
Exceptional Lie Algebra
Magic Square Series 
By John Frederick Sweeney

Abstract 

The Exceptional Lie Algebra contains a series of Magic Squares, shown
above. This paper presents this series, especially the series E6 – E7 and E8.
In addition a Magic Square Series related to the Octonions, Fano Plane,  the
Klein Quartic and PS / 2 has been found. 
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Introduction 

In the minds of most, Magic Squares constitute little more than a trivial parlour
game, and in no way constitute serious mathematics. Magic Squares have
long been considered curiosities, the subject of mathematical puzzles for
middle school students, to keep them interested in math yet not overwhelming
them with consequential mathematical topics such as trigonometry or
calculus. Few have understood that Magic Squares play a key role in particle
physics, and for the most part, Magic Squares have been neglected by
serious academics. 

The Luo Shu Magic Square, for example, constitutes a mathematical
curiousity that merely helps to add the word inscrutable to the list of adjectives
used to describe the Chinese: why would an entire culture spend millenia
obsessed with a simple parlour game? The question itself appears too trivial
to warrant serious academic attention. This lack of curiousity about such
matters had led western math and physics to overlook a key function in the
production of the wide variety of nuclear particles. 

Instead, western mathematical physics has taken certain constructs and
declared them “magical” when in fact they are not magical in any sense.
“Magic Numbers” and the Freudenthal – Tits Magic Square provide two cases
in point – neither of them truly magical in the sense of magic squares. They
simply appear magical in certain aspects, in the sense of Arthur C. Clarke,
who wrote that we describe things as magical when we fail to understand
them. 

The Freudenthal – Tits Magic Square is in fact a Pascal Triangle on its side,
or in reverse, and was given that monniker when mathematicians failed to
understand the relationship between RCHOST and Exceptional Lie Algebras,
which remains relatively misunderstood today, especially on the latter end of
RCHOST – the Octonions, Sedenions and Trigintaduonions. 

The magic square series described within was found on the internet by this
author, but not described in that way. In fact, the composer of the website still
does not believe that this series is what the author of this paper believes. 



In an earlier paper on Vixra, the author of this paper showed how Magic
Squares play a key role in the formation of matter. Chief among those Magic
Squares, and at the heart of Qi Men Dun Jia, is the 3 x 3 Luo Shu Magic
Square of Chinese metaphysics. 

Beyond this example exist many more, which are presented in this paper. 



John Baez on Exceptional Lie Algebras 

On October 18th, 1887, Wilhelm Killing wrote a letter to Friedrich Engel saying

that he had classified the simple Lie algebras. In the next three years, this 

revolutionary work was published in a series of papers [59]. Besides what we 

now call the `classical' simple Lie algebras, he claimed to have found 6 

`exceptional' ones -- new mathematical objects whose existence had never 

before been suspected. In fact he only gave a rigorous construction of the 

smallest of these. In his 1894 thesis, Cartan [11] constructed all of them and 

noticed that the two 52-dimensional exceptional Lie algebras discovered by 

Killing were isomorphic, so that there are really only 5. 

The Killing-Cartan classification of simple Lie algebras introduced much of the

technology that is now covered in any introductory course on the subject, 

such as roots and weights. We shall avoid this technology, since we wish 

instead to see the exceptional Lie algebras as Octonionic cousins of the 

classical ones -- slightly eccentric cousins, but still having a close connection 

to geometry, in particular the Riemannian geometry of projective planes. For 

this reason we shall focus on the compact real forms of the simple Lie 

algebras. 

http://math.ucr.edu/home/baez/octonions/node22.html#Killing
http://math.ucr.edu/home/baez/octonions/node22.html#Cartan0


The classical simple Lie algebras can be organized in three infinite families: 

The corresponding Lie groups are 

These arise naturally as symmetry groups of projective spaces over , , 

and , respectively. More precisely, they arise as groups of isometries: 

transformations that preserve a specified Riemannian metric. Let us sketch 

how this works, as a warmup for the exceptional groups. 

First consider the projective space . We can think of this as the unit 

sphere in with antipodal points and identified. It thus inherits a 

Riemannian metric from the sphere, and the obvious action of the rotation 

group as isometries of the sphere yields an action of this group as 



isometries of with this metric. In fact, with this metric, the group of all 

isometries of is just 

where is the subgroup of that acts trivially on . The Lie

algebra of this isometry group is 

The case of is very similar. We can think of this as the unit sphere in 

with points and identified whenever is a unit complex number. It thus 

inherits a Riemannian metric from this sphere, and the unitary group 

acts as isometries. If we consider only the connected component of the 

isometry group and ignore the orientation-reversing isometries coming from 

complex conjugation, we have 

where is the subgroup that acts trivially on . The Lie algebra of this 

isometry group is 

The case of is subtler, since we must take the non - commutativity of the 

quaternions into account. We can think of as the unit sphere in with 



points and identified whenever is a unit quaternion, and as before, 

inherits a Riemannian metric. The group acts as isometries of , 

but this action comes from right multiplication, so 

since not but only its center acts trivially on by right 

multiplication. At the Lie algebra level, this gives 

For lovers of the Octonions, it is tempting to try a similar construction starting 

with . While non - associativity makes things a bit tricky, we show in 

Section 4.2 that it can in fact be done. It turns out that is one of the 

exceptional Lie groups, namely . Similarly, the exceptional Lie groups ,

and are in a certain subtle sense the isometry groups of projective 

planes over the algebras , and . Together with , these 

groups can all be defined by the so-called `magic square' construction, which 

makes use of much of the algebra we have described so far. We explain three

versions of this construction in Section 4.3. We then treat the groups 

and individually in the following sections. But first, we must introduce : 

the smallest of the exceptional Lie groups, and none other than the 

automorphism group of the Octonions. 

http://math.ucr.edu/home/baez/octonions/node16.html#magic
http://math.ucr.edu/home/baez/octonions/node15.html#F4


Complexification Method of 

Exceptional Lie Algebras

By Frank Tony Smith 

At  www.tony5m17h.net/ichgene6.html

Frank Tony Smith writes: 

Chinese cosmology begins with the undivided Tai Chi, 
then separating into Yin-Yang, ... : 
Let o represent the undivided Tai Chi, a scalar point
of origin: 

     |     |     
     |     |     
_____|_____|_____
     |     |     
     |  o  |     
_____|_____|_____
     |     |     
     |     |     
     |     |     
 
 
Then add 4 vector directions of Physical Spacetime: 
   1, i, j, k  of the quaternions 
to get the 5 Elements:    
 
     |     |     
     |  i  |     
_____|_____|_____
     |     |     
  j  |  o  |  1  
_____|_____|_____
     |     |     
     |  k  |     
     |     |     
 



Then  add  4  vector  directions of Internal Symmetry
Space: 
   E, I, J, K  of the octonions,  
which  are  the  basis  for  the  D4-D5-E6-E7  physics
model, 
to get 9 directions: 
 
 
     |     |     
  J  |  i  |  I  
_____|_____|_____
     |     |     
  j  |  o  |  1  
_____|_____|_____
     |     |     
  K  |  k  |  E  
     |     |     
 
The 10th direction is Yin-Yang reflection 
of the 8 vector directions   1, i, j, k, E, I, J, K.
 
