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Khmelnik S. I. 

Mathematical Model of Ball Lightning 
 

Abstract 
Based on the Maxwell's equations and on the understanding 

of the electrical conductivity of the body of ball lightning, a 
mathematical model of ball lightning is built; the structure of the 
electromagnetic field and of electric current in it is shown. Next 
it is shown (as a consequence of this model) that in a ball 
lightning the flow of electromagnetic energy can circulate and 
thus the energy obtained by a ball lightning when it occurs can be 
saved. Sustainability, luminescence, charge, time being, the 
mechanism of formation and physical modeling of ball lightning 
are briefly discussed. 

Content 
1. Introduction 
2. The solution of Maxwell equations in spherical 

coordinates 
3. Electric currents 
4. The Energy Flow 
5. About Ball Lightning Stability 
6. About Luminescence of the Ball Lightning 
7. About the Time of Ball Lightning Existence 
8. About a Possible Mechanism of Ball Lightning 

Formation 
9. About the Charge of Ball Lightning 
10. About Physical Simulation of the Ball Lightning 
Appendix 1. Refinement of Solution 
Appendix 2. "Cubical ball lightning" 
References 

 

1. Introduction 
The hypotheses that were made about the nature of ball lightning are 
unacceptable because they are contrary to the law of energy 
conservation. This occurs because the luminescence of ball lightning is 
usually attributed to the energy released in any molecular or chemical 
transformation, and so it is suggested source of energy, due to which 
the ball lightning glows is located in it. 

Kapitsa P.L. 1955 [1] 
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This assertion (as far as the author knows) is true also today. It is 

reinforced by the fact that the currently estimated typical ball lightning 
contains tens of kilojoules [2], released during its explosion. 

It is generally accepted that ball lightning is somehow connected 
with the electromagnetic phenomena, but there is no rigorous description 
of these processes.  

Further a mathematical model of a ball lightning will be built based 
on the Maxwell equations and on the understanding of the ball lightning's 
body conductivity. This model allows explaining many of the properties 
of ball lightning.  

 

2. The solution of Maxwell equations in 
spherical coordinates  
Fig. 1 shows a system of spherical coordinates (  ,, ) and the 

Table 1 (column 3) gives the expressions for rotor and divergence of 
vector Е in these coordinates. Further we shall denote formulas shown in 
such tables as (Т1.3).  

The Maxwell equations in spherical coordinates in the absence of 
charges have the following form (Т2.2). 

 

 
Fig. 1. 
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Table 1. 

1 2 3 4 5 
1  Erot  

    












sintg

EEE
 

0 0 

2  Erot  

  










 EEE

sin
 










EE
 










E
 

3  Erot  















EEE
 









EE
 






E
 

4  Ediv  

 

  






















sin

tg

EE

EEE

 

0 0 

 
 

Table 2. 

1 2 3 
1. 

0rot 



 



  J
t

E
H  

0=0 

2. 
0rot 




 


  J

t

E
H  0









 





J

t

EH
 

3. 
0rot 




 



  J
t

E
H  0











 


J
t

EH
 

4. 
0rot 






t

H
E



   
0=0 

5. 
0rot 






t

H
E 

   0










t

HE





 

6. 
0rot 






t

H
E



   0









t

HE  


 

7.   0div E  0=0 
8.   0div H  0=0 
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Here 

E  - intensity of electric field, 

H  - intensity of magnetic field, 

J -   currents density, 

   - absolute permeability, 

  -  absolute dielectric permittivity 
We shall seek the solution of these equations in the form of the following 
functions (Т3.2). 
 
Table 3. 

1 2 3 
1 0 0E  

2      teE  sinsinsin       teE  sinsinsin  

3      teE  cossincos       teE  cossincos  

4 0H  0H  

5      tH  cossin       thH  cossinsin  






e
h   

6      tZH  sinsin       thH  sinsincos  






e
h   

7 0J  0J  

8      tJ  sinsin       tjJ  sinsinsin  









 






2

ej  

9      tJ  cossin       tjJ  cossincos  









 






2

ej  

 

Here the functions      ,  will be defined further.  

