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Abstract 

This paper starts from the idea that physical reality implements a network of a small number of 

mathematical structures. Only in that way can be explained that observations of physical reality fit so 

well with mathematical methods.  

The mathematical structures do not contain mechanisms that ensure coherence. Thus apart from the 

network of mathematical structures a model of physical reality must contain mechanisms that 

manage coherence such that dynamical chaos is prevented. 

Reducing complexity appears to be the general strategy. The structures appear in chains that start 

with a foundation. The strategy asks that especially in the lower levels, the subsequent members of 

the chain emerge with inescapable self-evidence from the previous member. The chains are 

interrelated and in this way they enforce mutual restrictions.  

As a consequence the lowest levels of a corresponding mathematical model of physical reality are 

rather simple and can easily be comprehended by skilled mathematicians.  

In order to explain the claimed setup of physical reality, the paper investigates the foundation of the 

major chain. That foundation is a skeleton relational structure and it was already discovered and 

introduced in 1936. 

The paper does not touch more than the first development levels. The base model that is reached in 

this way puts already very strong restrictions to more extensive models. 

Some of the features of the base model are investigated and compared with results of contemporary 

physics. 

 

 

If the model introduces new science, then it has fulfilled its purpose. 
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1 Introduction 
Physical reality is that what physicists try to model in their theories. It appears that observations of 

features and phenomena of physical reality can often be explained by mathematical structures and 

mathematical methods. This is not strange, because these mathematical structures and methods are 

often designed by using examples that are obtained by observing reality as a guidance.  

This leads to the unorthodox idea that physical reality itself mimics a small set of mathematical 

structures. In that case physical reality will show the features and phenomena of these structures. 

In humanly developed mathematics, mathematical structures appear in chains that start from a 

foundation and subsequent members of the chain emerge with inescapable self-evidence from the 

previous member. The chains are often interrelated and impose then mutual restrictions. It is 

obvious to expect a similar setup for the structures that are maintained by physical reality. 

Physical reality is known to show coherence. Its behavior is far from chaotic. The mimicked 

mathematical structures do not contain mechanisms that ensure coherence. Thus apart from the 

network of mathematical structures a model of physical reality must contain mechanisms that 

manage coherence such that dynamical chaos is prevented.  

In physical reality, reducing complexity appears to be the general strategy.  

One chain is expected to play a major role and its foundation can be viewed as the major foundation 

of the investigated model of physical reality. The discovery of this foundation is essential for 

explaining how the network of mimicked mathematical structures is configured. 

2 The major chain 

2.1 The foundation 
This paper uses the skeleton relational structure that in 1936 was discovered by Garret Birkhoff and 

John von Neumann as the major foundation of the model. Birkhoff and von Neumann named it 

“quantum logic”[1].  

The ~25 axioms that define an orthocomplemented weakly modular lattice form the first principles 

on which according to this paper the model of physical reality is supposed to be built [2]. Another 

name for this lattice is orthomodular lattice. Quantum logic has this lattice structure. Classical logic 

has a slightly different lattice structure. It is an orthocomplemented modular lattice. Due to this 

resemblance, the discoverers of the orthomodular lattice gave quantum logic its name. The 

treacherous name “quantum logic” has invited many scientists to deliberate in vain about the 

significance of the elements of the orthomodular lattice as logical propositions. For our purpose it is 

better to interpret the elements of the orthomodular lattice as construction elements rather than as 

logic propositions. 

By taking this point of view, the selected foundation can be considered as part of a recipe for modular 

construction. What is missing are the binding mechanism and a way to hide part of the relations that 

exist inside the modules from the outside of the modules. That functionality is supposed to be realized 

in higher levels of the model. 
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2.2 Extending the major chain 
The next level of the major chain of mathematical structures emerges with inescapable self-evidence 

from the selected foundation.  

Not only quantum logic forms an orthomodular lattice, but also the set of closed subspaces of an 

infinite dimensional separable Hilbert space forms an orthomodular lattice [1].  

Where the orthomodular lattice was discovered in the thirties, the Hilbert space was introduced 

shortly before that time [3]. The Hilbert space is a vector space that features an inner product. The 

orthomodular lattice that is formed by its set of subspaces makes the Hilbert space a very special 

vector space. 

The Hilbert space adds extra functionality to the orthomodular lattice. This extra functionality 

concerns the superposition principle and the possibility to store numeric data in eigenspaces of 

normal operators. In the form of Hilbert vectors the Hilbert space features a finer structure than the 

orthomodular lattice has. 

These features caused that Hilbert spaces were quickly introduced in the development of quantum 

physics. 

Numbers do not exist in the realm of a pure orthomodular lattice. Via the Hilbert space, number 

systems emerge into the model. Number systems do not find their foundation in the major chain. 

Instead they belong to another chain of mathematical structures. The foundation of that chain 

concerns mathematical sets. 

The Hilbert space can only handle members of a division ring for specifying superposition 

coefficients, for the eigenvalues of its operators and for the values of its inner products. Only three 

suitable division rings exist: the real numbers, the complex numbers and the quaternions. These facts 

were already known in the thirties but became a thorough mathematical prove in the second half of 

the twentieth century [4]. 

Separable Hilbert spaces act as structured storage media for discrete data that can be stored in real 

numbers, complex numbers or quaternions. Quaternions enable the storage of 1+3D dynamic 

geometric data that have an Euclidean geometric structure. 

The confinement to division rings puts strong restrictions onto the model. These restrictions reduce 

the complexity of the whole model. 

Thus, selecting a skeleton relational structure that is an orthomodular lattice as the foundation of the 

model already puts significant restrictions to the model. On the other hand, as can be shown, this 

choice promotes modular construction. In this way it eases system configuration and the choice 

significantly reduces the relational complexity of the final model. 
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3 Consequences of the currently obtained model 
The orthomodular lattice can be interpreted as a part of a recipe for modular construction. What is 

missing are means to bind modules and means to hide relations that stay inside the module from the 

outside of the module. This functionality must be supplied by extensions of the model. It is partly 

supplied by the superposition principle, which is introduced via the separable Hilbert space.  

The current model does not yet support coherent dynamics and it does not support continuums. The 

selected foundation and its extension to a separable Hilbert space can be interpreted in the following 

ways: 

 Each discrete construct in this model is supposed to expose the skeleton relational structure 

that is defined as an orthomodular lattice. 

 Each discrete construct in this model is either a module or a modular system. 

 Every discrete construct in this model can be represented by a closed subspace of a single 

infinite dimensional separable quaternionic Hilbert space. 

 Every module and every modular system in this model can be represented by a closed 

subspace of a single infinite dimensional separable quaternionic Hilbert space. 

However 

 Not every closed subspace of the separable Hilbert space represents a module or a modular 

system. 

Modular construction eases system design and system configuration. Modular construction handles 

its resources in a very economically way. With sufficient resources present it can generate very 

complicated constructs. 

The modular construction recipe is certainly the most influential rule that exists in the generation 

of physical reality. Even without intelligent design it achieved the construction of intelligent 

species. 
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4 Supporting continuums 
The separable Hilbert space can only handle discrete numeric data. Physical reality also supports 

continuums. The eigenspaces of the operators of the separable Hilbert space are countable. 

Continuums are not countable. Thus, separable Hilbert spaces cannot support continuums. 

Soon after the introduction of the Hilbert space, scientists tried to extend the separable Hilbert space 

to a non-separable version that supports operators, which feature continuums as eigenspaces. With 

his bra-ket notation for Hilbert vectors and operators and by introducing generic functions, such as 

the Dirac delta function, Paul Dirac introduced ways to handle continuums [5]. This approach became 

proper mathematical support in the sixties when the Gelfand triple was introduced [6]. 

Every infinite dimensional separable Hilbert space owns a Gelfand triple. In fact the separable Hilbert 

space can be seen as embedded inside this Gelfand triple. How this embedding occurs in 

mathematical terms is still obscure. It appears that the embedding process allows a certain amount 

of freedom that is exploited by the mechanisms, which are contained in physical reality and that 

have the task to ensure spatial and dynamic coherence. 

In the separable Hilbert space the closed subspaces have a well-defined numeric dimension. In 

contrast, in the non-separable companion the dimension of closed subspaces is in general not 

defined. The embedding of subspaces of the separable Hilbert space in a subspace of the non-

separable Hilbert space that represents an encapsulating composite will at least partly hide the 

characteristics and interrelations of embedded constituents. This hiding is required for constituents 

of modular systems. 

5 Quaternionic Hilbert spaces 
Separable Hilbert spaces are linear vector spaces in which an inner product is defined. This inner 

product relates each pair of Hilbert vectors. The value of that inner product must be a member of a 

division ring. Suitable division rings are real numbers, complex numbers and quaternions. This paper 

uses quaternionic Hilbert spaces. 

Paul Dirac introduced the bra-ket notation that eases the formulation of Hilbert space habits [5]. 

〈𝑥|𝑦〉 = 〈𝑦|𝑥〉∗ 

〈𝑥 + 𝑦|𝑧〉 = 〈𝑥|𝑧〉 + 〈𝑦|𝑧〉 

〈𝛼𝑥|𝑦〉 = 𝛼 〈𝑥|𝑦〉 

〈𝑥|𝛼𝑦〉 = 〈𝑥|𝑦〉 𝛼∗ 

〈𝑥| is a bra vector. |𝑦〉 is a ket vector.  𝛼 is a quaternion. 

This paper considers Hilbert spaces as no more and no less than structured storage media for 

dynamic geometrical data that have an Euclidean signature. Quaternions are ideally suited for the 

storage of such data. Quaternionic Hilbert spaces are described in “Quaternions and quaternionic 

Hilbert spaces” [8]. 

The operators of separable Hilbert spaces have countable eigenspaces. Each infinite dimensional 

separable Hilbert space owns a Gelfand triple. The Gelfand triple embeds this separable Hilbert space 

(1) 

(2) 

(3) 

(4) 
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and offers as an extra service operators that feature continuums as eigenspaces. In the 

corresponding subspaces the definition of dimension loses its sense. 

5.1 Representing continuums and continuous functions 
Operators map Hilbert vectors onto other Hilbert vectors. Via the inner product the operator 𝑇 may 

be linked to an adjoint operator 𝑇†.  

〈𝑇𝑥|𝑦〉 ≡ 〈𝑥|𝑇†𝑦〉 

〈𝑇𝑥|𝑦〉 = 〈𝑦|𝑇𝑥〉∗ = 〈𝑇†𝑦|𝑥〉∗ 

A linear quaternionic operator 𝑇, which owns an adjoint operator 𝑇† is normal when 

𝑇† 𝑇 =  𝑇 𝑇†  

𝑇0 = (𝑇 + 𝑇†)/2 is a self adjoint operator and 𝑻 = (𝑇 −  𝑇†)/2 is an imaginary normal operator. 

Self adjoint operators are also Hermitian operators. Imaginary normal operators are also anti-

Hermitian operators. 

By using reverse bra-ket notation, operators that reside in the Hilbert space and correspond to 

continuous functions, can easily be defined by starting from an orthonormal base of vectors. In this 

base the vectors are normalized and are mutually orthogonal. The vectors span a subspace of the 

Hilbert space. This works both in separable Hilbert spaces as well as in non-separable Hilbert spaces.  

Let {𝑞𝑖} be the set of rational quaternions in a selected quaternionic number system and let {|𝑞𝑖〉} be 

the set of corresponding base vectors. They are eigenvectors of a normal operator ℛ = |𝑞𝑖〉𝑞𝑖〈𝑞𝑖|. 

Here we enumerate the base vectors with index 𝑖. 

ℛ = |𝑞𝑖〉𝑞𝑖〈𝑞𝑖|  

ℛ is the configuration parameter space operator.  

ℛ0 = (ℛ + ℛ†)/2 is a self-adjoint operator. Its eigenvalues can be used to order the eigenvectors. 

The ordered eigenvalues can be interpreted as progression values. 

𝓡 = (ℛ −  ℛ†)/2 is an imaginary operator. Its eigenvalues can be used to order the eigenvectors. 

The eigenvalues can be interpreted as spatial values and can be ordered in several ways. 

 

Let 𝑓(𝑞) be a quaternionic function. 

𝑓 = |𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|  

𝑓 defines a new operator that is based on function 𝑓(𝑞). Here we suppose that the target values of 𝑓 

belong to the same version of the quaternionic number system as its parameter space does. 

Operator 𝑓 has a countable set of discrete quaternionic eigenvalues. 

For this operator the reverse bra-ket notation is a shorthand for 

〈𝑥|𝑓 𝑦〉 = ∑〈𝑥|𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|𝑦〉

𝑖

 

In a non-separable Hilbert space, such as the Gelfand triple, the continuous function ℱ(𝑞) can be 

used to define an operator, which features a continuum eigenspace. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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ℱ = |𝑞〉ℱ(𝑞)〈𝑞|  

 

Via the continuous quaternionic function ℱ(𝑞), the operator ℱ defines a curved continuum ℱ. This 

operator and the continuum reside in the Gelfand triple, which is a non-separable Hilbert space. 

 

ℜ = |𝑞〉𝑞〈𝑞| 

 

The function ℱ(𝑞) uses the eigenspace of the reference operator ℜ as a flat parameter space that is 

spanned by a quaternionic number system {𝑞}. The continuum ℱ represents the target space of 

function ℱ(𝑞).  

Here we no longer enumerate the base vectors with index 𝑖. We just use the name of the parameter. 

If no conflict arises, then we will use the same symbol for the defining function, the defined operator 

and the continuum that is represented by the eigenspace. 

For the shorthand of the reverse bra-ket notation of operator ℱ the integral over 𝑞 replaces the 

summation over 𝑞𝑖. 

 

〈𝑥|ℱ 𝑦〉 = ∫〈𝑥|𝑞〉ℱ(𝑞)〈𝑞|𝑦〉
𝑞

 𝑑𝑞 

Remember that quaternionic number systems exist in several versions, thus also the operators 𝑓 and 

ℱ exist in these versions. The same holds for the parameter space operators. When relevant, we will 

use superscripts in order to differentiate between these versions.  

Thus, operator 𝑓𝑥 = |𝑞𝑖
𝑥〉𝑓𝑥(𝑞𝑖

𝑥)〈𝑞𝑖
𝑥| is a specific version of operator 𝑓. Function 𝑓𝑥(𝑞𝑖

𝑥) uses 

parameter space ℛ𝑥.  

Similarly, ℱ𝑥 = |𝑞𝑥〉ℱ𝑥(𝑞𝑥)〈𝑞𝑥| is a specific version of operator ℱ. Function ℱ𝑥(𝑞𝑥) and continuum 

ℱ𝑥 use parameter space ℜ𝑥. 

In general the dimension of a subspace loses its significance in the non-separable Hilbert space.  

The continuums that appear as eigenspaces in the non-separable Hilbert space ℋ can be considered 

as quaternionic functions that also have a representation in the corresponding infinite dimensional 

separable Hilbert space ℌ. Both representations use a flat parameter space ℜ or ℛ that is spanned 

by quaternions. ℛ is spanned by rational quaternions. 

The parameter space operators will be treated as reference operators. The rational quaternionic 

eigenvalues {𝑞𝑖} that occur as eigenvalues of the reference operator ℛ in the separable Hilbert space 

map onto the rational quaternionic eigenvalues {𝑞𝑖} that occur as subset of the quaternionic 

eigenvalues {𝑞} of the reference operator ℜ in the Gelfand triple. In this way the reference operator 

ℛ in the infinite dimensional separable Hilbert space ℌ relates directly to the reference operator ℜ, 

which resides in the Gelfand triple ℋ. 

  

(7) 

(8) 

(9) 
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6 Well-ordered reference operators 
The eigenvalues of a normal operator 𝑇 that resides in a separable Hilbert space can be ordered with 

respect to the real part of the eigenvalues. Operator 𝑇0 = (𝑇 +  𝑇†)/2 is the corresponding self-

adjoint operator. If each real value occurs only once, then the operator 𝑇 and its adjoint 𝑇† can be 

well-ordered. The imaginary part of the eigenvalues can then still be ordered in different ways. 

Operator 𝑻 = (𝑇 −  𝑇†)/2 is the corresponding anti-Hermitian operator. For example it can be 

ordered according to Cartesian coordinates or according to spherical coordinates. Also each of these 

orderings can be done in different ways. 

The property of being well-ordered is restricted to operators with countable eigenspaces. However, 

via the defining functions, the well-orderedness can be transferred to the corresponding operator in 

the Gelfand triple.  

 Progression ordering 
A single self-adjoint reference operator that offers an infinite set of rational eigenvalues can 

synchronize a category of well-ordered normal operators. We use ℛ0 for this purpose. The ordered 

eigenvalues of this self-adjoint operator act as progression values. In this way the infinite 

dimensional separable Hilbert space owns a model wide clock. With this choice the separable Hilbert 

space steps with model-wide progression steps. 

The selected well-ordered normal reference operator ℛ that resides in an infinite dimensional 

separable quaternionic Hilbert space is used in the specification of the companion quaternionic 

Gelfand triple. There it corresponds to reference operator ℜ. In that way progression steps in the 

separable Hilbert space and flows in the companion Gelfand triple. Both reference operators will be 

used to provide parameter spaces. 

The countable set of progression values of the Hermitian part ℛ0 = (ℛ +  ℛ†)/2 of the well-ordered 

reference operator ℛ can be used to enumerate other ordered sequences. 

 Cartesian ordering 
The whole separable Hilbert space can at the same time be spanned by the eigenvectors of a 

reference operator whose eigenvalues are well-ordered with respect to the real parts of the 

eigenvalues, while the imaginary parts are ordered with respect to a Cartesian coordinate system.  

For Cartesian ordering, having an origin is not necessary. In affine Cartesian ordering only the 

direction of the ordering is relevant. Affine Cartesian ordering exists in eight symmetry flavors. 

