yeY}.

That is R={(x y),(< (X V)0 (x ). 7 (x ) % xe X,y Y)|, where (x, y) is
characterized by the degree of membership function xg(x), the degree of
indeterminacy og(x) , and the degree of non-membership y;(X)
respectively of each element xe X,y eY to the set X and Y, where

e X xY e}é,l['% IX xY a}é,i[' and Ve i X xY 9}0,1[-
We have the sets X ={x,Xp,.... Xn}, Y = {y1, V5.....yn} - A neutrosophic
relation in XxY can be expressed by a mxn matrix. This kind of matrix

expressing a neutrosophic relation is called neutrosophic matrix.
Since the triple (ug,oR,75) has values within the interval|; 1], the

elements of the neutrosophic matrix also have values within ]a Jlr[ in
order to express neutrosophic relation R for
(IUR(Xi: yi)’GR(Xi’yi)iyR(Xi'yi))'
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The neutrosophic relation is defined as neutrosophic subsets of

XxY, having the form R ={(x,y),(< 2 (%, ¥), 0= (%, ¥;). 72 (%, ¥;) > x € X,y €Y J},

where the triple (ug,or,7g) has values within the interval|; [, and the
elements of the neutrosophic matrix also have values Within]a :[

Definition 2.5.2

Given a neutrosophic relation between X and Y, we can define R!
between Y and X by means of

/uR—l(yv X) = :uR(X! y)vo_R—l(y! X) = O-R(X! y)!}/R—l(yv X) = 7/R(X, y)V(X, y) e XxY )

which we call inverse neutrosophic relation of R.

Example 2.5.1

When a neutrosophic relation R in X= {a, b, c} is
R =<(x,Y),(0.2,0.4,0.3)(a,a),(1,0.2,0)(a,b),(0.4,0.1,0.7)(a,c),(0.6,0.2,0.2) (b,b),

(0.3,0.2,0.6)(b, ), (0.2,0.4,0.1)(c,c) >,
the neutrosophic matrix for R is as shown:
< 0.2,0.4,0.3 > <1,0.2,0 > <0.4,0.1,0.7 >
- L 0.6,0.20.1> <0.30.206> <0.3,0206 >]

Example 2.5.2
Let X be a real number set. For x,y € X, the neutrosophic relation
R can be characterized by the following assertions:

0 X2y
1 .
ACRE o ¢ Y
1+[—)
y—X
0 IX>y
TR (% y) = X<y
1+(J
y—X
0 X2y
1 :
7a(xY) = PERCEL
1+(J
y—X

As a generalization of neutrosophic relations, the n-array
neutrosophic relation Rin X, x X, x X, x--- X, is given by:
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R= [ (608X %) 0006200 ), 2 (K X X)), % €X

KyxKoxXax - Xy

and we get the following:

Hp P X x Xy xeeex X, —>:|0,l[

Og Xy x Xy X X, —)}(_),i[

Ve Xy x Xy xoox X, 9}0,1[

When n=1, R is an unary neutrosophic relation, and this is clearly a
neutrosophic set in X. Other ways of expressing neutrosophic relations
include matrices.

We can define the operations of neutrosophic relations.

Definition 2.5.3
Let R and S be two neutrosophic relations between X and Y for
every (X, y)e XxY.
1. R < S may be defined as two types

(a) Type 1: R s S < :uR(le )S,US(X,y )!GR(X!y )SO-S(X!y )J/R(X !y )Z]/S(X !y)

(b) Type 2:R S5 < 4 (xy) < (x Y ) 0a(6 Y ) 2 0506y ) 7m(X 1y ) 2 75(x .Y )
2. RUS may be defined as two types

(a) Type 1:
RUS ={(% Y, (< (X, Y )V 116 (%, Y ), 0 (% V) v 05 (%, Y), 7 (X, Y) A 76 (%, V) >
(b) Type 2:

RUS :{<X' y>-(< He (X V)V s (X, Y), 0r (X, Y) Ao (X, Y), 7R (X Y) A7 (X, Y) >)}
3. RnSmay be defined as types:
(a) Type 1:
ROS ={{(x,¥). (< 412 (4 Y) A 115 (%,¥). 0 (%, Y) A 05 (%, V). 7 (X, V) v 75 (%, ¥) >}
(b) Type 2:
RS ={(%,¥), (< i (%, Y) A 15 (X, ¥), 05 (X, V) v 05 (X, ), 72 (X, V) V 75 (%, ) >
4. The complement of neutrosophic relation R (R®) may be
defined as three types:
(a) Type 1: R* ={<(x,y), < ¢’r (%, ¥), 0. (%, ¥), 7% (X, ¥) >};
(b) Type 2: R® ={<(x,¥), <7 (X, ¥). 0% (X, y), 1 (%, ¥) >}:

(c) Type 3: R*={<(x,y),<7x(X ). 0 (X, ¥), i (X, ) >}.
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Theorem 2.5.1
Let R, S and Q be three neutrosophic relations on N(X xY), then:

i) RcS=R'cST

i) (RuUS)'=R*'uS™,

i)  (RNS)'=R*'NS™

iv) (R =R.

V) RN(SuQ)=(RNS)U(RNQ).
vi) RU(SNQ)=(RUS)N(RUQ).
vii) If ScR,QcR,then SVvQcR
viii) If RcS,RcQ,then R<SNQ.

Proof
If R Sthen s . (y,x) = e (X, y) < 5 (%, y) = u,: (y, %), for every (x,y)

of XxY. Analogously o .(y,x)=0y(x,y)20s(x,y) O <oy (xy) and
Ve (V.0 =72 (6 Y) 2 75 (%, ¥) = 7. (y,x) forevery (x,y) of XxY.
'u(Rvs)’l (yv X) = Hrys (X, y) = Hr (X: y)V,us (X’ y) =Hpa g1 (y, X) = Hpa (y, X) Ny (ya X) .

The proof for:
J(RuS)’l(y' X) = O-Rflugfl(xi y) and 7/(RUS)—1 (y! X) = nylusfl (X; Y) )

can be done in a similar way.
The others are clear from the definition of the operators A andv.

Definition 2.5.4
(1) The neutrosophic relation | e NR(X x X) is called relation of identity

and it is represented by the symbol | = 1 *if
1if X=y
= V(X,y)e X x X
(%) {O if X#Yy
M X=Y gk y)e X x X or _Joif - x=y
0'(X'y)_{0 if X#Yy ) o1(x¥)= 1if X#y
V(X y)e X x X
}/l(xly)z{o_lf X:yV(X,y)EXXX
1if X#Y
(2) The complementary neutrosophic relation 1°is defined by:
0 if X=Yy
M (X y)=9. . V(X y)e X x X
1if X#Y
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0if x=y 1if  x=y
oc(xy) {“f X%y (X, y) e X x "|°(X‘y)_{0if Xy
o.(%y)=1, . V(X y) e X x X
! 1if x=y

1|f X =
7 (6 y) =1 Y v(x,y)e X x X

0 if X#£Y

Note that 1° = (1°)".
We can defined some types of neutrosophic relations.

Definition 2.5.5
The neutrosophic relationR € NR(X x X) is called:
(1) Neutrosophic reflexive relation, if for everyxe X, u,(x,x) =1,
and o, (X, X) =00r o, (x,x)=1. Note 75 (X,X) =0 vxe X.
(2) Anti-reflexive neutrosophic relation if for every xe X,

Hr (X, X):O
(X, X)=0, oro,(x,x)=1 "
7R (X,X)=1

Theorem 2.5.2
Let R be a reflexive neutrosophic relation in X x X . Then:
(1) R;* is a reflexive neutrosophic relation;
(2) r, UR, is areflexive neutrosophic relation for every
R, e NR(X x X);
(3)R, "R, is a reflexive neutrosophic relation
< R, e NR(X x X) is a reflexive neutrosophic relation.

Proof
Clear. Note that:

He,or, (X X) = e (X X)V e (X, X) =1V 1 (X, X) =1
Orur, (X X) =035 (X, X) Vo (X, X)=1v oy (X, X)=1or
=0v oy, (X X) =05 (X,X)
e, (X X) = i (X X) A e, (X X) =LA it (X, X) = g, (X, X)
O, v, (% X) =g (X, X) ATy (X, X) =1A 0% (X,X) = 0% (X,X)
or =0Aaog (X,X)=0.
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Definition 2.5.6
The neutrosophic relation R € NR(X x X) is called symmetric if

R=R™, thatis for every(x,y) € X xY

He (X, y) = pg (Y, X)
or(X,y)=0x(Yy,X)
7r (X, X) = ye (Y, X)

We consider the neutrosophic relation R e NR(X x X) an anti-
symmetrical neutrosophic relation if V(x,y) € X xY . The definition of

anti-symmetrical neutrosophic relation is justified by the following
argument: X <. Yy if and only if the neutrosophic relation R € NR(X x X)

is reflexive and anti-symmetrical.

Theorem 2.5.3
LetR € NR(X x X). Ris an anti-symmetrical neutrosophic relation
ifand only if v(x,y) e X xY, with x # y, then (X, y) # 1 (Y, X).

Proof
Asya (X, ) =4 R(X,Y) V(x,¥) e X xY , then u, (X Y) # (Y, Xx)if and
L (% Y) # g (Y, X)
only if Yo (X, y) # 0g (¥,X) 0rog (X, y) =0r (Y, X) -
7R (X Y) £ ye (¥, %)

Definition 2.5.7
LetR € NR(X x X) . We call a transitive neutrosophic closure of R to

the minimum neutrosophic relation T on X x X which contains R and it is
transitive, that is to say:

(a) RcT

(b)If R,Pe N(X, X), Rc Pand Pis transitive, then T < P.

Theorem 2.5.4
LetR,P,T,SeNR(X x X)and Rc PandrcT,Rc S, thenT cS.

Proof
Clear from Definitions.
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Definition 2.5.8

If R is a neutrosophic relation in XxY and S is a neutrosophic
relation in YxZ, the composition of R and S, Re S, is a neutrosophic
relation in XxZ, as defined below:

LRos o (Ro8)x2)= (e () 7 s (v,2)),

2Ro5 <5 (RoS)x 2)= bl () v 15 (v,2))

(0 (V) A o5 (¥, ) V(7 (X, ) A 75 (¥,2))]

y

w () v o5 (%, D)) A (X, Y) v 75 (v,2))]

<

—_ <

Definition 2.5.9

A neutrosophic relation R on the Cartesian set X x X is called
(a) A neutrosophic tolerance relation on X xX if R is
reflexive and symmetric;
(b) A neutrosophic similarity (equivalence) relation on
X x X if R is reflexive, symmetric and transitive.

Example 2.5.3
Consider the neutrosophic tolerance relation T on X = {x,x,,x,,x, }
X1 X2 X3 X4
X1 | <1,0,0> <0.8,0.2,0.1> | <0.6,0.1,0.2> | <0.3,0.3,0.4>
x2 | <0.8,0.2,0.1> | <1,0,0> <0.4,0.4,0.5> | <0.5,0.2,0.3>
x3 | <0.6,0.1,0.2> | <0.4,0.4,0.5> | <1,0,0> <0.6,0.2,0.3>
x4 | <0.3,0.3,0.4> | <0.5,0.2,0.3> | <0.6,0.2,0.3> | <1,0,0>

It can be computed that for & =1, the partition of X determined by
T, given by {x},{x,}.{x}.{x,}}, for @ =0.9, the partition of X determined
by T, given by {{x,x,}.{x.}.{x,}}, @ = 0.8, the partition of X determined by
T, given by {X,, X,, X.},{X,}}, @ = 0.7, the partition of X determined by T,
given by {{X,, X,, X3, X, }}.

Moreover, we see that when « <(0.9]1] the partition of X
determined by T, is given by {{Xl},{xz},{xa},{x4}}, whena € (0.8,0.9], the
partition of X determined by T, given by {{x,x,, %}.{x,}}, when
a € (0.7,0.8], the partition of X determined by T, given by {x, x,, x.},{x,}}
when «<(0,0.7], the partition of X determined by T, given by

% 6 h{x 3
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3. Introduction to Neutrosophic Crisp
Topological Spaces

In this chapter, we generalize the crisp topological
spaces and intuitionistic topological space to neufrosophic
crisp topological space. In 3.1, we infroduce and study the
neutrosophic topological spaces and construct the basic
concept of neutrosophic crisp topology. In 3.2, we define
the neutrosophic crisp continuous function and we obtain
some characterizations of neutrosophic continuity. In 3.3,
we develop the neufrosophic crisp compact spaces.
Characterization and properties of neutrosophic crisp
compact spaces are framed. In 3.4, we approach the
neutrosophic crisp nearly open sets and their properties.

3.1 Neutrosophic Crisp Topological Spaces

We extend the concepts of topological space and intuitionistic
topological space to the case of neutrosophic crisp topological space.

Definition 3.1.1

A neutrosophic crisp topology (NCT) on a non-empty set X is a
family 7~ of neutrosophic crisp subsets in X satisfying the axioms:

(a) ¢ X €.
(b) AANA, el forany AlandA, eT".
(c) VA, el“‘v’{Aj :jeJ}gF.
The pair (X,F) is called a neutrosophic crisp topological space

(NCTS) in X . The elements inI are called neutrosophic crisp open sets
(NCOSs) in X . A neutrosophic crisp set F is closed if and only if its

complement F€ is an open neutrosophic crisp set.
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Remark 3.1.1

The neutrosophic crisp topological spaces are generalizations of
topological spaces and intuitionistic topological spaces, and they allow
more general functions to be members of topology.

Neutrosophic Crisp Topology

Crisp Topology

Intuitionistic Topology

Figure 4: Neutrosophic Crisp Topological Spaces are generalizations of topological
spaces and intuitionistic topological spaces
Example3.1.1
Let X ={a,b,c,d}, and ¢y, Xy be any type of universal and empty
subset, and A, B be two neutrosophic crisp subsets on X defined by
(@) A=({a} b.d} {c});
(b) B=({a}, b}, {c})-

The family 7" ={gy, Xy, A B} is a neutrosophic crisp topology on X.

Example 3.1.2
Let (X,7,) be a topological space such that ¢, is not indiscrete.
Suppose {G,:ieJ} is a family, and 7, ={X,4}U{G, :ieJ}. Then we can
construct the following topologies:
1) Two intuitionistic topologies:
@z, :{¢|7X| }U{<Giv¢>1i eJ};
) 7, =6, X, }u{lsG)ied).
2) Four neutrosophic crisp topologies:
(@ T, =, X Jo{(p0.67)ie);
(b) T, =gy, Xy JU{(Gi g h)ie )
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(©) Ty =14y X, JU{G,..G7 )ie;
(dr, :{¢N’XN}U{<GiC ,¢,¢>,i€J}-

Definition 3.1.2

Let(X,Fl),(X,I‘Z) be two neutrosophic crisp topological spaces in X.
Then 73 is contained in 7, (symbolized , c1,) if 6 « r, for eachg < r, .
In this case, we say that r; is coarser thanT, .

Proposition 3.1.1
Let{I‘j e J} be a family of NCTs on X . Then N[, is a neutrosophic
crisp topology in X. Furthermore, ~r; is the coarsest NCT in X containing

all topologies.

Proof
Obvious.

Now, we define the neutrosophic crisp closure and neutrosophic crisp
interior operations in neutrosophic crisp topological spaces.

Definition 3.1.3
Let (x,r) be NCTS and A=(A, A, A) be a NCS in X. Then the
neutrosophic crisp closure of A (NCCI(A), for short) and neutrosophic
interior crisp (NCInt(A), for short) of A are defined by:
(a) NCCI (A) = n{K : K is an NCS in X and A c K},
(b) NCInt (A)=uU{G:G is an NCOS inXand G c A},
where NCS is a neutrosophic crisp set and NCOS is a neutrosophic crisp

open set. [t can be also shown that NCCI(A) is a NCCS (neutrosophic crisp
closed set) and NCInt(A) is a CNOS in X.

Remark 3.1.2

For any neutrosophic set A in X, we have
(a) NCCI(A) o A.
(b) AisaNCCSin X ifand only if NCInt(A) = A.

Proposition 3.1.2
For any neutrosophic crisp set A in(X,T), we have:
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(a) NCCI(A®) = (NCInt(A))°,
(b) NCInt (A®) = (NCCI (A))°.

Proof
Let A=(A,A,, A), and suppose that the family of neutrosophic

crisp subsets contained in A are indexed by the family; if NCSs contained
in A are indexed by the family A= {< AL AL A>T e }, then we have
either

NCINt(A) = {< UA, WA, A, >}, or

NCInt(A) = {< UA; .NA, ,NA, >/, hence

(NCIN(A))® = < NA, ,NA,, UA, >}, or

(NCInt(A))¢ = {< NAj VA, UAj, >}, hence

NCCI (A°) = (NCiInt (A))°, analogously.

Proposition 3.1.3
Let (X,I') be a NCTS and A, B be two neutrosophic crisp sets in X

holding the following properties:
1) NCInt (A)c A,

2) A < NCCI (A),
3) Ac B = NCint (A)c NCInt (B),
4) Ac B = NCCl (A)c NCCI (B),
5) NCInt{(AnB) = NCInt(A) ~ NCInt(B),
6) NCCI (AU B)=NCCI (A) U NCCI (B),
7) NCInt (X )= X,

8) NCCI (4,) = ¢y -
Proof

(a), (b) and (e) are obvious, (c) follows from (a), and from
Definitions.

3.2 Neutrosophic Crisp Continuity
The basic definitions are:
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Definition 3.2.1
If B=(B,,B,,B;) isaNCSinY, then the preimage of Bunder f, denoted

f ~1(B),is a NCS in X defined by f‘l(B):<f‘1(a),f‘1(82),f‘1(3,,)>. If A=(A, A7) ISa
NCSin X, then the image of A under f,denoted f(A), isaNCSinY defined
by f(A=(f(A).F(A).F(A)) ).

We introduce the properties of images and preimages, some of which
we frequently use in the following sections.

Corollary 3.2.1
Let A, {A :ieJ}, be NCSs in X, and B, B,:jek}, a NCS in Y, and
f : X > Y afunction.
We have:
A chA = F(A)c F(A),
B,cB, < fﬁl(Bl) = fﬁl(Bz)v
Ac f(f(A).
If f isinjective, then:
A= f(f(A);
f7(f(B)cB.
If f is surjective, then:
f(f(B))=B, f*uB))=uf™(B)
(B ) =nf(B),
f(UA) =Uf(A); f(hA) = f(A);
If f isinjective, then:
f(nA)=nf(A);
FAY) =Xy T =di- T4 =6, T(X) =Yy,
if f is subjective.

Proof
Obvious.

Definition 3.2.2
Let (x,r,) and (Y,I,) be two NCTSs,and let f : X — Y be a function;
f is said to be continuous if the preimage of each NCSin T, isa NCSin 73.
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Definition 3.2.3
Let (X,I;) and (Y,I;,) be two NCTSs,and let f : X —Y be a function;

f is said to be open if the image of each NCSin I', isa NCSin 77

Example 3.2.1
Let (x,r,) and (Y,y,) be two NCTSs.

If f:X —Y iscontinuousin the usual sense, then f is continuous.

Here we consider the NCTs in X and Y, respectively, as it follows:
I ={G.¢,G°):Ger,}and T, :{<)H,¢, HY):H e W, |.

In this case, we have for each <H,¢,H°> el,,HeY¥,,
FH(H, g, H) = (F 2 (H), £ (), F(H)) =(fH, f(§).(F(H))") e .
If f:X —Y isopeninthe usual sense, then in this case, f is open

in the sense of Definition 3.2.1.
Now we obtain some characterizations of neutrosophic continuity.

Proposition 3.2.1
Let f :(X,I}) > (Y,T,) . Then fis neutrosophic continuous if the

preimage of each crisp neutrosophic closed set (CNCS) in I', isa CNCS in
r,.

Proposition 3.2.2
The following are equivalent to each other:
(@) f:(X,I;)—>(Y,I,) is neutrosophic continuous.

(b) f (CNInt(B) — CNInt(f *(B)) for each CNSBinY.
(c) CNCI(f™(B)) < f *(CNCI(B)) for each CNCBinY.

Example 3.2.2
Let (Y,Fz) be a NCTS and f : X =Y be a function. In this case,

I = {f (H):He Fz} is a NCT in X. Indeed, it is the coarsest NCT in X,
which makes the function f : X — Y continuous. One may call it the
initial neutrosophic crisp topology with respect to f.

3.3 Neutrosophic Crisp Compact Space (NCCS)

Let us firstly discuss the basic concepts.
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Definition 3.3.1
Let (X,F ) be an NCTS.
If a family {<Gi1 ,G,,,G, > e J} of NCOSs in X satisfies the condition
U {<X'Gi1’Giz .G, > el }: X\ ‘then itis called a neutrosophic open cover of X.
(a) A finite subfamily of an open cover {<Gi1,Gi2 ,Gi3> e J} in X,

which is also a neutrosophic open cover of x, is called a
neutrosophic finite subcover{s, .6, ,G, ):ieJ}.

(b) A family {<|<i1 KK )i J} of NCCSs in X satisfies the Finite
Intersection Property (FIP) if every finite subfamily
{<Kiu Ks, . Ki3> =12, n} of the family satisfies the condition
YK, Ky K )i 3% gy -

Definition 3.3.2
A NCTS (X,F) is called neutrosophic crisp compact if each crisp

neutrosophic open cover of X has a finite subcover.

Example 3.3.1

Let X =N and let us consider the NCSs (neutrosophic crisp sets)
given below:

A = (234} 8.6, A =(B4..} 4 1), A =((456..4,4,02))
A =(In+Ln+2,n+3,..}¢ {123,..n-1)).

Then F={¢N,XN}U{AW :3,4,5,...} is a NCT in X and (X,r) is a
neutrosophic crisp compact.

Let X =(0,1) and let’s take the NCSs A, =<(%,%1),¢,<0,%>>,n =345,...
in X. In this case T = {¢,, X, }JU{A, =3,4,5,..} is an NCT in X, which is not
a neutrosophic crisp compact.

Corollary 3.3.1

A NCTS (X,T) is a neutrosophic crisp compact if every family

{<x,(3il,(3iz,(3i3>;ie J} of NCCSs in X satisfying the FIP has a non-empty

intersection.

71
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Corollary 3.3.2

Let (X,T;), (Y,T,) be NCTSs and f:x v be a continuous surjection.
If (X, 77)is a neutrosophic crisp compact, then so is (Y,T,).

Definition 3.3.3
If a family {<Gi1 ,G,,,G;, > e J} of NCCSs in X satisfies the condition

Ac u{<Gi1 Gy, ,Gi3>2ie J}, then it is called a neutrosophic crisp open
cover of A.

Let us consider a finite subfamily of a neutrosophic crisp subcover
of{G,.G, .G, ):icdf.