In the formulas (Т1.3) the following expression is used frequently 
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   




EE
w

tg
       (2) 

It turns into zero if  

    sinE .       (3) 

This is the condition that is assumed in the equations (Т3.2). From this 
fact, and also from the condition (Т3.2.1) as well as from the fact that the 

functions JHE ,,  do not depend on , it follows that the expressions 

for rotor and divergence are simplified and take the form (Т1.4). 
For the solution of Maxwell equations in first approximation in the 

expressions of the form 








EE
 the first term may be dropped (a 

more strict solution will be treated in Appendix 1). Then the expressions 
for rotor and divergence are even more simplified and take the form 
(Т1.5). 

Let us substitute the expressions for rotor and divergence from 
(Т1.5) into Maxwell equations (Т2.2). Then we shall get the equations 
given in (Т2.3). These equations describe our problem in first 
approximation.  

To determine the functions      ,  we must substitute into 

these remaining equations from (Т2.3) the functions (Т3.2), perform the 
differentiation with respect to time and cut down on common factors. 
Then we get:  

 
    0sin 




 







e

Z
,    (4) 

 
    0cos 











 e
Z

,    (5) 

 
  0

cos





 




 Ze ,    (6) 

 
  0

sin










 Ze ,     (7) 

From (7) follows: 

   



 

 cos
e

Z        (8) 

From (4, 8) follows: 

 
 

   








 



 sinsin
2














 ee

Z
  (9) 
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From (6) follows: 

   







 sin
e

Z        (10) 

From (5, 10) follows: 

 
 

   








 


 coscos

2














 ee

Z
  (11) 

The function (Т2.2) together with functions (8-11), found from 
Maxwell equations, are the solution of the problem of finding the 

magnetic  HH ,  intensity and currents  JJ ,  in the current conductive 

sphere. These functions are given in. (Т2.3). The initial data in this case 

are amplitudes  ee ,  of intensity s  EE ,  and the constant  . 

Let us remind that this solution is found on the following 
assumptions: that the area is electro conductive and neutral (does not 
have non-compensated charges).  

This solution is obviously not unique. Its existence means only that 
in the conductive and neutral field electromagnetic waves can exist and 
currents can circulate. The question remains as to why it can be closed, 

and not radiate. 
 

3. Electric currents 
Here we shall consider in more detail the alternated currents J  

(Т3.3.8) and J  (Т3.3.9). They flow along the sphere circles– see Fig. 2. 

 
Fig. 2. 

 
In this case, at each moment the current direction along a circle 

depends on the radius of the circle  and this direction is changed 

depending on the sign of  sin  or  cos . This means that in the 

sphere there exist spherical layers in which the eponymous currents (( J  
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or J ) at this moment are pointing in different directions. The radial 

thickness   of these layers is determined from the formula   . 

There is therefore a sphere along which no currents are flowing. 
Instantaneous value of the eponymous current at a given radius 

represents a standing wave. For currents J  and J  the standing waves 

have accordingly the form 

      
      ttj

tjJ













coscossin5.0

sinsinsin
   (12) 

      

      ttj

tjJ













coscossin5.0

coscossin
   (13) 

In addition, in a sphere there are circular cones which have 
generating lines whose instantaneous values always are equal to zero. The 

generating lines of these cones comprise an angle , with   0sin  .  Fig. 

1 shows a base of one of such cones. 

 
4. The Energy Flow 
 In each point of the sphere there exist two flows of 

electromagnetic energy with densities 

 HESHES  21 ,       (21) 

- see Fig. 3.  

   
Fig. 3. 