Cartesian ordering supposes a unique orientation of the Cartesian axes. 

The well-ordered reference operator ℛ is supposed to feature affine Cartesian ordering.  

 Spherical ordering 
Spherical ordering starts with a selected Cartesian set of coordinates. In this case the origin is at a 

unique center location. Spherical ordering can be done by first ordering the azimuth and after that 

the polar angle is ordered. Finally, the radial distance from the center can be ordered. Another 

procedure is to start with the polar angle, then the azimuth and finally the radius. Such, spherical 

orderings may create a symmetry center. Since the ordering starts with a selected Cartesian 

coordinate system, spherical ordering will go together with affine Cartesian ordering.  

Each symmetry center is described by the eigenspaces of an anti-Hermitian operator 𝕾𝑥 that map a 

finite dimensional subspace of Hilbert space ℌ onto itself. Superscript  𝑥 refers to the ordering type 
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of the symmetry center. 𝕾𝑥 has no Hermitian part. Only through its ordering it can synchronize with 

progression steps. 
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7 Symmetry flavor 
Quaternions can be mapped to Cartesian coordinates along the orthonormal base vectors 1, 𝒊, 𝒋 and 

𝒌; with 𝒊𝒋 = 𝒌  

Due to the four dimensions of quaternions, quaternionic number systems exist in 16 well-ordered 

versions {𝑞𝑥} that differ only in their discrete Cartesian symmetry set. The quaternionic number 

systems {𝑞𝑥} correspond to 16 versions {𝑞𝑖
𝑥} of rational quaternions.  

Half of these versions are right handed and the other half are left handed. Thus the handedness is 

influenced by the symmetry flavor. 

The superscript  𝑥 can be  ⓪,  ①,  ②,  ③,  ④,  ⑤,  ⑥,  ⑦,  ⑧,  ⑨,  ⑩,  ⑪,  ⑫,  ⑬,  ⑭, or ⑮.  

This superscript represents the symmetry flavor of the indexed subject. 

The reference operator ℛ⓪ = |𝑞𝑖
⓪

〉 𝑞𝑖
⓪

〈𝑞𝑖
⓪

| in separable Hilbert space ℌ maps into the reference 

operator ℜ⓪ = |𝑞⓪〉𝑞⓪〈𝑞⓪| in Gelfand triple ℋ. 

The symmetry flavor of the symmetry center 𝕾𝑥, which is maintained by operator 𝕾𝑥 = |𝖘𝑖
𝑥〉𝖘𝑖

𝑥〈𝖘𝑖
𝑥| is 

determined by its Cartesian ordering and then compared with the reference symmetry flavor, which 

is the symmetry flavor of the reference operator ℛ⓪.  

Now the symmetry related charge follows in three steps. 

1. Count the difference of the spatial part of the symmetry flavor of 𝕾𝑥 with the spatial part of 

the symmetry flavor of reference operator ℛ⓪. 

2. If the handedness changes from R to L, then switch the sign of the count. 

3. Switch the sign of the result for anti-particles. 

 

Symmetry flavor 

Ordering 

x   y   z    τ 

Super 

script 

Handedness 

Right/Left 

Color 

charge 

Electric 

charge * 3 

Symmetry center type. 

Names are taken from the 

standard model 

 ⓪ R N +0 neutrino 

 ① L R −1 down quark 

 ② L G −1 down quark 

 ③ L B −1 down quark 

 ④ R B +2 up quark 

 ⑤ R G +2 up quark 

 ⑥ R R +2 up quark 

 ⑦ L N −3 electron 

 ⑧ R N +3 positron 

 ⑨ L R −2 anti-up quark 

 ⑩ L G −2 anti-up quark 

 ⑪ L B −2 anti-up quark 

 ⑫ R B +1 anti-down quark 

 ⑬ R R +1 anti-down quark 

 ⑭ R G +1 anti-down quark 

 ⑮ L N −0 anti-neutrino 
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Per definition, members of coherent sets {𝑎𝑖
𝑥} of quaternions all feature the same symmetry flavor 

that is marked by superscript  𝑥. 

Also continuous functions and continuums feature a symmetry flavor. Continuous quaternionic 

functions 𝜓𝑥(𝑞𝑥) and corresponding continuums do not switch to other symmetry flavors  𝑦.  

The reference symmetry flavor 𝜓𝑦(𝑞𝑦) of a continuous function 𝜓𝑥(𝑞𝑦) is the symmetry flavor of 

the parameter space {𝑞𝑦}.  

If the continuous quaternionic function describes the density distribution of a set {𝑎𝑖
𝑥} of discrete 

objects 𝑎𝑖
𝑥, then this set must be attributed with the same symmetry flavor  𝑥. The real part 

describes the location density distribution and the imaginary part describes the displacement density 

distribution. 

8 Symmetry centers 
Each symmetry center corresponds to a dedicated subspace of the infinite dimensional separable 

Hilbert space. That subspace is spanned by the eigenvectors {|𝖘𝑖
𝑥〉} of a corresponding symmetry 

center reference operator 𝕾𝑥. Here the superscript  𝑥 refers to the type of the symmetry center. The 

type covers more than just the symmetry flavor. 

Symmetry flavors relate to affine Cartesian ordering. Each symmetry center will own a single 

symmetry flavor. The symmetry flavor of the symmetry center relates to the Cartesian coordinate 

system that acts as start for the spherical ordering. The combination of affine Cartesian ordering and 

spherical ordering puts corresponding axes in parallel. Spherical ordering relates to spherical 

coordinates. Starting spherical ordering with the azimuth corresponds to half integer spin. The 

azimuth runs from 0 to π radians. Starting spherical ordering with the polar angle corresponds to 

integer spin. The polar angle runs from 0 to 2π radians. These selections add to the type properties 

of the symmetry centers.  

The model suggests that symmetry centers are maintained by special mechanisms that ensure the 

spatial and dynamical coherence of the coupling of the symmetry center to the background space. 

Several types of such mechanisms exist. Each symmetry center type corresponds to a mechanism 

type. These mechanisms are not part of the separable Hilbert space. 

Symmetry centers are resources where the coherence ensuring mechanisms can take dynamic 

locations that are stored in quaternionic eigenvalues of dedicated operators, in order to generate 

coherent location swarms that represent point-like objects. The type of the point-like object 

corresponds to the type of the controlling mechanism.  

The basic symmetry center is independent of progression. Once created, a symmetry center persists 

until it is annihilated. However, during creation its ordering can be synchronized with selected 

progression steps. Any progression dependence that concerns a symmetry center is handled by a 

type dependent mechanism. The type depends on the symmetry flavor and on the spin. Further, it 

depends on other characteristics that will not be treated in this paper, but that will appear as 

properties of the point-like object that will be supported by the controlling mechanism. An example 

is the generation flavor of the point-like particle. In this way the same symmetry center type can 

support electrons, muons and tau particles. Symmetry flavor and spin can be related to ordering of 

the symmetry center. Generation flavor is a property of the controlling mechanism. 

The mechanisms that control the usage of symmetry centers act mostly in a cyclic fashion. When 

compared to mechanisms that care about particles, the cycles that occur in equivalent mechanisms 
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that care about corresponding anti-particles act in the reverse direction. As a consequence many of 

the properties of the anti-particles are the opposite of the properties of the corresponding particles. 

This holds for the sign of the symmetry related charge and it holds for the color charge, but it does 

not hold for the mass and for the energy of the (anti)particle. 

Symmetry centers have a well-defined spatial origin. That origin floats on the eigenspace of the 

reference operator ℛ⓪. Symmetry centers are formed by a dedicated category of compact anti-

Hermitian operators {𝕾𝑥}.  

An infinite dimensional separable Hilbert space can house a set of subspaces that each represent 

such a symmetry center. Each of these subspaces then corresponds to a dedicated spherically 

ordered reference operator 𝕾𝑥. The superscript  𝑥 distinguishes between symmetry flavors and 

other properties, such as spin and generation flavor. Symmetry centers correspond to dedicated 

subspaces that are spanned by the eigenvectors {|𝖘𝑖
𝑥〉} of the symmetry center reference operator 

𝕾𝑥. 

 

𝕾𝑥 = |𝖘𝑖
𝑥〉𝖘𝑖

𝑥〈𝖘𝑖
𝑥| 

 

𝕾𝑥†
=  −𝕾𝑥 

 

Only the location of the center inside the eigenspace of reference operator ℛ⓪ is a progression 

dependent value. This value is not eigenvalue of operator 𝕾𝑥. The location of the center inside ℛ⓪ 

is eigenvalue of a central governance operator ℊ. 

Symmetry centers feature a symmetry related charge that depends on the difference between the 

symmetry flavor of the symmetry center and the symmetry flavor of the reference operator ℛ⓪, 

which equals the symmetry flavor of the embedding continuum ℭ. The symmetry related charges 

raise a symmetry related field 𝜑. The symmetry related field 𝜑 influences the position of the center 

of the symmetry center in parameter space ℛ⓪ and indirectly it influences the position of the map 

of the symmetry center into the field that represents the embedding continuum ℭ. Both fields, 𝜑 and 

ℭ use the eigenspace of the reference operator ℜ as their parameter space. 

The closed subspaces that correspond to a symmetry center have a fixed finite dimension. This 

dimension is the same for all types of symmetry centers. This ensures that symmetry related charges 

all appear in the same short list. 

8.1 Synchronization via coupling 
The basic symmetry center is independent of progression. Any progression dependence that 

concerns a symmetry center is handled by a type dependent mechanisms that controls the usage of 

the symmetry center. The type dependent mechanism acts in a progression dependent fashion. On 

certain progression steps the mechanism selects a location from the symmetry center that will be 

used to embed a point-like object in the background space. 

The background space, is maintained by reference operator ℛ. Embedding the symmetry center into 

the eigenspace of this operator ensures the synchronization of the symmetry center with the 

background space. That is why the embedding occurs at instances that are selected from the 

(1) 

(2) 
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progression values, which are offered as eigenvalues by ℛ0 = (ℛ +  ℛ†)/2. However, the 

controlling mechanism does not embed the center location, but instead the mechanism uses a 

stochastic process in order to select a location somewhere inside the symmetry center. Further, not 

all eigenvalues {𝖘𝑖
𝑥} of 𝕾𝑥 will be used in the embedding process. A special operator ℴ that is 

dedicated to the type of the embedded point-like object describes the selected locations in its 

eigenvalues. Operator ℴ has an equivalent ℭ(ℴ) in the Gelfand triple. Function ℭ(𝑞)maps 

eigenvalues of ℴ onto continuum ℭ. 

The embedding location represents a point-like object that resides in the symmetry center. That 

embedding location is mapped onto the embedding continuum, which resides as the eigenspace of 

operator ℭ in the Gelfand triple ℋ. This continuum is defined as a function ℭ(𝑞) over parameter 

space ℜ. 

The locations in the symmetry center that for the purpose of the embedding are selected, form a 

coherent location swarm and a hopping path that characterize the dynamic behavior of the point-like 

object. The embedding process deforms continuum ℭ.This embedding process is treated in more 

detail in [14]. 
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9 Central governance 
The eigenvalues of the central governance operator ℊ administer the relative locations of the 

symmetry centers with respect to the reference operator ℛ⓪ which resides in the separable Hilbert 

space ℌ and maps to the reference continuum ℜ⓪ in the Gelfand triple ℋ. A further map projects 

onto the embedding continuum ℭ.The central governance operator ℊ resides in the separable Hilbert 

space ℌ. Operator ℊ has an equivalent ℭ(ℊ) in the Gelfand triple. Function ℭ(𝑞)maps eigenvalues of 

ℊ onto continuum ℭ. 

The reference continuum ℜ⓪ acts as a parameter space of the function 𝜑(𝑞) that specifies the 

symmetry related field 𝜑, which is eigenspace of the corresponding operator.  

Each symmetry center owns a symmetry related charge, which is located at its geometric center. 

Each symmetry related charge owns an individual field that contributes to the overall symmetry 

related field 𝜑. 

The reference continuum ℜ⓪ also acts as a parameter space of the function ℭ(𝑞) that specifies the 

embedding continuum ℭ, which is eigenspace of the corresponding operator ℭ. 

A fundamental difference exists between field 𝜑 and field ℭ. However both fields obey the same 

quaternionic differential calculus. The difference originates from the artifacts that cause the 

discontinuities of the fields. In the symmetry related field 𝜑 these artifacts are the symmetry related 

charges. In the embedding continuum ℭ these artifacts are the embedding events. What happens in 

not too violent conditions and in not too wide ranges will be described by the wave equation of the 

corresponding field and will be affected by the local and current conditions. Since the elementary 

point-like objects reside inside their individual symmetry center, the embedding continuum will also 

be affected by what happens to the symmetry centers. 

Double differentiation of field 𝜑 shows the relation between 𝜑 and ℊ. Function ℭ(𝑞) maps the 

eigenspace of ℊ onto continuum ℭ. 

 

∇∗∇ 𝜑 = ℭ(ℊ) 

 

9.1 Embedding symmetry centers 

The well-ordered eigenspace of a quaternionic normal operator ℛ⓪ that resides in an infinite 

dimensional separable Hilbert space acts as a reference operator from which the parameter space 

ℜ⓪ of the embedding continuum ℭ will be derived. This parameter space resides as continuum 

eigenspace of a corresponding operator ℜ⓪ in the Gelfand triple. This parameter space also acts as 

parameter space of a symmetry related field 𝜑. It is sparsely covered by locations of symmetry 

centers. The central governance operator ℊ administers these locations. The symmetry centers 

contain symmetry related charges. The locations of these charges are influenced by the symmetry 

related field 𝜑.  

  

(1) 
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10 Modules 
Modules are represented by closed subspaces, but not every closed subspace represents a module or 

modular system. In fact only a small minority of the closed subspaces will act as actual modules. 

What renders a closed subspace into a module and what combines modules into subsystems or 

systems? The answers to these questions can only be found by investigating the contents of the 

closed subspaces. 

A special category of modules are elementary modules. Elementary modules are not constituted of 

other modules. They are the atoms of the orthomodular lattice. All elementary modules reside on a 

their own individual symmetry center. 

10.1 Module content 
In free translation, the spectral theorem for normal operators that reside in a separable Hilbert space 

states: “If a normal operator maps a closed subspace onto itself, then the subspace is spanned by an 

orthonormal base consisting of eigenvectors of the operator.” The corresponding eigenvalues 

characterize this closed subspace. 

It is possible to select a quaternionic normal operator for which a subset of the eigenvectors span the 

closed subspace and the corresponding eigenvalues describe the dynamic geometric data of this 

module. By ordering the real values of these eigenvalues, the geometric data become functions of 

what we will call progression. 

 Progression window 
Here we only consider elementary modules for which the content is well-ordered. This means that 

every progression value is only used once. 

For the most primitive modules the closed subspace may be reduced until it covers a generation 

cycle in which the statistically averaged characteristics of the module mature to fixed values. The 

resulting closed subspace acts as a sliding progression window. 

The sliding window separates a deterministic history from a partly uncertain future. Inside the sliding 

window a dedicated mechanism fills the eigenspace of operator ℴ = |𝑎𝑗〉𝑎𝑗〈𝑎𝑗|. The mechanism is a 

function of progression. If it is a cyclic function of progression, then the module is recurrently 

regenerated. 

10.2 Symmetry center as platform 
All elementary modules are supposed to reside in an individual symmetry center. However, at every 

progression instant the elementary module occupies only one location of the symmetry center. 

During the regeneration cycle of the module the occupied locations form a coherent location swarm 

and at the same time the locations form a hopping path. Symmetry centers float on an embedding 

medium. That embedding continuum corresponds to a well-ordered normal reference operator, 

whose eigenvectors span the whole infinite dimensional separable Hilbert space. 

10.3 Map into a continuum 
By imaging the discrete eigenvalues into a reference continuum, the discrete eigenvalues form a 

swarm {𝑎𝑗
𝑥}, which is a subset of the rational quaternions {𝖘𝑖

𝑥}  that form the symmetry center on 

which the module resides. At the same time the discrete eigenvalues form a hopping path. With 

other words the swarm forms a spatial map of the dynamic hopping of the point-like object.  
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We use a map ℳ1 of the swarm into the reference continuum  that is the eigenspace of the 

reference operator ℜ⓪, which resides in the Gelfand triple ℋ. 

In the model, two maps ℳ1 and ℳ2 are relevant. The first map ℳ1 has the flat reference continuum 

ℜ⓪ = {𝑞⓪} as target. This reference continuum is not affected by the imaging. Only the locations 

of the symmetry centers are affected by the influence of the symmetry related field 𝜑. The second 

map ℳ2 has the curved continuum ℭ as target. ℭ is affected by the embedding process.  

In the symmetry center the hopping path is closed. If the image of the hopping path is also closed in 

the reference continuum ℜ⓪, then the swarm stays at the same location in the map ℳ1 onto the 

reference continuum ℜ⓪. This does not need to be the case for the map ℳ2 into the embedding 

continuum ℭ. The two target continuums ℜ and ℭ reside as eigenspaces in the Gelfand triple. 

We will interpret the two maps to work in succession. The second map ℳ2 maps the reference 

continuum ℜ⓪ that resides in the Gelfand triple into the embedding continuum ℭ, which also 

resides in the Gelfand triple. 

10.4 Coherent elementary modules  
Coherent elementary modules are directly related to a symmetry center. The elements of the 

coherent location swarm that characterizes the coherent elementary module are taken from the 

symmetry center. In the map to the reference continuum, coherent elementary modules feature a 

hopping path. Inside the symmetry center the hopping path is closed. Further, for coherent 

elementary modules, the map of the location swarm into the reference continuum corresponds to an 

operator that is defined by a continuous function. That continuous function is a normalized location 

density distribution and it has a Fourier transform. 

Coherence is ensured by a mechanism that selects the eigenvalues such that a coherent swarm is 

generated. 