A neutrosophic crisp set A=(A, A, A;) in a NCTS (x,r) is called

neutrosophic crisp compact if every neutrosophic crisp open cover of A
has a finite neutrosophic crisp subcover.

Corollary 3.3.3
Let(x,r,), (v,1,) be NCTSsand f : X —Y be a continuous surjection.
If A is a neutrosophic crisp compactin(X,T;), then sois f(A) in (v,r,).

3.4 Nearly Neutrosophic Crisp Open Sets

Definition 3.4.1

A neutrosophic crisp topology (NCT) in a non-empty set x is a
family 7~ of neutrosophic crisp subsets in X satisfying the following
axioms:

(@) onXn el
(b) Ay nA, er forany AandA, eT;
(c) VAjelr Vv {Aj i eJ}gF.

In this case, the pair (X, I") is called a neutrosophic crisp topological
space (NCTS) in X. The elements in 7~ are called neutrosophic crisp open
sets (NCOSs) in X. A neutrosophic crisp set F is closed if and only if its
complement F€ is an open neutrosophic crisp set. Let (x,r) be a NCTS
(identified with its class of neutrosophic crisp open sets), and NCint and
NCcl denoting neutrosophic interior crisp set and neutrosophic crisp
closure with respect to neutrosophic crisp topology.
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Definition 3.4.2

Let (x,r) beaNCTSand A=(A, A,, A;) beaNCSinX, then Ais called:

(a) Neutrosophic crisp «- open set if
A < NC int( NCcl (NC int( A))),
(b) Neutrosophic crisp g- open set if
A < NCcl (NC int( A)).
(c) Neutrosophic crisp semi-open set if
A < NC int( NCcl (A)).
We denote the class of all neutrosophic crisp @ —open setsNC/™“,
all neutrosophic crisp B — open sets NC/#, and the class of all

neutrosophic crisp semi-open sets NC/°.

Remark 3.4.1

A class consists of exactly all neutrosophic crisp a-structure (resp.
NC B-structure). Evidently, NC/" < NC/"* < NCI™”.

We notice that every non-empty neutrosophic crisp 3-open has NC
o —non-empty interior.

If all neutrosophic crisp sets following {B;};., are NC B-open sets,
then {_ul B,};., = NCcl(NCint(B,)) = NCcI(NCint(B;)), that is a NC B-structure
is a neutrosophic closed with respect to arbitrary neutrosophic crisp
unions.

We now characterize NCI"* in terms NCI"? .

Theorem 3.4.1
Let (x, ) be a NCTS. NC7* consists of exactly those neutrosophic

crisp set A for which AnB e NCr’for Be NC/77.

Proof

Let AeNC/ % ,Be NCFﬂ, pe AnB, and U be a neutrosophic

crisp neighbourhood (NCnbd) of p.
Clearly, U n NC int(NCcl(NC int(A))) is a neutrosophic crisp

open neighbourhood of p.
SoV=(U~nNnNCint(NCclI(NC int(A)))) n NCint(B) is a non-
empty. Since V.< NCcl(NC int(A)), we imply that
(U nNCint(A)nNCint(B)) =V n NCint(A) = @y, .
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It follows that
AN B < NCcl(Ncint(A) n NC int(B)) = NCcl (NC int(A " B)) i.e.
AnBeNCI”.
Conversely,let AnB e NC/ ?forallB e NCFﬂ, in particular
AeNCr’,
Assume that p e AN (NC int(NCcl (A) n NC int(A)))°.

Then p e NCcl(B), where (NCcl(NC int(A)))°.

Clearly {p}u B e NC/'#,and consequently An{{p}u B}e NCI”.

But An{{p}u B}={p}. Hence {p} is a neutrosophic crisp open.
As p € (NCcl (NC int(A)), this implies that p e NC int(NCcl (NC int(A))),
contrary to assumption. Because p € A, p € NCcl(NC int(A)) and
AeNCr“.

The proof is complete.

Thus, we have found that NC/™ is completely determined by
NC/ ie.all neutrosophic crisp topologies with the same NC (3-structure

also determine the same NC a-structure, explicitly given.
We converse all neutrosophic crisp topologies with the same NC a-

structure, so that NCZ™# is completely determined by NC/™“ .

Theorem 3.4.2

Every neutrosophic crisp NC a-structure is a neutrosophic crisp
topology.

Proof

NC/# contains the neutrosophic crisp empty set and is closed with
respect to arbitrary unions. A standard result gives the class of those
neutrosophic crisp sets A for which AnBeNCr” for all Be NCI™”
constitutes a neutrosophic crisp topology, hence the theorem. Onwards,
we also use the term NC a-topology for NC a-structure; two neutrosophic
crisp topologies deterring the same NC a-structure are called NC a-
equivalent, and the equivalence classes are called NC a-classes.

We now characterize NCI'”in terms of NCI™“.
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Proposition 3.4.1
Let (x,r) be a NCTS. Then Nc/” = NC/“ and hence NCa-
equivalent topologies determine the same NC 3-structure.

Proof

Let NCo —cland NC¢ -intdenote thee neutrosophic closure and the
neutrosophic crisp interior with respect to NC/"“. If peBe NC/#and
peBeNCr“, then (NCint(NCcl(NCint(A))) n NCint(B)) # ¢, , since
NC int(NCcl (NC int(A))) is a crisp neutrosophic neighbourhood of point
p. So certainly, NC int(B) meets NCcl(NC int(A)) and therefore (bing
neutrosophic open) meets NC int(A) , proving AN NCint(B) # ¢, . This

means B = NCacl(NC int(B))i.e. Be NCI™% |
On the other hand, let Ae NCI"% peAand peV eNCI . As

V € NCI"* and p € NCcl(NCint(A)) , we have V nNCint(A) # ¢ and

there exists a neutrosophic «crisp set We/Z such that
W cV nNCeaint(A) c A

In other words, V N NCint(A) # ¢y and p € NCcl(NC int(A)) . Thus

we have verified NC7* = NC/'*, and the proof is complete. We get
NC/** =NCI“.

Corollary 3.4.1
A neutrosophic crisp topology NC/™ is a NCa- topology if

NC/7 = NC7I"“. Thus, a NCa —topology belongs to the NC« -class if all
determinants are neutrosophic crisp topologies, and if it is the finest

topology of finest neutrosophic topology of this class. Evidently NC/~ p
is a neutrosophic crisp topology if NCI™* = NCI™”.
In this case, NCI™# = NCI*’=NCr?.

Corollary 3.4.2
If NCgS — structure B is a neutrosophic crisp topology, then

B=B%=B".

We proceed giving some results of the neutrosophic structure of
neutrosophic crisp NCa —topology.
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Proposition 3.4.2

The NCa —open sets with respect to a given neutrosophic crisp
topology are exactly those sets which may be written as a difference
between a neutrosophic crisp open set and a neutrosophic crisp nowhere
dense set.

IfAe NCI"?, we have:

A = (NC int(NCcl (NC int(A)) N (NC int(NCcl (NC int(A)) N A%)©,
where (NCint(NCcl(NCint(A)) " A®) is clearly neutrosophic crisp
nowhere dense set; we easily see that B < NCcl(NCint(A)) and
consequently Ac B < NCint(NCcl(NC int(A)), so the proof is complete.

Corollary 3.4.3

A neutrosophic crisp topology is a NCa- topology if all
neutrosophic crisp nowhere dense sets are neutrosophic crisp closed.

A neutrosophic crisp NCa — topology may be characterized as
neutrosophic crisp topology when the difference between neutrosophic
crisp open and neutrosophic crisp nowhere dense set is again a
neutrosophic crisp open, and evidently, this is equivalent to the stated
condition.

Proposition 3.4.3

The neutrosophic crisp topologies which are NCa - equivalent
determine the same class of neutrosophic crisp nowhere dense sets.

Definition 3.4.3

We recall that a neutrosophic crisp topology is a neutrosophic crisp
extremely disconnected if the neutrosophic crisp closure of every
neutrosophic crisp open set is a neutrosophic crisp open.

Proposition 3.4.4

If NCa- structure B is a neutrosophic crisp topology, all
neutrosophic crisp topologies 7/~ for which 7# = B are neutrosophic
crisp extremely disconnected.

In particular: Either all or none of the neutrosophic crisp topologies
of a NCa —class are extremely disconnected.



Neutrosophic Crisp Set Theory
I ——_—_—_—_—_— - — 8 ——————————

Proof

Let/# = B, and suppose there isa A e I" such that NCcl (A) ¢ .
Let p e NCcl(A) n (NCint(NCcl(A))¢ with B ={p}u NC int(NCcl (A)),
M = (NC int(NCcl(A)))°.

We have{p} = M =(NCint(NCcl(A)))® = NCcl (NC int(M),

{p} = NCcl(A) = NCcl(NC int(NCcl (A)) = NCcl (NC int(B))
hence both Band M are in 7'#. The intersection B~ M ={p} is not
neutrosophic crisp open since p € NCcl(A) "M ¢, hence not NC — open,

so/'’ =B isnota neutrosophic crisp topology. Now suppose B is not a

topology, and 7'” = B. There is a B e I"’ such that B ¢ I"*. Assume that
NCcl(NCint(B) € I". Then B = NCcl(NC int(B) = NC int(NCcl (NC int(B))

i.e. B e I'*, contrary to assumption. Thus, we have produced an open set
whose closure is not open, which completes the proof.

Corollary 3.4.4
A neutrosophic crisp topology I' is a neutrosophic crisp extremely
disconnected if and only if I'” is a neutrosophic crisp topology.
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4. Neutrosophic Crisp Topological Ideal
Spaces &Neutrosophic Crisp Filters

The purpose of this chapter is to specify and
characterize the neutrosophic crisp ideal (in 4.1) and the
neutrosophic crisp filter (in 4.2). We also define the
neutrosophic crisp local functions, and intfroduce the notion
of neutrosophic crisp sets via neufrosophic crisp ideals,
distinguishing basic operations and results in neutrosophic
crisp topological spaces (in 4.3). Neutrosophic crisp L-
openness and neutrosophic crisp L-confinuity —are
considered as generalizations for crisp and fuzzy concepts.
Relationships between the above new neutrosophic crisp
notions and other relevant classes are investigated.
Conclusively, we individualize two different types of
neutrosophic crisp functions. In 4.4, we familiarize the reader
with Filters on neutrosophic crisp set, considered as a
generalization of filters studies. Several relations between
different neutrosophic crisp filters and neufrosophic
fopologies are also studied here.

4.1 Neutrosophic Crisp Ideals

Definition 4.1.1
Let X be a non-empty set and L a non-empty family of NCSs. We call
L a neutrosophic crisp ideal (NCL) in X if
(@) AeL and Bc A= B e L [heredity],
(b) AeL and Be L= Av B eL [finite additivity].
A neutrosophic crisp ideal L is called a o - neutrosophic crisp ideal
if { Aj}jsN < L, which implies that y A el (countable additivity).
je
The smallest and the largest neutrosophic crisp ideals in a non-
empty set X are {¢,}, and NSs in X. Also, NC. L, NC. L denote the

neutrosophic crisp ideals (NCL for short) of neutrosophic subsets having
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finite and countable support of X, respectively. Moreover, if A is a non-
empty NS in X, then {BeNCS:Bc A} is an NCL in X. This is called the

principal NCL of all NCSs, denoted by NCL(A) .

Remark 4.1.1
(a) 4y €L
(b) If X, ¢ L,then L is called a neutrosophic crisp proper ideal.

(c) If X, € L, then L is called a neutrosophic crisp improper ideal.

Example 4.1.1
Let X ={a,bc,d}, A=(fa}{b,c}{d}) , B=(fa), c) C =({a}, b}, ).
D =(fa}, {c}. bf). E=({d} {a.b}cf). F=(la}{c}.{d}) G=(fa } o {dj) then the

family L = {4 A,B.D,E.F,G|OfNCSsisan NCLinX.

Definition 4.1.2

Let L1 and L2 be two NCL in X. Then Lz is said to be finer than L1 or
L1 is coarser than Lz if L1< Lo. If also L1# Lz, then Lz is said to be strictly
finer than L1 or L1 is strictly coarser than La.

Two NCL are comparable, if one is finer than the other. The set of
all NCL in X is ordered by the relation L1 coarser than Lz; this relation is
induced by the inclusion in NCSs.

The next Proposition is considered as a useful result in this sequel,

whose proof is clear: Lj = <Aj1, Aj2 , Aj3 >

Proposition 4.1.1
Let {L- je J}‘ be any non-empty family of the neutrosophic crisp

ideals in a set X. Then L and L; are neutrosophic crisp ideal in X,

jed jed
where

N L= A, N A, U A
jed ) <]eJ I jed 2> jed >
NL:i=(nNnA;,, U A , U A
jed ) <je.] h jed 12 jed >
uLj:uAjl,uA,mA
jed jed jed jed
L =(UA , mnA ,NnA
jed J jed h! jed I2? jed I
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In fact, L is the smallest upper bound of the set of the L; in the
ordered set of all neutrosophic crisp ideals in X.

Remark 4.1.2
The neutrosophic crisp ideal of the single neutrosophic set 0 is

the smallest element of the ordered set of all neutrosophic crisp ideals in
X.

Proposition 4.1.2
A neutrosophic crisp SetA:<A1,A2 , A3>in neutrosophic crisp ideal L

in X is a base of L if every member of L contained in A.

Proof

(Necessity) Suppose A is a base of L. Then clearly every member of
L contained in A.

(Sufficiency) Suppose the necessary condition holds. Then the set of
neutrosophic crisp subset in X contained in A coincides with L by the
Definition 4.3.

Proposition 4.1.3

For a neutrosophic crisp ideal L1 with baSeA:<A1,A2 , A3>, is finer
than a fuzzy ideal L2 with base B=<Bl,BZ,B3> if every member of B
contained in A.

Proof
Immediate outcome of Definitions.

Corollary 4.1.1

Two neutrosophic crisp ideals bases A, B, in X are equivalent if
every member of A is contained in B and vice versa.

Theorem 4.1.1

Let 77:<Ajl, Ajz,Aj3>: jeJ be a non-empty collection of neutrosophic
crisp subsets of X. Then there exists a neutrosophic crisp ideal
L(7) :{AE NCS:Ac U Aj} in X for some finite collection {AJ— 1j=12,...,nc 77}.

jed

Proof
Clear.
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Remark 4.1.3

The neutrosophic crisp ideal L (1) defined above is said to be
generated by 1, and 1 is called the sub-base of L(n).

Corollary 4.1.2

Let L1 be a neutrosophic crisp ideal in X and A € NCSs, then there
is a neutrosophic crisp ideal Lz which is finer than L1 such that A € L2if
AUBeL, for each Be L.

Proof
Clear.

Theorem 4.1.2
If L = {q, . ,<A WAL LA, >} is a neutrosophic crisp ideal in X, in the
same way:
@[ JL= {¢N ,<Al, A, A >} is a neutrosophic crisp ideal in X.

(b) (L= {¢N ,<A3, A, AS >} is a neutrosophic crisp ideal in X.

Proof
Obvious.

Theorem 4.1.3

LetA=<A1,A2,A3>e L,, and B:<Bl, BZ,B3>e L,, where Liand L2 are
neutrosophic crisp ideals in X; then we have the neutrosophic crisp set
AxB=(A *ByA, ¥By A +By) Where A «B = U{(AL A By, Ay By, Ag M By
A, *By = {{A "By, Ay By, Agn Bg)} and A, xBy ={(A; ABy, Ay "By, A 1By}

4.2 Neutrosophic Crisp Local Functions

Definition 4.2.1

Let p be a neutrosophic crisp point of a neutrosophic crisp
topological space (X,z). A neutrosophic crisp neighbourhood (NCNBD) is

a neutrosophic crisp point p if there exists a neutrosophic crisp open set
(NCOS)Bin Xsuchthat pe B c A
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Theorem 4.2.1
Let (X,7) be a neutrosophic crisp topological space (NCTS) of X.

Then the neutrosophic crisp set A of X is NCOS if A is a NCNBD of p for
every neutrosophic crisp set p e A.

Proof
Let Abe NCOS of X. Clearly Aisa NCBD of any p e A. Conversely, let
p € A. Since A is a NCBD of p, thereisa NCOS Bin X such that peBc A
Sowe have A=Ufp:peAjc U{B:pe Al c A henceA=U{B:peA].
Subsequently, each B is NCOS.

Definition 4.2.2
Let (X,7) be a neutrosophic crisp topological space (NCTS) and L be

a neutrosophic crisp ideal (NCL) in X. Let A be any NCS of X. Then the
neutrosophic crisp local function nca*(L,r) of A is the union of all

neutrosophic crisp points (NCP) P = <{ [ pz},{p3}>, such that if
UeN((p)), and:
NA'(L,z)=u{pe X :AAUgL forevery Unbd of N(P)}, NCA"(L,7)

being called a neutrosophic crisp local function of A with respect to
7 and L, which we symbolize by NCA*(L,7), or simply NCA"(L).

Example 4.2.1

One may easily verify that:
(a) If L={4\} then NCA*(L,7) = NCcl(A), for any neutrosophic crisp set

AeNCSs in X.
(b) If L ={all NCSs on X} then NCA"(L,7) = ¢, , for any AeNCSs
in X.

Theorem 4.2.2
Let (X,7) be a NCTS and L;,L, two topological neutrosophic crisp
ideals in X. Then for any neutrosophic crisp sets A, B of X, the following
statements are verified:
(a) AcB= NCA"(L,7) = NCB*(L,7) -
(b) 4 c Ly, = NCA*(L,,7) < NCA"(Ly,7) .
(c) NCA" = NCcl(A") = NCcl(A).
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(d) NCA™ = NCA*.

(e) NC(AUB)" =NCA™ UNCB”.

(f) NC(ANnB)"(L) = NCA* (L)~ NCB*(L).

(8) teL=NC(AU) = NCA".

(h) NCA*(L,7) is a neutrosophic crisp closed set.

Proof

Since Ac B, let p=({p}{p,},{ps}) e NCA"(L;) then AnU ¢L for every
U e N(p). By hypothesis, we get BAU ¢ L, then p = ({p,},{p, . {ps}) € NB(Ly).

Clearly, L, c L, implies NCA*(L,,r) = NCA*(Ly,r) as there may be other
IFSs which belong to L, so that for GIFP p=({p,},{p,},{ps}) € NCA*(L;) but P
may not be contained in NCA™(L, ).

Since {gy }c L for any NCL in X, therefore by (b) and Example 4.2.1,
NCA* (L)< NCA*({Oy })= NCcl(A) for any NCS A in X.

Suppose B = ({p,},{p,},{p,})e NCel(A"(L,)) - So for every UeNC(R),
NC(A")NU = ¢y, there exists p,=({q,}.{q,}.{g,}) e NCA"(L,)nU such that for
every VNCNBD of P, e N(P, ), AnU ¢ L.

Since U AV € N(p,) then An(U NV )eL which leads to AU gL, for
every U e N(P,) therefore p e NC(A*(L )) and so NCCI(NA*)g NCA*, while the
other inclusion follows directly, hence nca* = NceI(NCA®), but the inequality
NCA* = Ncl(NCA").

The inclusion NCA* UNCB* c NC(AuB)* follows directly from (a). To
show the other implication, let penc(auB) then for every u eNc(p),
(AUB)NU ¢ L,ie, (AnU)u(BnU)gL. We have two cases: AnUegL and
BNU eL or the converse, this means that exist U;,U, e N(P) such that
AnU,¢L,BNU, gL, AnU,¢L, and BnU, ¢L . Then An(U;nU,)eL and
BN(U,nU,)eL. This gives (AUB)n(U,NU,)eL,U,nU,eN(C(P)) Which
contradicts the hypothesis. Hence the equality holds in various cases.

By (c), we have NCA* = NCcl(NCA*)* < NCcl(NCA*) = NCA®.

Let (X,z) be a NCTS and L be NCL in X. Let us define the
neutrosophic crisp closure operator Ncel*(A)= AUNC(A*) for any NCS A of
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X. Clearly, let NCcl*(A) be a neutrosophic crisp operator. Let NCz*(L) be
NCT generated by NCcl” i.e. NCz* (L) ={A: NCcl*(A%) = A°}.

Now | —{p,}=>NCel’(A)= AUNCA = AUNCcl(A) for every neutrosophic
crispsetA.So,N 7" ({p, }) = 7. Again | - {all NCSs on x} = NCcl"(A)=A,
because NCA" =gy for every neutrosophic crisp set A. So NCz"(L) is the

neutrosophic crisp discrete topology in X. We can conclude that
NCz'({¢y})=NCz"(L), i.e. NcrcNe:” for any neutrosophic ideal L; in X.
In particular, we have two topological neutrosophicideals L, and L, inX,

LLcl,= NCz (L1)c NC 7 (Ly)-

Theorem 4.2.3

Let 74, T, be two neutrosophic crisp topologies in X. Then for any
topological neutrosophic crisp ideal L in X, t; < t,, which implies

NA*(L,7,) < NA*(L,7;) for every AcL, then NCt;{ € NCt;.

Proof

Clear.
Abasis NC (L,7) for nc 7% (L) can be described as:

NCA(L,z)= {A-B:Aer,Bel}.
Then we have the following theorem:

Theorem 4.2.4
NCA(L,z)= {A-B:Acr,BelL} forms a basis for the generated NT of
the NCT (X, r) with topological neutrosophic crisp ideal L in X.

Proof
Straightforward.

The relationship between NCr and NC " (L) establishes throughout
the following result, to which have an immediate proof.
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Theorem 4.2.5

Let 71,7, be two neutrosophic crisp topologies in X. Then for any
topological neutrosophic ideal L in X, r; cr, which implies that
NCz* < NCr*z.

1

Theorem 4.2.6
Let (x,z) be a NCTS and Ly, L, be two neutrosophic crisp ideals in X.

Then for any neutrosophic crisp set A in X, we have:
NCA' (L, UL,,7) = NCA"(L,, NC7"(L;) ) ANCA’(L,,NCz'(L,))

NC™ (L v Lz):(NCT*(Ll)T(LZ)A(NCT*(LZT(Ll).

Proof

Let pe(L, UL, 7); this means that there exists u, < n(p) such that
AnU, e(Lul,), ie there exists e, and /,el, such that
AnU e(¢;vr,) because of the heredity of L1, and assuming ¢ A¢,=0y. Thus,
we have (AnU)-v,=¢, and (AnU,)-, =¢,, thereforeu -1)~A=r,c1,and
U-ra)nA=nely; . Hence pgnNcA'(L,NCr(L)) OF PgNCA"(L,NCz (L))
because p must belong to either/; or ¢,, but not to both. This gives
NCA" (L, U L,,7)= NCA’(L,,NCz"(L,))n NCA" (L,,NCz*(L,)). To show the
second inclusion, let us assume p ; nca? (L.NCz' (L,))- This implies that there
exist u en(p) and ¢, eL, such that (U,-¢,)nAeL,. By the heredity of L,,
if we assume that ¢/, cA and define ¢, =(U-¢,)nA , then we have
AnU e(fyuly)eluly.

