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Abstract 

In this paper we consider a nonlinear stochastic approach to the description of quantum systems. 
It is shown that a possibility to derive quantum properties - spectrum quantization, zero point 
positive energy and uncertainty relations, exists in frame of Zaslavsky phase liquid. This liquid is 
considered as a projection of continuous turbulent medium into a Hilbert phase space. It has 
isotropic minimal diffusion defined by Planck constant. Areas of probability condensation may 
produce clustering centers – quasi stable particles-attractors which preserve boundaries and 
scale-free fractal transport properties. The stability of particles has been shown in frame of the 
first order perturbation theory. Quantum peculiarities of considered systems have been strictly 
derived from markovian Fokker-Planck equation. It turned out that the positive zero point energy 
has volumetric properties and grows for higher time resolutions. We have shown that a quasi 
stable attractor may be applied as a satisfactory model of an elementary quantum system. The 
conditions of attractor stability are defined on the basis of Nonlinear Prigogine Theorem. Finally 
the integrity of classical and quantum approaches is recovered: existence of particles is derived 
in terms of Zaslavsky quantum fluid. 

I. Transport model 

Let us introduce a nonlinear Fokker-Planck model of transport for the description of Zaslavsky 
phase liquid [1] evolution. We suppose that a liquid is a projection of continuous medium into a 
Hilbert phase space: each particle corresponds to a phase liquid coordinate-momentum pair:

( ) ( ), ( )X t x t p t
     

 
. Here ( )X t



is a characteristic vector which defines a dynamic state of the 

considered system. If we analyze only one dimensional case then a given nonlinear             
Fokker – Planck equation can be received based on the following assumptions: 

 ( ', ' , ) ( ', , ' ) ( ', , )W X t x t W X X t t W X X t   . A transitional probability doesn’t depend 
on the initial time point;   

 ( ', ) ( ', , )P X t W X X t . A final probability density doesn’t depend on the initial 
coordinate;  

 The initial distribution density is defined by Dirac function )(xW  )0( : initial 
coordinate is defined accurately in relation to the system’s typical size. 

In case of active phase trajectory mixing – phase liquid turbulence, a mutual correspondence of 
transport properties and the characteristic vector is absent: diffusion factor B is an explicit 
function of time parameter: ( , )B B X t . In this case the same transport properties are inherent to 
the different elements of a phase space. A Fokker-Planck transport model expresses diffusion in 
the following way:    
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Here X0 is some initial point of characteristic vector observance; integration is realized though 
the considered phase trajectories set. Then a nonlinear transport equation can be represented in a 
differential form (2).  

( , ) 1 ( , )( )
2

P X t P X tB X
t X X

         
                                               (2) 

It is derived in frame of markovian chain properties, expressed by Chapman – Kolmogorov 
relation [1]: 

3 3 1 1 2 3 3 2 2 2 2 1 1( , , ) ( , , ) ( , , )W X t X t dX W X t X t W X t X t                              (3) 

Besides basic transport properties the diffusion B allows definition of averaged stochastic energy
( , )X t . This factor expresses a displacement of characteristic vector in relation to the set of 

accumulated trajectories. In particular case of finite time resolution energy may be defined in the 
following way:    
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II. Clustering and quantization 

Let’s consider a uniform system: ( , ) ( )B X t B t . Then clustering properties of nonlinear Fokker-
Planck transport are naturally derived in frame of Fourier space-time decomposition: 

1( , ) ( , ) exp( )
2kP k t P k i t d  


 



                                              (5) 
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                                            (6) 

A substitution of these relations into equation (2) gives a nonlinear dispersion law:
 2( , ) ( )k t i B t k    . An allocation of real parts of [2] leads to a positive α space instability 

increment: 
Re( )Im( ) ( )
Re( )

kk B t


        ( , ) Im 0k t k                                          (7)                                      

As a result the distribution of density tends to instable space oscillations of exponential growth:   

     ( , ) ( , ) exp Im exp RekP X t P k t k X i k X dk                                 (8) 