Coherent elementary modules are characterized by the symmetry flavor of their symmetry center 

𝕾𝑥. When mapped into a reference continuum that is eigenspace of reference operator 

ℜ⓪ = |𝑞⓪〉𝑞⓪〈𝑞⓪| the module is characterized by a symmetry related charge, which is located at 

the center of symmetry. The symmetry related charge is a property of the local symmetry center 𝕾𝑥. 

The size and the sign of the symmetry related charge depends on the difference of the symmetry 

flavor of the local symmetry center with respect to the symmetry flavor of the reference continuum 

ℛ⓪. The coherent swarm {𝑎𝑗
𝑥} inherits the symmetry flavor of the local symmetry center 𝕾𝑥. 

However, the controlling mechanism picks the elements of this set in a spatially stochastic way 

instead of in a spatially ordered fashion 

10.5 The function of coherence 
Embedding of point-like objects into the affected embedding continuum spreads the reach of the 

separate embedding locations and offers the possibility to bind modules. The spread of the 

embedded point-like object is defined by the Green’s function of the non-homogeneous wave 

equation. However, spurious embedding locations have not enough strength and not enough reach 

to implement an efficient binding effect. In contrast, coherent location swarms offer enough locality 

and enough strength in order to bind two coherent swarms that are sufficiently close. 
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Imaging of the location swarm into the reference continuum is only used to define coherence and to 

indicate the influence of the symmetry related charges. The embedding into the affected continuum 

is used to exploit the corresponding potential binding effect of the swarm. 
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11 The orthomodular base model 
We have achieved a level in which the major chain of mathematical structures does no longer offer 

an inescapable self-evident extension. The model uses separable and non-separable Hilbert spaces in 

order to store numeric data that can describe a series of discrete objects that are embedded in a 

continuum. The real parts of the parameters can be used to order the parameters and the target 

values of functions. If properly ordered these descriptions can represent a sequence of static status 

quos. However, this model contains no means to control the coherence between the subsequent 

members of the sequence. 

We will call this stage of the model development “The orthomodular base model”. Any further 

development of the model involves the insertion of mechanisms that ensure the coherence between 

the subsequent members of the sequence of static status quos. 

The orthomodular base model describes the relational structure of modular systems. Via the 

management mechanisms it can add characteristics to the modules. These characteristics are based 

on eigenvalues of normal operators that reside in the separable Hilbert space and have eigenvectors 

in the closed subspace that represents the module. The Hilbert spaces only support storage and 

description. The management mechanisms represent the actual drivers of the model. 

The numeric data that occur in the orthonormal base model must be taken from division rings. The 

most elaborate choice for these data are quaternions. The peculiarities of these quaternions 

influence the features and the behavior of the discrete objects and the fields that occur in the 

orthonormal model. 

Many of these peculiarities are hardly known by scientists. As far as they apply to this paper these 

subjects are treated in the Appendix. 

Concepts such as symmetry centers and coherent location swarms are not part of the orthonormal 

base model, but these features make use of the structure and the properties of the orthonormal 

base model. The same holds for the symmetry related field and the embedding continuum. 
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12 Fields 
Operators can represent quaternionic functions. This is applicable both in the separable Hilbert space 

and in the Gelfand triple.  

In this paper, fields are continuums that are target spaces of quaternionic functions that define 

eigenspaces of operators, which reside in the Gelfand triple. 

Quaternionic functions and their differentials can be split in a real scalar functions and imaginary 

vector functions. 

Quaternionic functions can represent fields and continuums, but they can also represent density 

distributions of discrete dynamic locations. Quaternionic differentiation is treated in the appendix. 

Double differentiation of a basic field leads to a non-homogeneous wave equation that relates the 

basic field to the corresponding density distributions of discrete dynamic locations of the artifacts 

that cause the local discontinuities of the basic field. 

The symmetry related field 𝜑 and the embedding continuum ℭ are basic fields. 

The symmetry related field 𝜑 is based on the existence of symmetry centers. 

The embedding continuum ℭ is based on the existence of a deformable function that describes the 

embedding of discrete artifacts that reside on symmetry centers and are mapped onto ℭ. 

12.1 Maps 
The orthomodular base model consist of two related Hilbert spaces.  

 A separable Hilbert space ℌ that acts as a descriptor of the properties of all discrete objects.  

 A non-separable Hilbert space ℋ that acts as a descriptor of the properties of all continuums. 

The non-separable Hilbert space ℋ embeds the separable Hilbert space ℌ. The two Hilbert spaces 

are coupled by the well-ordered reference operator ℛ⓪ and reference operator ℜ⓪. 

Controlling mechanisms fill the module related subspaces with data and embed Hilbert space ℌ into 

Hilbert space ℋ. 

A closed subspace in ℌ maps into a subspace of ℋ. Only countable subspaces of ℋ have a 

sensible dimension. 

12.2 Parameter spaces 
The reference operators ℜ𝑥 that reside in the Gelfand triple delivers simple fields that can act as flat 

parameter spaces. These fields are not affected by the maps. Reference operator ℜ⓪ acts as the 

playground of symmetry centers that define local symmetry related charges.  

Symmetry centers are special forms of parameter spaces that reside in the separable Hilbert space. 

They also have a representation in the Gelfand triple. In the separable Hilbert space they have a fixed 

finite dimension. 

Symmetry centers are spanned by the eigenvectors {|𝖘𝑖
𝑥〉} of a compact symmetry center reference 

operator 𝕾𝑥. The superscript  𝑥 distinguishes between symmetry flavors. 
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12.3 Embedding field 

In ℋthe operator ℭ = |𝑞⓪〉ℭ(𝑞⓪)〈𝑞⓪| is defined by function ℭ(𝑞⓪) and represents an 

embedding continuum ℭ. This continuum gets affected by the embedding process and thus 

deforms dynamically. 

The embedding continuum is always and everywhere present. It is deformed and vibrated by 

discrete artifacts that are embedded in this field. 

In ℋ, the representations of symmetry centers float over the parameter space ℜ⓪ of the 

embedding continuum. The locations of the symmetry centers are affected by the symmetry 

related field 𝜑. 

12.4 Symmetry related fields 
Due to their four dimensions, quaternionic number systems exist in sixteen versions that only differ 

in their symmetry flavor. The elements of coherent sets of quaternions belong to the same symmetry 

flavor. It is the symmetry flavor of the symmetry center that supports the location swarm. 

Differences between symmetry flavors of a symmetry center and the symmetry flavor of the 

eigenspace of the surrounding reference operator ℛ⓪ cause the presence of a symmetry related 

charge at the location of a symmetry center. The countable reference parameter space ℛ⓪ in the 

separable Hilbert space ℌ maps onto the continuum parameter space ℜ⓪, which resides in the 

Gelfand triple ℋ. 

Symmetry related charges are point-like objects. These charges generate a field 𝜑 that differs from 

the embedding continuum. This symmetry related field also plays a role in the binding of modules, 

but that role differs significantly from the role of the embedding continuum ℭ. 

Symmetry related charges are located at the geometric centers of local symmetry centers. The size 

and the sign of the symmetry related charge depends on the difference of the symmetry flavor of the 

symmetry center with respect to the symmetry flavor of the embedding continuum. Symmetry 

centers that belong to different symmetry related charges try to compensate the symmetry 

differences. Equally signed charges repel and differently signed charges attract. The attached 

coherent location sets that are attached to the symmetry centers will be affected by these effects.  

The symmetry related field can affect the locations of the symmetry related charges in the first map 

ℳ1. This means that with the centers of symmetry also the corresponding coherent swarms are 

relocated. This can be interpreted as if the symmetry related field 𝜑 acts as a deformed parameter 

space for the embedding continuum ℭ. Here we ignore this possibility and consider ℜ⓪ as the flat 

parameter space of ℭ. 

The symmetry related charges do not directly affect the embedding continuum ℭ. Their effects are 

confined to map ℳ1. However, with their action the symmetry related charges relocate the centers 

of the corresponding coherent swarms. The elements of the swarms deform the embedding 

continuum. 

The symmetry related charges are point charges. As a consequence the range of the field that is 

generated by a single charge is rather limited. The corresponding Green’s function diminishes as 1/r 

with distance r from the charge ℭ. 

Fields of point charges superpose. A wide spread distribution of symmetry related point charges can 

generate a corresponding wide spread symmetry related field. Still, relevant values of the symmetry 

related field depend on the nearby existence of symmetry related charges. 
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Coherent swarms reside on symmetry centers. The coherent swarms are recurrently regenerated. 

The symmetry centers are not recurrently generated, but instead they can get relocated. Together 

with these symmetry centers the corresponding symmetry related charges and the residing swarms 

get relocated. 

12.5 Free space 

In the separable Hilbert space, the eigenvectors of the well-ordered reference operator ℛ⓪ that do 

not belong to a module subspace together span free space. The elementary modules reside on 

symmetry centers whose center locations float on the eigenspace of ℛ⓪.  

At every progression instant only one element of the swarm {𝑎𝑗
𝑥} is used. Thus “free space” 

surrounds all elements of the swarm. It forms the continuum ℭ, which is deformed by the  

embedding of the selected swarm element.  

13 Field dynamics 
In the model that we selected, the dynamics of the fields are described by quaternionic differential 

calculus. Apart from the eigenspaces of reference operators and the symmetry centers we 

encountered two fields that are defined by quaternionic functions and corresponding operators. One 

is the symmetry related field 𝜑 and the other is the embedding field ℭ.  

𝜑 determines the dynamics of the symmetry centers. In fact the symmetry related charges and field 

𝜑 influence each other. ℭ gets deformed and vibrated by the recurrent embedding of point-like 

elementary particles that each reside on an individual symmetry center.  

Apart from the way that they are affected by point-like artifacts that disrupt the continuity of the 

field, both fields obey, under not too violent conditions and over not too large ranges, the same 

differential calculus.  

Under rather general conditions the change of a quaternionic function 𝑓(𝑞) can be described by: 

 

𝑑𝑓(𝑞) = 𝑐𝜏 𝑑𝑞𝜏 + 𝑐𝑥 𝑑𝑞𝑥 + 𝑐𝑦 𝑑𝑞𝑦 + 𝑐𝑧 𝑑𝑞𝑧 = 𝑑𝑓𝜈(𝑞)𝑒𝜈 = ∑
𝜕𝑓

𝜕𝑞𝜇
𝑑𝑞𝜇

𝜇=0…3

= 𝑐𝜇(𝑞)𝑑𝑞𝜇 

 

Here the coefficients 𝑐𝜇(𝑞) are full quaternionic functions. 𝑑𝑞𝜇 are real numbers. 𝑒𝜈 are 

quaternionic base vectors. 

Under more moderate and sufficiently short range conditions the function behaves more linearly.  

 

𝑑𝑓(𝑞) = 𝑐0
𝜏 𝑑𝑞𝜏 + 𝑐0

𝑥 𝒊 𝑑𝑞𝑥 + 𝑐0
𝑦

 𝒋 𝑑𝑞𝑦 + 𝑐0
𝑧 𝒌 𝑑𝑞𝑧 = 𝑐0

𝜇(𝑞) 𝑒𝜇 𝑑𝑞𝜇 

 

Here the coefficients 𝑐0
𝜇(𝑞) are real functions.  

 

 

(1) 

(2) 
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Thus, in a rather flat continuum we can use the quaternionic nabla ∇. 

 

∇= {
𝜕

𝜕𝜏
,

𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
} =  

𝜕

𝜕𝜏
+ 𝒊

𝜕

𝜕𝑥
+ 𝒋

𝜕

𝜕𝑦
+ 𝒌

𝜕

𝜕𝑧
= 𝛻0 +  𝜵 

 

𝛷 = 𝛷0 + 𝜱 = 𝛻𝜓 = (𝛻0 +  𝜵)(𝜓0 + 𝝍) 

 

𝛷0 = 𝛻0𝜓0 − ⟨𝜵, 𝝍⟩ 

 

𝜱 = 𝛻0𝝍 + 𝜵𝜓0 ± 𝜵 × 𝝍 

 

In this form the differential equations can still describe point-like disruptions of the continuity of the 

field.  

Double differentiation will then result in the quaternionic wave equation: 

 

𝜌 = 𝜌0 + 𝝆 = 𝛻∗𝛻𝜓 = (𝛻0 −  𝜵)(𝛻0 +  𝜵)(𝜓0 + 𝝍) = {𝛻0𝛻0 +  〈𝜵, 𝜵〉}𝜓 

=
𝜕2𝜓

𝜕𝜏2
+

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
 

 

Here 𝜌 is a quaternionic function that describes the density distribution of a set of point-like artifacts 

that disrupt the continuity of function 𝜓(𝑞). In case of a single static artifact, the solution 𝜓 will 

describe the corresponding Green’s function. 

Function 𝜓(𝑞) describes the mostly continuous field 𝜓. 

The wave equation can be split into two continuity equations: 

𝛷 = 𝛻𝜓 

 

𝜌 = 𝛻∗𝛷 

 

If 𝜓 and Φ are normalizable functions and ‖𝜓‖ = 1, then with real 𝑚 and ‖𝜁‖ = 1 

 

𝛻𝜓 = 𝑚 𝜁 

 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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13.1 Fourier equivalents 
In this quaternionic differential calculus, differentiation is implemented as multiplication. 

This is revealed by the Fourier equivalents of the equations: 

𝛷̃ = 𝛷̃0 + 𝜱̃ = 𝑝 𝜓̃ = (𝑝0 +  𝒑)(𝜓̃0 + 𝝍̃) 

 

𝛷̃0 = 𝑝0𝜓̃0 − ⟨𝒑, 𝝍̃⟩ 

 

𝜱̃ = 𝑝0𝝍̃ + 𝒑𝜓̃0 ± 𝒑 × 𝝍̃ 

 

The equivalent of the quaternionic wave equation is: 

 

𝜌̃ = 𝜌̃0 + 𝝆̃ = 𝑝∗𝑝 𝜓̃ = {𝑝0𝑝0 +  〈𝒑, 𝒑〉}𝜓̃ 

 

The continuity equations result in: 

𝛷̃ = 𝑝𝜓̃ 

 

𝜌̃ = 𝑝∗𝛷̃ 

13.2 Poisson equations 
The Poisson equation is a special condition of the non-homogeneous wave equation in which some 

terms are zero or have a special value.  

 

∇∗∇𝜓 = ∇0∇0𝜓 + ⟨𝛁, 𝛁⟩𝜓 = 𝜌 

 

∇0∇0𝜓 = −𝜆2 𝜓 

 

⟨𝛁, 𝛁⟩𝜓 − 𝜆2𝜓 =  𝜌 

 

The 3D solution of this equation is determined by the screened Green’s function 𝐺(𝑟). 

Green functions represent solutions for point sources. 

 

𝐺(𝑟) =
exp(−𝜆 𝑟)

𝑟
 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(1) 

(2) 

(3) 

(4) 
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𝜓 =  ∭ 𝐺(𝒓 − 𝒓′) 𝜌(𝒓′) 𝑑3𝒓 ′ 

 

G(r) has the shape of the Yukawa potential [11] 

In case of 𝜆 = 0 it is the Coulomb or gravitation potential of a point source. 

13.3 Solutions of the homogeneous wave equation 
Solutions of the homogeneous wave equations are of special interest because for odd numbers of 

participating dimensions this equation has solutions in the form of wave-fronts. 

The homogeneous wave equation is given by: 

 

∇∗∇𝜓 = ∇0∇0𝜓 + ⟨𝛁, 𝛁⟩𝜓 =
𝜕2𝜓

𝜕𝜏2
+

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
= 0 

 

∇∗∇𝜓0 = 0 

 

Equation (2) has three-dimensional spherical wave fronts as one group of its solutions. 𝜓0 is a scalar 

function. By changing to polar coordinates it can be deduced that a solution is given by: 

 

𝜓0(𝑟, 𝜏) =
𝑓0(𝒊𝑟 − 𝑐𝜏)

𝑟
 

 

Where 𝑐 = ±1 and 𝒊 represents a base vector in radial direction. In fact the parameter 𝒊𝑟 − 𝑐𝜏 of 𝑓0 

can be considered as a complex number valued function. 

 

∇∗∇𝝍 = 0 

 

Here 𝝍 is a vector function. 

Equation (4) has one-dimensional wave fronts as one group of its solutions: 

 

𝝍(𝑧, 𝜏) = 𝒇(𝒊𝑧 − 𝑐𝜏) 

 

Again the parameter 𝒊𝑧 − 𝑐𝜏 of 𝒇 can be interpreted as a complex number based function. 

The imaginary 𝒊 represents the base vector in the 𝑥, 𝑦 plane. Its orientation 𝜃 may be a function of 𝑧. 

(5) 

(1) 

(2) 

(3) 

(4 

(5) 
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That orientation determines the polarization of the one-dimensional wave front. 
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14 Embedding 

14.1 Selection 
At each progression instant only a single eigenvalue 𝑎𝑖

𝑥 is selected from the eigenspace of the 

symmetry center reference operator 𝕾𝑥. In a regeneration cycle a complete coherent swarm 
{𝑎𝑖

𝑥} of eigenvalues is selected. The set {𝑎𝑖
𝑥} correspond to sets of eigenvectors {|𝑎𝑖

𝑥〉} that span a 

corresponding subspace. This restricts reference operator 𝕾𝑥= |𝖘𝑖
𝑥〉𝖘𝑖

𝑥〈𝖘𝑖
𝑥| to operator 

ℴ 𝑥 = |𝑎𝑗
𝑥〉𝑎𝑗

𝑥〈𝑎𝑗
𝑥|. The corresponding closed subspace acts as a sliding window within a larger 

subspace that covers all progression values, including the history of the sliding window. The 
sliding window covers the recurrent regeneration of the set {𝑎𝑖

𝑥}. During this period the 

statistical properties of the set stabilize. The set {𝑎𝑖
𝑥} inherits the symmetry flavor of the 

symmetry center. Its elements are selected in a stochastic fashion that is independent of the 

spatial ordering of the symmetry center. 