Thus, NCA’(L, UL, r)c NCA'(L,,NCz*(L) )~ NCA*(L,,NCz(L,)) and
similarly, we can get NcA* (L UL, r)c NCA® (szf*(Li))- This gives the other

inclusion, which complete the proof.

Corollary 4.2.1
Let (X,7z) be a NCTS with topological neutrosophic crisp ideal L in
X. Then:
NCA'(L,7) = NCA*(L, 7")and NC7* (L) = NC(NC 7" (L))" (L)

NCz*(L, uL,) = (NC7'(L,))u(NCr'(L,))-
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It follows by applying the previous statement.

4.3 Neutrosophic Crisp L-Open Sets and Neutrosophic
Crisp L-Continuity

Definition 4.3.1
Let (X,t) be a NCTS with neutrosophic crisp ideal L in X ; A is called
a neutrosophic crisp L-open set if there exists { et such that Ac C ¢

NCA*. We denote the family of all neutrosophic crisp L-open sets by
NCLO(X).

Theorem 4.3.1

Let (X, t) be a NCTS with a neutrosophic crisp ideal L, then
AeNCLO(X) if Ac NCint(NCA*).

Proof

Let us assume that Ae NCLO(X). Then, by Definition 3.1, there exists
¢ et such that Ac ¢ < NCA*. But NCint (NCA*) = NCA*, and ¢ = NCint
(NCA™), hence Ac NCint (NCA*). Conversely, A< NCint (NCA*) c NCA*.
Then there exists { =NCint (NCA*) € t, hence AeNCLO(X).

Remark 4.3.1
For a NCTS (X,t) with a neutrosophic crisp ideal L and A a

neutrosophic crisp set in X, the following holds: If A€ NCLO(X), then
NCint (A) SNCA*.

Theorem 4.3.2

Let (X,t) be a NCTS with a neutrosophic crisp ideal L in X and A, B
be neutrosophic crisp sets such that AeNCLO(X), B €t; then An B €
NCLO(X).

Proof
From the assumption An B< NCint(NCA*)NnB=NCint(NCA*NB), we
have ANB < NCintNC(ANB)*, and this completes the proof.
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Corollary 4. 3.1
If {Aj} jesis a neutrosophic crisp L-open set in NCTS (X,t) with a

neutrosophic crisp ideal L, then U {Aj} jey isa neutrosophic crisp L-open

set.

Corollary 4.3.2
For a NCTS (X,t) with neutrosophic crisp ideal L, and neutrosophic

crisp set A in X and AeNCLO(X), then NCA® = NC(NCintNC(NCA*)) and
NCcl*(A))=NCint (NCA").

Proof
It’s clear.

Definition 4.3.2

A NCTS (X,r) with a neutrosophic crisp ideal L in X and the
neutrosophic crisp set A are given. Then A is said to be:

(i) A neutrosophic crisp t* -closed (or NC*-closed) if NCA*<A;

(ii) A neutrosophic crisp L-dense-in-itself (or NC*-dense -in-itself)
if ACNCA*;

(iii) A neutrosophic crisp *-perfect if A is NC* -closed and NC* -
dense -in-itself.

Theorem 4.3.3

Let NCTS (X,t) with a neutrosophic crisp ideal L be given, and let A
be a neutrosophic crisp set in X; then:

(i) NC *-closed if NCcl*(A)=A.

(ii) NC *-dense-in-itself if NCcl*(A)=NCA*.

(iii) NC* -perfect if NCcl*(A) =NCA*=A.

Proof

It follows directly from the neutrosophic crisp closure operator
NCcl* for a neutrosophic crisp topology t*(L) (NCt*).

Remark 4.3.2
One can deduce that:
(a) Every NC*-dense-in-itself is a neutrosophic crisp dense set.
(b) Every neutrosophic crisp closed (resp. neutrosophic crisp
open) set is N*-closed (resp. NCt*-open).
(c) Every neutrosophic crisp L-open set is NC*-dense-in-itself.
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We have a NCTS (X,t) with a neutrosophic crisp ideal Lin X, and A
eT, then:
(a) If Ais NC* -closed then A*< NCint (A) = NCcl (A);
(b) If A is NC* -dense-in-itself then Nint(A) c NCA*;
(c) If Ais NC* -perfect then NCint(A)=NCcl(A)=NCA*.

Proof
Obvious.

We give the relationship between neutrosophic crisp L-open set and
some known neutrosophic crisp openness.

Theorem 4.3.4

There are given a NCTS (X,t) with a neutrosophic crisp ideal L, and
a neutrosophic crisp set A in X; then the following assertions holds:
(a) If A is both a neutrosophic crisp L-open and a NC*-perfect, then A
is a neutrosophic crisp open.
(b) If A is both a neutrosophic crisp open and a NC*-dense-in-itself,
then A is a neutrosophic crisp L-open.

Proof
Following from the Definitions.

Corollary 4.3.4

For a neutrosophic crisp subset A of a NCTS (X,t) with a
neutrosophic crisp ideal L in X, we have:
(a) IfA isa NC*-closed and a NL*-open, then NCint(A)=NCint(NCA*);
(b) If A is a NC*-perfect and a NL-open, then A=NCint (NCA*).

Remark 4.3.3

One can deduce that the intersection of two neutrosophic crisp L-
open sets is a neutrosophic crisp L-open.

Corollary 4.3.5

Let (X,t) be a NCTS with neutrosophic crisp ideal L and a
neutrosophic crisp set A in X. If L= {N*}, then NCA*(L) = ¢y and hence A

is a neutrosophic crisp L-open if A =g .



Neutrosophic Crisp Set Theory
R —
Proof

It's obvious.

Definition 4.3.3

There are given a NCTS (X,t) with a neutrosophic crisp ideal L, and
a neutrosophic crisp set A; then the neutrosophic crisp ideal interior of A
is defined as the largest neutrosophic crisp L-open set contained in A; we
denoted by NCL-NCint(A).

Theorem 4.3.5

If (X,t) is a NCTS with a neutrosophic crisp ideal L and a
neutrosophic crisp set A, then:

(a) AANint (NCA*) is a neutrosophic crisp L-open set.
(b) NL-Nint (A)=0nif Nint (NCA*)= On.

Proof

(a) Since NCint NCA* = NCA*"NCint(NCA*), then NCint NCA*
=NCA*nNCint (NCA") < NC(ANNCA*)". Thus ANNCA* c
(AnANNCint NC(NCA*))" < NCint NC(ANNCint NC(NCA*)"
Hence AnNNCint NCA*e NCLO(X).

(b) Let NCL-NCint(A) = ¢y , then AnA*= ¢y , it implies NCcl (AN
NCint(NCA*)= ¢y and so AnNintA*=gy . Conversely, we assume
that NCint NCA*= ¢y, then AnNNCint(NCA*)= ¢y . Hence NCL-
NCint (A)=4y -

Theorem 4.3.6

If (X,t) is a NCTS with a neutrosophic crisp ideal L and A is a
neutrosophic crisp set in X, then NCL-NCint(A)=ANNCint(NCA*).

Proof

The first implication is AADNCA* < NCL-NCint (A). (1)

For the reverse inclusion, if (e NCLO(X) and {c A, then NC{* < NCA*
and hence NC int(NC¢*) c NCint(NCA"). This implies {(=¢~ NCint(NC{*)
ANNCA*.

Thus NCL-NCint (A) = AnNNCint(NCA*). (2)

From (1) and (2) we have the result.
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Corollary 4.3.6
For a NCTS (X,r) with a neutrosophic crisp ideal L and a
neutrosophic crisp set A in X, the following holds:
(a) If Ais NC*-closed then NL-Nint (A) c A.
(b) If A is NC*-dense-in-itself then NL-Nint (A) c A*.
(c) If A is NC*-perfect set then NCL-NCint (A) = NCA*.

Definition 4.3.4

Let (X,t) be a NCTS with a neutrosophic crisp ideal L and ¢ be a
neutrosophic crisp set in X; C is called a neutrosophic crisp L-closed set if
its complement is a neutrosophic crisp L-open set. We denote the family
of the neutrosophic crisp L-closed sets by NLCC(X).

Theorem 4.3.7

Let (X,T) be a NCTS with a neutrosophic crisp ideal L and { be a
neutrosophic crisp set in X. ¢ is a neutrosophic crisp L-closed, then
NC(NCint{)*< €.

Proof
It’s clear.

Theorem 4.3.8
Let (X,T) be a NCTS with a neutrosophic crisp ideal L in X and  be

a neutrosophic crisp set in X, such that NC(NCint{)*=NCint(<", then (e
NLC(X) if NC(NCint{)* <.

Proof

(Necessity) It follows immediately from the above Theorem.
(Sufficiency) Let NC(NCint{)* c , then {c < NC(NCint{)* = NCint
(NCQ)<* from the hypothesis. Hence (ce NCLO(X). Thus (e NLCC(X).

Corollary 4.3.7
For a NCTS (X,t) with a neutrosophic crisp ideal L in X, the
following holds:
(a) The union of a neutrosophic crisp L-closed set and a neutrosophic
crisp closed set is a neutrosophic crisp L-closed set.
(b) The union of a neutrosophic crisp L-closed and a neutrosophic
crisp L-closed is a neutrosophic crisp perfect.
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By employing the notion of NL open sets, we establish a class of
neutrosophic crisp L-continuous function. Many characterizations and
properties of this concept are investigated.

Definition 4.3.5

A function f: (X,t) — (Y, o) with a neutrosophic crisp ideal L in X
is said to be neutrosophic crisp L-continuous if for every {co, f-1(Q)e
NCLO(X).

Theorem 4.3.9
For a function f : (X,t) —(Y,0) with a neutrosophic crisp ideal L

in X, the following are equivalent:
i. fisaneutrosophic crisp L-continuous.

ii. For a neutrosophic crisp point p in X and each {ec containing f
(p), there exists AeNCLO(X) containing p such that f (A)co.

iii. For each neutrosophic crisp point p in X and {eo containing f (p),
( f-1(Q))" is a neutrosophic crisp nbd of p.

iv. The inverse image of each neutrosophic crisp closed setin Y is a
neutrosophic crisp L-closed.

Proof

(i) — (ii) Since {eo containing f (p), then by (i) f -1(Q) € NCLO(X),
by putting A = f -1() containing p, we have f (A)co.

(ii) — (iii). Let {eo containing f (p). Then by (ii) there exists Ae
NCLO(X) containing p such that f{A)< o, so peAc NCint(NCA")< NCint
(f 1) < (f-1(Q)". Hence f -1(Q))*is a neutrosophic crisp nbd of p.

(iii) — (i) Let {eo, since (  -1(Q)) is a neutrosophic crisp nbd of any
point f 1(Q), every point xce ( f -1(Q))* is a neutrosophic crisp interior
point of f -1(¢Q)*. Then f -1(Q) = NCint NC ( f -1(Q))* and hence f is a

neutrosophic crisp L-continuous.

(i)— (iv) Let {ey be a neutrosophic crisp closed set. Then (¢ is a
neutrosophic crisp open set, by f-1(¢¢) =( f -1(C¢)e NCLO(X). Thus f1(Q)
is a neutrosophic crisp L-closed set.
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The following theorem establish the relationship between the
neutrosophic crisp L-continuous and the neutrosophic crisp continuous by
using the previous neutrosophic crisp notions.

Theorem 4.3.10

Let f: (X,t) — (Y,0) be a function with a neutrosophic crisp ideal L
in X; then we have f a neutrosophic crisp L-continuous of each
neutrosophic crisp *-perfect set in X, then f is a neutrosophic crisp
continuous.

Proof
Obvious.

Corollary 4.3.8

Given a function f: (X,t) = (Y,t) and each member of X being a
neutrosophic crisp NC*-dense-in-itself, then we have that every
neutrosophic crisp continuous function is a neutrosophic crisp NCL-
continuous.

Proof
It’s clear.

We now define and study two different types of neutrosophic crisp
functions.

Definition 4.3.6
A function f :(X,r)—>(Y,0) with neutrosophic crisp ideal L in Y is
called neutrosophic crisp L-open (resp. neutrosophic crisp NCL- closed),

if for each Aer (resp. A is neutrosophic crisp closed in X),
f (A) € NCLO (Y) (resp. f(A) is NCL-closed).

Theorem 4.3.11

Let f:(X,7)—(Y,0) be a function with neutrosophic crisp ideal L in Y.
Then the following are equivalent:

(a) f is a neutrosophic crisp L-open.

(b) For each p in X and each neutrosophic crisp NCNBD A of p,

there exists a neutrosophic crisp L-open set Bel
containing f(p) such that Bc f(A).
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Proof
Obvious.

Theorem 4.3.12
Let a neutrosophic crisp function f:(X,7)>(Y,0) with a

neutrosophic crisp ideal L in Y be a neutrosophic crisp L-open (resp.
neutrosophic crisp L-closed), if AinY and B in X is a neutrosophic crisp
closed (resp. neutrosophic crisp open) set C in Y containing A such that

f’l(C)g B.

Proof
Assume thatA=1, —(f(lx -B)), since f}(c)<B and A<C then Cis

a neutrosophic crisp L-closed and f *(C)=1x - f }(f(1x —A))<B.

Theorem 4.3.13
If a function f :(X,7)— (Y,o) with a neutrosophic crisp ideal L in

Y is a neutrosophic crisp L-open, then f NC(NCint(A))" < NC(f ‘1(A))* such

that f %(A) is a neutrosophic crisp *-dense-in-itself and A in Y.

Proof

Since A in Y, NC(f‘l(A))* is a neutrosophic crisp closed in X
containing f _1(A) , T is a neutrosophic crisp L-open, then, by using
Theorem 4.4, there is a neutrosophic crisp L-closed set Ac B such that,
(£ 2(a)) 2 £74(B)> £ *NC(int(B)) = fNC(NCint(u))'.

Corollary 4.3.9
For any bijective function f :(X,7)— (Y, o) with neutrosophic crisp
ideal L in Y, the following are equivalent:
(@) f*:(Y,0)— (X,7) is a neutrosophic crisp L-continuous.
(b) fis a neutrosophic crisp L-open.
(c) fis a neutrosophic crisp L-closed.

Proof
It follows directly from Definitions.
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4.4 Neutrosophic Crisp Filters

Definition 4.4.1

Let ¥ be a neutrosophic crisp subsets in a set X. Then W is called
a neutrosophic crisp filter in X, if it satisfies the following conditions:
(a) (N;)Every neutrosophic crisp set in X containing a member

of ¥ belongs to¥;
(b) (N,)Every finite intersection of members of ¥ belongs to

v,
(c) (N3) ¢y notiny.
In this case, the pair (X, N) is called neutrosophic crisp filtered by
¥ . It follows from (N,) and (Nj) that every finite intersection of
members of ¥ isnot ¢,. Furthermore, there is no neutrosophic crisp set.

We obtain the following results.

Proposition 4.4.1
The condition (N, ) is equivalent to the following two conditions
(N, ). The intersection of two members of ¥ belongs to ¥ .

(Ny,) X belongs to¥.

Proposition 4.4.2
Let ¥ be a non-empty neutrosophic crisp subsets in X satisfying (N;).

Then,
(1) XN Eﬁy]f T¢¢N
(2) ¢y ew if ¥ # all neutrosophic crisp subsets of X.

From above Propositions, we can characterize the concept of
neutrosophic crisp filter.

Theorem 4.4.1
Let ¥ be a neutrosophic crisp subsets in a set X. Then ¥ is a
neutrosophic crisp filter in X, if and only if it is satisfies the following
conditions:
(i) Every neutrosophic crisp set in X containing a member of
¥ belongsto¥ .
(i) If ABe¥? ,thenAnBeY¥,

(iii) X =¥=4y.
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Proof

It’s clear.

Theorem 4.4.2

Let X ¢ , then the set {X}is a neutrosophic crisp filter in X.
Moreover if A is a non-empty neutrosophic crisp set in X, then
{B erX i Ac B} is a neutrosophic crisp filter in X.

Proof
Let N:{BGY’X :AgB}. Since Xy e¥ and ¢y e ¥, gy 2% =% .
Suppose U,V e¥ , then AcU,AcV . Thus A cU;nV;, A, cu,nv, Or
Ay cU, WV, and Az cUzuV; forall x € X.
So AcU NV and hence UnV eN.

Definition 4.4.2

Let ¥ and ¥, be two neutrosophic crisp filters on aset X. Then »,
is said to be finer than A~; or ¥ coarser than¥, if ¥ c ¥,

If also ¥, #¥,, then ¥, is said to be strictly finer than ¥ or ¥ is
strictly coarser than ~, .

Two neutrosophic crisp filters are said to be comparable, if one is
finer than the other. The set of all neutrosophic crisp filters in X is
ordered by the relation »; coarser than ~,; this relation is induced by

the inclusion relation in¥ X .

Proposition 4.4.3
Let (¥j) jes be any non-empty family of neutrosophic crisp filters

in X. Then ¥ =nj;¥; is a neutrosophic crisp filter in X. In fact ¥ is the
greatest lower bound of the neutrosophic crisp set(¥#j) je; in the ordered

set of all neutrosophic crisp filters in X.

Remark 4.4.1
The neutrosophic crisp filter by the single neutrosophic set X is

the smallest element of the ordered set of all neutrosophic crisp filters in
X.
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Theorem 4.4.3

Let A be a neutrosophic crisp set in X. Then there exists a
nutrosophic filter ¥(4) in X containing A if for any finite subset

{51,55,...5n} Of A, N4 S; # ¢y . In fact ¥(A) is the coarsest neutrosophic
crisp filter containing 4.

Proof
(=) Suppose there exists a nutrosophic filter ¥(A4) in X containing

A . Let B be the set of all the finite intersections of members of A . Then
by (N,), Bc¥(A4) . By(N3), Oy ¢ N(A) . Thus for each member B of B,

hence the necessary condition holds.

(<) Suppose the necessary condition holds. Let
Y(A) = {Ae‘[’x : A contains a member of B} where B is the family of all the
finite intersections of members of A. Then we can easily check that ¥ (a)

satisfies the conditions in Definition 3.4. The neutrosophic crisp filter
N(A) defined above is said to be generated by A, and A is called a sub -

base of N(A) .

Corollary 4.4.1

Let ¥ be a neutrosophic crisp filter in a set X and A neutrosophic
set. Then there is a neutrosophic crisp filter %/ which is finer than % and
such that Ae ¥’ if and A neutrosophic set. Then there is a neutrosophic
crisp filter ¥/ which is finer than W and such that Ae ¥/ if AnU =gy for
eachU e ¥ .

Corollary 4.4.2
A set ¢ of a neutrosophic crisp filter in a non-empty set X has at

least the upper bound in the set of all neutrosophic crisp filters in X, for
all finite sequence (#))jes 0 j<n of elements of ¢y and all Ajewi<j<n),

ﬁj:]_Aj ;ﬁm .

Corollary 4.4.3

The ordered set of all neutrosophic crisp filters in a non-empty set
Xis inductive.

If A is a sub-base of a neutrosophic filter ; in X, then ¥ is not in
general the set of neutrosophic sets in X containing an element of 4 ; for
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A to have this property it is necessary and sufficient that every finite
intersection of members of A contains an element of 4.
Henceforth, we have the following result:

Theorem 4.4.4

Let [ be a set of neutrosophic crisp sets in a set X. Then the set of
neutrosophic crisp sets in X containing an element of £ is a neutrosophic
crisp filter in X if # meets the following two conditions:

(8,) The intersection of two members of g contains a member of 5.

(B2) f#¢pyandgy ¢

Definition 4.4.3
Let 4 and B be two neutrosophic crisp sets in X satisfying
conditions (4;) and (53,), and the base of the neutrosophic crisp filter it

generates. Two neutrosophic bases are said to be equivalent if they
generate the same neutrosophic crisp filter.

Remark 4.4.2
Let 4 be a sub-base of a neutrosophic filter# . Then the set g of a
finite intersections of members of 4 is a base of a neutrosophic filter 7.

Proposition 4.4.4
A subset g of a neutrosophic crisp filter # in X is a base of V¥ if
every member of W contains a member of 5.

Proof

(=) Suppose g is a base of ¥ . Then clearly, every member of ¥
contains an element of 5 .

(<) Suppose the necessary condition holds. Then the set of
neutrosophic sets in X containing a member of B coincides with ¥ by
reason of (¥;) jes .

Proposition 4.4.5
In a set X, a neutrosophic crisp filter ¥/ with base g’ is finer than a
neutrosophic crisp filter ¥ with base g if every member of g contains a

member of 8’ .
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Proof

This is an immediate consequence of Definitions 2.4 and 4.4.

Proposition 4.4.6
Two neutrosophic crisp filters bases g and g’ in a set X are
equivalent if every member of B contains a member of g’ and every

member of ' and every member of g’/ contains a member of 5 .

Definition 4.4.4

A neutrosophic crisp ultra-filter in a set X is a neutrosophic crisp
filter ¥ such that there is no neutrosophic crisp filter in X which is strictly
finer than % (in other words, a maximal element in the ordered set of all
neutrosophic crisp filters in X).

Since the ordered set of all the neutrosophic crisp filters in X are
inductive, Zorn's lemma shows that:

Theorem 4.4.5

If ¥ is any neutrosophic crisp ultra-filter in a set X, then there is a
neutrosophic crisp ultra-filter than¥.

Proposition 4.4.7

Let ¥ be a neutrosophic crisp ultra-filter in a set X. If Aand B are
two neutrosophic subsets such that AuBe ¥, then Ac¥ orBe N .

Proof

Suppose not. Then there exist neutrosophic sets A and B in X such
that A¢ N.BeNand AUBeN. Leta={Mcw*:AUM v,

It is straightforward to check that 4 is a neutrosophic crisp filter
in X, and 4 is strictly finer than ¥, since BeA . This contradict the
hypothesis that ¥ is a neutrosophic crisp ultra-filter.

Corollary 4.4.4
Let ¥ be a neutrosophic crisp ultra-filter in a set X and let (#})i<j<n

be a finite sequence of neutrosophic sets in X. If _wl&l’j e?, then at least
J:

one of the ¥ belongs to ¥.
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Definition 4.4.5
Let A be aneutrosophic crisp setinasetX.If U is any neutrosophic

crisp set in X, then the neutrosophic crisp set AnU is called trace of Y an
A and denoted by U , . For all neutrosophic crisp sets U and V in X, we

have (U ﬂV)A =UAmVA.

Definition 4.4.6
Let A be a neutrosophic crisp set in a set X. Then the set A, of

traces 4 e ¥”* of members of 4 is called the trace of 4 on A4.

Proposition 4.4.8

Let ¥ be a neutrosophic crisp filter in a set X and A< ¥* . Then the
trace of ¥, of ¥ an A is a neutrosophic crisp filter if each member of ¥

intersect to A.

