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Abstract

Shannnon entropy is an efficient tool to measure uncertain information. How-

ever, it cannot handle the more uncertain situation when the uncertainty is

represented by basic probability assignment (BPA), instead of probability

distribution, under the framework of Dempster Shafer evidence theory. To

address this issue, a new entropy, named as Deng entropy, is proposed. The

proposed Deng entropy is the generalization of Shannnon entropy. If un-

certain information is represented by probability distribution, the uncertain

degree measured by Deng entropy is the same as that of Shannnon’s en-

tropy. Some numerical examples are illustrated to shown the efficiency of

Deng entropy.
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1. Introduction

Uncertainty is ubiquitous in nature. How to measure the uncertainty has

attracted much attention [1, 2]. Various categorizations exist to accommo-

date different kinds of uncertainties. Numerous uncertainty theories has been

developed, such as probability theory [3], fuzzy set theory [4], possibility the-

ory [5], Dempster-Shafer evidence theory [6, 7], rough sets[8], DSmT[9, 10],

generalized evidence theory [11] and D numbers[12, 13, 14, 15].

Since firstly proposed by Clausius in 1865 for thermodynamics [16],the

study of uncertainty and entropy attracts great interests and various types

of entropies are developed, such as information entropy [17], Tsallis entropy

[18], nonadditive entropy [19, 20, 21]. Information entropy [17], derived from

the Boltzmann-Gibbs (BG) entropy [22] in thermodynamics and statistical

mechanics, has been an indicator to measures aleatoric uncertainty which is

associated with the probability density function (PDF).

For the aleatoric uncertain information expressed by PDF, information

entropy proposed by Shannon [17] is a good measure. However, with respec-

t to other uncertain information including epistemic, irreducible, reducible

and inferential uncertainty, classical information entropy is invalid. In this

paper, one of these uncertainties, epistemic uncertainty, is taken into consid-

eration. Dempster-Shafer theory evidence theory[6, 7] is mainly proposed to

handle such uncertainty. In Dempster-Shafer evidence theory, the epistemic

uncertainty simultaneously contains nonspecificity and discord [23] which

are coexisting in a basic probability assignment function (BPA). Several un-
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certainty measures, such as AU [24, 25], AM [23], have been proposed to

quantify such uncertainty in Dempster-Shafer theory. What’s more, five ax-

iomatic requirements have been further built in order to develop a justifiable

measure. These five axiomatic requirements are range, probabilistic consis-

tency, set consistency, additivity, subadditivity, respectively [26]. However,

existing methods are not efficient to measure uncertain degree of BPA. To

address this issue, a new entropy, named as Deng entropy, is proposed in this

paper.

The paper is organized as follows. The preliminaries Dempster-Shafer

evidence theory and entropy are briefly introduced in Section 2. Section 3

presents Deng entropy. Some numerical examples are illustrated in Section

4 to show the efficiency of Deng entropy. Finally, this paper is concluded in

Section 5.

2. Preliminaries

In this section, some preliminaries are briefly introduced.

2.1. Dempster-Shafer evidence theory

Dempster-Shafer theory (short for D-S theory), also called belief function

theory, as introduced by Dempster[6] and then developed by Shafer[7], has

emerged from their works on statistical inference and uncertain reasoning.

This theory is widely applied to uncertainty modeling [27, 28], decision mak-

ing [29, 30, 31, 32, 33, 34, 35, 36, 37]and information fusion [38, 39] and

uncertain information processing [40]. D-S theory mainly focus on the epis-
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temic uncertainty, but it is also valid for aleatoric uncertainty. It has many

merits by contrast probability theory. First, D-S theory can handle more

uncertainty in real world. In contrast to the probability theory in which

probability masses can be only assigned to singleton subsets, in D-S theory

the belief can be assigned to both singletons and compound sets. Second, in

D-S theory, prior distribution is not needed before the combination of infor-

mation from individual information sources. Third, D-S theory allows one to

specify a degree of ignorance in some situations instead of being forced to be

assigned for probabilities. Some basic concepts in D-S theory are introduced.

Let X be a set of mutually exclusive and collectively exhaustive events,

indicated by

X = {θ1, θ2, · · · , θi, · · · , θ|X|} (1)

where set X is called a frame of discernment. The power set of X is indicated

by 2X , namely

2X = {∅, {θ1}, · · · , {θ|X|}, {θ1, θ2}, · · · , {θ1, θ2, · · · , θi}, · · · , X} (2)

For a frame of discernment X = {θ1, θ2, · · · , θ|X|}, a mass function is a

mapping m from 2X to [0, 1], formally defined by:

m : 2X → [0, 1] (3)

which satisfies the following condition:

m(∅) = 0 and
∑

A∈2X

m(A) = 1 (4)
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In D-S theory, a mass function is also called a basic probability assignment

(BPA). Assume there are two BPAs indicated by m1 and m2, the Dempster’s

rule of combination is used to combine them as follows:

m(A) =











1

1−K

∑

B∩C=A

m1(B)m2(C) , A 6= ∅;

0 , A = ∅.

