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Abstract

Much research has been done involving the chromatic number of a graph involving the
least number of colors, that the vertices of a graph can be colored, so that no two adjacent
vertices have the same color. The idea of how the chromatic number of a vertex cover of a
graph dominates the vertex cover of the original graph, where a large number of vertices
are involved, has been investigated. The difference between the energy of the complete
graph,, and the energy of any other graph G, has been studied, in terms of a ratio. The
complete graph, on n vertices, has chromatic number n, and is significant in terms of its
easily accessible graph theoretical properties, such as its high level of connectivity and
robustness. In this paper, we introduce a ratio, the chromatic-complete difference ratio,
involving the difference between the chromatic number of the complete graph, and the
chromatic number of any other connected graph G, on the same number n of vertices. This
allowed for the investigation of the effect of the chromatic number of G, with respect to the
complete graph, when a large number of vertices are involved - referred to as the
chromatic-complete difference domination effect. The value of this domination effect lies
on the interval [0,1], with most classes of graphs taking on the right hand end-point, while
graphs with a large clique takes on the left hand end-point. When this ratio is a function
f(n), of the order of a graph, we attach the average degree of G to the Riemann integral to
investigate the chromatic-complete difference area aspect of classes of graphs. We applied
these chromatic-complete difference aspects to complements of classes of graphs.
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1. Introduction

In this paper graphs G will be on n vertices. We shall adopt the definitions and
notation of Harris, Hirst, and Mossinghoff. Itis assumed that G is simple, that
is, it does not contain loops or parallel edges.

Much research has been done involving the chromatic number of a graph, or
the least number of colors, required to color the vertices of a graph, so that no
two adjacent vertices are assigned the same color (see Lawler; Sopena).
Applications in this area are vast; especially in scheduling problems (see, for
example, Winter, Jessop and Zachariades). The chromatic-cover ratio, which
allowed for the investigation of the effect, of the chromatic number of a vertex
covering of graph, on the chromatic number of the same graph when a large
number of vertices are involved has been researched (see Winter). The ratio,
involving the difference between the energy of a graph, and the energy of the
complete graph, on the same number of vertrices, has been investigated (see
Winter and Ojako). The complete graph is well studied, in terms of its ease of
accessibility in applying defined graph-theoretical properties. In this paper,
we combine the chromatic number of a graph, with the importance of the
complete graph, to from the chromatic-complete difference ratio. This ratio
allowed for the investigation of the domination effect of the chromatic number
of graphs on the chromatic number of the complete graph, when a large
number of vertices are involved. We found that this domination effect, as a
value, lies on the interval [0,1], with graphs with clique number close to n
taking on the left hand end-point, and the dumbbell graph (two copies of K
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joined by an edge) assuming the average value of %

We found the chromatic-complete different ratio of the complement of
discussed classes of graphs, and showed that the relationship between the
chromatic-complete difference ratio g(n), of the complete-split bipartite
graph, and the chromatic-complete difference ratio f(n), of its complement,
resulted in the differential equation:
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g'(n)+ g() =1-LF ()] "+
n

with general solution:

gn)=1-[f(nn] " +ce™

converging to the chromatic-complete difference asymptote, of the complete-
split bipartite graph.

Ratios and graphs

Ratios have been an important aspect of graph theoretical definitions.
Examples of ratios of graphs are: expanders, (see Alon and Spencer ), the
central ratio of a graph (see Buckley), eigen-pair ratio (see Winter and Jessop),
Independence and Hall ratios (see Gabor), tree-cover ratio (see Winter and
Adewusi), eigen-energy formation ratio (see Winter and Sarvate), t-compete
sequence ratio (see Winter, Jessop and Adewusi) the chromatic-cover ratio
(see Winter) and the eigen-compete difference ratio (see Winter and Ojako)

We now introduce the idea of ratio, asymptotes and areas involving the
chromatic number difference between the complete graph and G, similar to
that of Winter and Adewusi; Winter and Jessop; Winter and Sarvate; Winter,
Jessop and Adewusi; Winter and Ojako; and Winter.

1. Chromatic-complete difference ratio- asymptotes, domination effect and
area

Let K|, be the complete graph on n vertices.