Proof

From the results, we see that ¥, satisfies (N,). If MNnAcPcA,
then P=(M UP)~A. Thus ¥, satisfies (N;). Hence ¥, is a neutrosophic
crisp filter if it satisfies (N3), i.e. if each member of ¥ intersect to A.

Definition 4.4.7

Let ¥ be a neutrosophic crisp filterinasetXand A ¥* . If we have
the trace 7, of ¥ on A, then ¥, is said to be induced by ¥ on A.

Proposition 4.4.9

Let ¥ be a neutrosophic crisp filter in a set X induced by a
neutrosophic filter ¥, where A € ¥* . Then the trace S, on A of a base
B of ¥ is abase of #,.
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5. Introduction to Neutrosophic
Topological Spaces

The purpose of this chapter is to extend the concepts of
fuzzy topological space [4], and intuitionistic fuzzy topological
space [5, 6] to the case of neufrosophic sets. Here we
generalize the concept of fuzzy topological space, first
infroduced by Chang to the case of neutrosophic sets. In 5.1,
we infroduce and study the neufrosophic topological spaces.
In 5.2, some neutrosophic topological notions of neufrosophic
region are given and we add some further definitions and
propositions for a neufrosophic topological region. In 5.3, we
infroduce and study the generalized neutrosophic topological
space. In 5.4, we Initiate and analyze the concepts of
neutrosophic closed set and neutfrosophic continuous
function.

5.1 Neutrosophic Topological Spaces

Here we extend the concepts of fuzzy topological space [4], and
intuitionistic fuzzy topological space [5, 7] to the case of neutrosophic sets.

Definition 5.1.1
A neutrosophic topology (Nt) in a non-empty set X is a family 7 of
neutrosophic subsets in X satisfying the following axioms:

(NTl) ON ’]N GT;
(NT,) G,NG, er foranyG,,G, e,
(NT3)UGier V{Gi:ieJ}gr

In this case the pair (X ,r) is called a neutrosophic topological
space (n1s) and any neutrosophic setin 7 is known as neutrosophic open
set (vos) in X. The elements of 7 are called open neutrosophic sets. A
neutrosophic set F is closed if and only if it C (F) is neutrosophic open.
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Example 5.1.1

Any fuzzy topological space (X.r,) in the sense of Chang is
obviously a NTs in the form r={A:y, ez,} wherever we identify a fuzzy
set in X whose membership function is x#, with its counterpart.

Remark 5.1.1

The neutrosophic topological spaces are very natural
generalizations of fuzzy topological spaces allowing more general
functions to be members of fuzzy topology.

Example 5.1.2
Let x - {x} and
A ={(x,05,05,04):x X |
B ={(x,04,06,0.8):x X |
D ={(x,05,06,0.4):x eX }
C ={(x,04,05,08):x X }
Then the family r={0,,1,A,8,C,D} of NSs in X is a neutrosophic
topology in X.

Example 5.1.3
Let (x ,r,) be a fuzzy topological space, such that zy is not
indiscrete; suppose now that ; = {0, 1, }u {Vj Tjedls then we can
construct two NTSS in X as it follows:
o =0, 1 Jul<x,V,,0(x)0>jed |-
7, ={0, 1, Jukk x,V,,0,0(x)1-V, > je I}

Proposition 5.1.1
Let (X ,z) bea NTS in X; then we can also construct several NTSS in

X in the following way:
Tonr = {[]G :G e T}’

Too = (<> G:Ger}

Proof
a) (NT,) and (NT,) are easy.

" Let{[1G,:je J,G,er}c 1,-
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N Since
UG, = {<X,\/,uGJ VOGNV, >}or {<X,vyGJ I RUVLS >}or {<X,v,uGJ NG, Vg, >}e T,

we have
v ([]Gj)= {X,v Hg VO, Al - ,uGI)}OF {X,vij VO, (1= v,qu) }e Tos
b) This is similar to (a).

Definition 5.1.2

Let(X,7,),(X,z,) be two neutrosophic topological spaces on X. Then
7, is said be contained inr, (in symbolsz, C7,) if Ger, foreachG e 7,.In
this case, we also say that 7, is coarser thanr,.

Proposition 5.1.2
Let{:, : je J | beafamily of NTSS in X. Then N T} is a neutrosophic

topology in X. Furthermore, M7j is the coarsest NT in X containingallz;.

Proof
Obvious.

Definition 5.1.3

The complement of A (C(A) for short) of NOS A is called a
neutrosophic closed set (ncs) in X.

Now, we define neutrosophic closure and interior operations in
neutrosophic topological spaces:

Definition 5.1.4
Let (X ,z) be NTS and A=<, (x),0,(X),v,(X)> be a NS in X.

Then the neutrosophic closer and neutrosophic interior of A are
defined by:
NCI (A) = ~{K : K is an NCS in X and A ¢ K}

NInt(A) = U{G : G is an NOSin X and G c A}.
It can be also shown that NC{A) is NCs and NInt(A) isa NoOs in X:
Aisin X ifand onlyif NCI(A)
Ais NCS in X ifand only if NInt(A) =A.

Proposition 5.1.3
For any neutrosophic set A in (X,7) we have:
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(a) NCI (C(A) = C(NInt (A),
(b) Nint (C (A)) = C(NCI (A)).

Proof
Let A=<z, (X),0,(X),v»(X) > and suppose that the family of neutrosophic

subsets contained in A is indexed by the family if NSS contained in A are
indexed by the family A={< y, 0,0, >ieJ |- Then we see that:

NInt(A) = i< Vi VOG AUg >} and hence
C(NInt(A)) = {< AHg N Og VUG >}.
Since C(A) and ug; <up and vg 2va for each ieJ , we obtain
NCI(C(A)) = { < Avg o, virg, >

Proposition 5.1.4
Let (X,T) be a NTs and A, B be two neutrosophic sets in X. Then the
following properties hold:
(a) Nint (A) c A,
(b) A c NCI(A),
(c) Ac B = Nint (A) < Nint (B),
(d) A c B = NCI (A)c NCI (B),
(e) Nint (NInt (A)) = NInt (A) A Nint (B),
(f) NCI (AU B) = NCI (A) v NCI (B),
(8 NInt(,)=1,,
(h) NCL(Oy) = Oy.

Proof
(a), (b) and (e) are obvious; (c) follows from (a) and Definitions.

Now we shall define the image and preimage of NSS. Let X and Y be
two non-empty sets and f :x -y be a function.

Definition 5.1.5
a)lfs :{<x ,ﬂg”,ag”,vg”); y eX } is a NS in Y, then the preimage of B under f,
denoted by f *(B), is the NS in X defined by

f ’1(B)={<x,f ) )" ()i e X }
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b) If A :{(x,y}j’, L*),v,&”>:x ex} is a NS in X, then the image of A under f,
denoted by f (A), is the NS in Y, defined by

f (A):{<y,f (4)")f (6,)"), (11 (1_VA))(”>:y ey },where
sup AVif f )= ¢

f(a)) ={xef}

0 other wise

sup(5, )i £1 % ¢

t(8,)" ={x ef }

0 other wise

i ()i § 1
(1—f (1—VA))(Y)={IanA if f(y)¢¢}

1 other wise

5.2 Some Neutrosophic Topological Notions of

Neutrosophic Region

Now, we add some further definitions and propositions for a
neutrosophic topological region.

Corollary 5.2.1
Let A=<y, ()04 (%),v4(9) > and B=</;(X),05(X),v5(X) > be two neutrosophic
sets in a neutrosophic topological space (X, 7), holding the following:
(a) Nint(4) N Nint(B) = Nint(4 N B),
(b) Ncl(4A) n Ncl(B) = Nint(A U B),
(c) Nint(A) € A € Ncl(A),
(d) (Nint(4))" N Ncl(49), (Ncl(4)) = Nint(A°).

Definition 5.2.1

We define a neutrosophic boundary (NB) of a neutrosophic set
A=<, (X),0,(X),va(X) > by: 6A = Ncl(A) n Ncl(A®) .

The following theorem shows the intersection method no longer
guarantees a unique solution.

Corollary 5.2.2
AN N int(A) = Oy, if Nint(A) is crisp (i.e.Nint(A) = Oy ornNint(A) =1, ).
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Proof
Obvious.

Definition 5.2.2

Let A=<u,(X),04(X),va(X)> be a neutrosophic set in a neutrosophic
topological space (x,7). Suppose that the family of neutrosophic open
sets contained in A is indexed by the family < 4 (X),0, (%), (9 >i el and the
family of neutrosophic open subsets containing A is indexed by the family
<M (X),O'KJ_ (X),VKJ. X)>jed.

Then two neutrosophic interior sets - closure and boundaries -, are
defined as it follows:

a) Nint(A);; may be defined as two types
i) Type 1.Nint(A);; = < Maxug, () maxog, (x)) min{l- s, (x))>
ii)  Type2.Nint(A) ;= <max{ug, (x)) mirlog, (x)) minL—zg, (x))>
b) Nint(A). . may be defined as two types
iii)  Type 1.Nint(A). , =<maxl-vg, (x)) maxog, (X)) min{vg (¥))>
iv) Type 2.Nint(A). . =< ma><(1—vGi (x)), min(o-Gi (x)), min(vGi (x))>
c) Ncl(A);;may be defined as two types
i) Type 1.Ncl(A); ;=< ma><{yKj (x)) mir(aKj (x)} max(l— H (x))>
ii) Type 2. Ncl (A)=< ma>{ij (x)), ma>{aKj (x)} max(l— H; (x))>
d) Ncl(A). . may be defined as two types
i) Type 1. Ncl (A). . =<minl-v,. (x)) minlog, (x)) max{ve, (x))>
i)  Type2Ncl(A). . =<mirll-vy. (x)) maog, (x)) max(vg, (x))>.
e) A neutrosophic boundaries may be defined as
i) OA; 1= Ncl(A 1) N Ncl(A%[y)
ii) OA_ .= Ncl(A_.) N Ncl(A°< )
Proposition 5.2.1
a) Nint(A);; < Nint(A) < Nint(A)
b) Ncl(A);; < NcI(A) Ncl(A). .
C) Nint(Ag-y) = 1< >INint(A) and Nel (A ;. ,3) = [ 1.< >Ncl(A)

< >
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Proof
We must only prove (c), as the others are obvious.
[ INint(A) =< ma>(,uGi (x)), ma>(<yGi (x)), (1—max;1G (x))>or =
< ma\){yGi (x)), min(o-Gi (x)), (1— maXsg, (x))>
Based on knowing that (1— max g (x)): min(l- g, ) then
[ INint(A) = <max{ug, (x)) maxiog, (X)) minL- ug (x))>or
< ma>{,uGi (x)), mir{aGi (x)), min(l— Ha, (x))> =[ INint(A)

In a similar way one can prove the others.

Proposition 5.2.2
a) Nint(Ag;.3)=(Nint(A)g. .,
b) Nel(Ag <)< = (NH(A))g < oy

Proof
Obvious.

Definition 5.2.3

Let A=<, (X),05(X),va(X)> be a neutrosophic set in a neutrosophic
topological space(X,z). We define neutrosophic exterior of A as it follows:
AN =1, " A®

Definition 5.2.4
Let  A=<u,(X),0,(X),va(X)> be a neutrosophic open set and
B=<14(X),05(X),v5(X)> be a neutrosophic set in a neutrosophic topological
space (X,z) then:
a) A is called neutrosophic regular open if A= N int(Ncl(A)).
b) If B e NCS(X) then B is called neutrosophic regular closed
if A= Ncl(N int(A)).
Now, we obtain a formal model for simple spatial neutrosophic
region based on neutrosophic connectedness.

Definition 5.2.5

Let A=<u,(X),0,(X),v,(X)> be a neutrosophic set in a neutrosophic
topological space (X , T). Then A is called a simple neutrosophic region in
connected NTS, such that:
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i) Ncl(A), NcI(A);;, and Ncl(A). . are neutrosophic
regular closed.

ii) Nint(A), Nint(A);;, and Nint(A). . are neutrosophic
regular open.

iii) o(A), 9(A);, and O(A).. are neutrosophically
connected.

Having Ncl(A), Ncl(A) ;. Nel(A). ., Nint(A), Nint(A) ;. Nint(A)_ .

are 0(A), d(A);1, and 0(A). . for two neutrosophic regions, we are able

to find relationships between two neutrosophic regions.
5.3 Generalized Neutrosophic Topological Spaces

Definition 5.3.1

A generalized neutrosophic topology (GNT) in a non-empty set X is
a family t of generalized neutrosophic subsets in X satisfying the
following axioms:

(GNT1) On, INE T,
(GNT2) GiNGz2€ T, for any G1, G2€ T,
(GNT3)UGiE TV{G;:i€J} S T.

In this case, the pair (X,7) is called a generalized neutrosophic
topological space (GNTS) and any neutrosophic set in T is known as
neutrosophic open set (NOS) in X. The elements of t are called open
generalized neutrosophic sets. A generalized neutrosophic set F is closed
if and only if C (F) is a generalized neutrosophic open.

Remark 5.3.1

The generalized neutrosophic topological spaces are very natural
generalizations of intuitionistic fuzzy topological spaces, allowing more
general functions to be members of intuitionistic fuzzy topology.

Example 5.3.1
Let X = {x} and
A ={(x,0505,04):x eX |

B ={(x,04,06,08):x eX |
D= {x050604 xGx}
C= {x040508 X e }
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Then the family r={0,,1,,A,B,C,D} of GNSs in X is a generalized
neutrosophic topology in X.

Example 5.3.2
Let (x,7r) be a fuzzy topological space in changes [4] sense such that
70 is not indiscrete; suppose now that = {0, 1, }u {\/j Ljed} then we

can construct two GNTSS in X as it follows:
7o = {0y Ly JU XV, 0 (0,01 je Iz = {0, L J Ul xV, 0,0(x)1-V, > je ]

Proposition 5.3.1
Let (X,7) be a GNT in X, then we can also construct several GNTSS in X

in the following way:
r,,={16:G ez}

Top = < G:Ger},

Proof

(6NT;) and (GNT,) are easy.

(GNT3) Let{[1G;: j € ,Gj e rfc 7q;.

Since qu = {<X,v,qu ,VUGJ_ ,/\]/Gj >}0I‘{<X,vyGj ,/\GGJ_ ,/\}/GJ_ >}or {<X,v;%j ,/\O'Gj ,v;/Gj >}e T,
we have u([ ]Gj): {X:Vﬂe, VO, ,/\(1—,uGJ )}or {X,v,uGJ VOg, ,(1—v,uGJ )}e Ty1

This is similar to (a).
Definition 5.3.2

Let (x,7,)(X,r,) be two generalized neutrosophic topological

spaces in X. Then t1is said to be contained in 7, (insymbolsgcn)if Gery
for each GE€t.In this case, we also say that t1is coarser thanr, .

Proposition 5.3.2

Let {Tj 1]63} be a family of NTSS in X. Then Nt is a generalized
neutrosophic topology in X. Furthermore, Ntj is the coarsest NT in X
containing all ;.

Proof
Obvious.
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Definition 5.3.3

The complement of A (C(A)) of NOS A is called a generalized
neutrosophic closed set (GNCS) in X.

Now, we define the generalized neutrosophic closure and interior
operations in generalized neutrosophic topological spaces.

Definition 5.3.4
Let (x,7) be GNTS and A=<z, (X),0,(X),v,(X) > be a GNSin X.
Then the generalized neutrosophic closer and generalized

neutrosophic interior of A are defined by:
GNCI(A) =n{K : K is an NCSin Xand A c K}

GNInt(A) = U{G : G is an NOSin Xand G c A},

It can be also shown that NCI(A) is NCS and NInt(A) is a GNOS in X.
Aisin X if and only if GNCI(A).
Ais GNC in X if and only if GNInt(A)=A.

Proposition 5.3.3
For any generalized neutrosophic set A in (x,7) we have
(a) GNCI (C(A) = C(GNInt (A),
(b) GNInt (C (A)) = C(GNCI (A)).

Proof

Let A={<u,,0,0,>xeX} and suppose that the family of
generalized neutrosophic subsets contained in A are indexed by the
family if GNSS contained in A are indexed by the family
A= {< U, O, Ug i€ J}-

Then, we see that (3|\||m(A):{<x,v,u(3i NGOG AU, >} and hence
C(GNINY(A)) = {< X Apg VoG, VUG >f- Since c(a) and g, < g, and vy >v, for
each icJ, we obtain C(A) i.e. GNCI(C(A)) = |« x,Avg Vo, Vg >f - Hence
GNCI (C(A) = C(GNInt (A), itimmediately follows.

This is analogous to (a).

Proposition 5.3.4
Let (X,z) bea GNTS and A, B be two neutrosophic sets in X. Then
the following properties hold:
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a) GNInt (A) c A,
b) A < GNCI (A),
€) Ac B = GNInt (A) < GNInt (B),
d) Ac B = GNCI (A) c GNCI (B),
e) GNInt (GNInt (A)) = GNInt (A) A GNInt (B),
f) GNCI (AU B) = GNCI (A) v GNCI (B),
g) GNint AQy) =1y,
h) GNCI(0,)=0,,

Proof
(a), (b) and (e) are obvious (c) follows from (a) and Definitions.

5.4 Neutrosophic Closed Set and Neutrosophic Continuous
Functions

Definition 5.4.1
Let (X,T) be a neutrosophic topological space. A neutrosophic set A
in (X,T) is said to be neutrosophic closed (N-closed). If Ncl (A) < G

whenever A < G and G is neutrosophic open; the complement of
neutrosophic closed set is neutrosophic open.

Proposition 5.4.1

If A and B are neutrosophic closed sets, then AUB is a neutrosophic
closed set.

Remark 5.4.1

The intersection of two neutrosophic closed (N-closed) sets does
not need to be a neutrosophic closed set.

Example 5.4.1
Let X={a, b, c} and
A =<(0.5,0.5,0.5), (0.4,0.5,0.5), (0.4,0.5,0.5)>
B =<(0.3,0.4,0.4), (0.7,0.5,0.5), (0.3,0.4,0.4)>
Then T ={On~,1n, A, B}is a neutrosophic topology in X. We define
the two neutrosophic sets A, and A, as it follows,
A =<(0.5,0.5,0.5),(0.6,0.5,0.5),(0.6,0.5,0.5)>
A, =<(0.7,0.6,0.6)(0.3,0.5,0.5),(0.7,0.6,0.6)>
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A and A, are neutrosophic closed set but A m A is not a
neutrosophic closed set.

Proposition 5.4.2

Let (X,T) be a neutrosophic topological space. If B is neutrosophic
closed setand B < A < Ncl (B), then A is N-closed.

Proposition 5.4.3

In a neutrosophic topological space (X,T) ,T=3 (the family of all
neutrosophic closed sets) if every neutrosophic subset of (X,T) is a
neutrosophic closed set.

Proof

Suppose that every neutrosophic set A of (X,T) is N-closed. Let
A€T, since Ac A and A is N-closed, Ncl (A) < A. But A < Ncl (A). Hence,
Ncl (A) =A. Thus, A €3. Therefore, T 3. If B €3 then 1-B €TcSJ. and
hence BeT. Thatis, ScT. Therefore T=3 conversely, suppose that A be a
neutrosophic setin (X, T). Let B be a neutrosophic open setin (X,T), such
that A < B. By hypothesis, B is neutrosophic N-closed. By definition of
neutrosophic closure, Ncl (A) < B. Therefore A is N-closed.

Proposition 5.4.4

Let (X,T) be a neutrosophic topological space. A neutrosophic set A
is neutrosophic open if B cNint(A), whenever B is neutrosophic closed
and B c A

Proof

Let A be a neutrosophic open set and B be a N-closed, such that B ¢
A.Now, B A= 1-A =1-B and 1-A is a neutrosophic closed set = Ncl
(1-A) < 1-B. That is, B=1-(1-B) < 1-Ncl (1-A). But 1-Ncl (1-A) = Nint
(A). Thus, B cNint (A). Conversely, suppose that A is a neutrosophic set,
such that B cNint (A) whenever B is neutrosophic closed and B — A. Let
1-A < B= 1-B c A. Hence by assumption 1-B cNint (A). That is, 1-Nint
(A) < B. But 1-Nint (A) =Ncl (1-A). Hence Ncl(1-A) < B. Thatis 1-A is
neutrosophic closed set. Therefore, A is neutrosophic open set.
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Proposition 5.4.5
If Nint (A) < B < A and if A is neutrosophic open set then B is also

neutrosophic open set.
Definition 5.4.2

i) If B = (g, 05.Vs) is a NS in Y, then the preimage of B under f,
denoted by f (B),is a NS in X defined by f’l(B)=<f’l(,uB),f’l(o-B),f’l(vv)>.

i) If A=(u, 0, v,) IsaNSinX, then the image of Aunder f, denoted
by f(A), is thea NS in Y defined by f(A)=(f(x,), f(c,). f(v,)*)).

Here we introduce the properties of images and preimages, some of

which we frequently use in the following sections.

Corollary 5.4.1
LetA{Ai :ieJ}beaNS in X, and B{Bj :jeK}beaNS in Y, and
f : X > Y be a function. Then:
(@ AcA < f(A)cf(A) B cB, < f*(B)c f(B,)
(b) Ac f'(f(A) andif f isinjective, then A= f *(f(A) ),
() f7*(f(B)) B andif fissurjective, then f*(f(B))=B,
(d) 1 twsy)=vite) f7(nB;) )=nf7(B),
(€) fm=vin) F(NA)cf(A);
and if f isinjective, then f(nA)=nf(A);
() i) =1y £20y) =0y,
(8) toy)=0y, fay)=1y if f is subjective.

Proof
Obvious.

Definition 5.4.3
Let (X, 77) and (Y, 7, ) be two NTSs, and let f : X - Y be a function.

Then f'is said to be continuous if the preimage of each NCS in 7, is a NS

inrj.
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Definition 5.4.4
Let (X,77) and (Y, 7, ) be two NTSs and let f: X —Y be a function.
Then f1is said to be open if the image of each NSin7; isaNSin 7.

Example 5.4.2
Let (X,T,)and(Y,y,) be two NTSs.
(a) If f:X —>Y is continuous in the usual sense, then in

this case f is Continuous. Here we consider the NTs in X and Y,
respectively, as it follows:
r, = {<,uG,O,,ué>:G el }and T, :{<,uH 0/JH> H E‘PD}-

In this case, we have for each <ﬂH 0, >eF2, HeY,,

£ 0,425 ) = (7 () 70 7)) = (1 1O (T ° e 13
(b) If f:X —Y is neutrosophic open in the usual sense, then
in this case, f is neutrosophic open in the sense of Definition

3.2.
Now we obtain some characterizations of neutrosophic continuity:

Proposition 5.4.6
Let f :(X,I37) — (Y,13), where fis a neutrosophic continuous if the
preimage of each NS (neutrosophic closed set) in 7, isaNSin 7.

Proposition 5.4.7

The following are equivalent to each other:
1. f:(X,I;)—>(Y,I,) is neutrosophic continuous.