 
The summary instantaneous density of the flow in each point of 

the sphere is determined from (21) and (Т3.3.5, Т3.3.6, Т3.3.8, Т3.3.9): 

 
     

     


















t

tee

HEHESt












2

2

2

sinsincos

cossincos
sin

    (22) 
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But 

     

     
      

        ttt

tt
t

t








22sin22sin25.02cos2sin5.0

sincos2sin5.0
sinsincos

cossincos
22

2

2




















  (23) 

Consequently, the electromagnetic flow in our case represents a standing 
wave with density    

    ttSS ot  22sin22sin  ,   (24) 

with amplitude 

 


 2sin
4


ee

So ,      (25) 

depending on the coordinate , with cyclic frequency  2  and wave 

length 

  .       (25) 

This standing wave of electromagnetic energy exists at each radius. 
Consider the cone in which the radii passing along its generating 

lines, form an angle . Fig. 1 shows a base of one of such cones. 
Standing waves at all radii of all generating lines of the cone have the 
same amplitude. 

In the sphere there is such circular cone, along generating lines of 
which there is no flow of energy. The radii passing these generating lines 
form an angle  , where   1sin 

 it can be seen that the generating lines 

of the cone represent a vertical axis OZ - see Fig. 1.  
In the sphere there are circular cones, that on their generating lines 

the power flow has maximum amplitude. Radii passing these generating 

lines form an angle , where   1sin  . One can notice that the 

generating line of such a cone lie on a horizontal plane - see. Fig. 1. 

In the spheres of such radius  , where   02sin  , the flow is 

zero. Therefore, if the outer radius of the ball lightning is such that 

  02sin R  или  kR 2  или Rk 2  ,  (26) 

Then the ball lightning DOES NOT radiate energy.  

Let us find the full energy flow pS  in such moment when the 

standing wave has a maximum, i.e. when   

     122sin22sin  tt  .   (27) 

From (24, 25, 27) it follows that 

  







 
  4

sin
4

2

0

2
ee

d
ee

S p    (28) 
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As the flow density (24) changes in time sinusoidally, the module of the 
average value of this density is equal to  



 ee
SS p 

4

2
2     (29) 

Let us now find  the full energy flow  pulsing in the sphere: 

3
23

3

2

3

4
R

eeR
SW



 
    (30) 

Example 1. Let us assume that the intensity of the electric field in 

the ball lightning is equal to 1000 V\m, т.е. 310  ee (V\m). 

Let also be 1.0R (m), 610 , 550 . Then 

63

57

62

10201.0
10104

55010

3

2








W ,  

i.e. the energy of ball lightning in this case is equal to 20 kilojoules. 
 

5. About Ball Lightning Stability 

The question of stability for bodies, in which a flow of 
electromagnetic energy is circulating, has been treated in [3]. Here we 
shall consider only such force that acts along the diameter and breaks the 
ball lightning along diameter plane perpendicular to this diameter. In the 
first moment it must perform work  

dt

dR
FA  .      (31) 

This work changes the internal energy of the ball lightning, i.e. 

dt

dW
A  .      (32) 

Considering (30-32) together, we find:  

dt

dR

dt

dW
F        (33) 

From (30) we find: 

 
dt

dR

R

W

dt

dR
Rw

dt

dR

dR

Rdw

dt

dR

dR

dW

dt

dW
o

o 
3

3 2
3

 (34) 

Lastly, from (33, 34) we find: 

R

W
F

3
        (35) 
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Thus, the internal energy of  a ball lightning is equivalent to the 
force creating the stability of ball lightning.  

 
Example 2. Let us find the fastening force under the conditions of 
example 1. From (35) we find: 

8
6

106
1.0

102033





R

W
F  Newton 

 

6. About Luminescence of the Ball Lightning 
The above problem has been solved without taking into account 

the electrical resistance of the material of ball lightning. Naturally, it is 
not equal to zero and at the currents flowing in the ball lightning the heat 
energy is released. Its value at a given moment can be determined by the 
formula: 

   














R

t drdJJP
0

2

0

22 


 ,     (36) 

where   is specific conductivity of the sphere. Then according to 

formulas (Т3.3.8, Т3.3.8) we get: 

     

     

 
   

   

 



























































R

R

t

dr
tj

tj
d

drd
tj

tj
P

0
222

2222

0

2

0

2

0
2222

2222

sinsin

coscos
sin

sinsinsin

cossincos























,  (37) 

Let's assume that 222 jjj   . Then in view of (Т3.3.8, Т3.3.8) we find 

22

4

2



ee
j  .      (38) 

Then from (37) we get: 

         

         



































RR

RR

t

drtdrtj

drtdrtjP

0

22

0

222

0

22

0

222

sinsincoscos

sinsincoscos





,  (39) 

or 

RjPt 2 .       (40) 
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This heat energy is radiating, which is the reason of ball lightning 
luminescence.  