Definition 2.1

The difference between the chromatic number of K, and the chromatic

number of a graph G. on the same number of vertices n is given by:

(cDg =c(K,)-c(G)



And is called the chromatic-complete difference associated with G.

If the graph G in belongs to a class 3 of graphs of order n, then the chromatic-
complete-energy difference associated with J is defined as:

(cDy =c(K,)-c(G);GeS.

Dividing the chromatic-complete difference by the chromaticnumber of K,

will give an “average” of the chromatic-complete difference with respect to G.
This provides motivation for the following definition:

Definition 2.2

The chromatic-complete difference ratio with respect to G(3J), respectively, is

defined as:

c(K,)-¢c(G) n-c(G)
c(K.)) n

n-c(G)
n

Ged

Rat<chG = ;Rat<cDr? =

Definition 2.3

If the chromatic-complete difference ratio is a function f(n) of the order of
G € 3, then its horizontal asymptote results in the chromatic-complete
difference asymptote:

Asymrat<ch = Lin‘{w];G el
n—>o0 n
This asymptote allows for the investigation of the effect of the chromatic
number of a graph G on the chromatic number of the complete graph when a
large number of vertices are involved, referred to as the domination
chromatic-complete difference effect.

Definition 2.4



Attaching the average degree of graph G, with m’ edges, to the Riemann
n-c(G)

;G € Iwe obtain the chromatic-complete
n

integral of Rat<CDr? =

difference area:

| i 1 ¢(G)
arat(cD? =2 (M= Chgn ¢(G) 2 =20 [t = 2mic(G) = n
n n n -

with Arat<chf‘ = 0 where k is the smallest order of Ge 3.

The average degree is referred to as the length of the area, while the integral
part is the height of the area.

Lemma
The chromatic-complete difference ratio of classes of graph on at least 2

vertices lies on the interval [0,1- g] :
n

Proof

c(G)<c(K,))=n= Rat<ch :%(G):l—$21—1:0;663
Also:

c(G)>22= Rat<cDr;~s :%((3):1—?31—5;663

Theorem

Asymrat<ch e[0]:Ge 3.



3.Examples of classes of graphs and their chromatic-complete
difference aspects.

3.1The complete split-bipartite graph K ..

22
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The chromatic number of this graph is 2 and it has %edges while the

chromatic number of the complete graph is n so that:

n-c(K. )

Rat<cD§ = _n-2
n n

NS
NS

Asymrat<ch = Lin'{n%Z] =1

nN—oo

Arat<CDf = gj[n;nz]dn = g(n —2Inn+ c) with smallest order 2 we have :

c=2In2-2

3.2 The star graph K, , with n-1rays of lengthl.

The chromatic number of this star graph is 2 so that:



- [n-c(K B
Rat<chJ:{ ( 1,n—1):|:n 2

n n

Asymrat<ch = Lin{n;z] =1

nN—oo

Arat<cD§ _2An-D j[n_z]dnzm[n— 2Inn+c]
n n n

With smallest star graph on 2 vertices we have:

c=2In2-2.

3.3 Star graphs S, , with r rays of length 2

The chromatic nmber of this star graph with r =n—-1edges is 2:

-~ |n—-c(K _
Rat<cD; :{ ( 1,n—1):|: n—2
n n
5 . . h=2
Asymrat<cDr; = Lin[—°] =1
n—o n

Arat<ch _2n-Y I[n_ 2]dn :M[n— 2Inn+c]
n n n

The smallest such star graph is non 3 vertices so that

c=2In3-3.



3.4The cycle graph C.

The cycle has chromatic number 2, when n is even, and 3, when n is odd. so
that (k=2 or 3:

Rat(cD; =[n_C(C”)} _n-k

n n

Asymrat<cD ¥ =Lin —] 1

Arat(cD; = ZI[—]dn 2n-kinn+c]

The smallest such cycle is on 3 or 4 vertices so that

c=klns—s, k=2,3,s=34 for odd, even, respectively

3.5 The path graph P,.

The path graph on at least 2 vertices has chromatic number 2 so that:

Rat<ch :[n—C(Pn)}: n-2
n n

Asymrat<cD N Lm‘[—] =

Nn—oo

2(n—1)J-[n—2

Arat<cD,? = ]dn:@[n—zmn+c]

The smallest such path is non 2 vertices so that



c=2In2-2.