2. f(NInt(B) < NInt(f *(B)) for each CNSBinY.
3. NCI(f *(B))c f *(NCI(B)) for each NCBinY.

Example 5.4.3
Let (v,r,) be a NTS and f:X —»Y be a function. In this case
= {f (H):He 1“2} isa NT in X. Indeed, it is the coarsest NT in X which
makes the function f:X —Y continuous. One may call it the initial
neutrosophic crisp topology with respect to f.

Definition 5.4.5
Let (X,T) and (Y,S) be two neutrosophic topological spaces, then:
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(@) Amap f: (X,T) = (Y,S) is called N-continuous if the inverse
image of every closed set in (Y,S) is neutrosophic closed in (X, T).

(b) Amap f:(X,T)— (Y,S) is called neutrosophic-gc irresolute if the
inverse image of every neutrosophic closed set in (Y,S) is neutrosophic
closed in (X,T). Equivalently if the inverse image of every neutrosophic
open set in (Y,S) is neutrosophic open in (X, T).

(c) A map f:(X,T)— (Y,S) is said to be strongly neutrosophic
continuous if f71(A) is both neutrosophic open and neutrosophic closed
in (X,T) for each neutrosophic set A in (Y,S).

(d) Amap f: (X, T) = (Y,S) is said to be Perfectly neutrosophic
continuous if 1 (A) is both neutrosophic open and neutrosophic closed
in (X,T) for each neutrosophic open set A in (Y,S).

(e) Amap f:(X,T)—(Y,S) is said to be Strongly N-Continuous if the
inverse image of every neutrosophic open set in (Y,S) is neutrosophic
open in (X,T).

(f) Amap f:(X,T)—(Y,S) is said to be perfectly N-continuous if the
inverse image of every neutrosophic open set in (Y,S) is both
neutrosophic open and neutrosophic closed in (X, T).

Proposition 5.4.8

Let (X,T) and (Y,S) be any two neutrosophic topological spaces.
Let f: (X,T) = (Y,S) be generalized neutrosophic continuous. Then for
every neutrosophic set Ain X ,f(Ncl(A)) < Ncl(f(A)).

Proposition 5.4.9

Let (X,T) and (Y,S) be any two neutrosophic topological spaces.
Let f : (X,T) — (Y,S) be generalized neutrosophic continuous. Then for
every neutrosophic set AinY, Ncl(f71(A)) <f1(Ncl(A)).

Proposition 5.4.10

Let (X,T) and (Y, S) be any two neutrosophic topological spaces. If
A is a neutrosophic closed set in (X,T) and if f:(X,T) - (Y, S) is
neutrosophic continuous and neutrosophic closed, then f(A) is
neutrosophic closed in (Y, S).
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Proof
Let G be a neutrosophic openin (Y,S). If f(A) =G, then A cf1(G) in
(X,T). Since A is neutrosophic closed and f71(G) is neutrosophic open in
(X,T), Ncl(A) <f1(G),i.e. f(Ncl(A)=G. Now by assumption ,f(Ncl(A)) is
neutrosophic closed and Ncl(f(A)) < Ncl(f(Ncl(A))) = f(Ncl(A)) < G.
Hence f(A) is N-closed.

Proposition 5.4.11
Let (X,T) and (Y,S) be any two neutrosophic topological spaces. If
f: (X, T) = (Y,S) is neutrosophic continuous, then it is N-continuous.

The converse of Proposition is not true. See Example.

Example 5.4.4
Let X ={a,b,c} and Y ={a,b,c}. We define the neutrosophic sets A

and B as it follows:

A=((0.4,0.4,05),(0.2,0.4,03), (0.4,0.4,05))

B =((0.4,05,0.6),(0.3,0.2,0.3),(0.4,0.5,0.6))
Then the family T = {On,1n, A} is a neutrosophic topology in X and S =
{On,1n, B} is a neutrosophic topology in Y. Thus (X,T) and (Y,S) are
neutrosophic topological spaces. We define f: (X, T) — (Y,S) as f(a) =
b,f(b) = a,f(c) = c. Clearly, fis N-continuous. Now f is not neutrosophic
continuous, since f1(B) ¢T for B € S.

Example 5.4.5
Let X = {a, b, c}. We define the neutrosophic sets A and B as it
follows:
A=((0.4,05,0.4),(0.5,0.5,0.5),(0.4,0.5,0.4))
B=((0.7,0.6,0.5),(0.3,0.4,05),(0.3,0.4,05))
C ={(0.5,0.5,0.5),(0.4,0.5,0.5), (0.5,0.5,0.5))
T={0n,1n,A,B}and S = {0n,1n, C} are neutrosophic topologies in X. Thus
(X,T) and (X,S) are neutrosophic topological spaces. We define f: (X,T)
— (X,S) as it follows:f(a) =b,f(b) = b, f(c) = c. Clearly, f is N-continuous.
Since D =((0.6,0.6,0.7),(0.4,0.4,0.3),(0.6,0.6,0.7)) is neutrosophic open in
(X,S),f (D) is not neutrosophic open in (X, T).
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Proposition 5.4.12

Let (X,T) and (Y,S) be any two neutrosophic topological spaces. If
f: (X,T) = (Y,S) is strongly N-continuous, then f is neutrosophic
continuous.

The converse of Proposition is not true. See Example.

Example 5.4.6

Let X ={a, b, c}. We define the neutrosophic sets A and B as it
follows:
((0.9,0.9,0.9), (0.1,0.1,0 .1), (0.9,0.9,0 .9))
((0.9,0.9,0.9),(0.1,0.1,0), (0.9,0.1,0.8))
= <(0.9,0.9,0 .9),(0.1,0,0.1),(0.9,0.9,0 .9)>
T ={0n, 1In, A ,B} and S = {On,1n, C} are neutrosophic topologies in X.
Thus (X,T) and (X,S) are neutrosophic topological spaces. Also, we
define f :(X,T)— (X,S) as it follows:f(a) = a,f(b) = c,f(c) = b. Clearly, f is
neutrosophic continuous. But f is not strongly N-continuous. Since D =
((0.9,0.9,0.99), (0.05,0,0. 01) , (0.9,0.9,0 .99)) is an neutrosophic open set in

(X,S),f (D) is not neutrosophic open in (X, T).

A
B
C

Proposition 5.4.13

Let (X,T) and (Y, S) be any two neutrosophic topological spaces. If
f: (X,T) => (Y S) is perfectly N-continuous, then f is strongly N-
continuous.

The converse of Proposition is not true. See Example.

Example 5.4.7
Let X = {a, b, c}. We define the neutrosophic sets A and B as it
follows:
A:<(0.9,0.9,09),(0.1,0.1,01),(O.9,0.9,09)>

)

B = ((0.99,0.99,0.99) , (0.01,0,0) , (0.99,0.99,0.99))
C =((0.9,0.9,0.9),(0.1,0.1,0.05) , (0.9,0.9,0.9))

T ={0n,1n, A,B} and S = {On,1n, C} are neutrosophic topologies space in
X. Thus (X,T) and (X, S) are neutrosophic topological spaces. Also we
define f: (X,T) — (X,S) as it follows: f(a) = a,f(b) = f(c) = b. Clearly, f is
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strongly N-continuous. But f is not perfectly N-continuous. Since
D =((0.9,0.9,0.9),(0.1,0.1,0,(0.9,0.9,09)) is a neutrosophic open set in

(X,S),f (D) is neutrosophic open and not neutrosophic closed in (X,T).

Proposition 5.4.14

Let (X,T) and (Y,S) be any neutrosophic topological spaces. If f:
(X,T) = (Y,S) is strongly neutrosophic continuous, then f is strongly N-
continuous.

The converse of Proposition is not true. See Example.

Example 5.4.8

Let X = {a, b, c}. We define the neutrosophic sets A and B as it

follows.

A=((0.9,0.9,09),(0.1,0.1,01), (0.9,0.9,09))

B= <(0.99,0.990.99), (0.01,0,0), (0.99,0.990.99)>

C =((0.9,0.9,0.9),(0.1,0.1,0.05), (0.9,0.9,0.9))
T = {On,1n, A ,B} and S = {On,1n, C} are neutrosophic topologies in X.
Thus (X,T) and(X, S) are neutrosophic topological spaces. Also, we define
f: (X,T) » (X,S) as it follows: f(a) = a,f(b) = f(c) = b. Clearly, f is
strongly N-continuous. But f is not strongly neutrosophic continuous.
Since D:((0.9,0.9,0.9),(0.1,0.1,0),(0.9,0.9,0.9)>, a neutrosophic set in
(X,S),f (D) is neutrosophic open and not neutrosophic closed in (X,T).

Proposition 5.4.15

Let (X,T),(Y,S) and (Z,R) be any three neutrosophic topological
spaces. Suppose f: (X,T) = (Y,S), g: (Y,S) = (Z,R) be maps. Assume f is
neutrosophic gc-irresolute and g is N-continuous then g of is N-
continuous.

Proposition 5.4.16

Let (X,T), (Y,S) and (Z,R) be any three neutrosophic topological
spaces. Let f: (X, T) — (Y,S), g: (Y,S) = (Z,R) be map, such that f is
strongly N-continuous and g is N-continuous. Then the composition gof
is neutrosophic continuous.
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Definition 5.4.6

A neutrosophic topological space (X,T) is said to be neutrosophic
T1/2 if every neutrosophic closed set in (X,T) is neutrosophic closed in
(X, T).

Proposition 5.4.17

Let (X,T),(Y,S) and (Z,R) be any neutrosophic topological spaces.
Let f: (X,T) > (Y,S) and g: (Y,S) — (Z,R) be mapping and (Y,S) be
neutrosophic T2 if f and g are N-continuous then the composition g of
is N-continuous.

The proposition 4.11 is not valid if (Y, S) is not neutrosophic Ti2.

Example 5.4.9

Let X = {a,b,c}. We define the neutrosophic sets A, B and C as it
follows:

A=((0.4,0.4,0.6),(0.4,0.4,0.3))
B = ((0.4,0.5,0.6),(0.3,0.4,0.3))
C=((0.4,0.6,05),(0.50.30.4))

Then the family T = {On,1n, A}, S = {On,1n, B} and R = {On, 1N, C} are
neutrosophic topologies on X. Thus (X,T),(X,S) and (X,R) are
neutrosophic topological spaces. Also, we define f: (X,T) — (X,S) as f(a)
=b,f(b) =a,f(c)=cand g: (X,S) = (X,R) as g(a) = b, g(b) =¢, g(c) =b.
Clearly, f and g are N-continuous function. But g of is not N-continuous.
For 1 - Cis neutrosophic closed in (X, R). f1(g"1(1-C)) is not N-closed in
(X,T). g of is not N-continuous.
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6. Neutrosophic Ideal Topological Spaces
& Neutrosophic Filters

In this chapter, we extend the concept of intuitionistic
fuzzy ideal [8] and fuzzy filters to the case of neutrosophic sets.
In 6.1 we pioneer the notion of ideals on neutrosophic set,
pondered as a generalization of ideals studies. Several
relations between different neutrosophic ideals and
neutrosophic topologies are also studied here. In 6.2 we
infroduce and study the neutrosophic local functions. Several
relations between different neutrosophic topologies are also
discussed. In 6.3 we develop the notion of filters on
neutrosophic set, as a generalization of filters studies, the
important neutrosophic filters been given. Several relations
between distinctive neutrosophic filters and neutfrosophic
fopologies are also examined here.

6.1 Neutrosophic Ideals

Definition 6.1.1

Let X be a non-empty set and L a non-empty family of NSs. We call

L a topological neutrosophic ideal (NL) in X if:
(a) Ael and Bc A= B <L [heredity],
(b) Ael and BelL = Av B eL [finite additivity].

A topological neutrosophic ideal L is called a o-topological
neutrosophic ideal if{ A; }J.GN <L, which implies

e AjelL (countable additivity).

The smallest and the largest topological neutrosophic ideals in a
non-empty set X are {0y}, NSs in X. Also, N.L;, N.L, stand for the
topological neutrosophic ideals of neutrosophic subsets having finite and
countable support in X. Moreover, if A is a non-empty NS in X, then
{B e NS:B c A} isaNLin X. This is called the principal NL of all NSs, and
is denoted by NL(A).
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Remark 6.1.1
(a) If 1y 2L, then L is called a neutrosophic proper ideal.
(b) If1y €L, then L is called a neutrosophic improper ideal.
(c) OyelL.

Example 6.1.1
Any intuitionistic fuzzy ideal ¢ in X in the sense of Salama is
obviously a NL of the form L={A: A= (X, Ha, O Va) € 0}

Example 6.1.2
Let X ={a,b,c} A=(x0.2,050.6),B =(x,0.50.7,08), and D=(x,050.6,0.8),

then the family L = {o , A,B,D j of NSsisa NLinX.

Example 6.1.3
Let X ={a,b,c,d,e} and A=(X, up,oa,va) be given by:

X | ualx) oalx) | valx)
a 0.6 0.4 0.3
b |05 0.3 0.3
C |04 0.6 0.4

d o3 0.8 0.5

e 0.3 0.7 0.6

Then the family L={0Oy,A} isan NLin X.

Definition 6.1.2
Let L1 and L2 be two NL in X. Then Lz is said to be finer than L1 or L1

is coarser than Lz if L1< Lz. If also L1# Lz, then Lz is said to be strictly finer
than L1 or L1 is strictly coarser than L2. Two NL are comparable if one is
finer than the other. The set of all NL in X is ordered by the relation L1
coarser than L. This relation is prompted by the inclusion in NSs.

The next Proposition is considered as a useful result in this sequel,
whose Proof is clear.
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Proposition 6.1.1
Let{L;: jeJ} be any non-empty family of topological neutrosophic
ideals in a set X.

Then N Lj and U L; are topological neutrosophic ideals in X.
jed jed
In fact, L is the smallest upper bound of the set of the Lj in the
ordered set of all topological neutrosophic ideals in X.

Remark 6.1.2
The topological neutrosophic ideal by the single neutrosophic set

ON is the smallest element of the ordered set of all topological
neutrosophic ideals in X.

Proposition 6.1.2

A neutrosophic set A in a topological neutrosophic ideal L in X is
a base of L if every member of L contained in A.

Proof

(Necessity) Suppose A is a base of L. Then clearly every member of
L is contained in A.

(Sufficiency) Suppose the necessary condition holds. Then the set of
neutrosophic subset in X contained in A coincides with L by the Definition
4.3.

Proposition 6.1.3

A topological neutrosophic ideal L1 with base A is finer than a fuzzy
ideal L2 with base B if every member of B contained in A.

Proof
Immediate consequence of Definitions.

Corollary 6.1.1

Two topological neutrosophic ideals bases A, B in X are equivalent
if every member of A contained in B and viceversa.

Theorem 6.1.1
Letn = {<yj O >: je J} be a non-empty collection of neutrosophic

subsets of X. Then there exists a topological neutrosophicideal L () = {A
€ NSs: A ¢V Aj} in X for some finite collection {Aj:j=1,2,.., ncn}.
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Proof
Evident.

Remark 6.1.3

The neutrosophic ideal L (1) defined above is said to be generated
by 1 and 1 is called the sub-base of L(n).

Corollary 6.1.2

Let L1 be a neutrosophic ideal in X and A € NSs; then there is a
neutrosophic ideal Lz which is finer than Li, such that A € L2if AV B €
Lz, for each Be L.

Corollary 6.1.3

Let A=(X,u,,04,v,) ely and B=(x ug,0g,vg) cL, , where L and
L, are topological neutrosophic ideals in the set X.

The neutrosophic set A*B :< ,LlA*B(X)’GA*B(X)’VA*B(X» el vL, inX,

where 1 (x)=vi{u(x)n 1(X): x€ X} 0,5(x) MAY be = {oa(¥) Ao5 ()},

or Ao, (X) v o (X)} and Vs (X)=Aa () vvg (x):x e X}
6.2 Neutrosophic Local Functions

Definition 6.2.1

Let (X,T) be a neutrosophic topological spaces (NTS) and L be
neutrosophicideal (NL) in X. Let A be any NS of X. Then the neutrosophic
local function NA*(L,z) of A is the union of all neutrosophic points (NP)

C(a,B,7) such that u e N(C(a, 5.7))

NA'(L,7) = v{C(a, #,7) € X : AAU ¢ L forevery Unbd of C(a,ﬂ,;/)}’ NA " (L,7),
called a neutrosophic local function of A with respect to 7 and L which
we denote by NA*(L,7), or simply NA*(L).

Example 6.2.1

One may easily verify that if L={0, }, then N A*(L,7) = Ncl(A), for
any neutrosophic set Ae NSs in X.

As well, if L={alINSson X} then NA*(L,z)=0,, for any A€ NSs in X.
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Theorem 6.2.1

Let (X,7) be a NTS and Ly,L, be two topological neutrosophic

ideals in X. Then for any neutrosophic sets A, B of X, the following
statements are verified:

Proof
a.

b.

(@) Ac B = NA*(L,7) = NB*(L,7),

(b) L, c L, = NA'(L,,7) = NA"(L,,7).
(c) NA* = Ncl(A*) = Ncl(A) .

d NA" cNA"

(e) N(AvB) =NA"VNB".

(3] N(AAB)"(L) < NA"(L) ANB*(L).

(g) feL=N(Av /) =NA"

(h) NA*(L,7) is neutrosophic closed set.

Since Ac B, let p=C(a,s,7)e NA"(L,) then AAU gL for everyu eN(p).
By hypothesis, we get BAU ¢ L, then p=C(a,5,7)e NB'(L,).
Clearly. Ly c L, which implies NA*(L,,7) < NA*(L,,7) as there may
be other IFSs which belong to L, so that for GIFP
p=C(a,fB,7)e NA" but C(a,p,y) may not be contained in
NA*(L, ).

Since {ON }g L for any NL in X, therefore by (b),
NA*(L)< NA*({Oy })= NcI(A) for any NS A in X.

Suppose p, =C,(a, B,7)e Ncl(NA"(L,)) . So for every UeN(py),
NA" AU =0, there exists p, =C,(a,8)e A"(L;)AU) such that for
every V nbd of p, e N(p,),AaU ¢L. Since U AV € N(p,) then
AA(UNV)eL which leads to AAU gL, for every U e N(C(a,p))
therefore p, =C(a, 8)< (A"(L ) and so Ncl(NA")< NA™ while the
other inclusion follows directly. Hence NA* = NclI(NA"), but the
inequality NA® < Ncl(NA™).

The inclusion NA*v NB* <N(Av B)" follows directly by (a). To
show the other implication, let p=C(a,,7)e N(AvB)" then for
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every U eN(p), (AvB)aU ¢L,ie, (AAU)v(BAU)gL. Then,
we have two cases AAU ¢ L and B AU €L or the converse, this
means that exist U,,U, e N(C(a,ﬂ,y) such that AAUjelL ,
BAU; gL, AAUseL and BAU, ¢ L. Then AA(U, AU,)eL and
BA(U, AU,)eL; this gives (AvB)A(U; AU,)eL, U, AU, e N(C(a,B.7)
which contradicts the hypothesis. Hence the equality holds in
various cases.

. By (c), we have NA* = NcI(NA*)* < NcI(NA") = NA”

Let (X,7) be a GIFTS and L be GIFL in X. Let us define the

neutrosophic closure operator cl*(A)= AuA* for any GIFS A of X.

e

Clearly, Ncl”™(A) is a neutrosophic operator.

Let Nz*(L) be NT generated by Ncl” i.e.:

Nz*(L)={A: Ncl* (A%) = A%}

Now |- {0, } = Ncl*(A)= AUNA" = AUNcl(A) for every neutrosophic
setA.So,Nz*({oy N =7-

Again| = {all NSs on X} = NCI*(A)= A, becauseNA” =0, for every
neutrosophic set A, so Nz*(L) is the neutrosophic discrete topology in X.

So we can conclude thatNz*({O, ) =Nz (L) i.e. Nz c Nz, for any
neutrosophic ideal L, in X. In particular, we have for two topological
neutrosophicidealsL,, and L, inX,

LcL,= Nz (L,)e Nz"(L,)-

Theorem 6.2.2
Let 7,7, be two neutrosophic topologies in X. Then for any

topological neutrosophic ideal L in X, 7, <7, we have na*(L,7,) = NA*(L, 7)),
foreveryA e L then Nz* = Nz*,

Proof
Clear.

Abasis Ng(L,z) for Nz (L) can be described as it follows:
NA(L,z)= {A-B:Aecr,Bel}
Therefore, we have the following theorem:
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Theorem 6.2.3
NA(L,z)= {A-B:Aer,BeL} forms a basis for the generated NT of
the NT (X ) Z') with a topological neutrosophicideal L in X.

Proof

Straightforward.

The relationship between T and Nz* (L) establishes throughout the
following result which have an immediate proof.

Theorem 6.2.4
Let 7,7, be two neutrosophic topologies in X. Then for any
topological neutrosophicideal Lin X, 7, c 7,; itimplies thatNz* < Nz’

2

Theorem 6.2.5

Let (x,7) be aNTS and Ly, L, be two neutrosophic ideals in X. Then
for any neutrosophic set A in X, we have

(a) NA"(L v L, 7)= NA"(L, Nz (L) )a NA*(L,, N7*(L,))

(0) 7" (L v L) = (W WAl L) W
Proof

Let p=C(a,p) ¢ (L vL,,7r), this means that there exists U, eN(P)
such that AAU, (L, vL,)ie. There exists ¢, eL, and 7, L, such that
AAU, e(fq v ¢,) because of the heredity of L1, and assuming 4 A, =0y.

Thus, we have(AnU )~ = ¢, and (AnU,)-7, =1,

Therefore(U, —¢,)n A=/, eL,and u ) —l,)AA=l L.

Hence p=C(a, f7)e NA'(L, Nz'(L,)) OF p=C(a.f.7)eNA (L, N7 (L))
because p must belong to either /; or ¢, but not to both. This gives
NA*(Ly v Ly, 7) = NA* (L, Nz*(Ly) )a NA™(L,, N27(Ly)) -

To show the second inclusion, let us assume

p=C(a, B.7) & NA"(Li,Nz*(L,)).
This implies that there exist U,eN(P) and /,el, such that

(U, -¢;)r Ae L, - By the heredity of L, ,we assume that /7, <A and define
t=(Up—13)nA.
Then we have AAU | e(t,vi,)el v,
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Thus, NA'(L, v L,,7)< NA'(L, 7" (L) )A NA(L,,N7"(L,)) and similarly, we
can getA'(L v L,,r)< A'(L,, 7" (L) )-
This gives the other inclusion, which complete the proof.

Corollary 6.1.1
Let (X,7) be a NTS with topological neutrosophic ideal L in X. Then:
(a) NA*(L,z) = NA*(L,z")and Nz*(L) = N(Nz*(L))"(L)

(b) Nz"(L v L) =(Nz*(L,)) v(Nz*(L,))

Proof
It follows by applying the previous statement.