 
Now, identify the 3x3 square with the Magic Square 
 
     |     |     
  4  |  9  |  2  
_____|_____|_____
     |     |     
  3  |  5  |  7  
_____|_____|_____
     |     |     
  8  |  1  |  6  
     |     |     
 
 
whose central number, 5, is 
central in the sequence   1,2,3,4, 5, 6,7,8,9 
which sequence corresponds 
to the octonions          1,i,j,k, 0, E,I,J,K 
 
whose total number for each line is 15, 
the dimension of the largest Hopf fibration 
and the dimension of the imaginary sedenions.
 

http://www.tony5m17h.net/sedenion.html
http://www.tony5m17h.net/PDS3.html
http://www.tony5m17h.net/3x3OctCnf.html
http://www.tony5m17h.net/d4d5e6hist.html
http://www.tony5m17h.net/d4d5e6hist.html
http://www.tony5m17h.net/3x3OctCnf.html


If you take into account the direction in which you
add each 
of the 8 ways, and add all directed ways together 
you get a total of 16x15 = 240 
which  is  the  number  of  vertices  of  a  Witting
polytope. 
 
The total of all 9 numbers of the Magic Square is 45,
the dimension of the D5 Lie algebra Spin(10) 
that is used in the D4-D5-E6-E7 physics model      
in which 
the D4 Spin(8) subgroup of Spin(10) corresponds 
to 28 bivector gauge bosons 
and the 16-dimensional homogeneous space 
Spin(10) / Spin(8)xU(1) 
corresponds to an 8-dimensional complex domain 
whose Shilov boundary is RP1 x S7  
corresponding to an 8-dimensional spacetime. 

The ternary number arrangement is similar to 
the Fu Xi binary number arrangement of the I Ching. 
 
The 81 tetragrams correspond to the 81 verses 
of the  Tao Te Ching and the Celestial Pivot of the
Yellow Emperor's Internal Canon.  
 
The Tai Xuan Jing may be at least as 
old as the King Wen arrangement of the I Ching, 
since such tetragrams have been 
found on Shang and Zhou dynasty oracle bones.  
 
To construct the Tai Xuan Jing, 
start with the 3x3 I Ching Magic Square  
 
     |     |     
  4  |  9  |  2  
_____|_____|_____
     |     |     
  3  |  5  |  7  
_____|_____|_____
     |     |     
  8  |  1  |  6  
     |     |     
 

http://www.pse.che.tohoku.ac.jp/~msuzuki/MagicSquare.html
http://www.tony5m17h.net/Bardo.html#Lao
http://www.tony5m17h.net/d4d5e6hist.html
http://www.tony5m17h.net/Lie.html
http://www.tony5m17h.net/FTsquare.html
http://www.tony5m17h.net/E8.html#Witting
http://www.tony5m17h.net/E8.html#Witting
http://www.tony5m17h.net/eghier.html#5000


 
whose central number, 5, is also 
central in the sequence   1,2,3,4, 5, 6,7,8,9 
which sequence corresponds 
to the octonions          1,i,j,k, 0, E,I,J,K 
 
whose total number for each line is 15, 
the dimension of the largest Hopf fibration 
and the dimension of the imaginary sedenions. 
 
If you take into account the direction in which you
add each 
of the 8 ways, and add all directed ways together 
you get a total of 16x15 = 240 
which  is  the  number  of  vertices  of  a  Witting
polytope. 
 
The total of all 9 numbers is 45, 
the dimension of the D5 Lie algebra Spin(10) 
that is used in the D4-D5-E6-E7 physics model 
in which 
the D4 Spin(8) subgroup of Spin(10) corresponds 
to 28 bivector gauge bosons 
and the 16-dimensional homogeneous space 
Spin(10) / Spin(8)xU(1) 
corresponds to an 8-dimensional complex domain 
whose Shilov boundary is RP1 x S7  
corresponding to an 8-dimensional spacetime.  
 
Notice that the 3x3 Magic Square gives 
the gauge bosons and the spacetime 
of the D4-D5-E6-E7 physics model  
but 
does not contain the spinor fermions. 
 
The 3 generations of spinor fermions 
corresond to a Lie Algebra Magic Square.  
 
The Tai Xuan Jing construction will 
give us the spinor fermions, 
and therefore corresponds to 
the complete D4-D5-E6-E7 physics model. 
 
 

http://www.tony5m17h.net/d4d5e6hist.html
http://www.tony5m17h.net/FTsquare.html
http://www.tony5m17h.net/E678.html
http://www.tony5m17h.net/d4d5e6hist.html
http://www.tony5m17h.net/d4d5e6hist.html
http://www.tony5m17h.net/Lie.html
http://www.tony5m17h.net/E8.html#Witting
http://www.tony5m17h.net/E8.html#Witting
http://www.tony5m17h.net/eghier.html#5000
http://www.tony5m17h.net/sedenion.html
http://www.tony5m17h.net/PDS3.html
http://www.tony5m17h.net/3x3OctCnf.html


To construct the Tai Hsaun Ching, 
consider the Magic Square sequence as a line 
 
3   8   4   9   5   1   6   2   7
 
with central 5 and opposite pairs at equal distances.
 
If you try to make that, or a multiple of it, 
into a 9x9 Magic Square whose central number 
is the central number 41 of 9x9 = 81 = 40+1+40, 
you will fail because 41 is not a multiple of 5. 
 
However, since 365 = 5x73 is 
the central number of 729 = 364+1+364 , you can 
make a 9x9x9 Magic Cube with 9x9x9 = 729 entries,  
each 9x9 square of which is a Magic Square. 
The Magic Cube of the Tai Hsaun Ching 
gives the same sum for all lines parallel to an edge,
and for all diagonals containing the central entry. 
 
The central number of the Magic Cube, 365, 
the period of a Maya Haab.  
 
The total number for each line is 3,285 = 219 x 15.  
The total of all numbers is 266,085  =  5,913 x 45. 
 