In terms of uniform approximation the relation (8) shows that a markovian system is converted 
into the set of ( , )P X t  regular fluctuations having an exponential growth. Areas of probability 
condensation may be represented as clustering centers in frame of Zaslavsky phase fluid model 
[1]. These centers are formed by stochastic islands of elementary phase attractors. This model is 
defined by not stationary transport properties and nonlinear increments are certainly explicit time 
functions. We may consider this motion as a phase liquid turbulence while clusters as elementary 
vortexes. 
A growth of first order clusters leads to a disturbance of diffusion distribution: uniform 
approximation finally becomes unacceptable. However it can still be applied to each quasi 
uniform cluster separately. Each cluster splits into several second order clusters: scale free 
clustering instability is to be continued into smaller scales. Is this process infinite or some 
internal clustering scale exists as viscosity scale limits the turbulence cascade of L.Richardson 
[3]: “Big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls 
and so on to viscosity”? In any case we have to face a quantum resolution limit. To analyze this 
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problem we search for a stable elementary attractor with a rigid boundary that may be considered 
as elementary particle. For one dimensional case the following conservative system is valid: 

2

2
( , ) ( , )
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P X t B P X t

t X
 

 
 

                                                (9)  

           0 0
0

( , , )
L

B t W X X t dX const            

           (0, ) ( , )P t P L t const      0,X L                                                      
Mathematically this system corresponds to a well known uniform linear diffusion PDE (partial 
differential equation). A solution is traditionally searched in a form of the Fourier expansion, 
given below.   
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 We represent a final spectrum of diffusion factor which is given in the implicit form: 
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Switching the small fluctuation allows us to consider the first order of a perturbation theory:
 ( ) (0) expj j jc t c t   . A substitution of this relation into (11) gives the discrete spectrum [2]:   

2

2j j
LB

j



 

      
    

2

3
j

j
L
j


 


 

      
 

                                 (12) 

Here, a circular frequency min2 / t   is introduced. If we consider real values of transport then 
an increment j is to be negative: a particle with a rigid boundary tends to be stable and preserve 
a uniform diffusion. This effect provides a particle structural stability.  
As the initial distribution of attractor is assumed to be uniform, then its spectral width is defined 
by some space-time resolution  min min,X t  :  

min
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    
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X





                                                  (13) 

A substitution of the first relation into (12) gives us the needed uncertainty limit, naturally 
defined by diffusion: jj Bt  min . If B0 is a minimal spectral value among the set of possible 
modes then an uncertainty can be simplified: 0t B   . An equivalence of phase space element 
representation allows deriving a coordinate-momentum relation as well: min 0jp X B   . In such 
a way an elementary volume of a phase area is limited by internal transport properties of a phase 
liquid. What is a minimal transport factor which limits a clustering cascade? It can be evaluated 
in frame of the suggested perturbation model as well.  Let’s find a minimum of transport factor 
(12). The solution of a first derivative condition is represented below:   

2 2
/1/ 2 0j j j

L LB j
j j j

 
 
   

           
   

                               (14)         

           ln( ) 2 ln( )j C j      2
j C j                           

Here C is an arbitrary negative constant, defined by probability normalization. A positive sign of 
a second derivative is defined by the following equation: 

 
32

/2 0L C C 
 

           
                                             (15) 
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This equation leads to a condition of 1 / 4j  which is automatically valid for integer values of a 
mode number. Finally minimal diffusion and a corresponding minimal energy of particle can be 
represented in a following way: 

2

0 2

2 C L
B


   

2

0 2

2 C L
t


 

                                                   (16) 

An internal diffusion limit is defined by an external scale – particle size L. The diffusion length 
   [m2/s] may be estimated then by the group of relations (17): 

2 2

0 2

2 C L
B

t


 

      2L C t
                                          (17)  