(5)

with

K =
∑

B∩C=∅

m1(B)m2(C) (6)

Note that the Dempster’s rule of combination is only applicable to such two

BPAs which satisfy the condition K < 1.

D-S theory has more advantages in in handling uncertainty compared

with classical probability theory. When information is adequate, probability

theory is effective to handle that situation. However, when information is

not adequate, probability theory is invalid to such uncertain situation. Here

is an example.

As shown in Figure 1, assume there are two boxes. There are red balls the

left box, and green balls in the right box. The number of balls in each box

is unknown. Now, a person is assigned to pick a boll from these two boxes.

We know that he chooses the the left box with a probability P1 = 0.6, and

chooses the right box with a probability P2 = 0.4. Based on probability

theory, it can be obtained that the probability of picking a red ball is 0.6,

the probability of picking a green ball is 0.4, namely p(R) = 0.6, p(G) = 0.4.

Now, let us change the configuration, as shown in Figure 2. In the left box,

there are still only red balls. But in the right box, there are not only red balls
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Figure 1: A game of picking ball which can be handled by probability theory

but also green balls. In accord with above, the exact number of balls in each

box is still unknown, and the ratio of them are completely unknown. This

person also has 0.6 probability to choose the left box and 0.4 probability

to choose the right box. The question is how possible that a red ball is

picked. Obviously, in this case due to lack of adequate information, p(R)

and p(G) cannot be obtained. Facing the situation of inadequate information,

probability theory is incapable. However, if using D-S theory to analyze this

problem, we can obtain a BPA that m(R) = 0.6 and m(R,G) = 0.4, which

means the probability of red ball being picked is 0.6 and the probability of

red ball or green ball being picked is 0.4. In the framework of D-S theory, the

uncertainty has been expressed more effective. D-S theory has more ability

to express uncertain information than probability theory.
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Figure 2: A game of picking ball where probability theory is unable but D-S theory is able

to handle

2.2. Existing entropy and open issue

Entropy is associated with uncertainty, and it has been a measure of

uncertainty and disorder. The concept of entropy is derived from physics

[16]. In thermodynamics and statistical mechanics, the entropy often refers

to Boltzmann-Gibbs entropy [22]. According to Boltzmann’s H theorem, the

Boltzmann-Gibbs (BG) entropy of an isolated system SBG is obtained in

terms of the probabilities associated the distinct microscopic states available

to the system given the macroscopic constraints, which has the following

form

SBG = −k

W
∑

i=1

pi ln pi (7)

where k is the Boltzmann constant, W is the amount of distinct microscopic

states available to the isolated system, pi is the probability of microscopic

state i satisfying
W
∑

i=1

pi = 1. Equal probabilities, i.e. ∀i, pi = 1/W , is a
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particular situation. In that situation, BG entropy has the following form

SBG = k lnW (8)

In information theory, Shannon entropy [17] is often used to measure the

information volume of a system or a process, and quantify the expected value

of the information contained in a message. Information entropy, denoted as

H , has a similar form with BS entropy

H = −
N
∑

i=1

pi logb pi (9)

where N is the amount of basic states in a state space, pi is the probability of

state i appears satisfying
W
∑

i=1

pi = 1, b is base of logarithm. When b = 2, the

unit of information entropy is bit. If each state equally appears, the quantity

of H has this form

H = log2N (10)

In information theory, quantities of H play a central role as measures of

information, choice and uncertainty. For example, the Shannon entropy of

the game shown in Figure 1 is H = 0.6 × log2 0.6 + 0.4 × log2 0.4 = 0.9710.

But, it is worthy to notice that the uncertainty of this game shown in Figure

2 cannot be calculated by using the Shannon entropy.

According to mentioned above, no matter the BG entropy or the informa-

tion entropy, the quantity of entropy is always associated with the amount

of states in a system. Especially, for the case of equal probabilities, the en-
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tropy or the uncertainty of a system is a function of the quantity of states.

Moreover, in that particular case, the entropy is the maximum.