6.3 Neutrosophic Filters

Definition 6.3.1

Let N be a neutrosophic subsets in a set X. Then ~ is called a
neutrosophic filter in X, if it satisfies the following conditions:
(a) (N;) Every neutrosophic set in X containing a member of

N belongsto N .

(b) (N,) Every finite intersection of members of N belongs to
N .

(c) (N3) Oy notinn .

In this case, the pair (X,~) is neutrosophically filtered by N. It
follows from (N,)and (N3) that every finite intersection of members of
N is notOy . Furthermore, there is no neutrosophic set. We obtain the
following results:

Proposition 6.3.1
The condition (N, ) is equivalent to the following two conditions:
(N,,) The intersection of two members of N belongsto n .
(N,,) 1y belongsto N .

Proposition 6.3.2

Le N be a non-empty neutrosophic subsets in X satisfying
(N;).Then, 1y e N if ¥ 2Oy and Oy ¢ N if N # all neutrosophic subsets of

X.
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From the above, we can characterize the concept of neutrosophic
filter.

Theorem 6.3.1

Let ¥ be a neutrosophic subsets in a set X. Then N is neutrosophic
filter in X, if and only if it is satisfies the following conditions:
(a) Every neutrosophic set in X containing a member of »
belongsto N .
(b)IfABe N ,thenAnBeN.

(c) N* =N =0y.

Proof
It’s clear.

Theorem 6.3.2

Let X # ¢ . Then the set{ly } is a neutrosophic filter in X. Moreover if
A is a non-empty neutrosophic set in X, then {B eNX:AC B} is a
neutrosophic filter in X.

Proof
Let N={BeN*:AcB} . Since 1y <N and Oy ¢N, O, #N=N* .
SupposeU,V e N, thenAcU,AcV .
Thus
ua(x) < min(uy (X), gy (X))
o, (X) <min(o (x), o0, (X)) or
o, (X) <max(oy (X), o, (X)) and
74 (X) <max(y, (x), 7y, (X)) forallxe X.
So AcU NV and hence U nV eN.

Definition 6.3.2

Let Ny and N, be two neutrosophic filters in a set X. Then N, is
said to be finer than ~; or »; coarser than v, if N, c N, . Ifalso Ny = N5,
then N, is said to be strictly finer than »; or »; is strictly coarser than
N, . Two neutrosophic filters are said to be comparable, if one is finer
than the other. The set of all neutrosophic filters in X is ordered by the
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relation ~; which is coarser than ~, ; this relation is induced by the

inclusion relation in ¥ * .

Proposition 6.3.3
Let (N;)je; be any non-empty family of neutrosophic filters in X.

Then N =njc; Njis a neutrosophic filter in X. In fact ~ is the greatest
lower bound of the neutrosophic set (Nj)c; in the ordered set of all

neutrosophic filters in X.

Remark 6.3.1
The neutrosophic filter by the single neutrosophic set1y is the
smallest element of the ordered set of all neutrosophic filters in X.

Theorem 6.3.3

Let A be a neutrosophic set in X. Then there exists a neutrosophic
filter ¥(4) in X containing A if for any finite subset {Sl, S, Sn} of 4,
N, S; 20, . Infact N(A4) is the coarsest neutrosophic filter containing A.

Proof

(=) Suppose there exists a neutrosophic filter ~(4) in X containing
A . Let B be the set of all the finite intersections of members of A. Then
by(N,), Bc N(A).By (N,), O, & N(A). Thus for each member B of B,
hence the necessary condition holds.

=) Suppose the necessary condition holds.

Let N(A)= {Ae N * : Acontains a member of B} ,where B is the

family of all the finite intersections of members of A. Then we can easily
check that N(A) satisfies the conditions in Definition.

The neutrosophic filter N (A) defined above is said to be generated by
A and A is called a sub - base of N(A) .

Corollary 6.3.1

Let N be a neutrosophic filter in a set X and let A be a neutrosophic
set. Then there is a neutrosophic filter ¥/ which is finer than & such that
Ae N'if A is a neutrosophic set. Then there is a neutrosophic filter N/
which is finer than ~ such that Ae N/ if AnU =0y foreach U e NV .
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Corollary 6.3.2

A sety of a neutrosophic filter in a non-empty set X, has a least the
upper bound in the set of all neutrosophic filters in X if for all finite
sequence (N;);.,,0<j<n of elements of ¢ and all AjeN;{l<j<n),
Nj1Aj # Oy

Corollary 6.3.3

The ordered set of all neutrosophic filters in a non-empty set X is
inductive. If 4 is a sub-base of a neutrosophic filter ¥ in X, then ¥ is not
in general the set of neutrosophic sets in X containing an element of 4 ;
for A4 to have this property, it is necessary and sufficient that every finite
intersection of members of 4 contains an element of 4.

Hence we have the following result:

Theorem 6.3.4

Let B be a set of neutrosophic sets in a set X. Then the set of
neutrosophic sets in X containing an element of g isaneutrosophic filter
in X if # holds the following two conditions:

(8,) The intersection of two members of g containsa member of 5.

(B,) p#0, andO, ¢ f3.

Definition 6.3.3
Let 4 and B be the neutrosophic sets in X satisfying conditions
(B1) and (B,) , called the base of neutrosophic filter it generates. Two

neutrosophic bases are said to be equivalent if they generate the same
neutrosophic filter.

Remark 6.3.2
Let A4 be a sub-base of neutrosophic filter N. Then the set g of finite
intersections of members of 4 is a base of filter & .

Proposition 6.3.4
A subset g of a neutrosophic filter & in X is a base of N if every
member of N contains a member of 3 .

129



130

A. A. Salama & Florentin Smarandache
Proof

(=) Suppose B is a base of N. Then, clearly, every member of N
contains an element of g . (<) Suppose the necessary condition holds.
Then the set of neutrosophic sets in X containing a member of g
coincides with & by reason of (Nj)je; .

Proposition 6.3.5
On a set X, a neutrosophic filter N’ with base ﬁ’ is finer than a
neutrosophic filter ¥ with base g if every member of A contains a

member of g’ .

Proof
This is an immediate consequence of Definitions.

Proposition 6.3.6
Two neutrosophic filters bases g and g’ inaset X are equivalent if
every member of S contains a member of g’ and every member of g’

and every member of #’ contains a member of 3.

Definition 6.3.4

A neutrosophic ultrafilter in a set X is a neutrosophic filter ¥ such
that there is no neutrosophic filter in X which is strictly finer than ~ (in
other words, a maximal element in the ordered set of all neutrosophic
filters in X).

Since the ordered set of all the neutrosophic filters in X is inductive,
Zorn's lemma shows that:

Theorem 6.3.5

If N is any neutrosophic ultrafilter in a set X, then there is a
neutrosophic ultrafilter than N.
Proposition 6.3.7

Let & be a neutrosophic ultrafilter in a set X. If A and B are two
neutrosophic subsets such that AUBe ¥ ,then Ae N orBe N.

Proof
Suppose not. Then there exists the neutrosophic sets A and B in X
such that A¢ N,B¢ N and AuBeN.LetAz{M eN*:AUM eN}.
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It is straightforward to check that 4 is a neutrosophic filter in X,
and A is strictly finer than N, since B € 4. This contradicts the hypothesis
that ~ is a neutrosophic ultrafilter.

Corollary 6.3.4
Let N be a neutrosophic ultrafilter in a set X and let (Nj)«<j<n be a

finite sequence of neutrosophic sets in X. If _ule e N, then at least one
J:

of the N belongs to N.

Definition 6.3.5

Let A be a neutrosophic set in a set X. If U is any neutrosophic set
in X, then the neutrosophic set AnU is called trace of U an A and is
denoted by U, . For all neutrosophic sets U and vV in X, we have
UnV)y=UpnVa.
Definition 6.3.6

Let 4 be a neutrosophic set in a set X. Then the set A, of traces

Ae N* of member of 4 is called the trace of 4 on A.

Proposition 6.3.8

Let N be aneutrosophic filter ina set Xand 4 € N * . Then the trace
of N, of N on A is a neutrosophic filter if each member of N meetsA.

Proof

From the results in Definition, we see that N, satisfies (N,). If
MANAcPcA then P=(MUP)NA. Thus ~, satisfies (N,) . Hence
N, is a neutrosophic filter if it satisfies (N, ) i.e. if each member of »
meets A.

Definition 6.3.7

Let N be a neutrosophic filter in a set X and 4 N * . If the trace
Npof N anA, then v, is said to be induced by ;7 an A.

Proposition 6.3.9

Let N be a neutrosophic filter in a set X induced by the
neutrosophic filter ¥, on 4e N* . Then the trace g, on 4 of a base g
of N isabaseof N,.
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7. Applications

In this chapter, we discuss some applications via
neutrosophic sets. In 7.1, we Iintroduce the concept of
neutrosophic database. In 7.2 we suggest a security scheme
based on Public Key Infrastructure (PKI) for distributing session
keys between nodes. The length of those keys is determined
by neutrosophic logic manipulation. The proposed algorithm
of Security model is an adaptive neutrosophic logic -
membership, non-membership and indeterminacy — based
algorithm that can adjust itself according to the dynamic
conditions of mobile hosts. The experimental results prove that
using of neutrosophic based security can enhance the
security of MANETs. In 7.3, we acquaint the reader with the
study of probability of neutrosophic crisp sets. We give the
fundamental definitions and operations, and we obtain
several properties, examining the relationship between
neutrosophic crisp sets and others sefs. The purpose of section
7.4 is to bestow the Neutrosophic Set Theory to analyze social
networks data conducted through learning activities in a
Social Learning Management System — that integrates social
activities in e-Learning. The section 7.5 imparts basic
concepts and properties of a neutrosophic spatial region,
responding fo the need to model spatial regions with
indeterminate  boundary  under indeterminacy in
Geographical Information Systems (GIS). We lead into a new
theoretical framework via neutrosophic fopology and we
add some further definitions and propositions for a
neutrosophic topological region.
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7.1 Neutrosophic Database

Definition A.7.1.1
A neutrosophic database relation R is a subset of cross product
2% 2% x ... x 2 where 2" =2" — ¢

Definition A.7.1.2

Let R < 2™ x2% x...x2" be a neutrosophic database relation. A

neutrosophic set tuple (with respect to R) is an element of R. Let
t, = (d iy e di )be a neutrosophic tuple. An interpolation of t is a tuple

0 =(ay,a,..ay, ) Where aj e djj for each domain Dj If T; is the neutrosophic

tolerance relation, then the membership function is given by:
HTj :DjxDj —>[0]],

the non-membership function is given by:
71, :DjxDj —>[01]

and indeterminacy: or; :DjxDj —>[0]].

Let us make a hypothetical case study below.

We consider a criminal data file. Suppose that one murder has
taken place at some area in deem light. The police suspects that the
murderer is also from the same area and so police refer to a data file of
all the suspected criminals of that area. Listening to the eye-witness, the
police has discovered that the criminal for that murder case has more or
less or non-more and less curly hair texture and he is moderately large
built. Form the criminal data file, the information table with attributes

"Hair Coverage", "Hair Texture", and "Build" is given by:

Name Hair Coverage | Hair Texture Build
Soso Full Small (FS) Stc Large
Toto Rec. Wavy Very Small(VS)
Koko Full Small(FS) | Straight(Str.) Small(S)
Momo Bald Curly Average(A)
Wowo Bald Wavy Average(A)
Bobo Full Big (FB) Stc. Very large(VL)
Hoho Full Small Straight Small(S)
Vovo Rec. Curly Average(A)

133



134

A. A. Salama & Florentin Smarandache
|

Now, consider the neutrosophic tolerance relation Tp, where D,

="Hair Coverage", which is given by:

FB FS Rec. Bald
FB <1,0,0> <0.8,0.3,0.1> | <0.4,0,0.4> | <0,0.2,1>
FS <0.8,0.3,0.1> <1,0,0> <0.5,0,0.4> | <0,0,0.9>
Rec. | <0.4,0,0.4> <0.5,0,0.4> <1,0,0> <0.4,0,0.4>
Bald | <0,0.2,1> <0,0,0.9> <0.4,0,0.4> | <1,0,0>

where Hair Coverage= {FB,

FS, Rec., Bald }.

The neutrosophic tolerance relation Tp, where D, ="Hair Texture"

is given by:
Str. Stc. Wavy Curly
Str. <1,0,0> <0.7,0.2,0.3> <0.2,0.2,0.7> | <0.1,0.2,0.7>
Stc. | <0.7,0.2,0.3> <1,0,0> <03004> | 450025
Wavy | <0.2,0.2,0.7> <0.3,0,0.4> <1,0,0> <0.4,0,0.4>
Bald | <0.1,0.20.7> | <0.50,02> | <0.4,004> | <1,0,0>

where Hair Texture= {Str., Stc., Wavy, Curly }.
Also, neutrosophic tolerance relation Tp, where D3 ="Build" is

given by:
V1 L A S Vs
V1 <1,0,0> <0.8,0,0.2> <0.5,0,0.4> <0.3,0,0.6> <0,1,1>
L <0.8,0,0.2> <1,0,0> <0.6,0,0.4> <0.4,0,0.5> <0,0,0.9>
A <0.6,0,0.4> <1,0,0> <0.6,0,0.3> <0.3,0,0.6>
<0.5,0,0.4>

S <0.3,0,0.6> | <0.4,0,0.5> <0.5,0,0.4> <1,0,0> <0.8,0,0.2>
Vs <0,1,1> <0,0,0.9> <0.3,0,0.6> <0.8,0,0.2> <1,0,0>

where Build ={ V], L, A, S, Vs }.
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Now, the job is to find out a list of those criminals who resemble
with more or less or non-big hair coverage with more or less or non-curly
hair texture and moderately large built. This list will be useful to the
police for further investigation. It can be translated into relational
algebra in the following form:

Project (Select (CRIMINALS DATA FILE)
Where HAIR COVERAGE="FULL BIG",
HAIR TEXRURE="CURLY"
BUILLD="LARG"
With « - LEVEL (HAIR COVERAGE) =0.8
a - LEVEL (HAIR TEXRURE) =0.8
a — LEVEL (BUILLD) =0.7
With « - LEVEL (NAME) =0.0
With « - LEVEL (HAIR COVERAGE) =0.8
a - LEVEL (HAIR TEXRURE) =0.8
a — LEVEL (BUILLD) =0.7
giving LIKELY MURDERER)

Result: It can be computed that the above neutrosophic query gives
rise to the following relation:

LIKELY MURDERER
NAME HAIR HAIR BUILLD
COVERAGE TEXRURE
{S0S0, {(FULL BIG, FULL | {CURLY, STC.} | {LARG,VERY
BOBO} SMALL} LARG}

Therefore, according to the information obtained from the eye-
witness, police concludes that Soso or Bobo are the likely murderers, and
further investigation now is to be done on them only, instead of dealing
with huge list of criminals.

Conclusion

Neutrosophic Set Theory takes care of such indeterministic part in
connection with each references point of its universe. In the
presentsection, we have introduced the concept of Neutrosophic
Database (NDB) and have exemplified the usefulness of neutrosophic
queries on a neutrosophic database.
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7.2 Security Model for MANET via Neutrosophic Data

In this section, we will now extend the concepts presented in [75-
90] to the case of neutrosophic sets, and we propose a security scheme
based on Public Key infrastructure (PKI) for distributing session keys
between nodes. The length of those keys is decided using Neutrosophic
Logic Manipulation. The proposed algorithm of Security Model is an
adaptive Neutrosophic Logic-based Algorithm - membership function,
non-membership and indeterminacy -that can adapt itself according to
the dynamic conditions of mobile hosts. The experimental results show
that the using of Neutrosophic-based Security can enhance the security
of MANETSs. The rest of the section is organized as it follows: some
backgrounds are given in part 1. Part 2 provides the propositioned
security mechanism. Thereafter, a comparison of the mechanism with
some of the current security mechanisms is provided. Finally, we provide
conclusions and envisage future work.

Introduction

Adhoc is a Latin word that means "for this or that only". AdHoc
Networks, as its name indicates, are "intended to be" temporary. The idea
is to completely remove any Base Station. Imagine a scenario in a relief
operation when the event of timely communication is a very important
factor, aid workers in the area are without the need of any existing
infrastructure, just turn on the phone and start communicating with each
other during movement and the execution of rescue operations. A major
challenge in the design of these networks is their vulnerability to security
attacks. This section presents an overview of the security and ad hoc
networks, and security threats applicable to ad hoc networks. There are a
wide range of military and commercial applications for MANET.

For example, a unit of soldiers that moves in the battlefield cannot
afford to install a base station every time they go to a new area. Similarly,
it applies to the creation of a communication infrastructure for an
informal and spontaneous conference meeting between a small numbers
of people that cannot be economically justified otherwise [5]. It is
relevant even for robot-based networks in which multiple robots work
at the same time, or for smart homes orauto-routing vehicles. In addition,
MANET can be the perfect tool for disaster recovery or emergency
situations, when the existing communications infrastructure is
destroyed or disabled.
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Mobile ad hoc Networks are self-organized, temporary networks
consisting of a set of wireless nodes. The nodes can move in an arbitrary
manner, and communicate with each other by forming a multi-hop radio
network, maintaining connectivity in a decentralized manner. Each node
in MANETS plays both the role of routers and terminals. Such devices can
communicate with another device that is immediately within their radio
range or one that is outside their radio range not relying on access point.
A mobile ad hoc network is self-organizing, self-discipline and self-
adaptive. The main characteristics of mobile ad hoc network are:

= Lack of Infrastructure: (Dynamic Topology), since nodes

in the network can move arbitrarily, the topology of the
network also changes.

* Limitations on the Bandwidth: The bandwidth of the link

is constrained and the capacity of the network is also
tremendouslyvariable [8]. Because of the dynamic
topology, the output of each relay node will vary in time
and then the link capacity will change with the link change.
= Power considerations: it is a serious factor. Because of the
mobility characteristic of the network, devices use battery
as their power supply. As a result, the advanced power
conservation techniques are very necessary in designing
a system.

= Security precautions: The security is limited in physical
aspect. The mobile network is easier to be attacked than
the fixed network. Overcoming the weakness in security
and the new security trouble in wireless network is on
demand.

A side effect of the flexibility is the ease with which a node can join
or leave a MANET. Lack of any fixed physical and, sometimes,
administrative infrastructure in these networks makes the task of
securing these networks extremely challenging.

In MANETSs it is very important to address the security issues
related to the dynamically changing topology of the MANET; these issues
may be defined as:

1. Confidentiality. The primary confidentiality threat in the
context of MANET is to the privacy of the information being
transmitted between nodes, which lead to a secondary privacy
threat to information such as the network topology,
geographical location, etc.
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2. Integrity. The integrity of data over a network depends on all
nodes in the network. Therefore threats to integrity are those
which either introduce incorrect information or alter existing
information.

3. Availability. This is defined as access information at all times
upon demand. If a mobile node exists, then any node should be
able to get information when they require it. Related to this, a
node should be able to carry out normal operations without
excessive interference caused by the routing protocol or
security.

4. Authorization. An unauthorized node is one which is not
allowed to have access to information, or is not authorized to
participate in the ad hoc network. There is no assumption that
there is an explicit and formal protocol, but simply an abstract
notion of authorization.However, formal identity
authentication is a very important security requirement,
needed to provide access control services within the ad hoc
network.

5. Dependability and Reliability. One of the most common
applications for ad hoc networks is in emergency situations
when the use of wired infrastructure is infeasible. Hence,
MANET must be reliable, and emergency procedures may be
required. For example, if a routing table becomes full due to
memory constraints, a reactive protocol should still be able to
find an emergency solution.

6. Accountability. This will be required so that any actions
affecting security can be selectively logged and protected,
allowing for appropriate reaction against attacks. The
misbehaviors demonstrated by different types of nodes will
need to be detected, if not prevented. Event logging will also
help provide non-repudiation, preventing a node from
repudiating involvement in a security violation.

7. Non-repudiation. Ensures that the origin of a message cannot
deny having sent the message.

Neutrosophic sets can be viewed as a generalization of fuzzy sets
that may better model imperfect information which is omnipresent in
any conscious decision making.
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Public Key Security
The distinctive technique used in public key cryptography is the
use of asymmetric key algorithms, where the key used to encrypt a
message is not the same as the key used to decrypt it. Each user has a pair
of cryptographic keys - a public encryption key and a private decryption
key. The provision of public key cryptography is widely distributed,
while the private-decryption key is known only to the recipient.
Messages are encrypted with the recipient's public key and can only be
decrypted with the corresponding private key.The keys are
mathematically related, but the parameters are chosen so that the
determination of the private key of the public key is prohibitively
expensive. The discovery of algorithms that can produce pairs of public
/ private key revolutionized the practice of cryptography in mid-1970.
By contrast, symmetric key algorithms, variations of which have been
used for thousands of years, uses a single secret key - that should be
shared and kept private by the sender and receiver - for encryption and
decryption. To use a symmetric encryption scheme, the sender and
receiver must share the key securely in advance. Because symmetric key
algorithms are almost always much less computationally intensive, it is
common to exchange a key using a key exchange algorithm and transmit
data using that key and symmetric key algorithm. Family PGP and SSL /
TLS schemes do this, for example, and therefore speak of hybrid crypto
system.
The two main branches of public key cryptography are:
e Public Key Encryption: a message encrypted with the
recipient's public key can be decrypted by anyone except
a holder of the corresponding private key - presumably
this will be the owner of that key and the person
associated with the public key used. This is used for
confidentiality.
e Digital Signatures (Authentication): a signed message
with the sender's private key can be verified by anyone
with access to the sender's public key, which shows that
the sender had access to the private key (and therefore
likely to be the person associated with the public key
used), and part of the message has not been tampered
with. On the question of authenticity, see also the
summary of the message.
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The main idea behind public-key (or asymmetric) cryptosystems is
the following:

One entity has a pair of keys which are called the private key and
the public key (by contrast to the symmetric cryptosystems). These two
parts of the key pair are always related in some mathematical sense. As
for using them, the owner of such a key pair may publish the public key,
butitis crucial to keepsecretive the private key. Let (sk, pk) be such a key
pair, where sk is the Secret private Key for node (A) and pk is the
corresponding public key [18]. If a second node wants to securely send a
message to (A), it computes: C = encrypt (M, pk), where encrypt denotes
the so-called encryption function which is also publicly known as shown
in Figure Asymmetric Key encryption / decryption.

™ s I

plaintext M :
C = encrypt(M, pk) ciphertext O M = decrypt(C sk)
\ J

insecure channel
(e. g.. the internet)

Figure 5: Asymmetric Key encryption / decryption

This function is a one-way function with a trap-door. In other
words, the trap-door allows for the creation of the secret key sk, which
in turn enables the beneficiary to easily invert the encryption function.
We call C the cipher text. Obtaining M from C can be done easily using the
(publicly known) decryption function decrypt and the beneficiary
private key (sk). On the other hand, it is much harder to decrypt without
having any knowledge of the private key. As already mentioned, the great
advantage of this approach is that no secure key exchange is necessary
before a message is transmitted.