3.6 The wheel W, with n-1 spokes.

We have the central vertex colored 1 and the vertices of the cycle colored
with two or three different colors so that its chromatic number is k=3 or 4:

Rat(cD; :[n—c(\Nn)}: n-k
n n
Asymrat<ch = LIFT[T] =1

Arat(cD; = 4(n_l)j[n_k]dnzm[n—klnn+c]
n n n

The smallest such wheel is on 4 or 5 vertices so that

c=klns-s; k=3,4;s=4,5; odd or even cycle, respectively.

3.7 The sun graph Quy,.
For the sun graph on an even or odd number of vertices- i.e. we have an even
n . . .
or odd cycle on > vertices with end vertices added to each vertex of the cycle,

its chromatic number is 3 or 2:

Rat<cD3 :[n—c(Sun)}: n—k

n n

Asymrat<ch = Lirr{n;k] =1

N—o0
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Arat<ch = @j[n;k]dn =2[n-kInn+c]
n’' n

The smallest such sun graph is on 6 or 8 vertices so that

c=kins- sk =32;5=6,8;,0dd or even cycle, respectively.

3.8 The fan graph F, on n vertices

Construct the fan graph F,on a number n> 3 of vertices, by taking a path on
n-1 vertices and joining each vertex of the path to a single vertex, the center of
the fan graph.

The chromatic number of the fan graph is 3.

n—c(Ln)}: n-3

Rat<cD,f‘ :[
n n

Asymrat<ch = Lirr{n%B] =1

n—o0

AnN-6,.n-3 An—-6
[[=—"1dn

Arat<ch = = [n-3Inn+c]
n n

The smallest such wheel is on 3 vertices so that
c=3In3-3.
3.9 The Ladder graph L,on n vertices, n even.

Let the ladder on N> 4 vertices be formed by joining corresponding vertices

of paths on n vertices each. The chromatic number of the ladder graph is 2.

Rat<cDS :[n_C(L”)}: n-2

n n
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Asymrat<cD§ = Lir‘r[n;z] =1

nso N

Arat<ch = 3n—4j[n— 2]dn: 3n_4[n— 2Inn+c]
n n n

The smallest such wheel is non 4 vertices so that

c=2ln4-4.

3.10 The line graph of K

The line graph L(K,)of K, has p:w vertices (see Brualdi). The

number q of edges is the sum of the square of the degrees minus the number
of edges of K :

q:n(n—1)2 B n(n-1) _ n(n—l)[n_l_l] _ n(n-1)(n-2)
2 2 2

1+1+8p 1+1+8p
5 =

n>-n-2p=0=n=
P 2

The chromatic number of the line graph of K, is the edge chromatic number

of K. =c'(K )=n—1=1T1+8P V12+8p—1.

1_[1+,/1+ 8p]

Rat{cD? {c(Kp)—c(uKn))} p-c'(K,) _p-(n-1_P* >

c(K,) P P P
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_2p+2-1-y1+8p 2p+1-41+8p
= = 20

2p

CDS _ I_im:2p+l—q/1+8p] 1

A 2

Asymr at<

Arat(cD; :§j2p+l_ /1+8p dp
P 2p

2q 1-/1+8p udu _ u®-1
_< SN O 2 =14 8p = dp= Y. =
IOj[|0+ 2 ]dp +8p=>dp== i p="

=)+ j(l =)+ [ e =2 - [ o

.

= Z_S[( p) — [Idu —In(u+1)] = replacing absolute sign

2—S[p—w/1+8p+ln(w/1+8p +1) +C]

p =3 yields:
c=-3+5-1n6

So that the chromatic-complete area of the line graph of K, on p vertices is:

Z—S[p—1/1+8p+ln(q/1+8p +1)+2-Ing]

3.11 Lollipop graph
Complete graph joined to end vertex.

So if LP1(G) of single extension is the complete graph on n-1vertices (the base
of the lollipop graph) joined to a single end vertex v, adjacent to u, has
chromatic number n-1: assign n-1 colors to the complete subgraph and color
vertex v any color already assigned other than u.
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To find ) dv for this graph we have:
> dv=(n-2)(n-2)+(n-1)+1=(n-2)(n-2)+n=n"-3n+4=2m

Thus:

n

1

Rat(cD; :{n - E(LPI(G))}
" n

Asymrat(cD; = Lim[0]=0

n—oo

Arat<cDj = 2—m[lnn +c].
n

Smallest lollipop graph is on 3 vertices so that c=—-In2.