3. Deng entropy

With the range of uncertainty mentioned above, Deng entropy can be

presented as follows

Ed = −
∑

i

m(Fi) log
m(Fi)

2|Fi| − 1
(11)

where, Fi is a proposition in mass function m, and |Fi| is the cardinality

of Fi. As shown in the above definition, Deng entropy, formally, is similar

with the classical Shannon entropy, but the belief for each proposition Fi is

divided by a term (2|Fi| − 1) which represents the potential number of states

in Fi (of course, the empty set is not included).

Specially, Deng entropy can definitely degenerate to the Shannon entropy

if the belief is only assigned to single elements. Namely,

Ed = −
∑

i

m(θi) log
m(θi)

2|θi| − 1
= −

∑

i

m(θi) logm(θi)

4. Numerical examples and discussions

In the section, a lot of examples are given to show the effectiveness of

Deng entropy.

Example 1. Assume there is a mass function m(a) = 1, the associated

Shannon entropy H and Deng entropy Ed are calculated as follows.

H = 1× log 1 = 0

Ed = 1× log
1

21 − 1
= 0

9



Example 2. Given a frame of discernment X = {a, b, c}, for a mass func-

tion m(a) = m(b) = m(c) = 1/3, the associated Shannon entropy H and

Deng entropy Ed are

H = −
1

3
× log

1

3
−

1

3
× log

1

3
−

1

3
× log

1

3
= 1.5850

Ed = −
1

3
× log

1/3

21 − 1
−

1

3
× log

1/3

21 − 1
−

1

3
× log

1/3

21 − 1
= 1.5850

Clearly, Example 1 and 2 have shown that the results of Shannon entropy

and Deng entropy are identical when the belief is only assigned on single

elements.

Example 3. Given a frame of discernment X = {a, b, c}, for a mass func-

tion m(a, b, c) = 1,

Ed = −1× log
1

23 − 1
= 2.8074

For another mass function m(a) = m(b) = m(c) = m(a, b) = m(a, c) =
m(b, c) = m(a, b, c) = 1/7,

Ed = −1

7
× log 1/7

21−1
− 1

7
× log 1/7

21−1
− 1

7
× log 1/7

21−1

−1

7
× log 1/7

22−1
− 1

7
× log 1/7

22−1
− 1

7
× log 1/7

22−1
− 1

7
× log 1/7

23−1

= 3.8877

Example 4. Given a frame of discernment X = {a1, a2, · · · , aN}, let us

consider three special cases of mass functions as follows.

• m1(Fi) = m1(Fj) and
∑

i

m1(Fi) = 1, ∀Fi, Fj ⊆ X, Fi, Fj 6= ∅.

• m2(X) = 1.

• m3(a1) = m3(a2) = · · · = m3(aN) = 1/N .

Their associated Deng entropies change with N , as shown in Figure 3.
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Figure 3: Deng entropy as a function of the size of frame of discernment in three types of
mass functions

Example 5. Given a frame of discernment X with 15 elements which are

denoted as element 1, element 2, etc. A mass function is shown as follows.

m({3, 4, 5}) = 0.05, m({6}) = 0.05, m(A) = 0.8, m(X) = 0.1

Table 1 lists various Deng entropies when A changes, which is graphi-

cally shown in Figure 4. The results shows that the entropy of m increases

monotonously with the rise of the size of subset A. It is rational that the

entropy increases when the uncertainty involving a mass function increases.
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Table 1: Deng entropy when A changes

Cases Deng entropy

A = {1} 1.8454
A = {1, 2} 2.7242
A = {1, 2, 3} 3.4021
A = {1, · · · , 4} 4.0118
A = {1, · · · , 5} 4.5925
A = {1, · · · , 6} 5.1599
A = {1, · · · , 7} 5.7207
A = {1, · · · , 8} 6.2784
A = {1, · · · , 9} 6.8345
A = {1, · · · , 10} 7.3898
A = {1, · · · , 11} 7.9447
A = {1, · · · , 12} 8.4994
A = {1, · · · , 13} 9.0540
A = {1, · · · , 14} 9.6086
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Figure 4: Deng entropy as a function of the size of A

13



5. Conclusion

Dempster Shafer evidence theory has widely used in many application-

s due to its advantages to handle the aleatoric and epistemic uncertainty.

However, how to measure uncertain degree in evidence theory is still an open

issue. The main contribution of this paper is that a new entropy, named

as Deng entropy, is presented. Deng entropy is the generalization of Shan-

non entropy. In the case when the BPA is degenerated as probability, Deng

entropy is degenerated as Shannon entropy. However, Numerical examples

are illustrated to show the efficiency of Deng entropy. Some properties of

Deng entropy are discussed. The new entropy provides a promising way to

measure uncertain degree. One of the ongoing works is to present the cross

entropy of BPA, which can be easily derived.
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