Since 729 is the smallest odd number greater than 1 
that is both a cubic number and a square number, 
the 729 entries of the 9x9x9 Magic Cube with central
entry 365 
can be rearranged to form  
a 27x27 Magic Square with 729 entries and central
entry 365. 
 
27 = 3x3x3 = 13+1+13 is a cubic number with central
number 14, 
and there is a 3x3x3 Magic Cube with central entry 14
(14 is the dimension of the exceptional Lie algebra
G2)   
and sum 42:  

http://www.tony5m17h.net/Lie.html
http://www.astro.virginia.edu/~eww6n/math/MagicCube.html


10  24   8       26   1  15        6  17  19
23   7  12        3  14  25       16  21   5
 9  11  22       13  27   2       20   4  18
 
 
The lowest dimensional non-trivial representation 
of the Lie algebra E6 is 27-dimensional, 
corresponding to the 27-dimensional Jordan algebra 
of 3x3 Hermitian octonionic matrices.  
 
E6 is the 78-dimensional Lie algebra 
that is used in the D4-D5-E6-E7 physics model 
in which 
the 32-dimensional homogeneous space 
E6 / Spin(10)xU(1) 
corresponds to a 16-dimensional complex domain 
whose Shilov boundary is two copies of RP1 x S7  
corresponding to Spin(8) spinors, representing  
8 fermion particles and 8 fermion antiparticles.  
 
All 4 components of the D4-D5-E6-E7 model, 
arising  from  the  4  fundamental  representations  of
Spin(8), 
are contained within E6: 
8 half-spinor fermion particles; 
8 half-spinor fermion antiparticles; 
8-dimensional spacetime 
      (4 Physical Spacetime dimensions and 
       4 Internal Symmetry dimensions); 
and 28 gauge bosons 
      (12 for the Standard Model, 
       15  for  Conformal  Gravity  and  the  Higgs
Mechanism, and 
        1 for propagator phase).  
 
The Lie algebra E6 is 72+6 = 78-dimensional, 
and has Weyl group of order 72x6! = 51,840  
which  is  the  symmetry  group  of  the  6-dimensional
polytope 2_21 
with 27 vertices and 27+72 faces 
which  is  also  the  symmetry  group  of  the  27  line
configuration: 

http://www.tony5m17h.net/d4d5e6hist.html
http://www.tony5m17h.net/d4d5e6hist.html
http://www.tony5m17h.net/3x3OctCnf.html
http://www.tony5m17h.net/Jordan.html
http://www.tony5m17h.net/Lie.html


The 78 dimensions of E6 correspond to the  78 Tarot
cards. 
 
 
 
Since E6 as used in the D4-D5-E6-E7 physics model 
represents  the  two  half-spinor  representations of
Spin(8), 

 

For Spin(n) up to n = 8, 
here are is their Clifford algebra structure 
as shown by the Yang Hui (Pascal) triangle 
and the dimensions of their spinor representations 
 

n                                           Total
Spinor 

                                          Dimension
Dimension

0                   1                   2^0 =   1= 1x1         1    

1                 1   1                 2^1 =   2= 1+1         1    

2               1   2   1               2^2 =   4= 2x2       2 = 1+1

3             1   3   3   1             2^3 =   8= 4+4         2    

4           1   4   6   4   1           2^4 =  16= 4x4       4 = 2+2

5         1   5  10  10   5   1         2^5 =  32=16+16        4    

6       1   6  15  20  15   6   1       2^6 =  64= 8x8       8 = 4+4

7     1   7  21  35  35  21   7   1     2^7 = 128=64+64        8    

8   1   8  28  56  70  56  28   8   1   2^8 = 256=16x16     16 = 8+8

 
Since each row of the Yang Hui (Pascal) triangle 
corresponds to the graded structure of an exterior
algebra 
with a wedge product, call each row a wedge string.  
 
In  this  pattern,  the  28 and  the  8 for  n  =  8
correspond 
to the 28 gauge bosons of the D4 Lie algebra 
and to the 8 spacetime (4 physical and 4 internal
symmetry) 
dimensions that are added when you go to the D5 Lie
algebra. 

http://www.tony5m17h.net/clfpq.html#SPIN
http://www.tony5m17h.net/clfpq.html
http://www.tony5m17h.net/clfpq.html#SPIN
http://www.tony5m17h.net/d4d5e6hist.html
http://www.tony5m17h.net/seftar.html
http://www.tony5m17h.net/seftar.html


 
The 8+8 = 16 fermions that are added when you go to
E6, 
corresponding to spinors, do not correspond to any
single 
grade  of  the  n  =  8  Clifford  algebra  with  graded
structure 
1   8  28  56  70  56  28   8   1 
but correspond to the entire Clifford algebra as a
whole. 
 
The total dimension of the Clifford algebra 
is given by the Yang Hui (Pascal) triangle 
pattern of binary expansion (1 + 1)^n, 
which 
corresponds to the number of vertices of 
a hypercube of dimension n.  
 
The spinors of the Clifford algebra of dimension n 
are  derived  from  the  total  matrix  algebra  of
dimension 2^n 
with pattern 
 

n                    
 
0                   1
1                 2  
2               4    
3             8      
4          16        
5        32          
6      64            
7   128              
8 256                
 
 
This can be expanded to a pattern 

http://www.tony5m17h.net/cube.html#hcube


n                                    
 
0                   1                
1                 2   1              
2               4   2   1            
3             8   4   2   1          
4          16   8   4   2   1        
5        32  16   8   4   2   1      
6      64  32  16   8   4   2   1    
7   128  64  32  16   8   4   2   1  
8 256 128  64  32  16   8   4   2   1
 
 
in the same form as the Yang Hui (Pascal) triangle.  
 
Call each row a spinor string.   
 
 
For  a  given  row  in  the  binary  (1+1)^n  Yang  Hui
(Pascal) triangle 
the string product of a spinor string and a wedge
string 
 
(2^N, 2^(N-1),  2^(N-2), ... , 2^(N-J), ... ,    4,
2, 1)       
(1  ,    N    ,  N(N-1)/2,...,N^k  J^(N-k)/(k!(N-
k)!)J),...,N(N-1)/2,N,1)
 
gives the rows of the ternary (1+2)^n power of 3
triangle
 
n                                                           

 

0                     1                          3^0 =     1

1                   2    1                       3^1 =     3

2                4    4    1                     3^2 =     9

3              8    12   6    1                  3^3 =    27

4           16   32   24    8    1               3^4 =    81

5         32   80   80   40   10    1            3^5 =   243

6       64  192  240  160   60   12    1         3^6 =   729

7    128  448  672  560  280   84   14    1      3^7 = 2,187

8  256 1024 1792 1792 1120  448  112   16    1   3^8 = 6,561

 
 



Just as the binary (1+1)^n triangle corresponds to
the I Ching, 
the ternary (1+2)^n triangle corresponds to the  Tai
Hsuan Ching. 
The ternary triangle also describes 
the sub-hypercube structure of a hypercube.  
 