We may notice that an internal scale is a function of descriptive parameter t  and two 
characteristics of the dynamic system: scale of the attractor L and the relaxation amplitude C
which defines rarefaction of a phase fluid (we may use a phase gas term subsequently for more 
comfortable visual interpretation, although a strict “fluid” concept doesn’t initially assume 
incompressibility). The relaxation amplitude expresses a rate of phase trajectories divergence 
and we intuitively understand the validity of direct relation between the diffusive length and a 
divergence rate.               
Another fundamental consequence is a minimal energy quant, corresponding to a stable   
particle-attractor of a phase gas. This zero point energy has volumetric properties and grows for 
higher time resolutions. It means that high frequency oscillations of a phase gas provide a 
significant contribution to the minimal energetic capacity. A positive zero point level is an 
evidence of internal energy of an “unfrozen” phase gas. An account of a linear dispersion law (7) 
shows that small scale clusters of high j are responsible for this capacity. In such a way the 
energy resonance absorption is possible if extreme time-space resolution is achievable. A 
classical limit of 0  and 0k   leads to a natural result: 0 0  .         
 
III. Phase liquid turbulence 

Let us consider a projection of a phase gas into a visible space. All consequences, mentioned 
above, stay valid in a coordinate space; although a classical Hamiltonian approach can’t be 
applied for a trajectory unambiguous description. We may introduce a direct correspondence 
between a stochastic uncertainty relations for a stable attractor-particle and conventional 
quantum relations: 
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2

2 C L
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          
2

t  
                                                   (18) 

                                               
2

2

2
j

C L
p X
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2jp X  
                                                 (19) 

The Planck factor here defines a universal value of a minimal attainable diffusion in frame of a 
phase gas model: 02B . Because of quantization properties we shall refer to this concept as to 
the quantum phase gas. Isotropy of phase gas transport properties has been derived under the 
condition of rigid boundaries. It should be noted that this basic assumption is naturally satisfied 
for quantum measurements where the instrumental scale L is present. A substitution of Planck 
factor allows deriving the zero point quant and a corresponding spectrum as well:     

0 2
 
    

2
12j j

L
j t

 
 

 
   

 
                                                (20) 

Here a frequency supplementary term 1 / t   has been introduced for convenient 
representation of quant. An example of hydrogen like spectrum allows illustration of the key 
transport properties (21). 
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The Rydberg constant Ry and a nuclear charge Z are incorporated in the relation between 
quantum and stochastic properties of a quasi stable atomic system. Modification of this equation 
allows expressing a relaxation factor in the following way:  

2 2

22j
Ry Z t const

L


 
                                                      (22) 

Again system stability decreases if larger scales are preferred. In such a way a clustering 
tendency, mentioned in Section II is realized. 
  
However we should remark the qualitative difference of two cases: a uniform stable cluster (a) 
and turbulent medium – “phase ocean” (b), separating these clusters. According to (1) we have 
the following diffusive laws correspondingly: 

2
2 2 j j

LX t B t
j


  
 

   
   0jB B                                    (23a) 

2 ( )X B t t                                                         (23b) 

If we make a renormalization t A t   where A const  then a group of the shift square can be 
represented in the following way: 

2( ) ( )D A t X D t A                                                  (24a) 
2( , ) ( , )D A t t X D t t A                                               (24b) 

For t  and 0t t t   these transport laws may be sufficiently simplified: 
( ) ( )D At D t A                                                           (25a) 

( , ) ( )D At t D t A  - General case                                 (25b) 
The first law (23a, 24a or 25a) expresses Einstein’s law of a Brownian particle shift. In general 
case a property of self similarity is not valid for unbounded media but is always present for the 
stable attractor (a). According to (7) it means that a linear dispersion law is valid in the first case:   

Re( ) Re( )jB
k


   2

t



                                                    (26) 