14.2 Regeneration and detection 
The regeneration of an elementary particle by the controlling mechanism involves the creation 

of a new embedding location. Detection stops this regeneration process. At detection, the set 
{𝑎𝑖

𝑥} is no longer filled by taking locations from the members of the set {𝖘𝑖
𝑥}.  

After regeneration of the complete set {𝑎𝑖
𝑥}, the members are reordered from the stochastic 

generation order to the ordering of parameter space ℛ⓪ and during the map onto ℭ they are 

blurred with the Green’s function of this embedding continuum. This transfers the operator ℴ, 

which describes the regeneration in the symmetry center 𝕾𝑥 into a differently ordered operator 
𝜌 that resides in the Gelfand triple ℋ. The defining function 𝜌(𝑞) of operator 𝜌 describes the 

triggers in the non-homogeneous wave equation, which describes the behavior of ℭ. Function 

𝜌(𝑞) uses ℜ⓪ as its parameter space. ℴ describes the hopping of the point-like object, while 𝜌 

describes the density distribution of the corresponding location swarm. 

14.3 The mapper 
The mapper ℘𝑥 maps coherent swarms {𝑎𝑖

𝑥} onto the continuum ℭ defined by function ℭ(𝑞).  

The action of the mapper can be split into four steps.  

The three first steps form a map from a subspace of the eigenspace of 𝕾𝑥 to the corresponding 

eigenspace of ℜ⓪.  

The first step converts eigenspace ℴ 𝑥 into ℴ⓪. It only switches the symmetry flavor of the 

swarm operator ℴ 𝑥. 

The second step maps ℴ⓪ onto ℛ⓪. This involves reordering of the set of eigenvalues. 

The mapper ℘𝑥 is affected by the movements of the symmetry related charges that are initiated 

by the symmetry related field 𝜑. It means that the symmetry centers on which the coherent 

location swarms reside are relocated due to the effects of the symmetry related field on the 

locations of the symmetry related charges. The symmetry related charges are located at the 

geometric centers of the symmetry centers. They are point-like objects. The symmetry related 

field is constituted from the contributions that are generated by the individual symmetry related 

charges. 

The symmetry related field 𝜑 uses ℜ⓪ as its parameter space. 
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The third step embeds ℌ into ℋ by mapping ℛ⓪ to ℜ⓪.It is a map between quaternions with 

rational valued components and a continuum consisting of quaternions that have real valued 

components. The discrete set and the continuum have the same symmetry flavor, which is the 

reference symmetry flavor. 

The fourth step is performed completely inside ℋ by operator ℭ. This involves the blurring of 

the elements of {𝑎𝑖
𝑥}. 

In the four steps operator ℴ is reordered and blurred, such that operator 𝜌 results. 

The symmetry flavor switch occurs in ℌ and the deformation of the continuum by the 

embedding process occurs in ℋ. 

Apart from the conversion of the symmetry flavor the mapper ℘𝑥equals the map to the 

embedding continuum. Thus 

℘⓪(𝑞⓪) = ℭ(𝑞⓪) 

14.4 Coherence 
Closed subspaces of a separable Hilbert space are characterized by a countable set of 

eigenvalues of a normal operator that maps this subspace on itself.  

Due to the four dimensions of quaternions, quaternionic number systems exist in 16 versions 

that only differ in their discrete symmetry set. For example right handed quaternions exist and 

left handed quaternions exist.  

Dedicated mechanisms ensure the coherence of the set of selected eigenvalues. For each 
coherent set {𝑎𝑖

𝑥} the responsible mechanism takes the eigenvalues from the eigenspace of a 

symmetry center reference operator 𝕾𝑥. 

A coherent set of selected discrete quaternionic eigenvalues is defined by two main criteria: 

1. All members of the set {𝑎𝑖
𝑥} are taken from the same symmetry center. 

a. All members of the set belong to the same symmetry flavor.  

b. All members of the set have the same spin value. 

c. The selected set is well-ordered. 

2. The s.et can be described by a continuous density distribution. 

An ordered coherent set is ordered with respect to the real parts of its members. In a well-
ordered coherent set all members have different real parts. 

The second requirement involves a map ℘𝑥({𝑎𝑖
𝑥}) onto a continuum that embeds the elements 

{𝑎𝑖
𝑥} of the coherent set. The continuum is defined by the quaternionic function  ℭ(𝑞⓪), which 

has a flat parameter space ℜ⓪ that is spanned by a quaternionic number system {𝑞⓪}. The real 

valued continuous location density distribution 𝜌0(𝑞⓪) describes the density distribution of set 

{𝑎𝑗
𝑥} within set {𝑞𝑖

𝑥}. In fact this density distribution is the real part of the defining function of 

operator 𝜌. However, in the eigenspace of 𝜌0 the eigenvalues are reordered and blurred when 

compared to the eigenvalues of operator ℴ0. 

 

ℴ = |𝑎𝑗
𝑥〉𝑎𝑗

𝑥〈𝑎𝑗
𝑥| 

 

(1) 
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The defining function ℴ(𝖘𝑖
𝑥) of operator ℴ that resides in the symmetry center is given by: 

 

ℴ(𝖘𝑖
𝑥) = ℴ0(𝖘𝑖

𝑥) + 𝓸(𝖘𝑖
𝑥) 

 

The well-ordered coherent set {𝑎𝑖
𝑥} describes a well-defined hopping path. Also the hops form a 

discrete distribution. The distribution of the hops is described by 𝓸. The landing locations form a 

well ordered swarm and the hops are also ordered with respect to progression. However, the 

subsequent hops have quite stochastic directions and sizes. The continuous location density 

distribution 𝜌0(𝑞⓪) that describes the set of locations also characterizes the distribution of the 

hop landing locations. Both are functions of the progression that is stored in the real parts of the 

eigenvalues.  

Function 𝜌(𝑞⓪) describes the defining function of operator 𝜌. 

𝜌(𝑞⓪) = 𝜌0(𝑞⓪) + 𝝆(𝑞⓪). 

Operator 𝝆 does not describe the hops. It describes the displacement of the blurred location 

swarm. The self-adjoint part of ℴ is well ordered with respect to progression, but it imaginary 

part 𝓸 is not spatially ordered in agreement with the symmetry flavor of the symmetry center. 

Instead the controlling mechanism uses a stochastic process for the selection of elements of the 

coherent set {𝑎𝑗
𝑥}. This set can be described by a dynamic continuous density distribution 

𝜌0(𝑞⓪), which may also have a Fourier transform 𝜌̃0(𝑝). In that case we call the set a coherent 

swarm. The coherent swarm owns a displacement generator. This means that at first 

approximation the swarm {𝑎𝑗
𝑥} moves as one unit. Having a Fourier transform is a higher level 

coherence requirement. 

14.5 Embedding set elements 
Embedding a single element 𝑎𝑗

𝑥 of the subset {𝑎𝑗
𝑥} of the eigenspace of ℴ 𝑥 in continuum ℭ involves 

first the conversion to the reference symmetry flavor. Next this element is mapped from the 

symmetry center to the eigenspace of ℛ⓪ in ℌ and subsequently into to the eigenspace of ℜ⓪ in 

ℋ. The symmetry related fields may have caused a relocation of the symmetry center with respect to 

ℛ⓪. Finally the discrete quaternion is embedded as a discrete artefact in continuum ℭ.  

Locally the curved continuum ℭ is represented by 𝜓, which usually is nearly flat. In that case, for 𝜓 

we can use the quaternionic nabla ∇. 

∇= {
𝜕

𝜕𝜏
,

𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
 } 

𝜓 is considered to cover the image of the local symmetry center. Thus, it covers the images of all 

elements of {𝑎𝑗
𝑥}. This makes 𝜓 a normalizable function. 

The duration of the embedding is very short and is quickly released. Current mathematics lacks a 

proper description of the full embedding process, but it already contains equations that properly 

describe the situation before, after and during the embedding. 

What happens under not too violent conditions and over not too long ranges can be described by the 

non-homogeneous wave equation. 

(2) 

(1) 
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∇∇∗𝜓 = ∇0∇0𝜓 + ⟨𝛁, 𝛁⟩𝜓 = 𝜌𝑗  

 

The index 𝑗 indicates that here only a single embedding of the point-like object is treated. Before and 

after the embedding 𝜌𝑗  equals zero. In this condition any solution of the homogeneous wave 

equation will proceed as it did before. 

During the embedding 𝜌𝑗  represents the embedded discrete quaternion. The embedding results in 

the emission of a spherical wave front, which is a solution of the homogeneous wave equation. The 

non-homogeneous wave equation may be limited by special conditions: 

 

∇0∇0𝜓 = −𝜆2 𝜓 

 

This reduces the non-homogeneous wave equation to a screened Poisson equation: 

 

⟨𝛁, 𝛁⟩𝜓 − 𝜆2𝜓 =  𝜌𝑗 

 

The 3D solution of this equation is determined by the screened Green’s function 𝐺(𝑟). 

Green functions represent solutions for point sources. 

 

𝐺(𝑟) =
exp(−𝜆 𝑟)

𝑟
 

 

𝜓 =  ∭ 𝐺(𝒓 − 𝒓′) 𝜌(𝒓′) 𝑑3𝒓 ′ 

 

The continuum is touched and as a reaction it gets curved. The embedded particle will vanish, but 

traces in the continuum stay and represent the curvature. However, also these traces fade away.  

Solutions of the wave equation can be found via the continuity equations: 

 

∇𝜓 = 𝜙 ; ∇∗𝜙 = 𝜌𝑗 

 

And 

 

∇∗𝜓 = 𝜁 ; ∇ 𝜁 = 𝜌𝑗 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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Solutions of the homogeneous wave equation that cover an odd number of dimensions are known to 

represent wave fronts or combinations of wave fronts. These wave fronts proceed with fixed speed c. 

However, due to their diminishing amplitude, the spherical wave fronts fade away. 

Embedding a single element of {𝑎𝑗
𝑥} may cause the emission of a single spherical wave front. The 

amplitude of spherical wave fronts diminishes as 1/r with distance r from the source. This is also the 

form of the Green’s function of the Poisson equation for the three dimensional isotropic case. This fact 

forms the origin of the curvature of the embedding continuum 𝜓. 

Embedding a single hop may cause the emission of a single one-dimensional wave front. The amplitude 

of one-dimensional wave fronts keeps constant. The direction of the one dimensional wave front 

relates to the direction of the hop. This phenomenon may represent quanta that leave or enter the 

object that is represented by the swarm {𝑎𝑗
𝑥}. 

14.6 Embedding the full set 
If the full set is considered, then this means that the view integrates over the full cycle of progression 

steps that represent the generation of the swarm {𝑎𝑗
𝑥}. 

If embedding of the full set {𝑎𝑗
𝑥} is considered, then 𝜌 represents the density distribution of the full 

set. In that case the continuity equations: ∇ 𝜁 = 𝜌 and ∇∗𝜙 = 𝜌 determine what happens to the 

embedding continuum 𝜓, which locally represents ℭ. As already indicated, due to the extra curvature 

the map of 𝜌 may flow relative to 𝜓. The set {𝑎𝑗
𝑥} is well-ordered with respect to progression. It means 

that each of its elements only exists during a small interval. Before that interval the element did not 

exist. It is generated by a stochastic mechanism. After the embedding this element of {𝑎𝑗
𝑥} vanishes 

into history. Only its value is stored in an eigenvalue of operator ℴ 𝑥 = |𝑎𝑗
𝑥〉𝑎𝑗

𝑥〈𝑎𝑗
𝑥| that maps the 

subspace spanned by {|𝑎𝑗
𝑥〉} onto itself. The operator ℴ 𝑥 and the corresponding subspace have a 

dynamic definition. That definition covers a certain period, which represents a sliding progression 

window. 

In the embedding continuum ℭ, the traces of what happened are the emitted vibrations and wave 

fronts that independent of the progression window keep proceeding. The spherical wave fronts do not 

vanish, but they fade away. With them the deformation also fades away. However, the recurrent 

embedding process keeps this deformation alive in a dynamical fashion. It drags the deformation with 

the subspace that represents the corresponding module.  

The averaged Green’s functions now indicate the averaged effects of the recurrent embedding on the 

deformation of 𝜓. The result is that the corresponding potential no longer represents a singularity. 

14.7 Subspace dimension 
In ℌ the dimension of the subspace that represents the set {𝑎𝑗

𝑥} has a clear significance. In order to 

comprehend what this dimension and the spread of the set do to the function 𝜓 we use the Green’s 

function. The Green’s function represents the influence of the embedding of a single point-like 

artifact into 𝜓. That artifact can be a landing point or a hop. If we do this for the three dimensional 

case, then the shape of the Green’s function is 𝑔𝑗 = 1/𝑟.  

We replace 𝜌𝑗  by 𝜌/𝑁, multiply by the Green’s function 𝑔𝑗 and integrate over the space covered by 

𝜓. Here 𝑁 represents the number of elements in the set. 𝜌𝑗  represents the effect of the single 

element 𝑎𝑗
𝑥. For example, in case of an isotropic Gaussian distribution 𝜌/𝑁 the contributions to the 
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integral will equal 𝔊(𝑟) = ERF(𝑟)/𝑟. In total 𝑁 of those contributions [7] will be added. 𝑁 𝔊(𝑟) 

represents the gravitation potential. 

This indicates that N directly relates to mass, which determines the strength of deformation of 𝜓. 

If ‖𝜌‖ = 𝑁, then ∇∗ 𝜙 = 𝜌 means ‖∇∗ 𝜙‖ = 𝑁. 

This is a version of the coupling equation, which holds for all quaternionic normalizable functions 𝜙 

and 𝜌, where 𝜙 is differentiable. If there are 𝑁 landing locations, then there are also 𝑁 hops. 

15 Attaching characteristics to a module 

15.1 Module subspace 
We take one closed subspace as an example.  

In free translation, the spectral theorem for normal operators that reside in a separable Hilbert space 

states: “If a normal operator maps a closed subspace onto itself, then the subspace is spanned by an 

orthonormal base consisting of eigenvectors of the operator.”  

The corresponding eigenvalues characterize this closed subspace. 

The normal operator ℴ 𝑥 = |𝑎𝑖
𝑥〉𝑎𝑖

𝑥〈𝑎𝑖
𝑥| that maps the closed subspace onto itself may correspond to 

a companion operator |℘𝑥(𝑎𝑖
𝑥)〉℘𝑥(𝑎𝑖

𝑥)〈℘𝑥(𝑎𝑖
𝑥)| that resides in the non-separable companion of 

the Hilbert space. The target of the mapper ℘𝑥 is a curved continuum that is characterized by the 

reference symmetry flavor. The superscript  𝑥  indicates the symmetry flavor of the set {𝑎𝑖
𝑥} of 

eigenvalues of operator ℴ 𝑥. This symmetry flavor corresponds to the symmetry flavor of the 

symmetry center from which the elements {𝑎𝑖
𝑥} are taken. 

The Hilbert spaces are structured storage places and in that way they can describe things. They 

possess no means that enable them to control what happens. That is the task of management 

mechanisms. However, the mechanism is restricted by the properties of the Hilbert spaces. 

Here we take the position that the eigenvalues of operator ℴ 𝑥 = |𝑎𝑖
𝑥〉𝑎𝑖

𝑥〈𝑎𝑖
𝑥| are generated by a 

mechanism that implements a stochastic process. This process does not reside in the Hilbert spaces, 

but part of its behavior can be described by a series of operators. Some of these operators reside in 

the separable Hilbert space ℌ. Other participating operators reside in the non-separable Hilbert 

space ℋ. 

{𝑎𝑖
𝑥} forms a well-ordered coherent set. All elements belong to different progression values. They 

belong to the same symmetry flavor and with respect to the subset of the quaternionic number 

system {𝔰𝑥} inside the image of the symmetry center they are described by a continuous density 

distribution 𝜌0(𝔰𝑥). 

The stochastic process can be considered as a combination of a stochastic selector, such as a Poisson 

process and a binomial process, which is implemented by a 3D spread function. The binomial process 

locally attenuates the Poisson process. The corresponding stochastic spread function 𝒮 produces a 

distribution of discrete locations that can be described by a density distribution 𝜌(𝔰𝑥). 

The involved operators and mechanisms are: 

 In the separable Hilbert space a well-ordered reference operator ℛ⓪ = |𝑞𝑖
⓪〉 𝑞𝑖

⓪ 〈𝑞𝑖
⓪

| 

provides the parameter space of many of the involved functions. The set of eigenvalues 
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{𝑞𝑖
⓪

} of this operator represent all rational members of a quaternionic number system {𝑞⓪} 

that features a symmetry flavor, which is indicated with superscript  ⓪.  

 A symmetry center that is defined by operator 𝔖𝑥 floats on the eigen space of reference 

operator ℛ⓪. It features a symmetry flavor, which is indicated with superscript  𝑥. 

 In the non-separable Hilbert space a reference operator ℜ⓪ = |𝑞⓪〉𝑞⓪〈𝑞⓪| provides the 

parameter space of many of the involved functions. The set of eigenvalues {𝑞⓪} of this 

operator represent all members of a quaternionic number system {𝑞⓪} that features a 

symmetry flavor, which is indicated with index ⓪. 

 The density operator 𝜌 = |𝑎𝑗
𝑥〉𝜌(𝑎𝑗

𝑥)〈𝑎𝑗
𝑥|, resides in separable Hilbert space ℌ and 

represents the density 𝜌(𝑞𝑖
𝑥) of the discrete distribution {𝑎𝑗

𝑥} that is generated by the 

stochastic spread function 𝒮 during a period of progression that covers the progression 

values of the set {𝑎𝑗
𝑥}. 