 

7. About the Time of Ball Lightning 
Existence  
Electromagnetic energy of a ball lightning is gradually expended on 

the heat loss and on the radiation. The amplitudes  ee ,  of the 

electromagnetic wave decrease.  Using this fact we can find the time of 
ball lightning existence. From (38, 40) we find: 

22

4
2 )()(



 R
tetP at  ,     (41) 





3

2
)()(

32
2 R

tetW a


 ,    (42) 

where 

)()()( tetetea  .      (43) 

Evidently 

)(
)(

tP
dt

tdW
t .      (44) 

Therefore  

 
22

4
2

32

)(
3

2)(
)(2







 R
te

R

dt

ted
te aa 


  (45) 

or 

 
)(

22

3)(
2

3

te
Rdt

ted
a

a







    (46) 

Thus, the average amplitude of the electromagnetic waves in the sphere 
decreases exponentially by the formula 












t
Ete aa exp)(      (47) 

where 






3

2

3

22 R
      (48) 

The maximal value of average amplitude is determined by (30) for a 

known initial energy oW : 
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2

3
32

2

R

W
E o

a






     (49) 

The ball lightning time of existence can be estimated by the value 

  32 223 RT  .    (50) 

 
Example 3. Let us find the ball lightning existence time depending 
on its electric conductivity under the conditions of Example 1. 
From (50) we find: 

   103257 1055021.0101042  T  sec 

 

8. About a Possible Mechanism of Ball 
Lightning Formation  
The leader of a linear lightning, meeting a certain obstacle, may 

alter the motion trajectory from linear to circular. This may become the 
cause of the emergence of the described above electromagnetic fields and 
currents.  

In [4] this process was described as follows: 
Another strong bolt of lightning, simultaneous with a bang, illuminated the 

entire space. I can see how a long and dazzling beam in the color of sun beam 
approaches to me right in the solar plexus.  The end of it is sharp as a razor, but 
further it becomes thicker and thicker, and reaches something like 0,5 meter. Further I 
can't see, as I am staring at a downward angle.  

Instant thought that it is the end. I see how the tip of the beam approaches. 
Suddenly it stopped and between the tip and the body began to swell a ball the size of a 
large grapefruit. There was   a thump as if a cork popped from a bottle of champagne. 
The beam flew into a ball. I see the blindingly bright ball, color of the sun, which 
rotates at a breakneck pace, grinding the beam inside. But I do not feel any touch, any 
heat. 

The ball grinds the ray and increases in size. ... The ball does not issue any 
sounds. At first it was bright and opaque, but then begins to fade, and I see that it is 
empty. Its shell has changed and it became like a soap bubble. The shell rotates, its 
diameter remained stable, but the surface was with metallic sheen.  
 

9. About the Charge of Ball Lightning 
Above we have given a solution of Maxwell's equations in the 

absence of a charge in the ball lightning (but with the existence of free 
charges in her body). In the case when the total charge of the ball 
lightning is not zero, it is included in the right-hand side of equation 
(T1.3.4). Then there appears another solution of these equations - a 
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constant electric field. Due to the linearity of Maxwell's equations latest 
solution does not affect the previously discussed. Therefore, the 
attraction of a ball lightning to a charged body does not conflict with the 
foregoing. 

 

10. About Physical Simulation of the Ball 
Lightning  
In [5] a so-called "keeper of perpetual motion" is described. It is a 

ferromagnetic or an iron cube, in which a stream of electromagnetic 
energy circulates. There are given descriptions of experiments to prove 
the possibility of a "keeper of perpetual motion", it is shown that the 
cube preserves its integrity, although it consists of two parts, not 
connected mechanically. Such cube can serve as a rough model of a 
"cubic lightning". Its creation is not too difficult [5]. 