If we introduce a conventional term of a wave number 2 /k   , where  
 is a considered space scale, then (25a) equation can be modified: ( ) ( )D A D A   . Space-
time self similarity, which is a natural fractal property, is a distinctive feature of a stable clusters. 
This scale free property provides their stability. Complexity and collective behavior of several 
ranges forms attraction and integrity: “order of chaos effect” according to the concept of 
Klimontovich [4]. Indeed a self-similarity can be preserved only if a phase-mixing is absent on 
the boundary: ( )B B t , B const . The absence of boundary mixing means that a probability is 
preserved in a certain area of a phase space and clustering occurs. A constant diffusion is to a 
surface of a constant energy, as it follows from (9): const  .  
Energy conservancy assumes that some dissipation mechanism exists. As we consider a phase 
fluid model, then it is natural for us to focus on a hydrodynamic approach. The mechanism of 
dissipation may be considered as a generalized viscosity which is “hidden” in ( )B t  term. Let us 
designate q+ and q- for power input and output per system phase volume. Then energy balance 
condition can be formulated in the following way [5]:  

( )( ) ( ) 1
( )

q tR t f t
q t




     
 

                                                           (27) 
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Here )(t


 is a set of control parameters. We may use an example of hydrodynamic bifurcation 
realized in turbulent flows. In this case all input/output energy mechanisms are provided by the 
flow inertial forces and by the viscous dissipation correspondingly. The basic phase parameter 

)(tR  is then a generalized case of a Reynolds number Re.  The scheme of const  boundary 
formation from instability may be represented by the set of chains, following below: 

1( ) ( ) ( ) 1 ( ) ( ) ( ) 1q t R t R t q t R t R t                                    (28)          

1)()()(1)()()( 1   tRtRtqtRtRtq                                              

1)()()(1)()()( 1   tRtRtqtRtRtq      

1)()()(1)()()(  tRtRtqtRtRtq    

Here   and  show finite increase and decrease of corresponding parameter. A positive 
feedback of input/output power is compulsory condition of bifurcation. For the case of fixed 
input power q+ basic phase parameter stabilization can be represented in the following way: 

...)()()(
)()()(

2100 







 



tqtqtq
tqtftR                                           (29) 

This not stationary process represents the consequent switching of nonlinear viscous vortexes. 
Let us apply this model to consideration of a quantum cluster-attractor. We consider an arbitrary 
surface in a phase space, separating areas of 1R   and 1R  . It has been shown [5] that an 
attractor stability may be reduced to the condition 1R  . At the same time a balance condition 

1R   is valid at the considered surface (Fig.1) where a probability flow reaches zero point and 
the isolation condition appears:  ( , ) 0grad P X t    . 

 
Fig.1. Scheme of stable attractor-cluster 

 

A probability displacement AB is possible under the condition of  distortion which 
corresponds to a transition 1R  => 1R  . According to Nonlinear Prigogine Theorem [5] the 
existence of quasi impervious boundary 0R   corresponds to a minimal entropy production in 
the vicinity of this boundary: minh h . Here we introduce ( ( ))h h X t  as Kolmogorov – Sinai 
dynamic entropy. It is composed by averaging of positive Lyapunov factors: 


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
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






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Ni
ihh ln    0

( )
( ) i

i
i

X t
t

X





                                                    (30) 

Vector ( )X t  is a characteristic phase vector of a system state while factor 
i  shows distance 

growth ( )iX t  in i direction for two infinitely closely located points in phase space. In such a 
way it’s clear that an existence of a considered surface is possible in unstable media of phase 
turbulence. On the other hand a surface distortion is possible only under condition of cluster 
instability. In Section II we have shown that cluster is stable in frame of the first order 
perturbation theory: cluster decay can be realized only within a higher order, strong impact. 
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Conclusions 

Although we have shown that the conservancy surface may exist and is quasi stable, the nature 
of a phase gas viscosity is still not totally disclosed. However, it is clear that an attraction forces 
between particles of gas exist and contribute to appearance of viscosity and stochastic 
islands/attractors consequently. These compact formations, called particles-clusters, have 
quantum properties and internal uncertainties which make them convenient models for a 
quantum systems description. The charm of this approach is that a chronic collision between 
mechanical and quantum approaches is totally removed now. Moreover the mechanical model of 
a quantum phase gas gives a perspective of a global integration of Einstein and Galileo relativity 
principles.    
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