 
The ternary power of 3 triangle is not only 
used in representations of the spinors in the D4-D5-
E6-E7 model, 
it  was  also  by  Plato  in  describing  cosmogony  and
music. 

http://www.tony5m17h.net/cube.html#plato
http://www.tony5m17h.net/cube.html#plato
http://www.tony5m17h.net/d4d5e6hist.html
http://www.tony5m17h.net/d4d5e6hist.html
http://www.tony5m17h.net/cube.html#hcube


Complexification of 
Exceptional Lie Algebras
Frank Tony Smith

Aperiodic Tilings in 2, 3, and 4 dimensions can be thought of

as Irrational Slices of an 8-dimensional E8 Lattice and its

sublattices, such as E6. The 2-dimensional Penrose Tiling in

the above image was generated by Quasitiler as a section of

a 5-dimensional cubic lattice based on the 5-dimensional

HyperCube shown in the center above the Penrose Tiling

plane. The above-plane geometric structures in the above

image are, going from left to right:

4-dimensional 24-cell, whose 24 vertices are the root vectors of

the 24+4 = 28-dimensional D4 Lie algebra;

two 4-dimensional HyperOctahedra, lying (in a 5th dimension)

above and below the 24-cell, whose 8+8 = 16 vertices add

to the 24 D4 root vectors to make up the 40 root vectors of

the 40+5 = 45-dimensional D5 Lie algebra;

5-dimensional HyperCube, half of whose 32 vertices are lying

(in a 6th dimension) above and half below the 40 D5 root

vectors, whose 16+16 = 32 vertices add to the 40 D5 root

vectors to make up the 72 root vectors of the 72+6 = 78-

http://www.tony5m17h.net/Weyl.html#D5cartan
http://www.tony5m17h.net/Weyl.html#D4cartan
http://www.tony5m17h.net/24anime.html
http://www.tony5m17h.net/cube.html
http://www.tony5m17h.net/pwtile.html
http://www.tony5m17h.net/Weyl.html#E6cartan
http://www.tony5m17h.net/E8.html
http://www.tony5m17h.net/pwtile.html


dimensional E6 Lie algebra;

two 27-dimensional 6-dimensional figures, lying (in a 7th

dimension) above and below the the 72 E6 root vectors,

whose 27+27 = 54 vertices add to the 72 E6 root vectors to

make up the 126 root vectors of the 126+7 = 133-

dimensional E7 Lie algebra; and

two 56-dimensional 7-dimensional figures, lying (in an 8th

dimension) above and below the the 126 E7 root vectors,

and two polar points also lying above and below the 126

E7 root vectors, whose 56+56+1+1 = 114 vertices add to

the 126 E7 root vectors to make up the 240 root vectors of

the 240+8 = 248-dimensional E8 Lie algebra.

The 240 E8 root vectors form a Witting Polytope. They are

related to the 256 elements of the Cl(1,7) Clifford Algebra of the

D4-D5-E6-E7-E8   VoDou Physics model as follows:

Cl(1,7) has 256 = 2^8 elements, corresponding to the 2^8

vertices of an 8-dimensional HyperCube and having the

graded structure

1 8 28 56 70 56 28 8 1

with even part 1 28 70 28 1 and odd part 8 56 56 8

An 8-dimensional HyperCube decomposes into 2 half-

HyperCubes, each with 128 vertices, and each

http://www.tony5m17h.net/cube.html
http://www.tony5m17h.net/cube.html
http://www.tony5m17h.net/d4d5e6hist.html
http://www.tony5m17h.net/d4d5e6hist.html
http://www.tony5m17h.net/d4d5e6hist.html
http://www.tony5m17h.net/clfpq.html
http://www.tony5m17h.net/ClifTNintro.html
http://www.tony5m17h.net/E8.html#Witting
http://www.tony5m17h.net/Weyl.html#E8cartan
http://www.tony5m17h.net/Weyl.html#E7cartan
http://www.tony5m17h.net/Weyl.html#E6cartan


corresponding to one of the 2 mirror-image half-spinor

representations of the D8 Lie algebra whose Euclidean-

signature spin group is 120-dimensional Spin(16) and

whose half-spinor representations have dimension (1/2)

(2^(16/2)) = 256/2 = 128;

One half-HyperCube corresponds to the 128 even elements 1

28 70 28 1 and the other to the 128 odd elements 8 56 56

8;

The128 vertices of the odd 8-dimensional half-HyperCube

with graded structure 8 56 56 8 correspond to 128 of the

240 E8 root vectors as follows:

8 to the 8 Octonion vector space basis elements, with positive

sign;

8 to the 8 Octonion vector space basis elements, with negative

sign;

56+56 = 112 to the 112 vectors with non-zero components on

the Octonion real axis;
The other 240-128 = 112 do not directly correspond to the 128 vertices of the

even 8-dimensional HyperCube of the even half-spinor representation
of the D8 Spin(16) Lie algebra, but correspond to 112 of the 120
generators of Spin(16), the adjoint bivector representation of D8.

http://www.tony5m17h.net/E8.html
http://www.tony5m17h.net/E8.html
http://www.tony5m17h.net/Lie.html


Exceptional Lie Algebra 

Magic Squares

For order 4, it is possible to show exactly how the 7,040 magic squares are
generated from capital and lower-case letter squares. For that, it is not
necessary to enumerate all the possible Gallic squares, you need only to
identify the elementary lower-case letter Gallic squares (and the induced
squares by group G of 32 and by permutations). You search after the

orthogonal squares to these elementary Gallic squares.   You have to search

only Gallic squares with semi-regular rows and columns because only
diagonals can be irregular (you verify this property a posteriori on all the 7 040
squares and all the basis; maybe it is possible to demonstrate directly that
rows and columns cannot be irregular). If you classify the Gallic squares
according to the value of the parameter S1, sum of the first diagonal, you
verify on the 7 040 squares that S1 can take only some values (then the sum
of the second diagonal is S2=2σ-S1). And among these Gallic squares, you

have to take only those which have orthogonal squares.   