 The stochastic selection mechanism selects parameter values 𝑎𝑗
𝑥 from the symmetry center 

according to the density operator |𝑎𝑗
𝑥〉𝜌(𝑎𝑗

𝑥)〈𝑎𝑗
𝑥| that represents the density 𝜌(𝑞𝑖

𝑥) of the 

discrete distribution {𝑎𝑗
𝑥} within the set {𝑞𝑖

𝑥} that is generated by the stochastic spread 

function 𝒮. 

 The eigenvectors{|𝑎𝑗
𝑥〉} that belong to the eigenvalues {𝑎𝑗

𝑥} of operator ℴ 𝑥 = |𝑎𝑗
𝑥〉𝑎𝑗

𝑥〈𝑎𝑗
𝑥| 

span the considered closed subspace and characterize the module that is represented by this 

subspace. 

 Due to the action of the symmetry related fields, the mapper ℘𝑥 reallocates the symmetry 

center on which the location swarm {𝑎𝑗
𝑥} resides. 

 The target space operator |𝑞⓪〉ℭ(𝑞⓪)〈𝑞⓪| resides in the non-separable Hilbert space ℋ 

and is implemented by a continuous mapping function ℭ(𝑞⓪). 

 The density operator |𝑞𝑥〉℘𝑥((𝜌(𝑞𝑥)))〈𝑞𝑥| resides in the non-separable Hilbert space ℋ 

and represents the density ℘𝑥((𝜌(𝑞𝑥))) of the discrete distribution {℘𝑥(𝑎𝑗
𝑥)} that is 

generated by the stochastic spread function 𝒮 via the convolution 𝒫 = ℘ ∘ 𝒮 of the map ℘ 

and the spread function 𝒮. 

Thus the selection mechanism and the combination of the operators that reside in the separable 

Hilbert space produce a sequence of eigenvalues {𝑎𝑗
𝑥} of operator ℴ 𝑥 = |𝑎𝑖

𝑥〉𝑎𝑖
𝑥〈𝑎𝑖

𝑥| that map onto 

the closed target set in the continuum that is formed by the density operator |𝑞𝑥〉℘𝑥((𝜌(𝑞𝑥)))〈𝑞𝑥| 

that represents the convolution 𝒫 = ℘𝑥 ∘ 𝒮.  

{𝑎𝑗
𝑥} is a coherent subset of {𝔰𝑖

𝑥}, which forms the eigenvalues of 𝔖𝑥 = |𝔰𝑖
𝑥〉𝔰𝑖

𝑥〈𝔰𝑖
𝑥|.  

ℭ represents the continuum eigenspace of the target space operator |𝑞⓪〉ℭ(𝑞⓪)〈𝑞⓪|. 

Since 𝒫(𝑞) is a continuous function, {𝒫(𝑎𝑗
𝑥)} is a discrete coherent subset of the continuous target 

space {ℭ(𝑞⓪)}. 

The target subset {𝒫(𝑎𝑗
𝑥)} represents the freedom that is left by the embedding of the separable 

Hilbert space into the non-separable Hilbert space. This imaging process is described by the 

convolution: 

 

𝒫 = ℘𝑥 ∘ 𝒮𝑗 (1) 
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𝒮𝑗 is a stochastic spatial spread function and varies with each subsequent progression step. 

The mapper ℘𝑥 produces an exact map that is influenced by the symmetry related charges and by 

the deformations of ℭ.  

The exact target location 𝒫(𝑎𝑗
𝑥) is not known beforehand, but after selection of the source 

eigenvalue 𝑎𝑗
𝑥 the image ℘𝑥(𝑎𝑗

𝑥) is exactly known and is stored in the eigenspaces of the respective 

operators. With other words history is no longer uncertain and is accurately stored in the separable 

Hilbert space and in its companion Gelfand triple. 

Averaged over all selections, 𝒫 produces a blurred image if the set {𝑎𝑗
𝑥}. 

The average 𝒂𝑥 of the imaginary parts of all {𝑎𝑗
𝑥} is the center location of the set. It corresponds to 

the geometric center of the symmetry center. The combination of all involved operators and the 

selection mechanism produces a blurred image of 𝒂𝑥. 

The blur only concerns the imaginary part of the quaternion(s). 

15.2 History, presence and future 
In the orthomodular base model, the eigenvalues of the reference operators are not touched by 

management mechanisms or by the embedding process.  

Presence is marked by a progression value that occurs in the real part of quaternionic eigenvalues of 

the category of well-ordered normal operators. History is marked by lower real parts of these 

quaternionic eigenvalues. Progression sensitive operators are members of the category of well-

ordered normal operators and are characterized by the fact that they have known and fixed 

eigenvalues when the real part of the eigenvalue is lower than the present progression value. At the 

same time the current eigenvalues of these operators are influenced by the controlling mechanisms. 

Future eigenvalues of these operators are considered to be unknown. 

In the orthomodular base model presence, history and future are artificial concepts. History is 

defined with respect to the current real value of the eigenvalues of the reference operators, which 

belong to the category of well-ordered normal operators. 

The eigenspaces of progression sensitive operators exactly describe the history. The history is fixed. 

Thus also the historic eigenvalues are not touched by management mechanisms or by the embedding 

process. However, these operators do not yet describe the future. The future is constructed by the 

management mechanisms and the embedding process. This means that these mechanisms depend 

on the progression parameter. The mechanisms only affect the current eigenvalues. These 

eigenvalues describe the presence. 

Progression sensitive operators are related to functions that use a flat parameter space which is 

defined using the reference operators ℛ⓪ and ℜ⓪ or indirectly by using reference operator 𝔖𝑥. 

The subspace that represents a module covers a sliding part of the last history. The dimension 𝑁 of 

the subspace determines the number of covered progression instances. Inside the subspace 

progression rules the cyclic regeneration process. The subspace covers one cycle of that regeneration 

process. This period is governed by a controlling mechanism. 𝑁 is smaller than the (fixed) dimension 

of the subspaces that represent the symmetry centers. 
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The progression window covers a recycling period in which the statistical properties of the set {𝑎𝑗
𝑥}

𝑁
 

stabilize. This period is a property of the stochastic generation mechanism. The stochastic generation 

mechanisms exist in a series of types that each have their own characteristics.  

15.3 Map of well-ordered coherent set 
Since the source eigenvalues {𝑎𝑗

𝑥} are all quaternions, they can be ordered with respect to their real 

value. All source eigenvalues have different real parts. That real value contains the sequence 

number. The set of source eigenvalues forms a well-ordered coherent set. As a consequence, the 

image of the map of the source eigenvalues onto the continuum eigenspace can be described by a 

dynamic continuous location density distribution in which the sequence number acts as the 

progression parameter. This also means that {𝑎𝑗
𝑥} describes a hopping path.  

15.4 Coherent swarm 
The well-ordered coherent set {𝑎𝑗

𝑥}, which can be described by a dynamic continuous location 

density distribution 𝜌(𝑞𝑥) may also have a Fourier transform. In that case we call the set a coherent 

swarm. The coherent swarm owns a displacement generator. This means that at first approximation 

the swarm {𝑎𝑗
𝑥} moves as one unit. Having a Fourier transform is a higher level coherence 

requirement. 

Having a Fourier transform means that the swarm can be represented by a wave package. On 

movement, wave packages tend to disperse. Since the dynamic continuous location density 

distribution only describes the swarm, it is continuously regenerated. As a consequence, movement 

does not disperse the swarm’s wave package. Thus, due to recurrent regeneration, no danger of 

dispersion exists. 

On the other hand the representation by a wave package indicates that the swarm {𝑎𝑗
𝑥} may take the 

form of an interference pattern. That interference pattern is still a location swarm. It is not 

constructed by interfering waves! 

15.5 The coherent map 
Thus, in the special case that a companion operator|℘𝑥(𝑎𝑖

𝑥)〉℘𝑥(𝑎𝑖
𝑥)〈℘𝑥(𝑎𝑖

𝑥)| of the normal 

operator ℴ 𝑥 = |𝑎𝑖
𝑥〉𝑎𝑖

𝑥〈𝑎𝑖
𝑥| that maps the subspace onto itself exists and the source eigenvalues 

{𝑎𝑖
𝑥} form a well ordered coherent set, then the embedding of the module can be described by a 

progression dependent continuous mapping function ℘, which produces a blurred image 𝒫(𝒂) of the 

average of the source eigenvalues. ℘ uses a flat parameter space that is spanned by a quaternionic 

number system. This mapper includes the actions of the symmetry related fields. The coherent set of 

source eigenvalues can be considered to be generated by a mechanism that can be characterized by 

a source location spread function 𝒮. This function has fixed statistical characteristics, uses 

quaternions as its target values and progression as its parameter value. The progression parameter is 

taken from the parameter space of ℘. Now the blurred image 𝒫 is the convolution of the mapping 

function ℘ and the source location spread function 𝒮. 

 

𝒫 = ℘ ∘ 𝒮 

 

The coherent set of source eigenvalues can be described by a discrete source location density 

distribution {𝑎𝑖
𝑥}. If these eigenvalues are generated in a sequence, then for each member of this 

(1) 
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sequence the represented object can be considered to occupy a single source location. In this way 

the object can be considered to hop between the elements of the coherent swarm of eigenvalues. 

Each landing location corresponds with a hop. The sequence number can act as the progression 

parameter. The progression parameter is stored in the real part of the landing location eigenvalue. 

We will call this special case “the coherent map”. 

15.6 Stochastic generation 
A Poisson process or equivalent stochastic generator may produce germs that are used by the spread 

function.  

The spread function produces the locations. The combination of the sequence number and location is 

stored in the eigenvalue. The spread function is spherical symmetric and is best treated in spherical 

coordinates. The location is specified in the independent variables radius 𝑟, polar angle 𝜑 and 

azimuth 𝜃. The order of these specifications may vary between mechanism types. This order and the 

direction in which the angles run influence the hopping path. 

The generation process takes place in the realm of the separable Hilbert space. The interpretation of 

the sequence number as progression value may occur as an aftermath. During swarm generation, the 

notion of speed is meaningless.  

The embedding process occurs in the realm of the Gelfand triple. With respect to hopping nothing 

moves in the embedding continuum. This means that hopping speed is irrelevant. However, the 

embedding process generates deformations and or vibrations of the embedding continuum. These 

movements are independent of the hop size. They may depend on hop direction. 

15.7 Generation cycle 
The generation by the stochastic spatial spread function 𝒮 is done before the map ℘. This means that 

it occurs in the realm of the separable Hilbert space and this generation process is not (yet) affected 

by the embedding in the non-separable Hilbert space. 

The stochastic generation process determines the short term cyclic part of the dynamical behavior of 

the object. The corresponding cycle period lasts until the spatial statistical characteristics of the 

generation result stabilize. Thus, the stochastic generation process is characterized by spatial 

statistical characteristics that are obtained after averaging over complete cycles of the generation 

process. These characteristics are the statistical characteristics of the coherent swarm. 

The collection {𝒫(𝑎𝑖
𝑥)} taken over the full generation cycle represents a spatial map of the cyclic 

dynamic behavior of the object. 

15.8 Model wide progression steps and cycles 
Each closed subspace that represents a coherent swarm is governed by a mechanism that ensures 

dynamic and spatial coherence. In fact many different types of such mechanisms exist. They 

correspond to elementary particle types. If these modules combine into composites, then the 

generation cycles must synchronize. This asks for a model wide progression step that is much shorter 

than any swarm generation cycle. A RTOS-like management mechanism must schedule the 

generation of composites from completed modules. 

15.9 Swarm behavior 
The coherent swarm moves as one unit. This means that the represented object features two kinds 

of movement. The first kind stays internal to the swarm. During the corresponding generation 
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process, the hopping speed has no significance. The second kind concerns the swarm as a whole. The 

speed of the swarm makes physical sense. 

Inside the swarm, the represented object hops from swarm element to swarm element. The hopping 

path is folded and if the swarm is at rest, then the hopping path is closed. Adding extra hops causes 

movement of the swarm. Adding a closed string of hops in a cyclic fashion causes an oscillation of the 

swarm. From observations it follows that in composites, such as atoms only certain oscillation modes 

are tolerated. Adding an arbitrary open string of hops may open the hopping path. In that case the 

sum of all hops is no longer zero. As a consequence the swarm will move. This motion gets its origin 

in the separable Hilbert space. And is mapped onto the continuum. This movement is recognizable 

relative to the parameter space. 

A dynamic local change of the mapping function ℘ may move the swarm relative to other swarms. 

Such changes may occur when discrete objects deform the embedding continuum. Or if the 

symmetry related field relocates the local symmetry center. This kind of movement gets its origin in 

the non-separable Hilbert space. Relative to the parameter space, only the effect of the relocation is 

recognizable.  

 Partial creation and annihilation 
Removing a string of hops from the hopping path can be interpreted as a partial annihilation 

occurrence. Thus, part of the object is temporary converted into an information messenger, which 

travels with optimal speed away from its source. Complete annihilation does not occur this way. 

Complete annihilation involves annihilation of the symmetry center. 

Adding a string of hops to the hopping path can be interpreted as a partial generation occurrence. 

Thus, an information messenger is temporary converted into a new part of the object. Complete 

creation does not occur this way. Complete creation involves creation of the symmetry center. 

15.10 Swarm characteristics 
In this paper, we use the diversity that is represented by the standard model of contemporary 

physics as reference for naming elementary object types and their properties. 

Elementary particle types have different masses. In the orthomodular base model this means that 

the corresponding closed subspaces have different dimensions and that correspondingly the swarms 

have different numbers of elements. It takes a type dependent number of progression steps for 

regenerating the corresponding swarm. 

The swarm has a central location, which in separable Hilbert space is defined as the average 𝒂 of the 

imaginary parts of the coherent set of source eigenvalues {𝑎𝑖
𝑥}. It is the geometric center of the local 

symmetry center. In the non-separable Hilbert space it is defined by the image ℘(𝒂), which is 

located in ℭ. This target value corresponds to an object source location 𝒂 in the flat parameter space 

of ℘. That parameter space is ℜ⓪.The source location may move as a function of progression.  

The speed of transfer of information is set by the speed of information carriers. These information 

carriers are one-dimensional wave fronts. The quaternionic wave equation describes the way in 

which these wave fronts proceed. 

In the continuum the observed image of the swarm cannot move faster than the speed with which 

information can be transported. 

The statistical characteristics of the swarm and the symmetry related properties of the symmetry 

center are sources for the properties that characterize the types of the objects that are represented 
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by the coherent swarm. The symmetry flavor, the symmetry related charge, the color charge and the 

spin of the object that is represented by the swarm are mainly set by the symmetry center on which 

the swarm resides. 

Apart from the number of elements of the swarm, the properties of the swarm appear to depend on 

the generation flavor. The mechanism that generates the swarm determines this extra characteristic 

of the swarm. 

 Fermions 
Embedding couples coherent swarms that possess symmetry flavor ℴ 𝑥 to an embedding continuum 

that has symmetry flavor 𝜓⓪. If this symmetry flavor of the embedding continuum is fixed, then 

varying the symmetry flavor of the coherent swarm creates sixteen different elementary object 

types. Half of these types concern anti-particles. Again half of these sub-types concern left-handed 

quaternions and the other half are right-handed. Anisotropic types occur in three versions that are 

distinguished by the dimension in which the anisotropy occurs. The types are marked by color 

charges. Isotropic types are colorless. 

The difference in the symmetry flavors between the members of the pair {ℴ 𝑥, 𝜓⓪} can be related to 

the electric charge, the color charge and the spin of the corresponding elementary particle. The 

electric charge, the color charge and the spin are determined by the properties of the local symmetry 

center and the symmetry flavor of the embedding continuum. 

Fermions are known to have half integer spin. In contemporary physics, their “color” structure 

becomes noticeable when composites are formed. 

The result of coupling ℴ 𝑥 to 𝜓⓪ is: 

 

Symmetry flavor 

Ordering 

x   y   z    τ 

Super 

script 

Handedness 

Right/Left 

Color 

charge 

Electric 

charge  

Symmetry center type. 

Names are taken from the 

standard model 

 𝓸⓪
 

R N +0 neutrino 

 𝓸①
 

L R 
−⅓ 

down quark 

 𝓸②
 

L G 
−⅓ 

down quark 

 𝓸③
 

L B 
−⅓ 

down quark 

 𝓸④
 

R B 
+⅔ 

up quark 

 𝓸⑤
 

R G 
+⅔ 

up quark 

 𝓸⑥
 

R R 
+⅔ 

up quark 

 𝓸⑦
 

L N −1 electron 

 𝓸⑧
 

R N +1 positron 

 𝓸⑨
 

L R 
−⅔ 

anti-up quark 

 𝓸⑩
 

L G 
−⅔ 

anti-up quark 

 𝓸⑪
 

L B 
−⅔ 

anti-up quark 

 𝓸⑫
 

R B 
+⅓ 

anti-down quark 
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 𝓸⑬
 

R R 
+⅓ 

anti-down quark 

 𝓸⑭
 

R G 
+⅓ 

anti-down quark 

 𝓸⑮
 

L N −0 anti-neutrino 

 

An algorithm exists that enables the determination of the symmetry related charge from the 

symmetry flavors of the symmetry centers and the symmetry flavor of the embedding continuum. 

The value of symmetry related charge relates to the number of dimensions in which symmetry 

flavors differ. The sign of the symmetry related charge relates to the direction in which the difference 

occurs. It also relates to the difference in handedness of the involved quaternions. 

 Count the dimensions in which the flavor differs with reference flavor 

 Multiply with ⅓ 

 Switch sign when right handedness switches to left handedness  

 Switch sign of result for antiparticles 

Color charge appears to relate to the index of the dimension in which the difference occurs. Isotropic 

differences correspond to “neutral” colors. 

Quarks have “partial” symmetry related charge. Up-quarks have symmetry related charge + ⅔e. 

