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Abstract

An algebra for comparing functions at infinity with infinireals, comprising of in-
finitesimals and infinities, is developed: where the unknown relation is solved for.
Generally, we consider positive monotonic functions f and g, arbitrarily small or large,
with relation z: f z g. In general we require f , g, f − g and f

g to be ultimately
monotonic.

1 Introduction

In extending du Bois-Reymond’s theory, we have discovered a new number system [1, Part
1], and used this to rephrase du Bois-Reymond’s much greater than relations [2, Part 2].
However, at the heart of Reymond’s theory is the comparison of functions.

Today this may seem of little interest because there are no applications which directly require
this. Even Hardy, through writing and extending du Bois-Reymond’s work [8] thought this.
Others better incorporated the theory: little-o and big-O notation have the same definitions
as relational operators {≺,�} and similarly other relations [2, Part 2].

Instead, du Bois-Reymond’s work became a catalyst for other higher mathematics and itself
as an operational calculus was largely forgotten. In this era of immense change and other
issues which they faced, this is not surprising. For just one example, the theory on divergent
sums and functions was being established.

Our aim is to open the field of infinitary calculus through the development of another in-
finitesimal and infinitary calculus that is derived from du Bois-Reymond’s work. The method
solves for relations between functions. Subsequent papers giving applications for comparing
functions are found. (E.g. sum convergence [6])

Comparing functions is the key discovery in the theory’s development.

With the method of comparing functions at infinity described in this paper, we believe there
is a significant improvement over the method described by Hardy, which either computes the
relation with a limit, which is fine, or uses logarithmico-exponential scales [8, pp.31–33].

By comparing functions at infinity, du-Bois Reymond showed the existence of curves infinitely
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close to each other. For example, the construction of infinitely many curves infinitesimally
close to a straight line (see Example 2.20). Thereby demonstrating the curves exist at infinity.

However, the number system in which the curves reside includes infinitesimals and infinities,
and hence is a non-standard analysis.

While du Bois-Reymond did not define a number system as Abraham Robinson had done
with Non-standard analysis, the constructions prove that such a number system exists.

That Abraham made little reference to du Boise-Reymond’s work is unexplained. Though
he did use similar notation. For example in [11, p.97]: if a ∈ J and b ∈ ∗J then a ≺ b.
Elements of ∗J he called infinite.

As this is a reference paper in the sense that it contains propositions which we have collected,
while working through problems. Subsequent papers reference this paper.

We can consider comparison in terms of addition or multiplication. Where z is a relation.

f z g Comparison
f − g z 0 additive sense

f
g
z 1 multiplicative sense

Table 1: Binary relation comparison

2 Solving for a relation

While we are very familiar with solving for variables as values, in general we do not solve
variables for relations. However there is no real reason not to do so.

In the course of devising an alternative way to compare functions at infinity, a new way of
comparing functions has been developed, where the primary focus is to solve for the relation.

Definition 2.1. Let f(x) z g(x) be a comparison of the functions f(x) and g(x) where z is
the variable relation.

When possible, we could then solve for a relation z, for example z ∈ {<,≤≺,�, >,≥,�,�
,=,', 6=,≺≺,��}.

Definition 2.2. Given f(x) z g(x), with relation z, then applying function or operator φ to
one or both sides of the variable relation z results in a new relation (φ(z)).
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The brackets about the relation are an aid to distinguish the relation as a variable.

f(x) z g(x), φ(f(x)) (φ(z)) φ(g(x))

The function is also applied to the middle as changing either f or g can change the rela-
tion. For example, applying an exponential function to both sides and the middle gives
ef(x) (ez) eg(x), where (ez) is the new relation. Applying the logarithm function to all parts,
ln f(x) (ln z) ln g(x), where (ln z) is the new relation. Applying differentiation to all parts,
Df(x) (Dz) Dg(x), where (Dz) is the new relation. D is a shorthand operator for differen-
tiation d

dx
.

Differentiating or integrating positive monotonic functions, with the condition that their dif-
ference is monotonic, preserves the < and ≤ relations: Df(x) (Dz) Dg(x)⇔ f(x) z g(x)(see
[5, Part 6]), and by notation, relations (Dz) = (z), (

∫
z) = (z).

Definition 2.3. We say z ∈ B to mean that z is a binary relation.