I g i v e h e r e a f t e r t h e r e s u l t o f m y r e s e a r c h .  
 With the first basis (1,2,3,4;0,4,8,12), I found:

there are 9 elementary squares S1=10 in a normalized position (the numbers
hereafter are those of my program of enumeration), and each one has
orthogonal squares:

1  1  2  3  4 2413

314243212) 3) 4

) 5) 

 1  2  3  4 34

1221434321 

1  2  4  3 231

432414312 1 

 2  4  3 4312



12434312 1  

3  4  2 13244

2314213
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) 

 1  3  4  2 4213

243131249) 12) 

13) 

 1  3  4  2 43
2112344213 
1  4  3  2 41
2323413214 
1  4  4  1 32
2323324114

(squares # 1, 2 and 12 are Latin and magic, square # 8 is Latin diagonal)

there are 7 elementary squares S1=6, but only 6 with orthogonal squares:

1)  1  1  4  4 2

233332244

112) 4) 

 1  1  4  4 

32322323

4411 1  2  

3  4 3124

24314321

 

5)  1  2  3  4 4

123143243

218) 18) 

 1  2  4  3 

41321423

4312 1  4  

2  3 4132



14234132

(squares # 1, 2 and 12 are Latin and magic, square # 8 is Latin diagonal)

there are 9 elementary squares S1=9, but only 7 with orthogonal squares:

1)  1  2  3  4 23143

24143213) 6) 7) 

 1  2  3  4 332

221434411 1  

2  4  3 32142

3414312 1  2  

4  3 4213134

24312

 

11)  1  3  4  2 32142

431412313) 23) 

 1  3  4  2 42
1314324123 
1  4  4  1 223
333224114

(square # 11 is Latin but not magic).

 For each elementary square, I searched the number of induced squares and
the number of orthogonal squares:



S1=10 # of
elementary 

square

Number of
induced
squares 

(group 32 *
permutation

s)

Number of
orthogonal 
squares for

each

Total
number 

of
orthogonal

squares

1   4*2=  8 16    8*16=   1

28

2   4*2=  8 32    8*32=   2

56

3 32*2=64 12  64*12=   7

68

4 16*2=32 40 32*40=

1 280

5 32*1=32   8    32*8=   

256

8 16*3=48 24 48*24=



1 152

9 32*1=32   8    32*8=   

256

12 16*1=16 32  16*32=   

512

13 16*1=16 40  16*40=   

640

256 5248

(There are 80 Latin magic squares, coming from the elementary squares 

Numbers - 1, 2, 8 and 12.  

There are 48 Latin diagonal squares coming from the elementary square # 8.  
You see that Latin magic squares haven't the maximum number of orthogonal
squares.

 The total number of orthogonal squares to Latin magic squares is 2 048 - with
1 152 orthogonal to Latin diagonal squares - ).



S1=6 # of
elementary 

square

Number of
induced
squares 

(group 32 *
permutation

s)

Number of
orthogonal 
squares for

each

Total
number 

of
orthogonal

squares

1 16*1=16 16 16*16=256

2 16*1=16 16 16*16=256

4 32*1=32 12 32*12=384

5 32*1=32 14 32*14=448

8 32*1=32   6 32*  6=192

18 16*1=16 16 16*16=256

144 1 792

 

S1=10 # of
elementary 

square

Number of
induced
squares 

(group 32 *
permutation

s)

Number of
orthogonal 
squares for

each

Total
number 

of
orthogonal

squares

1 32*2=64 4 64*4=256

3 32*2=64 4 64*4=256

6 32*2=64 4 64*4=256



7 32*1=32 6 32*6=192

11 32*3=96 4 96*4=384

13 32*2=64 3 64*3=192

23 32*1=32 8 32*8=256

416 1 792

 Then, I built two figures: one for the 5 248 semi-regular squares and another
for the 1 792 irregular squares:  

   

  The 7 040 magic squares are distributed in blocks of squares. In each block,
all the squares come from the same couple of two elementary Gallic squares,

each one in a normalized position.   In fact, for the capital letters values

(0,4,8,12), I used the same program as for lower-case letters values (1,2,3,4)
with:

0→1 4→2 8→3 12→4

In that way, the Gallic squares are written in a normalized form.  
 
The figures give the number of magic squares in each block, but naturally I
i d e n t i f i e d e a c h m a g i c s q u a r e i n t h e l i s t o f 7 , 0 4 0 .  
 
All the 7,040 magic squares can be built from 9+6+7=22 elementary Gallic
s q u a r e s ( w i t h t h e f i r s t b a s i s ) .  
 
I also drove the decomposition of the 7,040 squares with the second and the
third basis (with the 3 other basis, the diagrams are obtained by permutation



of capital and lower-case letters, i.e. by symmetry about the first bisecting
line).   I give the results:

Basis # 1 Basis # 2 Basis #3

Number of semi-regular squares 5,248 

(with 1,152

regular)

4,224 

(with

1,152

regular)

4,736 

(with 1,152

regular)

Number of irregular squares 1 ,792 2 ,816 2, 304

Number of elementary squares 22 32 45

Number of blocks of squares 36 41 41

 The set of 1,152 regular squares is different in the 3 basis. The 3 sets of
1,152 constitute the set of 3,456 semi-pandiagonal squares.   

There are 4,224 squares which are always semi-regular in all the basis, and
1,280 squares which are a lways i r regu lar in a l l the bas is .  
There are 5,760 semi-regular squares with at least one basis.  
 
Note: for orders superior to 4, it is naturally impossible to do the same task up
to the very end.





Octonion Magic Squares 

On June 21st, 2004 an email came in from engineer Francis Gaspalou. Here
is a part of his email:

"... I can confirm to you that I have found the same results, by a very similar
method. The number of essentially different squares (3,365,114) can be
divided by 2 : there are 96 transpositions for a given square, and not only 48.
With a Duron 1,4 Ghz computer and a program in C language, I found in 12
days the 1,682,557 essentially different squares."

The New Transposition W

Francis Gaspalou called the new transposition W. He found it in
August, 2000 when he examined regular ultramagic 7x7-squares.
Each ultramagic square is transformed to another ultramagic square
by applying transposition W. W is an involutory transposition, like S,
R2 and K3. That means, you get the original square by applying W
twice.

--->

W

--->

W

The numbers in the white cells are fixed. Each other number is
interchanged with a number in a cell of the same colour.

The New Transposition-Group

The transpositions R, S, K and W generate a group of 96 different



transpositions. Thus there are only 

20,190,684 · 8 / 96 = 1,682,557 

essentially different ultramagic order-7 squares.
Now the computation should take only half the time.

Are there more general transpositions?

No! As 1,682,557 is a prime, the set of essentially different ultramagic order-
7 squares can't be invariant relative to any further transposition.
(Otherwise this transposition would generate a complete set of essentially
different ultramagic order-7 squares and any pair of such squares would
define such a transposition - that's not true.)