Down-quarks have symmetry related charge - ⅓ e. 

Symmetry related charge is a property of symmetry centers. Elementary particles use symmetry 

centers as their parameter spaces. In this way they inherit the charge of their symmetry center. 

  Massive Bosons 
Fermions and massive bosons appear to contribute to a common gravitation potential. This means 

that bosons embed in the same embedding field as fermions do. Massive bosons couple to an 

embedding continuum in a similar way as fermions do. Boson swarms feature color-neutral 

symmetry flavors. Bosons are known to feature integer spin. 

This can be explained when the symmetry centers of fermions are generated in an azimuthal angle 

first and a polar angle second way, while the symmetry centers of bosons are generated in an polar 

angle first and an azimuthal angle second fashion. The polar angle takes 2𝜋 radians and the 

azimuthal angle takes 𝜋 radians. 

Massive bosons are observable as 𝑊−, 𝑊+ and 𝑍 particles. 𝑊+ is the antiparticle of 𝑊−. Until now, 

there is no indication of the existence of quark-like bosons. At least their “color” structure cannot be 

observed. 

  Spin axis 
Fermion swarms and boson swarms contain a hopping path that can be walked into two directions. 

That hopping path may implement spin.  

If the swarm is at rest (does not move), then the hopping path is closed. Relative to its symmetry 

center the swarm does not move, but it might oscillate. 

For bosons the spin axis may be coupled to the polar axis. The polar angle runs from 0 through 2π. 

For fermions the spin axis may be coupled to the azimuth axis. The azimuthal angle runs from 0 

through π. 
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Nothing is said yet about the fact and the corresponding influence that the number of hops can be 

even or odd. And nothing is said yet about whether the opening hop and the closing hop are coupled 

in a symmetric or asymmetric sense. 

15.11  Mass and energy 

  Having mass 
Having mass can be interpreted as the capability to deform the continuum that embeds the 

concerned object. More mass corresponds to more deformation.  

The dimension of the closed subspace, which represents a discrete object has a physical significance. 

Any eigenvector that contributes to spanning the closed subspace increases the dimension of the 

subspace. If all elements of the swarm contribute separately to the deformation of the embedding 

continuum, then the total deformation is proportional to the dimension of the subspace. In that case, 

this dimension relates to the mass of the object that corresponds to the swarm. If extra hops are 

added that cause movements or oscillations, then this adds to the mass in the form of kinetic energy. 

The extra hops may enter or leave in strings. Inside the swarm the hops that cause oscillation are 

stored as closed strings. Outside of the swarm the strings of hops are open and appear as 

information messengers. 

The fact that fermions and massive bosons contribute to a common gravitation potential means that 

they deform the same embedding continuum. 

 Information messengers 
Information messengers represent open strings of hops. At the same time they are solutions of the 

homogeneous wave equation. This means that they can be viewed as strings of one dimensional 

wave fronts. One dimensional wave fronts do not diminish their amplitude as function of the 

distance to their emission point. In an otherwise flat continuum the one dimensional wave fronts and 

thus the information messengers proceed with the speed of information transfer. The energy carried 

by information messengers is proportional to the number of one-dimensional wave fronts that they 

contain. If the duration of emission, absorption and passage is fixed, then the apparent frequency of 

information messengers is proportional to their energy.  

In contemporary physics the information messengers are known as photons. From experiments we 

know that the energy of photons is proportional to their frequency. Thus if photons are information 

messengers then this suggests that at least locally, the emission, the absorption and the passage of 

information messengers takes a fixed number of progression cycles.  

 Mass energy equivalence 
Creation and annihilation of elementary particles shows the equivalence of mass and energy. 

15.11.3.1 Suggested creation process 

Creation of elementary particles starts with the combination of two photons that came from 

opposite directions into an intermediate object. The intermediate object is a very short lived massive 

object that consists of as many paired elements as wave fronts are contained in the constituting 

photons. The wave fronts will convert into hops. The long chain of paired hops will then rip apart into 

two folded hopping strings that each form a coherent location swarm. Next the two swarms will split 

and move in opposite directions. At some instant in this procedure two symmetry centers are 

generated that will carry the generated particles. 
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15.11.3.2 Suggested annihilation process 

Annihilation of elementary particles starts with the combination of an elementary particle and its 

anti-particle that come from opposite directions into an intermediate object. The intermediate object 

is a very short lived massive object that consists of as many paired elements as elements are 

contained in the constituting coherent location swarms. As part of the procedure the corresponding 

symmetry centers are annihilated. The hops will convert into wave fronts. The long chain of paired 

wave fronts will then rip apart into two separate chains of wave fronts. Next these photons leave in 

opposite directions.  

15.12 Relation to the wave function 
The concept of wave function is used by contemporary physics in order to represent the state of a 

quantum physical object. The wave function is a complex amplitude probability distribution. Its 

squared modulus is a normalized density distribution of locations where the owner of the wave 

function can be detected. The value of this continuous distribution equals the probability of finding 

the owner at the location that is defined by the value of the parameter of the distribution. 

If the detection is actually performed, then the object will be converted into something else. By the 

adherents of the Copenhagen interpretation, this fact is known as “the collapse of the wave 

function”.  

The normalized density distribution of locations where the owner of the wave function can be 

detected corresponds to the map of a coherent swarm on a flat continuum eigenspace of the 

companion operator in the orthomodular base model. 

Thus the concept of the coherent map of a well-ordered coherent set on a flat continuum eigenspace 

of the companion operator in the orthonormal base model leads directly to an equivalent of the 

concept of the wave function in contemporary physics. Both concepts cannot be verified by 

experiments. The equivalence indicates that the suggested coherent map extension of the 

orthomodular base model runs in a sensible direction. 

16 Traces of embedding 
The actual embedding of a discrete eigenvalue 𝑎𝑗

𝑥 in the embedding continuum does not last longer 

than a single progression step. For each object, the embedding occurs only once at every used 

progression step. The source eigenvalue 𝑎𝑗
𝑥 was taken from the local symmetry center and is stored 

in the eigenspace of the location operator ℴ 𝑥 that resides in the separable Hilbert space. 

Immediately afterwards the embedding is released and is replaced by another embedding of a 

source eigenvalue that is taken from a slightly different location 𝑎𝑗+1
𝑥  and then mapped onto its 

target location in the embedding continuum. This recurrent embedding process generates the map 

of the well-ordered coherent set of source eigenvalues {𝑎𝑗
𝑥}. 

In the non-separable Hilbert space the map {℘(𝑎𝑗
𝑥)} affects the target subspace of the continuum 

eigenspace. This is done in a special way. Locally, the effect is determined by the non-homogeneous 

wave equation. The homogeneous wave equation and the Poisson equation are restrictions of the 

non-homogeneous wave equation. The homogeneous wave equation controls the situation just 

before and just after the actual embedding action. The Poisson equation determines the situation 

during the actual embedding action. The embedding results in the emission of a 3D wave front. The 

solution of the Poisson equation folds and thus deforms the target subspace of the embedding 

continuum. After release of the embedding, the 3D wave front keeps proceeding, but it will quickly 

diminish its amplitude as function of the distance to the emission location. The effects of the 
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solutions of the non-homogeneous wave equation for all participating elements of the swarm 

combine and form an embedding potential. The embedding potential represents a smoothed and 

averaged local view on continuum ℭ. 

In general can be said that the embedding of discrete artifacts trigger vibrations and deformations of 

the embedding continuum. The vibrations can be wave fronts and oscillations and are solutions of 

the homogeneous wave equation. These solutions are restricted by local conditions and by the 

configuration of the triggers. For free particles these solutions are isotropic in one, two or three 

dimensions. In atoms the embedding of the electrons determine the configuration of triggers that 

cause spherical harmonics as solutions of the homogeneous wave equation. 

Electric charges appear to gather in centers of symmetry. In spherical symmetric conditions this 

coincides with the local center of gravitation symmetry.  

16.1 Embedding potentials 
In this model, embedding potentials form the averages over a small period of progression and over a 

region of space of the effects of deformations of the embedding continuum and emissions of wave 

fronts that occur during the embedding of particles. The deformation is described by solutions of the 

Poisson equation, which is a restriction of the non-homogeneous wave equation. Mathematically 

these potentials are described by Green’s functions or by weighted averages of these Green’s 

functions. The Green’s function of a single embedding is spherical symmetric. It describes how the 

embedding continuum is deformed by a single embedding occurrence. 

The shape of the Green’s function 𝐺(𝑟) of a single embedding corresponds with the shape of the 

amplitude 𝐴(𝑟, 𝜏) of the spherical wave front that is emitted at the embedding instant. The wave 

fronts that are emitted during the embedding of the members of the location swarm are isotropic 3D 

wave fronts. Their spreading is controlled by the 3D version of the Huygens principle. This means that 

their amplitude decreases with the distance 𝑟 from the source as 1/𝑟. 

The spherical wave fronts quickly fade away and their effect is smoothed by the averaging. 

Here we consider a simplified situation. With an isotropic density distribution 𝜌0(𝑟) in the swarm the 

scalar potential 𝜓0(𝑅) can be estimated as: 

 

𝜓0(𝑅) = ∭ 𝜌0(𝒓′) 𝐺(𝒓 − 𝒓′)𝑑3𝒓′
𝑅

0

 

 

R is the distance to the center of the swarm.  

If the density distribution 𝜌0(𝒓) approaches a 3D Gaussian distribution, then this integral equals [10]: 

 

𝜓0(𝑅) = ERF(𝑅)/𝑅 

 

(1) 

(2) 
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We suppose that this distribution is a good estimate for the structure of the swarm of a free electron. 

It is remarkable that this potential (the blue curve) has no singularity at 𝑅 = 0. At the same time, 

already at a short distance of the center the function very closely approaches 1/𝑅 (the orange 

curve).  

The term ERF(𝑅) indicates the influence of the spread of the embedding locations. This view can be 

used to determine the spatially averaged effect of the single embeddings. The set {𝑎𝑗
𝑥}

𝑁
 corresponds 

to 𝑁 instances of such spatially averaged contributions. This approach shows that curvature and thus 

mass is directly related to the size of the set and to dimension of the subspace that represents the 

module. 

In contemporary physics the embedding potential 𝜓0(𝑅) is known as the gravitation potential. It 

describes the deformation of the embedding continuum. 

 Inertia 
If the swarm moves with uniform speed 𝒗, then this goes together with a vector potential 𝝋. 

 

𝝍(𝑅) = ∭ 𝒗 𝜌0(𝒓′) 𝐺(𝒓 − 𝒓′)𝑑3𝒓′
𝑅

0

= 𝒗 𝜓0(𝑅) 

 

If this swarm suddenly accelerates, then this goes together with a field 𝝐 that counteracts the 

acceleration. 

 

𝝐 = 𝝍̇(𝑅) = 𝒗̇ 𝜓0(𝑅) 

 

16.2 Symmetry related potential 
All elements of the coherent swarm are taken from the same symmetry center and have for that 

reason the same symmetry flavor. Embedded symmetry centers have their own dynamics, which is 

controlled by the symmetry related field. Only the elements of the coherent swarm will be 

embedded in the embedding continuum. The effects of symmetry flavor coupling work over the 

whole reach of the symmetry center and thus over the whole reach of the coherent swarm. In the 
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embedding continuum the source of this influence is located at the target value of the mapping 

function ℘(𝑎). The symmetry related charge at this location depends on the difference between the 

symmetry flavor of the coherent swarm and the symmetry flavor of the embedding continuum. 

Also here the quaternionic wave equation describes what happens, but the charge stays at its center 

location. The governing equation is: 

 

∇∗∇ 𝜑 = ∇0∇0𝜑 + ⟨𝛁, 𝛁⟩ 𝜑 = ℭ(ℊ) 

 

Here 𝜑 represents the quaternionic symmetry related potential and ℊ represents the distribution of 

symmetry related charges and currents. 

For the static symmetry related potential this reduces to 

 

⟨𝛁, 𝛁⟩𝜑 = ℭ(ℊ) 

 

 Difference with gravitation potential 
The symmetry related potential deviates in many aspects from the gravitation potential. Where 

every element of the swarm contributes separately to the gravitation potential, will the local 

symmetry related potential only depend on the symmetry flavor of the complete swarm. It is 

generated by the symmetry center and not by the separate elements of that center. The virtual 

location of the electrostatic charge coincides with the location of the center of symmetry of the 

swarm. For elementary particles, the strength of the symmetry related potential does not depend on 

the number of involved swarm elements. The charge is set by the symmetry center on which the 

elementary particle resides. 

17 Composites 
Closed subspaces can combine into wider subspaces. If in the disjunction no eigenvectors of the 

location operator are shared between the constituents, then the constituents stay independent and 

keep their characteristics. Still superposition coefficients may rule the relative contribution of these 

properties. The properties are added per property type and these sums are not affected by the 

superposition. 

17.1 Closed strings 
Elementary particles are represented by coherent location swarms that also implement a folded 

hopping path. At rest this hopping path is closed. Adding extra hops may open the hopping path. This 

means that the sum of all hops may no longer equal zero. As a consequence the swarm moves. If a 

closed string of hops is added, then on average the swarm still stays at the same location, but at the 

same time the swarm oscillates. Such oscillations occur inside atoms. 

The added hops act for the whole swarm as displacement generators. In this way, the corresponding 

quaternions can be supposed to act as superposition coefficients. 

Other quaternionic superposition coefficients may act as rotators. Special rotators can switch the 

color charge of quarks. They do not affect color-neutral swarms.  

(1) 
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17.2 Open strings 
The closed strings of superposition coefficients enter and leave the composite as open strings. 

Messengers are open strings that relate to particular swarm oscillations. They are known as photons. 

Messengers are also represented by strings of one-dimensional wave fronts. 

Gluons are open strings that relate to swarm rotations. They can switch the color charge of quarks 

Color confinement stimulates that in composites the combined color charge is neutralized. 

17.3 Binding 
The potentials are a means to bind constituents of composites. Embedding potentials form pitches. If 

the particles move or oscillate the pitches become ditches. 

 Orthomodular model 
The orthomodular base model suggests that at every progression step in every participating 

elementary particle only one swarm element is influenced by the currently existing potentials. 

 Gravitation 
In the orthomodular base model, this is obvious for the gravitation potential which describes the 

deformation of the embedding continuum that is caused by these constituents. All embedding events 

contribute separately to the deformation of the embedding continuum. The constituents produce 

pitches into the embedding continuum and when they oscillate these pitches transform into ditches. 

The strength of the gravitation potential depends on the number and the coherence of the involved 

swarm elements. 

 Symmetry related potential 
The origin of the symmetry related potential can also take a role in the binding of constituents, but 

this is questionable. The source of the symmetry related potential is probably located at the center of 

mass of the composite and is not located at the centers of mass of the constituents. If the sources of 

this potential would be located on the centers of mass of the constituents, then in case of oscillating 

constituents, this would result in ongoing emission of electromagnetic radiation.  

 Binding in Fourier space 
In this paper binding between elementary modules is not yet touched. It will not be treated in detail. 

If binding between modules is considered, then it is sensible to pass to Fourier space and take the 

Fourier transforms of the quaternionic functions that represent the location density distributions. In 

this way the location probability density distributions become characteristic functions and 

convolutions that represent mutual blurring convert in “simple” multiplications. This is the approach 

that is applied in quantum field dynamics. It is also the approach that is applied in Fourier optics. 

For example the wave equation for the embedding continuum and the corresponding continuity 

equations can be transformed to Fourier space. 

 

∇∗∇𝜓 = ∇0∇0𝜓 + ⟨𝛁, 𝛁⟩𝜓 = 𝜌 

𝜙 = ∇𝜓 

∇∗𝜙 = 𝜌 

(1) 

(2) 

(3) 
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𝑝∗𝑝 𝜓̃ = 𝑝0𝑝0 𝜓̃ + ⟨𝒑, 𝒑⟩ 𝜓̃ = 𝜌̃ 

𝜙̃ = 𝑝 𝜓̃ 

𝑝∗𝜙̃ = 𝜌̃ 

 

17.3.4.1 Comparing to Fourier optics 

In Fourier optics the lenses play the role of boundary conditions and the Fourier transform of the 

Point Spread Function is used as imaging quality characteristic for the lens. It is known as the Optical 

Transfer Function (OTF) of the lens. Thus the Point Spread Function acts as a Green’s function for the 

lens. The Fourier transform of the target picture equals the product of the OTF and the Fourier 

transform of the object distribution. The OTF depends on the angular and chromatic distribution of 

the participating objects. The OTF also depend on the homogeneity of the phases of the participating 

probability waves. The OTF of a series of subsequent imaging components equals the product of the 

OTF’s of the separate components. This simple rule only holds for ideal conditions in which angular 

distributions, chromatic distributions and phase homogeneity play a negligible role. 

In quantum physics the embedding continuum 𝜓 presents the boundary conditions. Its Fourier 

transform 𝜓̃ acts as a corresponding mapping quality characteristic. The Fourier transform of the 

map ℘ of the distribution of symmetry center locations ℊ onto the embedding continuum equals the 

product of the mapping quality characteristic, the Fourier transform 𝜌̃ of the density distribution of 

the location swarm of the used particle and the Fourier transform of the distribution of symmetry 

center locations ℊ̃. 

Thus here the density distribution of the location swarm together with the mapping quality of the 

embedding continuum are the equivalent of the Optical Transfer Function of a linear imaging device. 

Using  

𝒫𝑥 = ℘𝑥 ∘ 𝒮 

And locally 

℘⓪ = ℭ ≈  𝜓 

𝒮 ⇒ 𝜌 

The mapper ℘ is affected by symmetry related field 𝜑. Together this gives: 

𝒫̃ = ℘̃ 𝜌̃ = 𝜑̃ 𝜓 ̃𝜌̃ 

This formula interprets the location swarm as an extra imaging component.  