3.12 The g-cliqued path
Form a g-cliqued path P'by joining q cliques,q > 2, each of size

g;n:tq;t,qex;q fixed,

with edges as follows:

Let Q ,,Q,Q , be consecutive cliques of the path joined by edges uv and wz,
where: ueQ ;;veQ;weQ;zeQ, ;W=#V.

LLYLL |
The number of edges of P will be: m'= [%]q +(q-1) = n(n2— a) +(9-1)

Lemma

. .. N
The chromatic number of P/ is —.

Proof
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. N . : .
Color each clique with — colors, and for consecutive cliques as described

above, color v different to u, and color z different to w.

n
n—E(F’n‘”)}: ""q_aqn-n_g-1

; with q fixed, this is

Rat(cD; :{
n n nqg

independent of n:

Ag/mrat<ch = Lim{qT_l} =1 and:

Arat<cD,? = 2:]'[[ q—]]anZm'[n(q—]) +c].
q n q

Smallest g-cliqued path is on 4 vertices with q=2:
c=-2.

Note that the dumbbell graph, consisting of two disjoint copies of K, = joined

n
‘2

NS

by and edge, is equivalent to the g-cliqued path P? and takes on the value of

n
n——

2 forits chromatic-complete difference ratio, which is independent of n

n

« » 1
and has an “average” asymptote of >

Also, this chromatic-complete difference ratio gives rise to the sequence:

12 -1 .. : : : s

5,5,...,— which is identical to the chromatic-cover ratio sequence, with its
q

diagram, and similar to the famous Farey sequence and it associated diagram

(see Winter).
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Theorem

Rat<CDS ; Awmrat<CDf and Arat<CDf for the following classes of graphs

are, respectively:

F=K, ”%2; J;g(n—2|nn+2|n2—2)

2,

_24. 2(n-1)
n

[Nn—=2Inn-2+1In2]

I=K,,: ;1

n-2., Z(nn_l)[n—ZInn—3+In3].
n

3=C, :n;nk;l; 2In-klnn+c];c=klns—s, k=3,2;s=34 for odd, even,
respectively.

n-2

3 Pn:T;l;Z[n—ZInn+2In2—2].

I=W,; n;k;lA'(r]n_l)[n—klnn+c]

The smallest such wheel is on 4 or 5 vertices so that

c=klns-s; k=3,4;s=4,5; odd or even cycle, respectively.

Sz&ln;n%k;l;Z[n—klnn+ klns—s],k=32;s=6,8.
3= Fn;n_3;1;4n_6[n—3lnn+3In3—3].

n n
I = Ln;n_z;l;3n_4[n—2|nn+2|n4—4].

n n
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I=L(K,): 2p+1;p‘vl+8p ;1;2—S[p—1/1+8p+ln(1/1+8p +1)+2-In§|

n(n-1)(n-2)

Where = >

3= LPl(G);%;O;ZTm[Inn+—In2].

5oped-ta-1.2mp a-b o
q n q

4. Eigen-complete different ratios of complements of classes of graphs
4.1 The complete-split bipartite graph

The complement of K . consists of two disjoint copies of K . Its chromatic
22 2

. n
number is therefore E so that:

-1
Rat<cD,f = 2|==
n 2
~ .11
Asymrat(cD; = Limn[-]==
a4 < " n—g;[ 2] 2
Arat<ch _n-2 F}dn:g[n+c]
2 2 4

Smallest such graph occurs for n=2 so that:
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c=-2
The chromatic-complete difference ratio for the complement of the complete-

split bipartite graph is f(n) :%

The chromatic-complete difference ratio of the original graph is:

”%2} R P (nf ()™

g(n) = Rat<cD;T ={ ; )

= g'(n)+g(n) :1—E+£2:1— 2n™ +2n7?
n n

IF=e"=¢e"g(n) = J'(l— 2n " +2n?)e"dn=¢" - ZI n'e"dn+ 2J' n*e"dn

n

jn’ze”dn =-—n'e"+ I n'e"dn=e"g(n)=e"-2n"'e" +c=g(n)=1-[f(n)n] " +ce

Check: g'(nN)+g(n)=2n?-ce"+1-2n"+ce™"

Theorem

The chromatic-complete difference ratio g(x) of the complete-split bipartite
graph, and the chromatic-complete difference ratio f(x) of its complement, are
related by the differential equation:

-2

g'(n)+ g() =1-F ()] "+
n

with general solution:

gn)=1-[f(Nn] ™" +ce™

Converging to the chromatic-complete difference asymptote of the complete-
split bipartite graph.