The proposed model for security

In this section, a Security algorithm applied to MANETs is
presented. This algorithm may be viewed as a two stages: firstly, a
neutrosophic model to decide the key length for the current session, then
the key distribution between nodes in MANET; both stages are
illustrated furthermore.
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Neutrosophic Model (Key Size Determination Function)

The security offered by the algorithm is based on the difficulty of
discovering the secret key through a brute force attack. Mobile Status
(MS) Security Level is the correlative factor being analyzed with three
considerations:

(a) The longer the password, the harder to withstand a severe

attack of brute force. In this research, the key lengths from
16 to 512 are assumed.

(b) The quickest way to change passwords, the more secure

the mobile host. It is more difficult to decipher the key in
a shorter time. A mobile host to change the secret key is
often safer than a mobile host using a constant secret key.

(c) The neighbor hosting the mobile host has the more

potential attacker. i.e. the possibility of attack is greater.

There are many other factors affecting the safety of mobile hosts,
such as bandwidth. The security level of mobile hosts is a function with
multiple variables and affects more than one condition.

At this point, a neutrosophic logic system is defined. Inputs of the
neutrosophic logic system are the frequency of changing keys (f) and the
number of neighbor hosts (n).

Output of the neutrosophic logic system is the Security Level of MS.
It is assumed that the three factors are independent with each other. The
relationship of them is as following:

1
S « I'f'ﬁ Formula 1

It means that the Security-Level of MH is in direct proportion to the
length of the key and the frequency of changing keys, in inverse
proportion to the number of neighbor hosts. The S value is updated by
the neutrosophic logic system. When the key length is short, the Security-
Level of MH should be low; otherwise the Security-Level of MS should be
high.

1. The first input parameter to the neutrosophic variable “the
number of neighbor hosts” has three neutrosophic sets, few,
normal and many. Membership function, non-membership and
indeterminacy of n is illustrated in Figure Membership function,
non-membership and indeterminacy of Neutrosophic Set with
variable n.
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Figure 6: Membership function, non-membership and indeterminacy
of Neutrosophic Set with variable n.

2. The input neutrosophic variable “the frequency of changing keys”

has two neutrosophic sets, slow and fast and none of them. The
membership functions, non-membership and indeterminacy of f
is put below:

slow the secret Key is constant
f =4 fast  the secretKey is variable Formula 2
Indeterminacy non(slow, fast)

The output neutrosophic variable “the Security-Level of MS” has
five neutrosophic sets containing the set and its complementary
set. These sets are: lowest, low, normal, high and highest. It should
be noted that modifying the membership functions, non-
membership and indeterminacy will change the sensitivity of the
neutrosophic logic system’s output to its inputs. Also increasing
the number of neutrosophic sets of the variables will provide
better sensitivity control, but also increases computational
complexity of the system. Table The neutrosophic system rules
shows the rules used in the neutrosophic system.
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Input Output
F N | S
Slow | Few non(Slow, Few) ¢ (Low, ~Low, I)
Slow | Normal | non(Slow, Normal) ¢ (Lowest, ~Lowest, I)
Slow | Many | non(Slow, Many) ¢ (Lowest, ~ Lowest, I)
Fast | Few non(Fast, Few) ¢ (Normal, ~ Normal, I)
Fast | Normal | non(Fast, Normal) ¢ (Low, ~ Low,I)
Fast | Many non(Fast, Many) ¢ (Low, ~Low, )
Slow | Few non(Slow, Few) ¢ (High, ~High, I)
Slow | Normal | non(Slow, Normal) ¢ (Normal, ~ Normal, I)
Slow | Many | non(Slow, Many) ¢ (Low, ~ Low, 1)
Fast | Few non(Fast, Few) ¢ (Highest, ~ Highest, I)
Fast | Normal | non(Fast, Normal) ¢ (High, ~ High, I)
Fast | Many non(Fast, Many) ¢ (High, ~ High, I)

Table 1: The neutrosophic system rules

The output of that system determines the number of bits used and
the security level required for the current situation varying the number
of bits between 16 and 256 bits. This determination is based on the NS
analysis whish passes the three parameters of A =(x, u(X),04(X),vA(X))

where u,(x),o,(x) and v,(x) which represent the degree of membership
function (namely z,(x)), the degree of indeterminacy (namely +(x)),and
the degree of non-membership (namely v,(x)) respectively of each
element xeX to the set A where 0 < u,(x),0,(x),v,(x)<1" and
0 <up(X)+0,(X)+v,(x) <37, then based on that analysis the system
decides the accurate key size in each situation.

Key Distribution

Once the neutrosophic set has decided the length of the session key
based on its criteria the problem of key creation and distribution arises.
The nature of MANET poses great challenges due to the lake of
infrastructure and control over the network. To overcome such
problems, the use of PK scheme is used to distribute the key under the
assumption that one node (let us say the first node that originates the
network) is responsible for the creation of session keys. If that node is
going to leave the network, it must transfer the process of key creation
to another trusted node in the network.
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1) Each node sends a message (Session Key Request SKR)
encrypted with its private key (that message contains a key
request and a timer) to the key creator node which owns a
table that contains the public key for each node in the network,
as in the Figure, where the direction of the arrow’s head
denotes the private key used encryption is the originating node.

2) The key creator node simply decrypts the message and
retrieves the request and the timer with one of the following
scenarios occurs:

a. The timer was expired or the message is unreadable
the message is neglected.

b. The timer is valid and the decryption of the message
using the corresponding Public Key gives a readable
request. The key creator node sends a message to
that node containing the current session key. That
message is encrypted two times first using the key
creator’s private key (for authentication) then using
the destination’s public key. Where the direction of
the arrow’s head denotes the private key used
encryption is the trusted node then with
thedestination node’s public key.

Trusted Trusted
Node Node
NOde @ @
D D
a b

Figure 7: Key Distribution: (a) SK Request (b) SK Response

3) Any time the neutrosophic model reports that the network
condition changes, the key creator node sends a jamming
message for every node currently in the network asking them
to send a key request message.

4) Any authenticated node (including the Trusted node) on the
network knowing the current session key can send messages
either to every node or to a single node on the network, simply
by encrypting the message using the current session key.
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Experimental Results

In this research a new security algorithm for MANETS is presented;
this algorithm is based on the idea of periodically changing the
encryption key, thus make it harder for any attacker to track that
changing key. The algorithm is divided into stages, key size
determination function and key distribution. In this section, we talk
about the set of experimental results for the attempts to decide the way
for creating a more secured MANETSs. These experiments are clarified.

Neutrosophic vs. Key size determination membership, non-
membership functions and indeterminacy

The first type of experiments had taken place to decide the key size
for the encryption process. To accomplish this job the ordinary
mechanism of KNN is used as a neutrosophic technique. Given the same
parameters, we pass to the membership function, non-membership
function and indeterminacy. The performance is measured with
evaluation criteria, which are the average security-level and the key
creation time. The performance criteria are demonstrated in the following
sections.

The Percentage Average Security-Level

Average security level is measured for both techniques as the
corresponding key provided how much strength given the number of
nodes; the results are scaled from 0 to 5; these results are shown in Table
ASL _of membership vs. non-membership and indeterminacy
classification and Figure The Neutrosophic Average Precentage Security
Level.

No. nodes 25 50 75 100 125 150 175 200 225 250
Percentage 0.026 | 0.021 | 0.025 | 0.022 | 0.015 | 0.017 | 0.014 | 0.023 | 0.02 | 0.015
Average of

Classification

Percentage 0.034 | 0.036 | 0.038 | 0.038 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004
Average of

nonClassification

indeterminacy 0.94 0.943 | 0.937 | 0.939 | 0.981 | 0.979 | 0.982 | 0.973 | 0.976 | 0.981

Tabel 1: ASL of membership vs. non-membership and indeterminacy classification
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Figure 8: The Neutrosophic Average Percentage Security Level

Figure The Neutrosophic Average Precentage Security Level and
Table ASL of membership vs. non-membership and indeterminacy
classification shows the average percentage security level with the
number of mobile nodes between 25 and 250. As shown in the figure and
the table, the average security-level of the Neutrosophic Classifier (NC)
is much higher than the average security-level of the membership, non-
membership and indeterminacy classifier, especially for many mobile
nodes. This is an expected result since the neutrosophic classifier adapts
its self upon the whole set of criteria.

The key creation time
The time required to generate the key in both cases are measured,
the results are scaled from 0 to 1 and are shown in Table KCR of

membership, non-membership and indeterminacy and Figure
Neutrosophic Key Creation Time.

No. nodes 25 50 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250
Non-
membership | 0.95 | 0.93 | 095 | 096 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96
Classification
membership
Classification | 093 | 0.9 |0.85| 0.92 | 093 | 0.94 | 094 | 094 | 0.94 | 0.94
indeterminacy | -0.88 | -0.83 | -0.8 | -0.88 | -0.89 | -0.89 | -0.9 | -0.9 | -0.9 | -0.9
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Figure 9: Neutrosophic Key Creation Time

Table KCR of membership, non-membership and indeterminacy
and Figure Neutrosophic Key Cereation Time show the key creation time
with the number of mobile nodes between 25 and 250. The speed of key
creation is very high (mostly above 0.94) for all two techniques. However,
the neutrosophic technique has some faster key creation time, especially
with few mobile nodes. The reason is that the smaller the number of
nodes with the same amount of calculation the bigger the time taken.

PKI vs. non-PKI and indeterminacy distribution

After the key size had been determined via the Key size
determination function, the final problem is to distribute that key among
nodes on the network. There were two approaches for the key
distribution problem, either PKI or non-PKI. In this subsection the results
of applying PKI and non-PKI and indeterminacy (neutrosophic)
techniques are illustrated as applied in terms of security and processing
time.

Neutrosophic Security

The PKI presents more overall security than ordinary non-PKI
(single key) that is illustrated by applying both techniques over the
network and recording the results regarding to the time required for an
external attacker to break the session key. Table Security of PKI vs. non-

PKI and indeterminacy and Figure Neutrosophic Security Data of PKI
show that results under the assumption of using small public-private key

pairs.
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No. nodes 25 50 75 100 125 150 | 175 | 200 225 | 250
Non-PKI 0.15 | 0.2 0.23 | 0.26 0.3 032 | 036 | 04 0.44 | 0.45
PKI 085 | 085 | 085 | 092 | 093 | 094 | 094 | 094 | 0.94 | 0.94

indeterminacy 0 -0.05 | -0.08 | -0.18 | -0.23 | -0.26 | -0.3 | -0.38 | -0.38 | 0.55

Table 3: Security of PKI vs. non-PKI and indeterminacy

—o— Non- PKI
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Figure 10: Neutrosophic Security Data of PKI

Table Security of PKI vs. non-PKI and indeterminacy and Figure
Neutrosophic Security Data of PKI show the huge difference in the

security level provided by the PKI technique over the Non-PKI
mechanism given the same experimental conditions.

Processing time of neutrosophic data

Another factor had been taken into consideration while developing
the model, that is: time required to process the key and distribute it.
Table Processing time of PKI vs. non-PKI and indeterminacy and Figure
Processing Time of Neutrosophic Data PKI show that results under the
assumption of using small public-private key pairs.

No. nodes 25 50 75 100 | 125 150 | 175 | 200 225 250

Non-PKI 03]032|035]|037| 04 0.44 | 047 | 0.51 | 0.55 | 0.58
PKI

02035 05 06 | 0.68 | 0.75 | 0.83 | 0.87 | 093 | 0.97

indeterminacy | 0.5 | 0.33 | 0.15 | 0.03 | -0.08 | -0.19 | -0.3 | -0.38 | -0.46 | -0.55
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Table 4: Processing time of PKI vs. non-PKI and indeterminacy

= Non- PKI

PKI

Neutrality.

Figure 11: Processing Time of Neutrosophic Data PKI

Table Processing time of PKI vs. non-PKI and indeterminacy and
Figure Processing Time of Neutrosophic Data PKI show that Non-PKI

techniques provide relatively small amount of processing time
comparing to PKI and indeterminacy, due to the amount of modular
arithmetic performed in the PKI mechanisms. However, the difference in
the processing time is neglectable comparing to the security level
provided by the PKI under the same conditions.

Conclusions

MANETSs require a reliable, efficient, scalable, and most importantly,
a secure protocol, as they are highly insecure, self-organizing, rapidly
deployed, and they use dynamic routing. In this section, we discussed the
vulnerable nature of the mobile ad hoc network. Also, the security
attributes and the various challenges to the security of MANET had been
covered. The new security mechanism which combines the advantages
of both neutrosophic classification and the public key infrastructure had
been demonstrated. The advantages of the proposed mechanism
comparing to other existing mechanisms had been shown firstlyby
comparing the neutrosophic to the non-classification, showing that
neutrosophic is more adaptable and provides a better response in
MANET. Also, the PKI is compared to the non-PKI and indeterminacy
showing that it provides a far better security with a neglect table amount
of delay.
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7.3 Non-Classical Sets via Probability Neutrosophic

Components

The purpose of this application is to introduce and study the
probability of neutrosophic crisp sets. After giving the fundamental
definitions and operations, we obtain several properties, and discuss the
relationship between neutrosophic crisp sets and other sets.

The neutrosophic experiments are experiments that produce
indeterminacy. Collecting all results, including the indeterminacy, we get
the neutrosophic sample space (or the neutrosophic probability space)
of the experiment. The neutrosophic power set of the neutrosophic
sample space is formed by all different collections (that may or may not
include the indeterminacy) of possible results. These collections are
called Neutrosophic Events.

In classical experimental probability, we have:

(numberof timeseventA occurs)

totelnumberof trials
Similarly, Smarandache introduced Neutrosophic Experimental
Probability in [74]:
[numberof timesevent A occurs numberof timesindetermircey occure numberof timeseventAdoenotoccer)
totel numberof trials ' totel number of trials ' totel number of trils

Probability of NCS is a generalization of the classical probability in
which the chance thatevent A=(A, A, A;) occurs is

P(A) true, P(A,) indetermirate, P(A;) false
on a sample space X, then NP(A) =(P(A,), P(A,), P(A;)) probability of NCS

space the universal set, endowed with a neutrosophic probability
defined for each of its subset, from a probability neutrosophic crisp space.

Definition A.7.3.1
Let X be a non-empty set and A be any type of neutrosophic crisp
set in a space X, then the probability is a mappingNP: X — [01],
NP(A) =(P(A;), P(A,), P(A;))
The probability of a neutrosophic crisp set has the following property:

NP(A) = (P,p2,p3) Where p;,3 € [01]
0 if p,p,.pz <0
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Remark A.7.3.1
1. In caseif A=(A, Ay, A;) we have NCS-Type 1, then:

0<P(A)+P(A)+P(A) <2 .
2. Incaseif A=(A, A, A;) we have NCS, then:

T0<P(A)+P(A)+P(A;) <3",

3. The Probability of NCS-TypeZ2 is a neutrosophic set, where:
TO<SP(A)+P(A)+P(A)) <2

4. The Probability of NCS-TypeZ2 is a neutrosophic set,where:
"0<P(A)+P(A)+P(A)<3".

Probability axioms of NCS

The probability of intuitionistic neutrosophic crisp and NCS Type3s
Ain X is expressed as:

NP(A) =(P(A), P(A;), P(A3))
where
P(A)=0,P(A,)20,P(A) > 0,

or

NP(A) = (P1,P2:P3) where p;,5 € [01]
0 if py,p,.p3 <O

1. The probability of intuitionistic neutrosophic crisp and NCS-
Type3s A in X NP(A)=(P(A,),P(A;), P(A;)) where
“0< p(A)+ p(Ay) + p(As) <3".
2. Bonding the probability of intuitionistic neutrosophic crisp and
NCS-Type3s NP(A)=(P(A;),P(A,), P(A;)) where
1>P(A)=0,P(A,)20,P(A;) 0.
3. Additional law for any two intuitionistic neutrosophic crisp sets or
NCS-Type3:
NP(AuUB) =< (P(A)+P(B,)-P(A nB)),
(P(A;) +P(B,) —P(A, NB,), (P(A;) + P(B3) —P(A; nB3) >
if AN B =gy, then NP(AnB)=NP(g,).
NP(AuU B) =<NP(A;) + NP(B,) — NP(gy, ), NP(A,) + NP(B,) — NP(¢y, ),
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NP(Ag) + NP(B;) — NP(dy; ).

Since our main purpose is to construct the tools for developing the
neutrosophic probability, we must introduce the following:
1. Probability of neutrosophic crisp empty set with three types
(NP(¢y ) ) may be defined as four types:

(a) Type 1: NP(gy) = (P(#), P(#),P(X)) =<0,0,1 >
(Type 1: intuitionistic neutrosophic crisp empty);

(b) Type 2: NP(dy) = (P(¢), P(X),P(X)) =< 011>
(Type 1: ultra neutrosophic crisp empty);

(c) Type 3: NP(¢y ) = (P(9), P(¢), P(¢)) =< 0,0,0 >
(Type 2: intuitionistic neutrosophic crisp empty);

(d) Type 4: NP(gy) = (P(¢), P(X),P(#)) =< 0,1,0 >
(Type 3: intuitionistic neutrosophic crisp empty).

2. Probability of intuitionistic neutrosophic crisp universal and
NCS-Type3 universal sets (NP(X ) ) may be defined as four types:

(a) Type 1: NP(Xy)=(P(X),P(#),P(¢)) =<1,0,0 >
(Type 1: intuitionistic neutrosophic crisp universal)
(b) Type 2: NP(X ) = <P(X), P(X), P(¢)> =<110>
(Type 1: NCS Type3 universal)
(c) Type 3:NP(X ) =(P(X),P(X),P(X))=<111>
(Type 2: NCS Type3 universal)
(d) Type 4: NP(X ) = (P(X),P(¢),P(X)) =<101>
(Type 3: NCS Type3 universal)

Remark A.7.3.2
NP(Xy) =1y, NP(4y) =0y ,where 1,0 arein Definition 2.1 [6],
or equals any type forl, .

Definition A.7.3.2 (Monotonicity)
Let X be a non-empty set, and NCSS Aand B in the form:
A=(A,, Ay, Ay),B=(By,B,, By) With NP(A) = (P(A), P(A,), P(A))
NP(B) = (P(B,), P(B,),P(B3)) ,

then we may consider two possible definitions for subsets (A< B ):
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1) Typel:
NP(A)<NP(B) < P(A)<P(B;),P(A,)<P(B,) and P(A;) = P(B;)

2) Type2:
NP(A) < NP(B) < P(A)) < P(B,),P(A,) > P(B,) and P(A;) > P(B;) .

Definition A.7.3.3
Let X be a non-empty set, and NCSs A, B in the form a-(a, A, A),

B=(B,,B,,B;) be NCSs. Then:

1) NP(AnB) may be defined two types as:
Typel:NP(ANB) = (P(A, N B,),P(A, N B,),P(A; UB;)) or
Type2:NP(ANB) = (P(A N By),P(A, UB,),P(A; UB;))

2) NP(AUB) may be defined two types as:
Typel:NP(AUB) =(P(A UB,),P(A, N B,),P(A; " By)) or
Type 2: NP(AU B) = (P(A, U B,),P(A, UB,), P(A; N By))

3) NP(A®)may be defined by three types
Typel: NP(A®) = <P(A1°), P(AD), P(A§)> =<(1-A).1-A),1-Ag)>o0r
Type2: NP(A®) = <P(A3), P(A7), P(A3)> or
Type3: NP(A®) = (P(A;),P(A,),P(A))-

Proposition A.7.3.1
Let A and B in the form A=(A,A,,A;) ,B=(B,,B,,B,)be NCSs in a
non-empty set X. Then:
1) NP(A)° +NP(A) =< (1,1,1>.Or Type (iii) of NP(X ) =1y or = any
types forl, .
2) NP(A-B)= NP(A-B)=<(P(A)-P(A NB,),(P(A))-P(A, NB,),
(P(A3) —P(A; N B3) >

NP(A) NP(A;) NP(A;)

3) NP(A/B)=< , :
NP(A, N B,) NP(A, N B,) NP(A, N B,)

Proposition A.7.3.2
Let A andB in the form A=(A,A,, A;) ,B=(B,,B,,B,) be NCSs in a
non-empty set X, and p, pn be NCSs. Then:
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i Np(p):<1 1 1>

n(X) n(X) n(X)

if) Np(pN):<o 11_1>

'n(X)" n(x)
Example A.7.3.1

1) LetX = {a,b,c,d}, and A, B be two neutrosophic crisp events in X

defined by A=({a},{b,cl,ic.d}), B=(fab}{a.clic}), p=(fa}ic}{d})-

We observe that:

NP(A) =(0.25,0.5,0.5), NP(B) = (0.5,0.5,0.25), NP(p) =(0.25,0.25,0.25),
and one can compute all probabilities from definitions.

2) 1f A=({g},{b,c},{p}) andB = ({g},{d}, {¢}) are intuitionistic neutrosophic
crisp sets in X, then:

Typel: AnB=({¢},{4},1¢}), and NP(A~B) = (0,0,0)=0,,
Type2: AnB =({g},{b.c,d},{#}) and NP(A~B)=(0,0.75,0) = 0 .
Example A.7.3.2
LetX ={a,b,c,d,e, f},
A=({ab,c,d}{e}.{f}), D=({a,b}.{e,c}{f,d}) be a NCS-Type 2,
B =({a,b,c},{d}.{e}) be a NCT-Typel but not NCS-Type2, 3,
C =({a,b},{c,d}.{e, f,a}) be a NCS-Type 3, but not NCS-Typel, 2,
E=({a,b,c,d,e}{c,d}.{e, f,a}), F=({a,bc,d,e},¢.{e f,ad,c,b})
We can compute the probabilities for NCSs by the following:

NP(A)=<%,%,%>, NP(D)=<§,%,E>, NP(B)=<3 L 1>,

6 6'6'6
NP(C):<§,§,§>, NP(E):<%,%%>, NP(F):<§,O,2>,

Example A.7.3.3

Let X ={a,b,c,d} , A={ab}.{c}.{d}) , B={{a}.{c}.{d.b}) be NCS-
Typel in X and U, =({a,b}.{c,d}{a,d}) , U, ={{a,b,c}{c}.{d}) be NCS-
Type3 in X, then we can find the following operations:

Union, intersection, complement, difference and its probabilities.
Typel: An B =({a},{c}.{d,b}) ,NP(An B)=(0.25,0.25,0.5}) and
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Type2,3: An B =({a}{c}{d,b}), NP(AnB)=(0.250.250.5}).
NP(A - B) may be equals.