The transpositions R, S, K and W generate a group of 96 different
transpositions. 

Thus there are only 20,190,684 · 8 / 96 = 1,682,557 essentially different
ultramagic order-7 squares.

Discussion

The key here is 1,682,557 essentially different squares. 

Recall that the writer here is describing Order 7 Magic Squares. The Fano
Plane consists of seven points and seven lines, and since it forms the
Octonion Multiplication table, Octonions form in groups of seven; the
Pythagorean Music Scale consists of seven notes in a scale, etc. In this
respect, it appears that the writer has discovered all of the Order 7 Magic
Squares which relate to the Octonions and their isomorphs. 



Lydian 1 9/8 81/64 729/51
2

3/2 27/16 243/128

Phrygian 1 256/24
3

32/27 4/3 3/2 128/81 16//9

Dorian 1 9/8 32/27 4/3 3/2 27/16 16/9

Hypolydian 1 9/8 81/64 4/3 3/2 27/16 243/128

Hypophrygian 1 256/24
3

32/27 4/3 1024/7
29

128/81 16/9

Hypodorian 1 9/8 32/27 4/3 3/2 128/81 16/9

Mixolydian 1 9/8 81/64 4/3 3/2 27/16 16/9

From S.M. Philipps website

We know as well that the Octonions contain 168 permutation groups. Perhaps
the author has discovered that the number 168 really should be considered as
168.2557 in relation to the Octonions and the group PS – 2. This number
might provide more accurate equations when dealing with Octonions
formulations, such as with Fermions, where such minute differences make for
drastic changes at the nuclear scale.

In addition, Octonionic particles vibrate (please see Octonion Song paper on
Vixra by John Sweeney), so the more specific 168.2557 figure may
correspond precisely to frequencies produced by Octionic particles. In Article
13 S.M. Philips discusses what may be vibrations but Chinese censorship has
prevented the author of this paper from downloading that article. 



Freudenthal – Tits Magic Square

Frank Dodd Tony Smith posted this graphic on his website many

years ago: 

This chart depicts a Clifford Path, which is similar to a Knight Tour,

through advanced numbers, with Real, Complex, Quaternion at the

lower left, and Octonions represented by H @ H. Compare this

chart with the Freudenthal – Tits Magic Square, which is related to

Triality: 

A \ B R C H O

R A1 A2 C3 F4

C A2 A2 × A2 A5 E6

H C3 A5 D6 E7

O F4 E6 E7 E8



In some way that remains unclear to the author, a connection

exists between the Reece Harvey textbook chart of Matrix

Algebras, (from Smith's website) the Freudenthal – Tits Magic

Square, and the Exceptional Lie Algebra and Octonion Magic

Squares described herein. Further research will be needed to fully

understand these connections and implications. 



Conclusion 

This paper has shown origins and descriptions of the series of Exceptional Lie
Algebras by John Baez, then a method of complexifiying each level, from an
email to Baez from Frank “Tony” Smith. Then, the paper has given the true
Magic Squares for  Exceptional Lie Algebras by an engineer, as well as the
group of Magic Squares related to the Octonions, the Fano Plane, the Klein
Quartic, the Sephirot of the Cabala, and related structures, including the
following: 

S L ( 3 , 2 ) , t h e a u t o m o r p h i s m g r o u p o f t h e F a n o p l a n e a n d  
Octonions, of order 168; PSL(2,7): group of 168 of Klein Quartic
automorphisms, isomorphic to SL(3,2). All of these relate in some way to
different elements of the series of Exceptional Lie Algebras. 

The series of Exceptional Lie Algebras, as well as Jordan Algebras, are
derived from matrices, which are 2 x 2, 3 x 3, 4 x 4, etc. square arrangements
of numbers. These Magic Squares are important in that they provide a
variable function for determining the matrices which comprise nuclear
particles. 

Vedic Nuclear Particle theory, and Vedic Geometry, posit the existence of
some 22 Hyper Spheres in the series of nuclear particles, which provide
generic shells for potential particles. The type of particle which eventually
emerges is determined by a Magic Square. Frank “Tony” Smith has described
this process in relationship to the Tai Hsuan Ching (Tai Xuan Jing) and the
Sedenions, while John Sweeney has included the same segment in a 2014
paper on Vixra. 

Specifically, H7 and  H8 combine to form the Exceptional Lie Algebra E8, as
well as the nuclear maxima number of 33.2, with the assistance of one
additional particle. A wide variety of particles may emerge from this process,
and the actual particle which emerges depends upon which permutation of
Exceptional Lie Algebra Magic Square is selected for that process. In the
theory of Vedic Particle Physics, the aspect which selects that specific Magic
Square permutation would be either the god Vishnu or the spiritual element
which is part of the nuclear growth process. 

The point is that a choice exists at this stage, and the specific Exceptional Lie



Algebra Magic Square permutation chosen at this stage ultimately determines
the final result. 

Confirmation of the importance of Magic Squares comes from the Rig Veda,
the oldest book known to humanity, probably some 13,000 years old. See the
author's paper on Vixra, “Rig Veda Magic Squares” for details. 

Note: Gaspalou remains uncertain of these findings, yet the author of this
paper feels confident of this research to publish a preliminary pre – print paper
on Vixra to invite further input on this topic. 
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Appendix I Octonions (from Wikipedia) 

The above definition though is not unique, but is only one of 480
possible  definitions  for  octonion  multiplication  with  e0 =  1.  The
others can be obtained by permuting and changing the signs of the
non-scalar  basis  elements.  The  480  different  algebras  are
isomorphic, and there is rarely a need to consider which particular
multiplication rule is used. 

Each of these 480 definitions is invariant up to signs under some
7-cycle of the points (1234567), and for each 7-cycle there are four
definitions,  differing  by  signs  and  reversal  of  order.  A  common
choice  is  to  use  the  definition  invariant  under  the  7-cycle
(1234567) with e1e2 = e4 as it is particularly easy to remember the
multiplication.  A variation of this sometimes used is to label the
elements of  the basis by the elements � ,  0,  1,  2,  ...,  6,  of  the
projective line over the finite field of order 7. 