𝒫 can be interpreted to map ℊ onto ℭ.  

If ℊ has a Fourier transform, then the Fourier transform of the image is  

 𝒫̃ ℊ̃ =  𝜑̃ 𝜓̃ 𝜌 ̃ ℊ̃. 

This is a significant simplification of what actually happens. The general governance operator ℊ 

 is not a continuous function and having a Fourier transform is a far too strong condition for this 

operator. 

(4) 

(5) 

(6) 
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In quantum physics the diversity of the elementary particles takes the role of the chromatic 

distribution of participating objects in optical imaging. It is also possible to interpret the location 

swarm as an extra imaging component. 

17.4 Contemporary physics 
Here we compare with results of contemporary physics. 

 Atoms 
For stable composites, such as atoms, an ongoing emission of electromagnetic radiation is obviously 

not the case. Still the behavior of atoms with respect to absorption and emission of photons indicate 

that the electrons cause an oscillation in concordance with the patterns of spherical harmonics. 

However, this oscillation occurs in the embedding continuum and does not concern the “location” of 

the electron charges. 

For atoms and its composites, the strength of the symmetry related potential does not depend on 

the number of involved swarm elements. 

The shell of atoms is described by spherical harmonics that are solutions of the homogeneous wave 

equation. This equation describes vibrations of the embedding continuum. These vibrations are 

caused by (non-isotropic) recurrent embedding of the electrons. The restriction of the wave equation 

to the conditions that define the spherical harmonics is the Helmholtz equation. 

 Hadrons 
In hadrons the situation is different. There the binding is regulated by gluons. Gluons are capable of 

rotating quarks such that their color charge switches to another value. Gluons can join in strings. As 

rotators they act in pairs. Gluons do not affect isotropic swarms. 

 Standard model 
In the standard model of contemporary physics the symmetry related potential that governs the 

binding of electrons in atoms is considered to be the electromagnetic potential. 

The standard model suggests the existence of other potentials that implement weak and strong 

forces. Gluons play a role in the strong force. Massive bosons play a role in the weak force. 

Introducing strong and weak forces suggests that the potentials act on the full swarm and not on the 

individual swarm elements.  

18 The space-progression model 
The embedding continuum ℭ is defined by an almost continuous quaternionic function ℭ(𝑞⓪), 

which in the non-separable Hilbert space ℋ is specified by operator ℭ = |𝑞⓪〉ℭ(𝑞⓪)〈𝑞⓪|. It has a 

flat parameter space that is spanned by the eigenvalues of reference operator ℜ⓪ = |𝑞⓪〉𝑞⓪〈𝑞⓪| . 

The continuum ℭ corresponds to the map ℘, which images eigenvalues of reference operator 

ℛ⓪ = |𝑞𝑖
⓪〉 𝑞𝑖

⓪ 〈𝑞𝑖
⓪

| in ℌ onto continuum ℭ. The real parts of the parameters store progression. 

Progression steps in ℌ and flows in ℋ. 

The length of a path between two points in ℭ will generally be different from the distance between 

the corresponding parameter locations. Similar reasoning’s hold for the image of a square and the 

image of a cube. These differences may change dynamically. Apart from these displacements and 

distortions, also rotations (vortices) may occur. At every progression instant the map ℘ is uniquely 

defined. Its inverse is in general not defined. A map of a volume onto the surface of a space cavity 

will not be excluded.  
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Point-like artifacts are recurrently selected from a symmetry center {𝔰𝑖
x} by a type specific stochastic 

mechanism and then embedded in continuum ℭ. Their target location is determined by map ℘. The 

selections form a coherent spatial swarm {𝑎𝑗
x}, which represents the point-like object in ℌ. The 

spatial centers of the swarms move with respect to the {𝑞𝑖
⓪

} in ℛ⓪ and thus their image in the 

Gelfand triple ℋ moves with respect to ℭ. 

18.1 Metric 
ℭ has a flat parameter space that is spanned by a quaternionic number system. 

In almost flat space, the quaternionic nabla can rely on the fact that displacements in the embedding  

continuum depend on displacements in parameter space in a simple way: 

 

𝑑𝑠𝑓𝑙𝑎𝑡 = 𝑐0
𝜏 𝑑𝑞𝜏 + 𝑐0

𝑥  𝒊 𝑑𝑞𝑥 + 𝑐0
𝑦

 𝒋 𝑑𝑞𝑦 + 𝑐0
𝑧 𝒌 𝑑𝑞𝑧 = 𝑐𝜇(𝑞)𝑑𝑞𝜇 

 

Here the coefficients 𝑐0
𝜇(𝑞) are real functions. 𝑑𝑞𝜇 are real numbers. 

However, more generally holds in curved space: 

 

𝑑𝑠ℭ = 𝑐𝜏 𝑑𝑞𝜏 + 𝑐𝑥  𝑑𝑞𝑥 + 𝑐𝑦 𝑑𝑞𝑦 + 𝑐𝑧 𝑑𝑞𝑧 = 𝑐𝜇(𝑞) 𝑑𝑞𝜇 

 

Here the coefficients 𝑐𝜇(𝑞) are full quaternionic functions.  

 

𝑑𝑠(𝑞) = 𝑑𝑠𝜈(𝑞)𝑒𝜈 = 𝑑ℭ = ∑
𝜕ℭ

𝜕𝑞𝜇
𝑑𝑞𝜇

𝜇=0…3

= 𝑐𝜇(𝑞)𝑑𝑞𝜇 

𝑑ℭ is a quaternionic differential. 

𝑞 is the quaternionic location. 

𝑐𝜇 is a quaternionic function. 

At very small scale where ℭ is nearly flat holds Pythagoras: 

 

𝑐2𝑑𝑡2 = 𝑑𝑠 𝑑𝑠∗ = 𝑑𝑞𝜏
2 + 𝑑𝑞𝑥

2 + 𝑑𝑞𝑦
2 + 𝑑𝑞𝑧

2 

 

and Minkowski: 

 

𝑑𝑞𝜏
2 = 𝑑𝜏2 = 𝑐2 𝑑𝑡2 − 𝑑𝑞𝑥

2 − 𝑑𝑞𝑦
2 − 𝑑𝑞𝑧

2 

 

(1) 

(2) 

(3) 

(4) 

(5) 
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In strongly curved space the differential of the embedding continuum function ℭ defines a kind of 

quaternionic metric. 

 

𝑑𝑠 𝑑𝑠∗ = 𝑐𝜇(𝑞)𝑑𝑞𝜇 (𝑐𝜈(𝑞)𝑑𝑞𝜈)∗ = 𝑐𝜇(𝑞) 𝑐𝜈
∗(𝑞) 𝑑𝑞𝜇𝑑𝑞𝜈 = 𝑔𝜇𝜈(𝑞) 𝑑𝑞𝜇𝑑𝑞𝜈 

 

19 Movement 
Until now, in this paper no alternatives to subsequent hopping are considered. This paper takes a 

very simple view on the movement of particles. The particle may move due the influence of neighbor 

symmetry related charges or it may move due to deformation of the embedding continuum. The 

hops correspond to a simple Green’s function and the swarm adds them into a new Green’s function 

that represents the full swarm. That Green’s function may be taken as the base for the symmetry 

related potential. The kinematics of the full swarm is controlled by the symmetry related charge, 

which is located on the center of mass.  

 

𝜙 = ∇𝜑 = 𝛻0𝜑0 − 〈𝛁, 𝝋〉 + 𝜵𝜑0 + ∇0𝝋 + 𝜵 × 𝝋 

𝓔 ≡  −𝜵𝜑0 − 𝛻0𝝋 

𝓑 ≡  𝜵 × 𝝋 

𝜘 = 𝛻0𝜑0 − 〈𝛁, 𝝋〉 

𝛻0𝓑 = −𝜵 × 𝓔 = 𝜵 × 𝛻0𝝋 

𝜌0 ≡ 〈𝜵, 𝓔〉 = −〈𝜵, 𝜵𝜑0〉 − 〈𝜵, 𝛻0𝝋〉 = −〈𝜵, 𝜵〉𝜑0 − 𝛻0〈𝜵, 𝝋〉 

 𝝆 ≡ 𝜵 × 𝓑 − 𝛻0𝓔 = 𝜵 × 𝜵 × 𝝋 + 𝛻0𝜵𝜑0 + 𝛻0𝛻0𝝋 

= 𝜵〈𝜵, 𝝋〉 + 𝛻0𝜵𝜑0 − 〈𝜵, 𝜵〉𝝋 + 𝛻0𝛻0𝝋 

∇∗∇𝜑 = ∇∗𝜙 = ℊ =  𝜌 + ∇∗𝜘 

Equations (2), (3), (5), (6) and (7) are recognizable as Maxwell equations. However, Maxwell 

equations use coordinate time 𝑡 rather than proper time 𝜏. 

Equation (8) concerns the quaternionic non-homogeneous wave equation of the symmetry related 

field. 

The inertia of the swarm is related to rest mass 𝑚. On its turn this 𝑚 is related to the number of 

involved swarm elements. The symmetry related force is counteracted by the inertia force: 

𝑭 = 𝑄 (𝓔 + 𝒑 ×
𝓑

𝑚
) =  ∇0𝒑 

Where 𝑄, 𝓔 and 𝓑 in equation (9) concern the symmetry related field, will 𝒑 and 𝑚 concern the 

movement of the embedded particle. 

A movement of the complete swarm is described by a propagator. It is the swarm’s Green’s function 

G(𝑞𝑎 , 𝑞𝑏) that corresponds to a move from 𝑞𝑎 to 𝑞𝑏: 

{∇∗∇ − 𝑚2}G(𝑞𝑎, 𝑞𝑏) = δ(𝑞𝑎 − 𝑞𝑏) 

(6) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

 (6) (7) 

(8) 

(9) 

(10) 
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{𝑝∗𝑝 − 𝑚2}G̃(𝑞𝑎, 𝑞𝑏) = 1 

20 Conclusion 
It appears sensible to suggest that physical reality mimics a network of mathematical structures that 

is used and controlled by a set of coherence ensuring management mechanisms. This setup aims at 

reducing relational complexity and it prevents dynamical chaos. The network consists of chains of 

structures that each start with a rather simple foundation. The major chain starts with an 

orthomodular lattice. 

In this way an orthomodular base model emerges with inescapable evidence. This model treats all 

discrete objects as modules or modular systems that are embedded in continuums. This is supported 

by an infinite dimensional separable Hilbert space and a companion non-separable Hilbert space. 

Both Hilbert spaces act as structured storage media. The management mechanisms ensure the 

dynamic and spatial coherence. This leads to a model in which progression steps in the discrete part 

and flows in the continuous part of the model. 

The introduction of symmetry centers enables the distinction between two fields that influence the 

kinematics of the discrete objects that appear as modules in the model. The symmetry centers house 

the artifacts that indirectly interact with the symmetry related field. 

The embedding process creates the triggers that deforms the embedding continuum in a dynamical 

way and causes vibrations in that continuum. Without these triggers the embedding continuum is 

not affected.  

The symmetry related field can be considered to overlay the parameter space ℜ⓪ of the embedding 

continuum ℭ and features electric charges that are concentrated on the geometric centers of local 

symmetry centers. In spherical symmetric conditions this coincides with the local center of 

gravitation symmetry. 

The habits and diversity of quaternions play an essential role in the extension of the orthomodular 

base model. These habits cause a variety of module types that differ in their properties and in their 

behavior. The generation of the modules is controlled by stochastic management mechanisms. The 

behavior of the modules and of the continuums is both initiated and restricted restricted by the 

embedding process. 

According to the model, history is precisely determined and stored in the Hilbert spaces. The 

controlling mechanisms act in a short period around the current progression value. Each mechanism 

acts in a sliding window that is represented by a closed subspace of the separable Hilbert space. The 

future is unknown, but it is restricted by the capabilities of the orthomodular base model and the by 

the controlling mechanisms.  

 

This paper does not consider in depth the mutual binding of elementary modules. Nor does it treat 

the effects of arbitrary boundary conditions. 

The development of mathematical tools that are used by physicists did not always occur in sync with 

the sometimes violent development of physical theories. Sometimes choices were made that would 

not have been taken when the proper mathematical tools were developed in an earlier phase. The 

paper shows that when looking back on this development , some leading physicists did not always 

provide the most sensible choice. They cannot be blamed for that choice, but as a consequence, the 

(11) 
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models of contemporary physics are more complicated than is necessary and do not reach as deep as 

is possible. It will be difficult to repair that situation.  

If the target is to investigate the foundations of physical reality, then it is sensible to apply the most 

advanced mathematical tools and obey the restrictions that are set by these tools. 
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Appendix 

1 Quaternionic calculus 
A series of number systems exist that differ in their dimension [15]. The dimension increases with 

factor 2. Starting from dimension 2 their arithmetic quality degrades with increasing dimension. 

Quaternions have dimension 4. The product of quaternions is not commutative. 𝑎𝑏 ≠ 𝑏𝑎. Octonions 

have dimension 8. The product of quaternions is not commutative and not associative. (𝑎 𝑏) 𝑐 ≠

𝑎 (𝑏 𝑐). 

Physical reality appears to restrict its choice of number systems to division rings. This excludes 

number systems with dimensions higher than 4. 

Quaternions are hyper-complex numbers that consist of a real scalar and a three dimensional real 

vector [8]. The vector plays the role of the imaginary part. Quaternions keep these parts in one 

compact unit. This has the advantage that it is immediately clear that these parts belong together. 

Quaternions have features and capabilities that are hardly known by most physicists [8]. Some of 

them are treated here. 

In most situations, it is not necessary to treat quaternions as one unit. Contemporary physics has 

chosen for the option to treat the real part and the imaginary part separately. This has generated 

unhappy far reaching consequences that come to the front when dimensions get coupled as is the 

case with elementary particles [13]. 

1.1 Quaternions 
We indicate the real part of quaternion 𝑎 by the suffix 𝑎0. 

We indicate the imaginary part of quaternion 𝑎 by bold face 𝒂. 

𝑎 = 𝑎0 + 𝒂 

𝑎∗ is the quaternionic conjugate of 𝑎.  

𝑎∗ = 𝑎0 − 𝒂 

 

The sum of two quaternions is defined by: 

𝑐 = 𝑐0 + 𝒄 = 𝑎 + 𝑏 

𝑐0 = 𝑎0 + 𝑏0 

𝒄 = 𝒂 + 𝒃 

 

The product of two quaternions does not commute and exists in two versions: 

𝑓 = 𝑓0 + 𝒇 = 𝑑 𝑒 = (𝑑0 + 𝒅)(𝑒0 + 𝒆) = 𝑑0 𝑒0 − 〈𝒅, 𝒆〉 + 𝑑0𝒆 + 𝑑0𝒆 ± 𝒅 × 𝒆 

𝑓0 = 𝑑0 𝑒0 − 〈𝒅, 𝒆〉 

𝒇 = 𝑑0𝒆 + 𝑑0𝒆 ± 𝒅 × 𝒆 

(2) 

(3) 

(4) 

(5) 

 (6) 

(7) 

(8) 
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The ± sign indicates the influence of right or left handedness of the number system.  

 

⟨𝒅, 𝒆⟩ is the inner product of 𝒅 and 𝒆. 

𝒅 × 𝒆 is the outer product of 𝒅 and 𝒆. 
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1.2 Symmetry flavors 
Due to their four dimensions, quaternionic number systems exist in 16 versions that differ in their 

discrete symmetry sets. Half of these versions are right handed and the other half are left handed. If 

the real part is ignored, then still 8 versions result. 

Quaternions can be mapped to Cartesian coordinates along the orthonormal base vectors 1, 𝒊, 𝒋 and 

𝒌; with 𝒊𝒋 = 𝒌. 𝒊, 𝒋 and 𝒌 correspond with the Pauli matrices 𝝈1, 𝝈2 and 𝝈3. 

Symmetry flavors are marked by special indices, for example 𝑎④. This superscript is an alternative 

for the spinors and matrices that are otherwise used to represent quaternion behavior. 

They are also marked by colors 𝑁, 𝑅, 𝐺, 𝐵, 𝐵̅, 𝐺̅, 𝑅̅, 𝑁̅ 

Half of them is right handed, R  

The other half is left handed, L 

The colored arrows reflect the directions of the ordering along the axes. 

Symmetry flavor 

Ordering 

x   y   z 

Symbol Handedness 

Right/Left 

Color 

 a⓪ R N 

 a① L R 

 a② L G 

 a③ L B 

 a④ R B 

 a⑤ R G 

 a⑥ R R 

 a⑦ L N 

 

Per definition, members of coherent sets {𝑎𝑖
𝑥} of quaternions all feature the same symmetry flavor 

that is marked by superscript  𝑥. 

Also continuous functions and continuums feature a symmetry flavor. Continuous quaternionic 

functions 𝜓𝑥(𝑞𝑥) and corresponding continuums do not switch to other symmetry flavors  𝑦.  

The reference symmetry flavor 𝜓𝑦(𝑞𝑦) of a continuous function 𝜓𝑥(𝑞𝑦) is the symmetry flavor of 

the parameter space {𝑞𝑦}.  

If the continuous quaternionic function describes the density distribution of a set {𝑎𝑖
𝑥} of discrete 

objects 𝑎𝑖
𝑥, then this set must be attributed with the same symmetry flavor  𝑥. The real part 

describes the location density distribution and the imaginary part describes the displacement density 

distribution. 
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1.3 Symmetry flavor conversion tools 

 Conjugation 
Quaternionic conjugation 

(𝝍𝑥)∗ = 𝝍(7−𝑥)  

The superscript  𝑥 can be  ⓪,  ①,  ②,  ③,  ④,  ⑤,  ⑥,  or ⑦. 

 Rotation 
Quaternions are often used to represent rotations. 