Typel: NP(A—-B) =<0.25,0,0 >,

Type 2: NP(A-B) =< 0.25,0,0 >,

Type 3: NP(A—B) =< 0.25,0,0 >,

Type2: AuB=({a,b}{c}{d}),

NP(AU B) = (0.5,0.25,0.25}) and

Type 2: AUB = <{a.b},{c},{d}> NP(AUB)= <0.5,0.25,0.25}> .
Typel: A° = ({c,d} {a,b,d}.{a,b,c})
NCS-Type3 setin X, NP(A®) =(0.5,0.75,0.75) .
Type2: A° =({d} ,{a,b,d}{a,b})
NCS-Type3 inX, NP(A®)=(0.250.750.5)
Type3: A° =({d} {c}{ab})

NCS-Type3 in X, NP(A°)=(0.75,0.75,0.5) .
Typel: B® = ({b,c,d} {a,b,d}.{ac})
NCS-Type3 in X, NP(B®) = (0.75,.75,0.5)
Type2: B¢ = ({b, d}.{c}.{a})

NCS-Typel in X, and NP(B®) = (0.5,0.25,0.25) .
Type3: B = ({b,d}.{a,b,d}.{a})

NCS-Type3 in X and NP(B®) = (0.5,0.75,0.25).
Type 1: U; UU, ={{a,b,c}.{c,d}.{a,d}),
NCS-Type 3:NP(U; UU,) =({0.75,0.5,0.5),
Type2:U, uU, ={{a,b,c}{c}{a,d}),
NCS-Type3, NP(U, UU,)=({0.75,0.250.5),
Typel:U; nU, ={{a,b}.{c,d}.{a,d}),
NCS-Type3, NP(U; nU,)=(0.5,0.5,0.5),
Type2:U, nU, = ({a,b}.{c}{a, d})
NCS-Type3, and NP(U; nU,) =(0.5,0.25,0.5),
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Type 1: U° =<{C,d},{a, b},{c,b}},
NCS-Type3 and NP(U,") =(0.5,0.5,0.5)
Type 2: U;° =({a,d}{c,d}{a,b}),
NCS-Type3 and NP(U,")=(0.5,0.5,0.5)

Type3: U," =({a,d} {a,b}.{a,b}),
NCS-Type3 and NP(U,")=(0.5,0.5,0.5).

Typel:U," =({d}.{a,b,d}{a,b,c})
NCS-Type3 and NP(U,%) =(0.250.75,0.75),
Type2:U °; ={{d}.{c}.{a,b,c})

NCS-Type3 and NP(U,%) =(0.25,0.25,0.75),
Type3:U °; =({d}.{a,b,d}{a,b,c})
NCS-Type3. NP(U,%)=(0.250.75,0.75).

Probabilities for events:
NP(A) =(0.5,0.25,0.25),

NP(B) =(0.25,0.25,0.5),

NP(U,) =(0.5,0.5,0.5),

NP(U,)=(0.75,0.25,0.25)

NP(U,")=(0.5,0.5,0.5),

NP(U,")=(0.25,0.75,0.75)

Let (AnB)° ==({b,c,d}.{a,b,d}.{a,c}) be a NCS-Type3.
Let NP(AnB)® =(0.75,0.75,0.25) be a neutrosophic set.

NP(A)® n NP(B)® =(0.5,0.75,0.75) ,

NP(A)® U NP(B)® =(0.75,0.75,0.5)

NP(A U B) = NP(A) + NP(B) - NP(A B) =(0.5,0.25,0.25})
NP(A) =(0.5,0.25,0.25),

NP(A)° =(0.5,0.75,0.75)
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NP(B) =(0.25,0.25,0.5),
NP(B*)=(0.75,0.75,0.5)

Probabilities for Products:
The product of two events is given by

Ax B = ({(a,a), (b, )} {(c. O} 4(d,d), A, b)),

and NP(AxB)=(%, ¥5.%s)

Bx A=({(a a),(a b)}{(c,c)}{(d,d),(b,d)})

and NP(B x A) = (%5, ¥ %s)

AxU, =({(a,2), (b,a), (5), (b, b)}{(e,), ¢, )} {(d, 0), (d, &)},

and NP(AxU,) = (%5, %, %)
U, xU, ={(a,a), (b,a),(a,b), (b,b), (a,c), (b,c)}.{(c.c),(d,c)}.{(d,d),(a,d)})
and NP(U, xU,) :<%6’%6'%6>

7.4 Social Network Analysis e-Learning Systems via

Neutrosophic Set

The purpose of this section is to put on view a Social Learning
Management System that integrates social activites in e-Learning,
employing neutrosophic set to analyze social networks data conducted
through learning activities. Results show that recommendations can be
enhanced through utilizing proposed system.

We will now extend the concepts of Social Learning Management
System that integrates social activites in e-Learning presented in [95-
107] to the case of neutrosophic sets.

Introduction

E-learning can be thought of as structured learning conducted over
an electronic platform. One of the recommendations of Clayton
Christensen’s Disrupting Class is to take a “student-centric” approach to
education, one that responds to students’ unique learning styles and
preferences.

This is difficult in face-to-face setting with our usual educational
model as it is formed in very systematic “teacher-centric” way. Nowadays,
is indirectly designed to mold every student with the same method, on
the same path, in same pace, and with teacher as the standard mold. E.A.
Ross describes education as “the most effective means of control.”
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Teacher is the most significant agency, even in this era that many
countries’ governments are highly promoted “student-centric” as a key
strategy for education. The word “program” is commonly used in terms
of conducting curriculum. Such fact make many conclude that “education
is all about control.”

Ideally, education always means right and freedom, as reaffirmed
by many international organizations’ articles such as UNESCO’s. It is such
a big dilemma to set education in controlled way for making result with
the freedom. Stanford University’s Dr. Moe mentioned, in American
Experiment luncheon in August 2009, Technology is always an answer for
education.

He particularly mentioned that technology is E-learning. E-learning
is promised to give freedom to learners in many aspects, such as learning
at any place and at any time. While many aim that E-learning is a
revolutionize tool for education, it has delivered lower impact than
expected. More than 70% of e-learning courses existed are designed to,
more or less, duplicate face-to-face learning, which are more than half in
presentation style. BYU’s Clark Gilbert observed that most existed e-
learning style with “the lack of meaningful content and quality standards
in many dot-com publications”. Most online courses are “flexible from a
schedule standpoint, but not the best learning experience”.

Good online courses would require “innovative, first-rate course
designs and strategies for engaging students.” Most online courses
reflected the assumption that instruction is either all in the classroom or
all from online. In fact, a hybrid course also effectively reaches to
students with differing learning styles.

A combination of both online and in-class instruction allows the
various learning activities to be conducted via more effective medium.
Many activities traditionally done in classroom, such as listening to a
lecture or taking a test, can be effectively conducted online. Even an
instructor-led discussion may be better if it occurs both in-class and
online, allowing shy students to make their points in the more
anonymous online setting.

Online technology is not just to make learning more efficient, but to
enhance it by allowing students and professors to better prepare for
face-to-face or online learning experiences. With all mentioned
potentials, now-a-day, online learning is on the rise across all areas of
education. For higher education in the U.S., 79% of students access
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course-specific materials at least once a week. So, to achieve freedom in
learning system, teacher control and peers interaction advantages.

We propose system of learning management system (LMS) that
incorporates within its beneath social networks and makes use of social
network analysis in understanding students behavior and helps shaping
their learning path.

Related work

Social networks are graph structures whose nodes or vertices
represent people or other entities embedded in a social context, and
whose edges represent interaction or collaboration between these
entities. As Clayton M. Christensen and Henry J. Eyring mentioned “most
online courses allow students to work at their own pace but provided no
student-to-student interaction until social media came along.

In 2004, Mark Zuckerberg developed a website which was the first
iteration of the Facebook and social networking phenomena. Social
network has been raised to mutuality in very short ages from the tools
for communication in the close circle to the medium of communication
for all, thanks to rapid development of mobile communication and
information technology. As of today, social network has developed to
become a new and true definition of "sharing"”, “collaborating”, and
“conversation” in the new form. While social networking means
conversation, share, and collaborate, it is naturally in opposite polar from
highly controlled education. Therefore integrating social networking to
exist controlled programs of e-learning suggests chaos, especially in
already-unstable world of e-learning.

Social networks are highly dynamic, evolving relationships among
people or other entities. This dynamic property of social networks makes
studying these graphs a challenging task. A lot of research has been done
recently to study different properties of these networks. Such complex
analysis of large, heterogeneous, multi-relational social networks has led
to an interesting field of study known as Social Network Analysis (SNA).
Social network analysis, which can be applied to analysis of the structure
and the property of personal relationship, web page links, and the spread
of messages, is a research field in sociology.

Recently social network analysis has attracted increasing attention
in the data mining research community. From the viewpoint of data
mining, a social network is a heterogeneous and multi-relational dataset
represented by graph.
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Tools used to support social media in e-learning cover a wide range
of different applications. They include discussion forums, chat, file
sharing, video conferences, shared whiteboards, e-portfolios, weblogs
and wikis. Such tools can be used to support different activities involved
in the learning process.

The question of organizing e-learning tools involves the problem of
integration vs. separation and distribution.

A logic in which each proposition is estimated to have the
percentage of truth in a subset T, the percentage of indeterminacy in a
subset I, and the percentage of falsity in a subset F, where T, I, F are
defined above, is called neutrosophic logic in [71-74].

We use a subset of truth (or indeterminacy, or falsity), instead of a
number only, because in many cases we are not able to exactly determine
the percentages of truth and of falsity but to approximate them: for
example a proposition is between 0.30-0.40 true and between 0.60-0.70
false, even worst: between 0.30-0.40 or 0.45-0.50 true (according to
various analyzers), and 0.60 or between 0.66-0.70 false.

The subsets are not necessary intervals, but any sets (discrete,
continuous, open or closed or half-open/half-closed interval,
intersections or unions of the previous sets, etc.) in accordance with the
given proposition. A subset may have one element only in special cases
of this logic. Constants: (T, I, F) truth-values, where T, I, F are standard or
non-standard subsets of the non-standard interval ] -0, 1* [, where ninf =
infT +infI+infF 2-0,and nsup=sup T + sup I + sup F < 3+,

Atomic formulas: a, b, c, ....

Arbitrary formulas: A, B, C, ....

Proposed Framework

The Figure Social LMS Componentsbelow presents our proposed
Social LMS that incorporates social networks in the e-Learning system.
Social LMS consists of two main components:

» Learning System, and
= Social Network.

Proposed system incorporates traditional learning activities as
depicted in the Figure Traditional e-Learning Activities.

Learning System
e Use LMS thatis responsible for learning activities;
e Use synchronous and asynchronous e-learning:
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0 Enable Synchronous e-learning: any learning event
delivered in real time to remote learners, such as e-mail,
comments, downloadable learning materials;

0 Enable Asynchronous e-learning: learning situations in
which the learning event does not take place in real-
time, such as multicast webinars, chat, tele-video
conferencing.

Social Network

Use relationship between teacher and students (one-to-many);
Use Graph Theory Clustering Algorithm;

Use video and voice conference and electronic posts and
exams with high level quality.

Social LIMS

-
.

Seocial

Synchronus | ASynchronus Medis

. VAN J\_ J
s N ( N ( 2
Sulea Chat Bxam Assignments || Homework || Feedback Twitter Facebook
_ J U J \\ J

Figure 12: Social LMS Components
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Figure 13: Traditional e-Learning Activities

In our proposed Social LMS, we utilize Graph Theory in analyzing

the relations between students on social networks such as Facebook and
twitter. Basically Graph theory clustering algorithm uses objects and
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links among objects (data classes) to make clustering analysis. Similarly,
social network also includes objects and links among these objects. [16]
The Figure A sample of social network presents a sample of social
network representation using nodes and edges.

Figure 14: A sample of social network

In view of the same pre-condition, the Business System Planning
(BSP) clustering algorithm can be used in social network clustering
analysis. According to graph theory, social network is a direct graph
composed by objects and their relationship. In Figure A sample of social
network, the circle represents an object; the line with arrow is an edge of
the graph, and it represents direct link between two objects, so a social
network is a direct graph. In the same Figure, let Oi be an object in social
network (i=1..m ), and let Ej meaning direct link between two objects
be a direct edge of the graph (j=1..n).

After definition of objects and direct edges, let also define reachable
relation between two objects. There are two kinds of reachable relation
among objects, shown as following:

(a) One-step reachable relation: if there exists a direct link from

0i to Oj through one and only one direct edge, then Oi to Oj is
a one-step reachable relation. For instance in Figure Social
LMS Components there exists a direct link from 01 to 02
through the direct edge E1, O1 to 02 is one-step reachable
relation.

(b) Multi-steps reachable relation: if there exists a direct link

from Oi to Oj through two or more direct edges, then Oi to j
is a multi-steps reachable relation.
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For instance in Figure A sample of social network has a direct link
from O1 to 04 through direct edges E1 and E5, then O1 to 04 is a 2-steps
reachable relation.

To Generate edge creation matrix and edge pointed matrix, we can
consume the following steps. The Figure Example of graph theoryshows
an example of a graph that will have graph theory applied upon. First
according to the objects and edges in the graph, define two matrixes Lc
and Lp. Let Lc be a mx n matrix which means the creation of edges. In the
matrix, Lc (i, j) =1 denotes object Oi connects with the tail of edge Ej,
which means that object Oi creates the direct edge Ej . L (i, j) c =0 denotes
Oi doesn’t connect with the tail of edge Ej, which means Ej isn’t created
by object Oi.

Table 5: Adjacency matrix for graph in Figure above
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Experimental Results and Comments on Results

We have developed an Excel package to be utilized for calculating
neutrosophic data and analyze them. We have used Excel as it is a
powerful tool that is widely accepted and used for statistical analysis.
The Figure Neutrosophic Package Class Diagram shows Class Diagram of
the implemented package. The Figure Neutrosophic Package Interface
and Calculating Complement presents a working example of the package
interface calculating the complement. Our implemented neutrosophic
package can calculate intersection, union, and complement of the
neutrosophic set. The Figure Neutrosophic Chart presents our
neutrosophic package capability to draw figures of presented
neutrosophic set. The Figure Neutrosophic Package Union Chart
presents charting of union operation calculation, and the Figure
Neutrosophic Package Intersection Chart, the intersection operation.

The neutrosophic set are characterized by its efficiency as it takes
into consideration the three data items: True, Intermediate, and False. It
is believed that integrating neutrosophic calculation in e-Learning will
yield more accurate results in the overall learning process for different
activities as will be followed in the future work.

|Serializable IL\st<T>_
Excenti [Collection=T>
|- cepuon o o L

| Exception A |  Neutrosophic £ | | Object | ICollection
Class s  — e [ReadOnlyList<T>
= 9 ), IReadOnlyCollection<T>
Properties Fields [ [Enumerable<T>
Methods & Properties ) ’ [Enumerable
B fyents F False | NeutrosophicSet 4| 1 | List<T> ¥ |
\ ) K Intermediate = [| =9 cemereas
iy . B Tue = ListeNeutrosophic> (@
©liErm: #, Neutrosophic =l Methods
"Nclltrosophi(VaIueException v |4 NeutrosophicValueE 9 Setmgicl ' | @ Beonalol ( NeutrosophicSetOperations 4 |
- [ " © Beonglol ©  BelongTo2 - ¥ s
e © Complement] ©  Complementl
. i} y © Complement2 ©  Complement? 2 Methods
NeutrosophicValueException 0 Camplenent | € Complement3 @ Chart
@ Neutrosophic N |
@ GetNeutrosophicSet
@ GetNeutrosophicSetlist
@ Intersect!
@ Intersect?
@ Intersect?
@ Uniont
@ Union2

Figure 16: Neutrosophic Package Class Diagram
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Figure 20: Neutrosophic Package Intersection Chart

Conclusion and Future Work

e-Learning is moving rapidly towards integrating social network
activities in presented enhanced learning experience to students. Social
Networks are dominating nowadays, and students spend long times
there. In this section, we presented an effective e-Learning model that
integrates social networks activities in e-Learning. We have presented an
effective e-Learning system that utilizes the newly presented
Neutrosophic Setting analysis of social network data integrated in e-
Learning. Identifying relationships between students is important for
learning. Future work include incorporating the results we have
achieved in customizing course contents to students, and recommending
new learning objects more suitable for personalized learning.

7.5 Some Neutrosophic Topological Notions of

Neutrosophic Region

In Geographical information systems (GIS) there is a need to model
spatial regions with indeterminate boundary and under indeterminacy.
This section gives fundamental concepts and properties of a
neutrosophic spatial region. We introduce a new theoretical framework.

For the start, let us add some further definitions and propositions for
a neutrosophic topological region.

Corollary A.7.4.1
Let A=<u,(¥),0.().v4()> and B=<u5(X),05(X),5(X) > be two neutrosophic
sets on a neutrosophic topological space (X ' T) then the following holds:
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i) Nint@ ~Nint@) = NintA~B),
ii) Nc(A UNc(B)=Nint@AuB),

iii) Nint@ c AcNclA),

iv)  (Nint@)° =NclA%), (Nc(A) =Nint®).

Definition A.7.4.1

We define the neutrosophic boundary (NB) of a neutrosophic set
A=<115(X),04(X),Va(X) > by: 6A = Ncl(A) n Ncl(A°).

The following theorem shows that the intersection method no longer
guarantees a unique solution.

Corollary A.7.4.2
AN N int(A) = Oy if N int(A)is crisp, i.e.Nint(A) = 0, Or Nint(A) =1y.

Proof
Obvious.

Definition A.7.4.2

Let A=<t (X),04(X),va(X) > be a neutrosophic set in a neutrosophic
topological space (X,T). Suppose that the family of neutrosophic open
sets contained in A is indexed by the family <4, (X),05, (X),v5 () >i €l and
the family of neutrosophic open subsets containing A is indexed by the
fz;1mily<,z4<j (X),O'Kj (X),VKJ. (X)> j €J. Then two neutrosophic interior, closer

and boundaries, are defined as it follows:
1. Nint(A);; may be defined as two types

Type 1. N int(A); ; = <max{ug, (x)) max{og, (X)) min(L- ug, (X))>

Type 2. N int(A)[ ; = <matug, (x)) mirlog, (x)) minL— g (¥))>
2. Nint(A)_ . may be defined as two types

Type 1. N int(A) . =<maX{l-vg, (x)) maxog, () minlyg, ())>

Type 2.N int(A)_ . =< ma>(1— Ve, (x)), mir(crGi (x)), min(vGi (x))>
3. Ncl(A); ;may be defined as two types

Type 1. Ncl(A) ;=< ma>{/4,<j ) min(aKj (x)) max{1- M, x))>
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Type 2. Ncl(A); =< ma>{ij ) ma>(aKj (x)) max{L- M, x))>
4. Ncl(A). . may be defined as two types

Type 1. Ncl (A). , =<mirll-v,. (X)) mirlog, (x)) max(vg, (¥))>

Type 2 Ncl(A)_ . =< mir(l— Vi (x)), ma>{aGi (x)), max(vGi (x))>.
5. The neutrosophic boundaries may be defined as:

OA_ .= Ncl(A_.) N Ncl(A° )

Proposition A.7.4.1
(a) Nint(A);; = Nint(A) = N int(A)
(b) Ncl(A);; = Ncl(A) Nel(A). .
(c) Nint(Ag ;. .3) =1 I1.< >Nint(A) and
Nel (Ag 1< ) ={[ 1.< >Ncl(A)

<>

Proof
We shall only prove (c), and the others are obvious.
[ INInt(A) = <maxgg, (x)) maxog, (x) [L-maxue (x))>
or =< ma>{yGi (x)), mir(aGi (x)), (1—max;1q (x))>
Based on knowing that (1—max ug, (x))=min(- 4, ) then
[ INInt(A) = <maxug, (x)) maxog, (x) min{l- s ()>
or <ma>{/,zGi (x)), mlr(oGi (x)), mln( — U, (x))>—[ INint(A)

In a similar way one can provethe others.

Proposition A.7.4.2
Nint(Ag ;< 53) = (N mt(A)) 1< >)

NCI(A{[ 1< >}){[ 1.< > (NCI(A))[]< >

Proof
Obvious.
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Definition A.7.4.3
Let A=<ux(X),0a(X),va(X) > be a neutrosophic set in a neutrosophic
topological space(X,r). We define neutrosophic exterior of A as it follows:

ANE =1 N AS

Definition A.7.4.4

Let A=<y, (X),05(X),vo(X)> be a neutrosophic open set, and
B=<15(X),05(X),v5(X)> be a neutrosophic set in a neutrosophic
topological space(X,z), then:

1) Ais called a neutrosophic regular open if A = N int(Ncl(A)).

2) If B e NCS(X) then B is called a neutrosophic regular closed if

A = Ncl(N int(A)).

Now, we obtain a formal model for simple spatial neutrosophic

region based on neutrosophic connectedness.

Definition A.7.4.5
Let A=< (X),0a(X),va(X) > be a neutrosophic sets on a neutrosophic

topological space (X,r). A is called a simple neutrosophic region in

connected NTS, such that:
Ncl(A), NcI(A) 4, and Ncl(A). . are neutrosophic regular closed;

Nint(A), Nint(A);;,and Nint(A)_ , are neutrosophic regular open;

9(A), 9(A);1, and O(A). . are neutrosophically connected, having:

Ncl(A), Ncl(A);, Ncl(A). ., Nint(A), Nint(A);, Nint(A)_ .
which are 9(A), 6(A);, and 0(A). . for two neutrosophic regions,,so we
are able to find relationships between two neutrosophic regions.
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Graphs: The Relation between
Neutrosophic Notions and Fuzzy Notions
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In this book the authors introduce and study the following notions:
Neutrosophic Crisp Points, Neutrosophic Crisp Relations, Neutrosophic
Crisp Sets, Neutrosophic Set Generated by Ng (Characteristic Function),

a-cut Level for Neutrosophic Sets, Neutrosophic Crisp Continuous
Function, Neutrosophic Crisp Compact Spaces, Neutrosophic Crisp Nearly
Open Sets, Neutrosophic Crisp Ideals, Neutrosophic Crisp Filter,
Neutrosophic Crisp Local Functions, Neutrosophic Crisp Sets via
Neutrosophic Crisp Ideals, Neutrosophic Crisp L-Openness and
Neutrosophic Crisp L-Continuity, Neutrosophic Topological Region,
Neutrosophic Closed Set and Neutrosophic Continuous Function, etc.
They compute the distance between neutrosophic sets and extend it to
Neutrosophic Hesitancy Degree.

The authors also generalize the Crisp Topological Space and Intuitionistic
Topological Space to the notion of Neutrosophic Crisp Topological Space
At the end, they present applications to Neutrosophic Database, and show
a security scheme based on Public Key Infrastructure (PKI) using
Neutrosophic Logic Manipulation. The authors utilize neutrosophic sets
in order to analyze social networks data conducted through learning
activities, and for the Geographical Information Systems (GIS) they
employ fundamental concepts and properties of a Neutrosophic Spatial
Region.
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