The multiplication is then given by  e�  = 1 and  e1e2 =  e4,  and all
expressions obtained from this by adding a constant (mod 7) to all
subscripts:  in  other  words using  the 7  triples  (124)  (235)  (346)
(450) (561) (602) (013). These are the nonzero codewords of the
quadratic residue code of length 7 over the field of 2 elements.
There is a symmetry of order 7 given by adding a constant mod 7
to  all  subscripts,  and  also  a  symmetry  of  order  3  given  by
multiplying all subscripts by one of the quadratic residues 1, 2, 4
mod 7.[4][5]

The multiplication table can be given in terms of the following 7
quaternionic triples (omitting the identity element): (Ijk), (iJk), (ijK),
(IJK), (Iim), (Jjm), (Kkm) in which the lowercase items are vectors
(mathematics and physics) and the uppercase ones are bivectors.

Integral octonions[edit]

There are several natural ways to choose an integral form of the
octonions.  The  simplest  is  just  to  take  the  octonions  whose
coordinates are integers. This gives a nonassociative algebra over
the integers called the Gravesian octonions. However it is not a
maximal order, and there are exactly 7 maximal orders containing
it.  These  7  maximal  orders  are  all  equivalent  under

http://en.wikipedia.org/w/index.php?title=Octonion&action=edit&section=9
http://en.wikipedia.org/wiki/Bivector
http://en.wikipedia.org/wiki/Vectors_(mathematics_and_physics)
http://en.wikipedia.org/wiki/Vectors_(mathematics_and_physics)
http://en.wikipedia.org/wiki/Quaternion
http://en.wikipedia.org/wiki/Quadratic_residue_code


automorphisms. The phrase "integral octonions" usually refers to a
fixed choice of one of these seven orders.

These  maximal  orders  were  constructed  by  Kirmse  (1925),
Dickson and Bruck as follows. Label the 8 basis vectors by the
points of the projective plane over the field with 7 elements. First
form  the  "Kirmse  integers" :  these  consist  of  octonions  whose
coordinates are  integers  or  half  integers,  and that  are  half  odd
integers on one of the 16 sets

�  ( � 124) ( � 235) ( � 346) ( � 450) ( � 561) ( � 602) ( � 013) ( � 0123456)
(0356) (1460) (2501) (3612) (4023) (5134) (6245)
of the extended quadratic residue code of length 8 over the field of
2 elements,  given by � ,  ( � 124)  and its images under adding a
constant mod 7,  and the complements of these 8 sets.  (Kirmse
incorrectly claimed that these form a maximal  order,  so thought
there were 8 maximal orders rather than 7, but as Coxeter (1946)
pointed out they are not closed under multiplication; this mistake
occurs in several published papers.) Then switch in finity and any
other coordinate; this gives a maximal order. There are 7 ways to
do this, giving 7 maximal orders, which are all equivalent under
cyclic permutations of the 7 coordinates 0123456.

The Kirmse integers and the 7 maximal orders are all isometric to
the  E8 lattice rescaled by a factor of 1/ � 2.  In particular there are
240 elements of minimum nonzero norm 1 in each of these orders,
forming a Moufang loop of order 240.

The integral octonions have a "division with remainder" property:
given integral octonions a and b� 0 ,  we can find q and r with a = qb
+ r, where the remainder r has norm less than that of b.

In the integral octonions, all left ideals and right ideals are 2-sided
ideals,  and  the  only  2-sided  ideals  are  the  principal  ideals  nO
where n is a non-negative integer.

The integral octonions have a version of factorization into primes,
though it is not straightforward to state because the octonions are
not associative so the product of octonions depends on the order
in which one does the products. The irreducible integral octonions
are exactly those of prime norm, and every integral octonion can
be written as a product of irreducible octonions. More precisely an
integral octonion of norm mn can be written as a product of integral
octonions of norms m and n.

The  automorphism group of  the  integral  octonions is  the group
G2(F2)  of  order 12096, which has a simple subgroup of  index 2

http://en.wikipedia.org/wiki/Moufang_loop
http://en.wikipedia.org/wiki/E8_lattice
http://en.wikipedia.org/wiki/Quadratic_residue_code


isomorphic to the unitary group  2A2(32). The isotopy group of the
integral  octonions  is  the  perfect  double  cover  of  the  group  of
rotations of the E8 lattice.

In mathematics, the Freudenthal magic square (or Freudenthal–
Tits magic square) is a construction relating several Lie algebras
(and  their  associated  Lie  groups).  It  is  named  after  Hans
Freudenthal and  Jacques  Tits,  who  developed  the  idea
independently.  It  associates  a  Lie  algebra  to  a  pair  of  division
algebras  A,  B. The resulting Lie algebras have  Dynkin diagrams
according  to  the  table  at  right.  The  "magic"  of  the  Freudenthal
magic square is that the constructed Lie algebra is symmetric in A
and  B,  despite  the  original  construction  not  being  symmetric,
though  Vinberg's  symmetric  method gives  a  symmetric
construction;  it  is  not  a  magic  square as  in  recreational
mathematics.

The Freudenthal magic square includes all of the  exceptional Lie
groups apart  from  G2,  and it  provides one possible approach to
justify  the  assertion  that  "the  exceptional  Lie  groups  all  exist
because of the octonions":  G2 itself is the automorphism group of
the octonions (also, it is in many ways like a  classical Lie group
because it is the stabilizer of a generic 3-form on a 7-dimensional
vector space – see prehomogeneous vector space).

The last row and column here are the orthogonal algebra part of
the  isotropy  algebra  in  the  symmetric  decomposition  of  the
exceptional Lie algebras mentioned previously.

These  constructions  are  closely  related  to  hermitian  symmetric
spaces – cf. prehomogeneous vector spaces.

Symmetric spaces[edit]

Riemannian symmetric spaces, both compact and non-compact,
can be classi fied uniformly using a magic square construction, in
(Huang & Leung 2011). The irreducible compact symmetric spaces
are,  up  to  finite  covers,  either  a  compact  simple  Lie  group,  a
Grassmannian,  a  Lagrangian  Grassmannian,  or  a  double
Lagrangian Grassmannian of subspaces of  for normed division
algebras A and B. A similar construction produces the irreducible
non-compact symmetric spaces.

