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We review the new type of Deutsch-Jozsa algorithm proposed in [K. Nagata and T. Nakamura,
Int. J. Theor. Phys. 49, 162 (2010)]. We suggest that the Deutsch-Jozsa algorithm can be used for
quantum key distribution. Alice sends input N + 1 partite uncorrelated state to a black box. Bob
measures output state. Now, Alice and Bob has promised to use a function f which is of one of two
kinds; either the value of f is constant or balanced. To Eve, it is secret. Alice’s and Bob’s goal is
to determine with certainty whether they have chosen a constant or a balanced function. Alice and
Bob get one bit if they determine the function f . The speed to get one bit improves by a factor of
2N . This may improve the speed to establish quantum key distribution by a factor of 2N .

PACS numbers: 03.67.-a, 03.67.Lx, 03.67.Dd

I. INTRODUCTION

The quantum theory (cf. [1—6]) gives approximate
and at times remarkably accurate numerical predictions.
Much experimental data approximately fits to the quan-
tum predictions for the past some 100 years. We do
not doubt the correctness of the quantum theory. The
quantum theory also says new science with respect to
information theory. The science is called the quantum
information theory [6]. Therefore, the quantum theory
gives us very useful another theory in order to create
new information science and to explain the handling of
raw experimental data in our physical world.

As for the foundations of the quantum theory, Leggett-
type non-local variables theory [7] is experimentally in-
vestigated [8—10]. The experiments report that the quan-
tum theory does not accept Leggett-type non-local vari-
ables interpretation. As for the applications of the quan-
tum theory, implementation of a quantum algorithm to
solve Deutsch’s problem [11] on a nuclear magnetic res-
onance quantum computer is reported firstly [12]. Im-
plementation of the Deutsch-Jozsa algorithm on an ion-
trap quantum computer is also reported [13]. There are
several attempts to use single-photon two-qubit states
for quantum computing. Oliveira et al. implement
Deutsch’s algorithm with polarization and transverse
spatial modes of the electromagnetic field as qubits [14].
Single-photon Bell states are prepared and measured [15].
Also the decoherence-free implementation of Deutsch’s
algorithm is reported by using such single-photon and
by using two logical qubits [16]. More recently, a one-
way based experimental implementation of Deutsch’s al-
gorithm is reported [17].

The most well known and developed application
of quantum cryptography is quantum key distribution
(QKD), which is the process of using quantum commu-
nication to establish a shared key between two parties
without a third party (Eve) learning anything about that

key, even if Eve can eavesdrop on all communication be-
tween Alice and Bob. This is achieved by Alice encoding
the bits of the key as quantum data and sending them to
Bob; if Eve tries to learn these bits, the messages will be
disturbed and Alice and Bob will notice. The key is then
typically used for encrypted communication using classi-
cal techniques. For instance, the exchanged key could be
used as the seed of the same random number generator
both by Alice and Bob.

The security of QKD can be proven mathematically
without imposing any restrictions on the abilities of an
eavesdropper, something not possible with classical key
distribution. This is usually described as “unconditional
security”, although there are some minimal assumptions
required including that the laws of quantum mechanics
apply and that Alice and Bob are able to authenticate
each other, i.e. Eve should not be able to impersonate
Alice or Bob as otherwise a man-in-the-middle attack
would be possible.

To date, the relation between quantum computer and
QKD is not reported. The earliest quantum algorithm,
the Deutsch-Jozsa algorithm, is representative to show
that quantum computation is faster than classical coun-
terpart with a magnitude that grows exponentially with
the number of qubits.

Recently, it is discussed that von Neumann’s theory
does not meet the Deutsch-Jozsa algorithm [18]. In von
Neumann’s theory, control of quantum state and obser-
vations of quantum state cannot be existential, simulta-
neously. In reference [18], we propose a solution of the
problem. The problem is solved if measurement outcome
is ±1/

√
2.