One of the disadvantages of this model is that [  ] describes "the 
keeper of perpetual motion," in which there are no currents.  In 
Appendix 2 it is proved that there may exist iron "cubic lightning", in 
which currents flow. Naturally, the existence of such a "cubic lightning" 
will be limited due to heat loss. 

Likewise, an "iron ball lightning" also can be constructed. Fig. 4 
shows one hemisphere of this construction. The wires are located at 
diametrically hollows. The second hemisphere is located on top of the 
first. 

 
Fig. 4. 

 
To charge the "iron ball lightning" with electromagnetic energy it is 

necessary to pass through the diametrical wires some high-frequency 
impulses, phase-shifted by 2/  to have the initial values of the magnetic 

intensity 
H

 and 
H

 also shifted in phase - see formulas (T3.3.5) and 

(T3.3.6). According to the results of experiments described in [5], we can 
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assume that after passing through the wires of such impulses the 
hemispheres will "glue". 
 

Appendix 1. Refinement of Solution 
Here we shall show a stricter solution of our problem. Let us 

consider once more the Maxwell equations. (Т2.2), and substitute in them 
the formulas for rotor and divergence from (Т1.4) instead of simpler 
formulas from (Т1.5) that were used before. Then we shall get other 
equations (Т4.3): 

 
Table 4. 

1 2 3 
2. 

0rot 



 


  J

t

E
H  0









 





J

t

EHH
 

3. 
0rot 




 



  J
t

E
H  0









 

 


J
t

EHH
 

5. 
0rot 






t

H
E 

   


E
 0











t

HE





 

6. 
0rot 






t

H
E



   0










t

HEE  


 

 
We shall (as before) seek the solution of these equations in the 

form of the following functions (Т3.2). To define the unknown functions 

     ,  we shall substitute into (Т4.3) the functions (Т3.2), perform 

the differentiation with respect to time and cut down on common 
factors. Then we obtain  

   
    0sin 




 











e

ZZ
,  (4) 

   
    0cos 




 










 e
ZZ

,   (5) 

   
  0

coscos













 








 Ze ,   (6) 

   
  0

sinsin













 








 Ze ,   (7) 

From (7) follows: 
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 
 

 







 






 

 cos
sine

Z ,    (8) 

From (4, 8) follows: 

 
   

 

     
 




























































sin
sincos

2
sin1

sin

2

2
e

e
ZZ

, (9) 

From (6) follows: 

 
 

 







 










 sin
cose

Z ,   (10) 

From (5,10) follows: 

 
   

 

     
 



























































cos
cossin

2
cos1

cos

2

2
e

e
ZZ

, (11) 
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Fig. 5. 

 
Fig. 5 shows the graphs of the named functions (8-11) for 

25,2,550,10,1 5  nnRee  . 
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We can see that for R3.0  the functions (8-11) approach to harmonic 

functions (8-11). Therefore the transition performed above from 
equations (Т1.4) to the less complicated equations (Т1.5) is permissible. 
 

Appendix 2. "Cubical ball lightning" 
Consider Maxwell equations system in Cartesian coordinate system. 

Denote  

E  - intensity of electric field, 

H  - intensity of magnetic field, 

   - absolute permeability, 

  -  absolute dielectric permittivity 

  - conductivity, 
  - electric scalar potential, 

  - density of electric charge.  

This equations system has the following form:  
 

1. 
0















dx

d

t

E

z

H

y

H xyz 
  

  

2. 
0















dy

d

t

E

x

H

z

H yzx 
  

  

3. 
0















dz

d

t

E

y

H

x

H
zxy 

  
  

4. 
0















t

H

z

E

y

E xyz    
(1) 

5. 
0















t

H

x

E

z

E yzx   
  

6. 
0















t

H

y

E

x

E
zxy

  
  