4.2 Star graphs with rays of length 1
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The compliment of the star graph with rays of length one (on at least three
vertices) is a complete graph on n-1 vertices together with an isolated vertex.
Its chromatic number is therefore:

Rat<ch :[n—n+1}_ 1
n

n

Asymrat< D’ = Lin{ﬂ =0

Arat(D] = mIIF}dn _(n-D(n-2) [In(n) + .
n’ln 2n

For n=3 we get c=-1n3.

The chromatic-complete difference ratio for the original graph is:

Rat<cD,f‘ = [n;Z} =1- 2 = g(n) while the ratio of the complementis f(n)= 1
n n n

The equation of the tangent line to g(n) at n=t is:
y=gOn+cg0=1-2,g()= 2 =12 = Ztremo=1-

:>y—£n+1—ﬂ
t? t

Equation of tangent line to y=f(n) at n=t is:

1 1 1 1 2
=f't)n+c, ft)==;f')=—-=>-"=—--t+c=>cCc=—
y=f'(t) ()t()t2tt2 t
Lyo-lp2

t? ot

Equation of normal line to y=f(n) at n=t is:
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y=t’n+c; f(t)=%;:>%=t2t+c:>c:%_t3

= y:t2n+%—t3 and tangent to y=g(x): y:t£2n+l—%1

These lines intercept when:

t2n+%—t3 :t%n+1—tﬂ:> n(tz—t%):t3+1—tﬂ:> nit* =2t =t*(t* +t—4)

_tt 4+t 4)
t -2
t=1=n=2t=2=n=299 1330y _4_ [, 4DH
14 9 252

Theorem

The tangent line to the chromatic-complete difference ratio g(n), of the star
graph with rays of length one, intercepts the normal line, to the tangent to the
chromatic-complete difference ratio f(n) of its complement, when:

t°+t° -4t =Kk(t* - 2);k e N.

4.3 The lollipop graph with complete graph on n-1 vertices as base

The compliment of the lollipop graph consists of a star graphs on n-1 vertices
and an isolated vertex. Its chromatic number is therefore 2:

Rat<cD,f‘ = {n;z} =g(n) = 1—Z
n n

A%/mrat<cD“ Llrr{n - 2} 1
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2m'Jn—2 2

Arat(cD; = dn=“"[n—2Inn+]
n’ n

. Taking n=3 we get:

c=3-2In3.
: : . : : 1
The chromatic-complete ratio of the original lollipop graph is f(n) = .

So that g(n) =1-2f(n).

5. Conclusion

In this paper we used the idea of the difference between the chromatic numb
ers of two graphs on the same number of vertices, and the significance of the
complete graph, to formulate the chromatic-complete difference ratio which
allowed for the investigation of the domination effect that the chromatic
number of a graph G with respect to the chromatic number complete graph
when a large number of vertices are involved-known as the chromatic-
complete domination effect. We found that this domination effect took on a
value on the interval [0,1] for all classes of graphs, with graphs with a large
complete subgraph taking on the left hand end-point, while the dumbbell

graph, consisting two copies of K joined by and edge, takes on the average
2

domination value of %

We attached the average degree to the Riemann integral of this chromatic-
complete difference ratio to determine chromatic-complete difference areas
associated with classes of graphs, and applied the above ideas to the
complement of classes of graphs and found that the relationship between the
chromatic-complete difference ratio g(x), of the complete-split bipartite
graph, and the chromatic-complete difference ratio f(x), of it complement,
resulted in the differential equation:
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-2

g'(n)+ g() =1-LF ()] "+
n

with general solution:

gn)=1-[f(nn] " +ce™

Converging to the chromatic-complete difference asymptote of the complete-
split bipartite graph.
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