In this paper, we review the Deutsch-Jozsa algorithm.
We suggest that the Deutsch-Jozsa algorithm can be used
for improve quantum key distribution. Alice sends input
N+1 partite uncorrelated state to a black box. Bob mea-
sures output state. Now, Alice and Bob has promised
to use a function f which is of one of two kinds; either
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the value of f is constant or balanced. To Eve, it is
secret. Alice’s and Bob’s goal is to determine with cer-
tainty whether they have chosen a constant or a balanced
function. Alice and Bob get one bit if they determine the
function f . The speed to get one bit improves by a factor
of 2N . This may improve the speed to establish quantum
key distribution by a factor of 2N .

II. THE DEUTSCH-JOZSA ALGORITHM CAN

BE USED FOR QUANTUM KEY DISTRIBUTION

The earliest quantum algorithm, the Deutsch-Jozsa al-
gorithm, is representative to show that quantum compu-
tation is faster than classical counterpart with a magni-
tude that grows exponentially with the number of qubits.
Let us follow the argumentation presented in [6]. –

– The application, known as Deutsch’s problem, may be
described as the following game. Alice, in Amsterdam,
selects a number x from 0 to 2N − 1, and mails it in
a letter to Bob, in Boston. Bob calculates the value of
some function

f : {0, . . . , 2N − 1} → {0, 1} (1)

and replies with the result, which is either 0 or 1. Now,
Bob has promised to use a function f which is of one
of two kinds; either the value of f(x) is constant for all
values of x, or else the value of f(x) is balanced, that is,
equal to 1 for exactly half of all the possible x, and 0 for
the other half. Alice’s goal is to determine with certainty
whether Bob has chosen a constant or a balanced func-
tion, corresponding with him as little as possible. How
fast can she succeed?
In the classical case, Alice may only send Bob one value

of x in each letter. At worst, Alice will need to query Bob
at least

2N/2 + 1 (2)

times, since she may receive 2N/2 0s before finally getting
a 1, telling her that Bob’s function is balanced. The best
deterministic classical algorithm she can use therefore re-
quires 2N/2 + 1 queries. Note that in each letter, Alice
sends Bob N bits of information. Furthermore, in this
example, physical distance is being used to artificially el-
evate the cost of calculating f(x), but this is not needed
in the general problem, where f(x) may be inherently
difficult to calculate.
If Bob and Alice were able to exchange qubits, in-

stead of just classical bits, and if Bob agreed to calculate
f(x) using a unitary transformation Uf , then Alice could
achieve her goal in just one correspondence with Bob,
using the following algorithm.
Alice has an N qubit register to store her query in, and

a single qubit register which she will give to Bob, to store
the answer in. She begins by preparing both her query
and answer registers in a superposition state. Bob will
evaluate f(x) using quantum parallelism and leave the
result in the answer register. Alice then interferes states

in the superposition using a Hadamard transformation
(a unitary transformation),

H = (σx + σz)/
√
2, (3)

on the query register, and finishes by performing a suit-
able measurement to determine whether f was constant
or balanced.
Let us follow the quantum states through this algo-

rithm. The input state is

|ψ0� = |0�⊗N |1�. (4)

Here the query register describes the state of N qubits
all prepared in the

|0� (5)

state. After the Hadamard transformation on the query
register and the Hadamard gate on the answer register
we have

|ψ1� =
�

x∈{0,1}N

|x�√
2N

� |0� − |1�√
2

�
. (6)

The query register is now a superposition of all values,
and the answer register is in an evenly weighted super-
position of

|0� (7)

and

|1�. (8)

Next, the function f is evaluated (by Bob) using

Uf : |x, y� → |x, y ⊕ f(x)�, (9)

giving

|ψ2� = ±
�

x

(−1)f(x)|x�√
2N

� |0� − |1�√
2

�
. (10)

Here

y ⊕ f(x) (11)

is the bitwise XOR (exclusive OR) of y and f(x). Alice
now has a set of qubits in which the result of Bob’s func-
tion evaluation is stored in the amplitude of the qubit
superposition state. She now interferes terms in the
superposition using a Hadamard transformation on the
query register. To determine the result of the Hadamard
transformation it helps to first calculate the effect of the
Hadamard transformation on a state

|x�. (12)