History[edit]

http://en.wikipedia.org/w/index.php?title=Freudenthal_magic_square&action=edit&section=10
http://en.wikipedia.org/w/index.php?title=Double_Lagrangian_Grassmannian&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Double_Lagrangian_Grassmannian&action=edit&redlink=1
http://en.wikipedia.org/wiki/Lagrangian_Grassmannian
http://en.wikipedia.org/wiki/Riemannian_symmetric_space
http://en.wikipedia.org/w/index.php?title=Freudenthal_magic_square&action=edit&section=9
http://en.wikipedia.org/wiki/Prehomogeneous_vector_space
http://en.wikipedia.org/wiki/Hermitian_symmetric_space
http://en.wikipedia.org/wiki/Hermitian_symmetric_space
http://en.wikipedia.org/wiki/Prehomogeneous_vector_space
http://en.wikipedia.org/wiki/Classical_Lie_group
http://en.wikipedia.org/wiki/Automorphism_group
http://en.wikipedia.org/wiki/Octonions
http://en.wikipedia.org/wiki/Exceptional_Lie_group
http://en.wikipedia.org/wiki/Exceptional_Lie_group
http://en.wikipedia.org/wiki/Recreational_mathematics
http://en.wikipedia.org/wiki/Recreational_mathematics
http://en.wikipedia.org/wiki/Magic_square
http://en.wikipedia.org/wiki/Dynkin_diagram
http://en.wikipedia.org/wiki/Jacques_Tits
http://en.wikipedia.org/wiki/Hans_Freudenthal
http://en.wikipedia.org/wiki/Hans_Freudenthal
http://en.wikipedia.org/wiki/Lie_group
http://en.wikipedia.org/wiki/Lie_algebra
http://en.wikipedia.org/wiki/Mathematics


Rosenfeld projective planes[edit]

Following  Ruth  Moufang's  discovery  in  1933  of  the  Cayley
projective  plane or  "octonionic  projective  plane"  P2(O),  whose
symmetry  group  is  the  exceptional  Lie  group  F4,  and  with  the
knowledge that  G2 is the automorphism group of the octonions, it
was proposed by Rozenfeld (1956) that the remaining exceptional
Lie groups E6, E7, and E8 are isomorphism groups of projective planes
over certain algebras over the octonions:[1]

the bioctonions, C �  O,
the quateroctonions, H �  O,
the octooctonions, O �  O.
This  proposal  is  appealing,  as  there  are  certain  exceptional
compact Riemannian symmetric spaces with the desired symmetry
groups  and  whose  dimension  agree  with  that  of  the  putative
projective  planes  (dim(P2(K �  K� ))  =  2dim(K)dim(K� )),  and  this
would give a uniform construction of the exceptional Lie groups as
symmetries of naturally occurring objects (i.e., without an a priori
knowledge  of  the  exceptional  Lie  groups).  The  Riemannian
symmetric  spaces  were  classi fied  by  Cartan  in  1926  (Cartan's
labels are used in sequel); see  classi fication for details, and the
relevant spaces are:

the  octonionic  projective plane – FII,  dimension 16 = 2 × 8,  F4

symmetry, Cayley projective plane P2(O),
the bioctonionic projective plane – EIII, dimension 32 = 2 × 2 × 8,

E6 symmetry, complexi fied Cayley projective plane,  P2(C �
O),

the "quateroctonionic projective plane"[2] – EVI, dimension 64 =
2 × 4 × 8, E7 symmetry, P2(H �  O),

the "octooctonionic projective plane"[3] – EVIII, dimension 128 =
2 × 8 × 8, E8 symmetry, P2(O �  O).

The dif ficulty with this proposal is that while the octonions are a
division algebra, and thus a projective plane is defined over them,
the  bioctonions,  quarteroctonions  and  octooctonions  are  not
division  algebras,  and  thus  the  usual  definition  of  a  projective
plane does not work. This can be resolved for the bioctonions, with
the resulting projective plane being the complexi fied Cayley plane,
but  the  constructions  do  not  work  for  the  quarteroctonions  and
octooctonions, and the spaces in question do not obey the usual
axioms  of  projective  planes,[1] hence  the  quotes  on  "(putative)
projective  plane".  However,  the  tangent  space  at  each  point  of
these spaces can be identi fied with the plane (H �  O)2, or (O �  O)2

http://en.wikipedia.org/wiki/Cayley_projective_plane
http://en.wikipedia.org/wiki/Octonionic_projective_plane
http://en.wikipedia.org/wiki/Riemannian_symmetric_space#Classification_of_Riemannian_symmetric_spaces
http://en.wikipedia.org/wiki/Riemannian_symmetric_space
http://en.wikipedia.org/wiki/E8_(mathematics)
http://en.wikipedia.org/wiki/E7_(mathematics)
http://en.wikipedia.org/wiki/E6_(mathematics)
http://en.wikipedia.org/wiki/G2_(mathematics)
http://en.wikipedia.org/wiki/F4_(mathematics)
http://en.wikipedia.org/wiki/Cayley_projective_plane
http://en.wikipedia.org/wiki/Cayley_projective_plane
http://en.wikipedia.org/wiki/Ruth_Moufang
http://en.wikipedia.org/w/index.php?title=Freudenthal_magic_square&action=edit&section=11


further justifying the intuition that these are a form of generalized
projective  plane.[2][3] Accordingly,  the  resulting  spaces  are
sometimes called Rosenfeld projective planes and notated as if
they were projective planes. More broadly, these compact forms
are the Rosenfeld elliptic projective planes, while the dual non-
compact forms are the Rosenfeld hyperbolic projective planes.
A more modern presentation of Rosenfeld's ideas is in (Rosenfeld
1997), while a brief note on these "planes" is in (Besse 1987, pp.
313–316).[4]

The  spaces  can  be  constructed  using  Tit's  theory  of  buildings,
which allows one to construct a geometry with any given algebraic
group as symmetries, but this requires starting with the Lie groups
and constructing a geometry from them, rather than constructing a
geometry independently of a knowledge of the Lie groups.[1]

Magic square[edit]

While at the level of manifolds and Lie groups, the construction of
the projective plane  P2(K �  K� )  of two normed division algebras
does not work, the corresponding construction at the level of Lie
algebras does work. That is, if one decomposes the Lie algebra of
in finitesimal isometries of  the projective plane  P2(K)  and applies
the same analysis to P2(K �  K� ),  one can use this decomposition,
which  holds  when  P2(K �  K� )  can  actually  be  defined  as  a
projective plane, as a  definition of a "magic square Lie algebra"
M(K,K� )  This definition is purely algebraic, and holds even without
assuming  the  existence  of  the  corresponding  geometric  space.
This  was done independently  circa  1958 in  (Tits  1966)  and  by
Freudenthal  in a series of  11 papers,  starting with (Freudenthal
1954) and ending with (Freudenthal 1963), though the simpli fied
construction outlined here is due to (Vinberg 1966).[1]

http://en.wikipedia.org/w/index.php?title=Freudenthal_magic_square&action=edit&section=12


Dedication 

Some men see things the way they are, and ask, “Why?”

I see things that have never been, and ask “Why not?”

So let us dedicate ourselves to what the Greeks wrote so long ago:

To tame the savageness in man and make gentle the life of this
world. 

Robert Francis Kennedy 