7. 
0



















z

E

y

E

x

E zyx  
  

8. 
0















z

H

y

H

x

H zyx  
  

 
Let us assume that the total charge in this system is equal to zero.  
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Consider the following functions (presented in [4]): 

         tzyxetzyxE xx  sinsinsincos,,,  , (2) 

         tzyxetzyxE yy  sinsincossin,,,  , (3) 

         tzyxetzyxE zz  sincossinsin,,,  , (4) 

         tzyxhtzyxH xx  coscoscossin,,,  , (5) 

         tzyxhtzyxH yy  coscossincos,,,  , (6) 

         tzyxhtzyxH zz  cossincoscos,,,  , (7) 

         tzyxtzyx o  coscoscoscos,,,  .  (8) 

where 

ozyxzyx hhheee ,,,,,,  - amplitude functions, 

 ,,,  - constants. 

Differentiating and substituting (9.2) into (1) after canceling common 
factors, we obtain: 

1. 0  oxxyz ehh    

2. 0  oyyzx ehh    

3. 0  ozzxy ehh    

4. 0  xyz hee   (10) 
5. 0  yzx hee    

6. 0  zxy hee    

7. 0  zyx eee    

8. 0  zyx hhh    

 

If   , then the equations system (9) takes the following form:  

1. 0 xxyz Jehh     

2. 0 yyzx Jehh     

3. 0 zzxy Jehh     

4. 0 xyz hee   (11) 
5. 0 yzx hee    
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6. 0 zxy hee    

7. 0 zyx eee    

8. 0 zyx hhh    

 
This system of 8 equations with 9 unknowns has a multitude of 

solutions.  

Consider a particular case. Let 0zh . Then the equations system 

takes the form:  

1. 0 xyx Jhe     

2. 0 yxy Jhe     

3. 0 zyxz Jhhe     

4. 0 xzy hee   (13) 
5. 0 yzx hee    

6. 0 yx ee    

7. 0 zyx eee    

8. 0 yx hh    

 

Get rid of the unknowns yx hh   and xy ee  . Then we get 6 equations 

with 6 unknowns:  

1. 0 xyx Jhe     

2. 0 yyx Jhe      

3. 02  zyz Jhe     

4. 0 yzx hee   (14) 
5. 0 yzx hee    

7. 02  zx ee    

 

From (1, 2) it follows, that xy JJ  . Let us get rid also from xz ee 2 . 

Then we get: 

1. 0 xyx Jhe     

3. 022  zyx Jhe     
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4. 03  yx he   (15) 
5. 03  yx he    

 

From (1, 2) it follows, that 
xz JJ 2 . Then we obtain:: 

1. 0 xyx Jhe     

5. 03  yx he   (16) 

 
So, the solution is as follows: 

xy ee  ,      (21) 

xz ee 2 ,     (22) 



x
y

e
h

3
 ,     (23) 

yx hh  ,      (24) 

0zh ,      (25) 



















3
xyxx eheJ  ,  (26) 

xy JJ  ,      (27) 

xz JJ 2 .      (28) 

Therefore  

0 zyx JJJ      (29) 

So for a given 
xe  and 0zh  it is easy to find the rest of unknowns. 

Let us find the projections of the vector of energy flow density  

            

       ,2sincossin2sin
4

cossincossincossin

22

22

tzyx
he

ttzyxxhe

HEHEHES

yz

yz

yzyzzyx











 

            

       ,2sincos2sinsin
4

cossincoscossinsin

22

22

tzyx
he

ttzyyxhe

HEHEHES

yz

xz

xzxzzxy










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           

           

   

   
   .2sin2sin

cossin

sincos

4

1

cossincossincossin

cossinsincossincos

22

22

22

22

tz
yxhe

yxhe

ttzzyxhe

ttzzyxhe

HEHES

xy

yx

xy

yx

xyyxz



































 

Taking into account (21) and (24), we get: 

 
   

   
   tz

yx

yxhe
S

yx

z 



2sin2sin

cossin-

sincos

4 22

22











 
 . 

Thus, in the conducting cube electromagnetic energy can be stored and 
electrical currents can be pulsating. Because this cube has electrical 
resistance, the energy in it will be consumed by heat loss and mechanical 
integrity of the cube after some time will be broken. 
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