 

𝑐 = 𝑎𝑏/𝑎 

 

rotates the imaginary part of 𝑏 that is perpendicular to the imaginary part of 𝑎 over an angle 2𝜃, 

where 𝑎 = |𝑎| 𝑒𝑥𝑝(2𝜋𝒊𝜃). 

 

Via quaternionic rotation, the following normalized quaternions 𝜚𝑥 can shift the indices of symmetry 

flavors of coordinate mapped quaternions and for quaternionic functions: 

 

𝜚① =
1 + 𝒊

√2
; 𝜚② =

1 + 𝒋

√2
; 𝜚③ =

1 + 𝒌

√2
; 𝜚④ =

1 − 𝒌

√2
; 𝜚⑤ =

1 − 𝒋

√2
; 𝜚⑥ =

1 − 𝒊

√2
 

 

𝒊𝒋 = 𝒌;   𝒋𝒌 = 𝒊;   𝒌𝒊 = 𝒋 

 

𝜚⑥ = (𝜚①)
∗
 

 

For example 

 

𝜓③ = 𝜚①𝜓②/𝜚① 

 

𝜓③𝜚① = 𝜚①𝜓② 

 

𝜓⓪ = 𝜚𝑥𝜓⓪/𝜚𝑥;  𝜓⑦ = 𝜚𝑥𝜓⑦/𝜚𝑥  

 

Also strings of symmetry flavor convertors may change the index of symmetry flavor of the multiplied 

quaternion or quaternionic function. The convertors can act on each other. 

(1) 

(1) 

(2) 

(2) 

(3) 

(4) 

(5) 

(6) 
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For example: 

𝜚①𝜚② = 𝜚②𝜚③ = 𝜚③𝜚① =
1 + 𝒊 + 𝒋 + 𝒌

2
 

 

The result is an isotropic quaternion. This means: 

 

𝜚①𝜓②/𝜚𝑥 = 𝜚②𝜓③/𝜚𝑥 = 𝜓(𝑥+1) 

 

Here (𝑥 + 1) means 𝒊 → 𝒋 → 𝒌 → 𝒊 → 𝒋 → 𝒌, or ①→②→③→①→②→③ and so on. 

 

1.4 Differential calculus 
In a rather flat continuum we can use the quaternionic nabla 

 

∇= {
𝜕

𝜕𝜏
,

𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
} =  

𝜕

𝜕𝜏
+ 𝒊

𝜕

𝜕𝑥
+ 𝒋

𝜕

𝜕𝑦
+ 𝒌

𝜕

𝜕𝑧
= ∇0 +  𝛁 

 

Φ = Φ0 + 𝚽 = 𝛻𝜓 

 

Φ0 = ∇0𝜓0 − ⟨𝛁, 𝝍⟩ 

 

𝚽 = ∇0𝝍 + 𝛁𝜓0 ± 𝛁 × 𝝍 

 

In Maxwell equations the equivalent terms have been given separate names. Maxwell equations use 

coordinate time 𝑡 rather than proper time 𝜏. See the section movement and the section on space-

progression models. 

 The coupling equation 
The coupling equation represents a peculiar property of the quaternionic differential equation.  

We start with two normalized functions 𝜓 and 𝜑 and a normalizable function Φ = 𝑚 𝜑.  

Here 𝑚 is a fixed quaternion. Function 𝜑 can be adapted such that 𝑚 becomes a real number. 

 

‖𝜓‖ = ‖𝜑‖ = 1 

 

These normalized functions are supposed to be related by: 

(7) 

(8) 

(1) 

(2) 

(3) 

(4) 

(1) 



59 
 

 

Φ = 𝛻𝜓 = 𝑚 𝜑 

 

Φ = 𝛻𝜓 defines the differential equation. 

 

𝛻𝜓 = Φ formulates a differential continuity equation. 

 

𝛻𝜓 = 𝑚 𝜑 formulates the coupling equation.  

1.4.1.1 Special forms of the coupling equation 

The existence of symmetry flavors of quaternionic functions gives rise to special forms of the 

coupling equation for symmetry flavors {𝜓𝑥, 𝜓𝑦} of the shared base function 𝜓⓪. 

For two cases the situation is uncovered by the Dirac equation. It represents an equation for the free 

electron and an equation for the free positron. 

For example, the Dirac equation for the free electron in quaternionic format runs: 

 

𝛻𝜓 = 𝑚𝑒 𝜓∗ 

 

𝜓∗ and 𝜓 are symmetry flavors of the same base function. 

 

The Dirac equation for the free positron runs: 

 

𝛻∗𝜓∗ = 𝑚𝑒 𝜓 

 

These equations differ in the sign of a curl term [12]. Together they constitute a special non-

homogeneous wave equation: 

 

𝛻∗𝛻𝜓 = 𝛻∗(𝑚𝑒 𝜓∗) = 𝑚𝑒 
2  𝜓 

 

 Transformations 
The value of 𝜙 in  
 

𝜙 = 𝛻𝜓 
 
does not change after the transformation 

𝜓 → 𝜓 + 𝜉 = 𝜓 + 𝛻 
∗𝜒  

(2) 

(3) 

(4) 

(5) 

(1) 

(2) 

(3) 

(1) 

(2) 
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where  
 

∇ξ = ∇∇∗
 χ = 0 

 
The rotations 
 

𝜓 → 𝜗𝜓𝜗−1;  𝜑 → 𝜗𝜑𝜗−1 
 
do not affect the validity of  
 

𝜙 = 𝛻𝜓 
 

if  
 

𝛻(𝜗𝜓𝜗−1) = 𝜗(𝛻𝜓)𝜗−1 
 
while 
 

𝜗𝜙𝜗−1 = 𝜗(𝛻𝜓)𝜗−1 = 𝛻(𝜗𝜓𝜗−1) 

 

 The non-homogeneous wave equation 
Locally, the wave function is considered to act in a rather flat continuum 𝜒. 

The quaternionic wave equation exists in a homogeneous (𝜌 = 0) and in non-homogeneous (𝜌 ≠ 0) 

form. 

 

∇∗∇𝜒 ≡ ∇0∇0𝜒 + ⟨𝛁, 𝛁⟩𝜒 = 𝜌 

 

The function 𝜌 represents the temporary presence of one or more discrepant discrete objects. 

Depending on local conditions the (non-)homogeneous wave equations has several groups of 

solutions. 𝜌 may trigger vibrations that are solutions of the homogeneous wave equation. 

Near the embedding location the homogeneous wave equation applies between two embedding 

occurrences and the non-homogeneous wave equation applies during the embedding. 

 Diversity 
The non-homogeneous wave equation corresponds to two continuity equations. 

 

With ∇𝜒 = 𝜑 follows ∇∗𝜑 = 𝜌 

 

𝜓 involves the embedding continuum. 𝜌 involves the description of the coherent swarm of triggers. 

(3) 

(4) 

(5) 

(6) 

(7) 

(1) 

(2) 



61 
 

The non-homogeneous wave equation couples the sign flavor of the embedding continuum to the 

sign flavor of the coherent location swarm. Whether this occurs in the first or in the second 

continuity equation is not yet clear. 

We can apply the Dirac equation for the electron and the positron as a template. There we used the 

equation for the elementary particle as the first continuity equation and the equation of the 

antiparticle as the second continuity equation. For example: 

∇𝜓⓪ =  𝑚𝑥𝜓⊗ 

∇∗𝜓⊗ =  𝑚𝑥𝜓⓪ 

∇∗(∇𝜓⓪) =  𝑚𝑥∇∗𝜓⊗ = 𝑚𝑥
2𝜓⓪ 

Superscript ⊗ represents the sign flavor of the swarm of the elementary particle before it gets 

embedded. 

This template represents the diversity of the fermions. 𝜓⑦ represents the swarm of the electron. 

 Restrictions of the non-homogeneous wave equation 
Depending on local and temporal conditions the non-homogeneous wave equation can be restricted 

to different versions. Examples are the homogeneous wave equation, the Poisson equation, the 

screened Poisson equation and the Helmholtz equation. 

1.4.5.1 The homogeneous wave equation 

The homogeneous wave equation is taken as: 

 

∇∗∇𝜒 = ∇0∇0𝜒 + ⟨𝛁, 𝛁⟩𝜒 =
𝜕2𝜒

𝜕𝜏2
+

𝜕2𝜒

𝜕𝑥2
+

𝜕2𝜒

𝜕𝑦2
+

𝜕2𝜒

𝜕𝑧2
= 0 

 

∇∗∇𝜒0 = 0 

 

Equation (2) has 3D isotropic wave fronts as one group of its solutions. 𝜒0 is a scalar function. By 

changing to polar coordinates it can be deduced that a general solution is given by: 

 

𝜒0(𝑟, 𝜏) =
𝑓0(𝒊𝑟 − 𝑐𝜏)

𝑟
 

 

Where 𝑐 = ±1 and 𝒊 represents a base vector in radial direction. In fact the parameter 𝒊𝑟 − 𝑐𝜏 of 𝑓0 

can be considered as a complex number valued function. 

 

∇∗∇𝝌 = 0 

 

(3) 

(4) 

(5) 

(1) 

(2) 

(3) 

(4 
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Here 𝝌 is a vector function. 

Equation (4) has one dimensional wave fronts as one group of its solutions: 

 

𝝌(𝑧, 𝜏) = 𝒇(𝒊𝑧 − 𝑐𝜏) 

 

Again the parameter 𝒊𝑧 − 𝑐𝜏 of 𝒇 can be interpreted as a complex number based function. 

The imaginary 𝒊 represents the base vector in the 𝑥, 𝑦 plane. Its orientation 𝜃 may be a function of 𝑧. 

That orientation determines the polarization of the one dimensional wave front. 

1.4.5.2 Poisson equation 

The Poisson equation is a special condition of the non-homogeneous wave equation in which some 

terms are zero or have a special value.  

 

∇∗∇𝜒 = ∇0∇0𝜒 + ⟨𝛁, 𝛁⟩𝜒 = 𝜌 

 

∇0∇0𝜒 = −𝜆2 𝜒 

 

⟨𝛁, 𝛁⟩𝜒 − 𝜆2𝜒 =  𝜌 

 

The 3D solution of this equation is determined by the screened Green’s function 𝐺(𝑟). 

Green functions represent solutions for point sources. 

 

𝐺(𝑟) =
exp(−𝜆 𝑟)

𝑟
 

 

𝜒 =  ∭ 𝐺(𝒓 − 𝒓′) 𝜌(𝒓′) 𝑑3𝒓 ′ 

 

G(r) has the shape of the Yukawa potential [14] 

In case of 𝜆 = 0 it is the Coulomb or gravitation potential of a point source. 

1.5 Space-progression models 
Different versions of the wave equation exist. One is based on Maxwell’s equations. Another is based 

on quaternionic differential calculus. This version is treated above. It runs as: 

𝜕2𝜓

𝜕𝑡2
+

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
= 0 

(5) 

(1) 

(2) 

(3) 

(4) 

(5) 

(1) 
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The two wave equations correspond to two different space-progression models. 

 The Maxwell-Huygens wave equation 
In Maxell format [13] the wave equation uses coordinate time 𝑡. It runs as: 

𝜕2𝜓

𝜕𝑡2
−

𝜕2𝜓

𝜕𝑥2
−

𝜕2𝜓

𝜕𝑦2
−

𝜕2𝜓

𝜕𝑧2
= 0 

Papers on Huygens principle work with this formula or it uses the version with polar coordinates. 

For isotropic conditions in three participating dimensions the general solution runs: 

𝜓 = 𝑓(𝑟 − 𝑐𝑡)/𝑟, where 𝑐 = ±1; 𝑓 is real 

This follows from  

〈𝛻, 𝛻〉𝜓 ≡
1

𝑟2
(

𝜕

𝜕𝑟
(𝑟2

𝜕𝜓

𝜕𝑟
)) =

𝑓′′(𝑟 − 𝑐𝑡)

𝑟
=

1

𝑐2
𝜕²𝜓/𝜕𝑡² 

In a single participating dimension the general solution runs: 

𝜓 = 𝑓(𝑥 − 𝑐𝑡), where 𝑐 = ±1; 𝑓 is real 

 Relativity 
The orthomodular base model applies the homogeneous quaternionic wave equation for establishing 

the model’s speed of information transfer. This equation offers 1D wave fronts as one of its possible 

solutions.  

These wave fronts can act as information carriers. They proceed with constant speed 𝑐 =  ± 1. Their 

amplitude does not diminish with distance from the source. Thus these carriers can travel huge 

distances and still keep their integrity. In contrast 3D wave fronts proceed with the same speed, but 

their amplitude diminishes as 1/𝑟 with distance 𝑟 from the source. 

In his introduction of special relativity in 1905, Einstein used the Maxwell based wave equation [10] 

in order to derive the speed of information transfer in his models. This resulted in a spacetime model 

that features a Minkowski signature. 

The Maxwell based wave equation uses coordinate time 𝑡. The quaternionic wave equation uses 

progression 𝜏. Comparing these two parameters becomes difficult when space is curved, but for 

infinitesimal steps, space can be considered to be flat and the progression step becomes a proper 

time step. In that situation holds: 

Coordinate time step vector = proper time step vector + spatial step vector 

Or in Pythagoras format: 

(∆𝑡)2  =  (∆𝜏)2 + (∆𝑥)2+(∆𝑦)2+(∆𝑧)2 

The formula indicates that the coordinate time step corresponds to the step of a full quaternion, 

which is a superposition of a proper time step and a spatial step. 

An infinitesimal spacetime step ∆𝑠 is usually presented as an infinitesimal proper time step ∆𝜏. 

 

(∆𝑠)² =  (∆𝑡)² −  (∆𝑥)² −  (∆𝑦)² − (∆𝑧)²  

(1) 

(2) 

(3) 

(4) 

(1) 

(2) 

(3) 
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The signs on the right side form the Minkowski signature (+, −, −, −) .  

Quaternions offer a Euclidean signature (+, +, +, +) as is shown in formula (2). 

The Lorentz transform uses a speed parameter that is compared with the maximum speed of 

information transfer. Einstein and most contemporary physics models use coordinate time based 

speed for this purpose.  

The orthomodular base model will use progression based speed for that purpose. As a consequence 

it supports a space-progression model that features a Euclidean signature. 

2 Related historic discoveries and other references 
Physical models use mathematical tools. The development of mathematical tools did not evolve in 

sync with the development of the physical models that use these tools. Complicated mathematical 

tools may take several decades before they mature. 

[1] Quantum logic was introduced by Garret Birkhoff and John von Neumann in their 1936 paper. G. 

Birkhoff and J. von Neumann, The Logic of Quantum Mechanics, Annals of Mathematics, Vol. 37, 

pp. 823–843 

[2] The lattices of quantum logic and classical logic are treated in detail in: 

http://vixra.org/abs/1411.0175 . 

[3] The Hilbert space was discovered in the first decades of the 20-th century by David Hilbert and 

others. http://en.wikipedia.org/wiki/Hilbert_space. 

[4] In the second half of the twentieth century Constantin Piron and Maria Pia Solèr proved that the 

number systems that a separable Hilbert space can use must be division rings. See: “Division algebras 

and quantum theory” by John Baez. http://arxiv.org/abs/1101.5690 and 

http://www.ams.org/journals/bull/1995-32-02/S0273-0979-1995-00593-8/  

[5] Paul Dirac introduced the bra-ket notation, which popularized the usage of Hilbert spaces. Dirac 

also introduced its delta function, which is a generalized function. Spaces of generalized functions 

offered continuums before the Gelfand triple arrived. 

[6] In the sixties Israel Gelfand and Georgyi Shilov introduced a way to model continuums via an 

extension of the separable Hilbert space into a so called Gelfand triple. The Gelfand triple often gets 

the name rigged Hilbert space. It is a non-separable Hilbert space. 

http://www.encyclopediaofmath.org/index.php?title=Rigged_Hilbert_space . 

[7] Potential of a Gaussian charge density: 

http://en.wikipedia.org/wiki/Poisson%27s_equation#Potential_of_a_Gaussian_charge_density . 

[8] Quaternionic function theory and quaternionic Hilbert spaces are treated in: 

http://vixra.org/abs/1411.0178 . 

[9] In 1843 quaternions were discovered by Rowan Hamilton. 

http://en.wikipedia.org/wiki/History_of_quaternions  

Later in the twentieth century quaternions fell in oblivion. 

[10] http://en.wikipedia.org/wiki/Wave_equation#Derivation_of_the_wave_equation 

http://vixra.org/abs/1411.0175
http://en.wikipedia.org/wiki/Hilbert_space
http://arxiv.org/abs/1101.5690
http://www.ams.org/journals/bull/1995-32-02/S0273-0979-1995-00593-8/
http://www.encyclopediaofmath.org/index.php?title=Rigged_Hilbert_space
http://en.wikipedia.org/wiki/Poisson%27s_equation#Potential_of_a_Gaussian_charge_density
http://vixra.org/abs/1411.0178
http://en.wikipedia.org/wiki/History_of_quaternions
http://en.wikipedia.org/wiki/Wave_equation#Derivation_of_the_wave_equation
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[11] http://en.wikipedia.org/wiki/Yukawa_potential  

[12] “The Dirac equation in quaternionic format”; http://vixra.org/abs/1505.0149  

[13] “Quaternionic versus Maxwell based differential calculus”; http://vixra.org/abs/1506.0111  

[14] The online EMFT book of Bo Thidé contains a formula section that treats vector calculus and 

vector differential calculus. http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf . 

[15] Different number systems and their arithmetic capabilities are treated in 

http://www.scorevoting.net/WarrenSmithPages/homepage/nce2.pdf. 

http://en.wikipedia.org/wiki/Yukawa_potential
http://vixra.org/abs/1505.0149
http://vixra.org/abs/1506.0111
http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf
http://www.scorevoting.net/WarrenSmithPages/homepage/nce2.pdf
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