By checking the cases x = 0 and x = 1 separately we see
that for a single qubit

H|x� =
�

z

(−1)xz|z�/
√
2. (13)
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Thus

H⊗N |x1, . . . , xN �

=

�
z1,... ,zN

(−1)x1z1+···+xNzN |z1, . . . , zN �√
2N

. (14)

This can be summarized more succinctly in the very use-
ful equation

H⊗N |x� =
�

z(−1)x·z|z�√
2N

, (15)

where

x · z (16)

is the bitwise inner product of x and z, modulo 2. Using
this equation and (10) we can now evaluate |ψ3�,

|ψ3� = ±
�

z

�

x

(−1)x·z+f(x)|z�√
2N

� |0� − |1�√
2

�
. (17)

Alice now observes the query register. Note that the
absolute value of the amplitude for the state

|0�⊗N (18)

is
�

x

(−1)f(x)/2N . (19)

Let’s look at the two possible cases – f constant and f
balanced – to discern what happens. In the case where
f is constant the absolute value of the amplitude for

|0�⊗N (20)

is +1. Because

|ψ3� (21)

is of unit length it follows that all the other amplitudes
must be zero, and an observation will yield

+1/
√
2 (22)

times for all N qubits in the query register. Thus, global
measurement outcome is

+1/
√
2N . (23)

If f is balanced then the positive and negative contribu-
tions to the absolute value of the amplitude for

|0�⊗N (24)

cancel, leaving an amplitude of zero, and a measurement
must yield a result other than

+1/
√
2, (25)

that is,

−1/
√
2, (26)

on at least one qubit in the query register. Summarizing,
if Alice measures all +1/

√
2s and global measurement

outcome is +1/
√
2N the function is constant; otherwise

the function is balanced.
We suggest that the Deutsch-Jozsa algorithm can be

used for quantum key distribution.
• First Alice prepares the qubits in (6) and sends the
N + 1 qubits to Bob.

• Next, Bob picks a random function “f” that is
either balanced or constant and Bob applies Uf
Eq. (9) evolving the N + 1 qubits to Eq. (10). He
then sends the N qubit Query register to Alice.

• Finally, Alice applies the Hadamard transformation
to each of the qubits and measures. She learns
whether f was balanced or constant - Alice and
Bob now share a random bit of information (the
“type” of f(x)).

On safety, a questionable point is left in various ways,
but this is a future problem. For example, we can con-
sider the following situation:
Alice has to send the Query (N -qubit) and Answer

(1-qubit) registers to Bob. Bob will then apply Uf and
send the Query register back to Alice who will apply
the second step of the Deutsch-Jozsa algorithm to this
register and learn the “type” of f(x). What’s to prevent
the attacker Eve from doing this same thing? That is,
Eve will capture the N qubits from Bob, apply H⊗N to
the query qubits, and measure. She now learns the type
of f(x) and thus the key bit. She can then prepare fresh
qubits of the form:
H⊗N |00 . . . 0� if her measurement result was all zeros

(f is constant) H⊗N | random qubits not all zero� other-
wise (f is balanced)
Alice will then apply H⊗N (the second part of the

Deutsch-Jozsa algorithm) unaware that Eve interfered.
Her action will cancel out Eve’s operation and Alice will
then measure either all zeros if f is constant or some
random non-zero state otherwise. This seems like an un-
detectable attack. We will need to find a way to counter
this in our protocol somehow.

III. CONCLUSIONS

In conclusion, we have reviewed the new type of
Deutsch-Jozsa algorithm. We have suggested that the
Deutsch-Jozsa algorithm can be used for quantum key
distribution. Alice has sent input N + 1 partite uncor-
related state to a black box. Bob has measured output
state. Now, Alice and Bob has promised to use a func-
tion f which is of one of two kinds; either the value of f
is constant or balanced. To Eve, it has been secret. Al-
ice’s and Bob’s goal has been to determine with certainty
whether they have chosen a constant or a balanced func-
tion. Alice and Bob have gotten one bit if they determine
the function f . The speed to get one bit has improved
by a factor of 2N . This may have improved the speed to
establish quantum key distribution by a factor of 2N .
On safety, a questionable point has been left in various

ways, but this has been a future problem.
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