Definition 2.4. When f (φ(z)) g and (φ(z)) = z2, where ; z, z2, (φ(z)) ∈ B; we may propose
φ(z) = z2, provided that there is no contradiction.

In practice, when solving for a relation, we presume such a relation exists and then proceed
to solve for it. The method of brackets about the relation is a label of applied operations. If
this is reversible, a solution exists to unravel the said operations. Definition 2.4 allows you
to proceed with the solution process without having to formerly say so.

If (Dnz) = � then solve Dnz = �

Example 2.1. 2x2 z 5x|x=∞, 4x (D z) 5|x=∞, (D z) = �, removing the brackets and solving
for z, D z = �,

∫
D z =

∫
�, z =

∫
� = � (see Table 2).

Definition 2.5. Let a “finite relation” be a relation without consideration of infinitesimal
or infinitary arithmetic.

Example 2.2. The relations ∀n > n0 : n + 1 > n, for positive n, then 1
n
> 0 is not finite

relations, as they include infinite arithmetic. No lower bound exists. The infimum (greatest
lower bound) 0 exists, but is another type of number. Positive n has no upper bound either,
but has an infimum ∞. The “bounds” do exist, but involve infinite arithmetic, and in a
sense are numbers of another dimension.

Definition 2.6. Let a relation that is not finite have infinitesimal or infinite arithmetic.

Any operation on the relation produces a new comparison, or new zk, however such a system
allows us to solve for the initial z, through the myriad of possibilities.

Example 2.3. Compare in a multiplicative-sense n2 and n. See Figure 1. In solving for �,
the relations z1, z2, z3 did not change after division, (. . . , n2 � n, n � 1, 1 � n−1 . . .)|n=∞,
by b � a⇔ cb � ca [2, Proposition 5.2].
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n2 z1 n

n z2 1

1 z3
1
n

1 � 1
n R : 1 > 0

n � 1

n2 � n

÷n

÷n

1
n ∈ Φ 1

n |n=∞ = 0

n2

n |n=∞ =∞

n
1 |n=∞ =∞

Figure 1: Example calculation of relations connecting ∗G and R

Definition 2.7. Given relations z1 and z2,
If f(x) z1 g(x)⇒ φ(f(x)) z2 φ(g(x)) then we say φ(z1) = z2.

If f(x) z1 g(x)⇒ ef(x) z2 eg(x) then we say ez1 = z2.
If f(x) z1 g(x)⇒ ln f(x) z2 ln g(x) then we say ln z1 = z2.

Use as an aid in calculation as a left to right operator when solving relations, where all
functions in the relations are positive, e> = �, ln � = >, � = >.

The following compares the rate of increase of functions in infinitary calculus, which we find
computationally easier than that described by Hardy, and at the least is an alternate way of
performing such calculations.

The Caterpillar was the first to speak. “What size do you want to be?” it asked.
“Oh, I’m not particular as to size,” Alice hastily replied; “only one doesn’t like
changing so often, you know.” “I don’t know,” said the Caterpillar. [10, pp 72–73]

After eating the mushroom in her right hand, Alice was shrunk, and eating from the left
hand she was magnified.

In an analogous way, by applying powers and logarithms we can magnify or shrink aspects of
the function comparison. Combined with non-reversible arithmetic [4, Part 5] (for example
n2 + n = n2|n=∞), we can solve for the relation.

Powers and logarithms are mutual inverses. While logs of different bases can undo any
powers, the natural logarithm ln and e are the most useful. In solving relations, it is often
convenient to apply these functions to both sides of a relation, in a similar manner to
solving equations. Then apply infinitary arithmetic with non-reversible algebra to simplify
the relation.

Consider raising both sides of a finite inequality to a power. E.g. 3 > 2, e3 > e2 and the
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relation symbol did not change.

Example 2.4. Now consider a relation where both numbers are diverging to infinity. For
example, 3x > 2x|x=∞, then e3x > e2x|x=∞ but more importantly e3x � e2x|x=∞ as e3x/e2x =
ex|x=∞ =∞.

If two numbers are positive and one is much larger than the other, then the weaker relation
that one of the numbers is greater than the other, must be true.

Theorem 2.1. f =∞, g =∞, if f � g then f > g

Proof. f � g then g
f

= δ, δ ∈ Φ, g = fδ. Comparing, f z g, f z fδ, 1 z δ, z = >.

Magnifying a less than or greater than relationship magnifies the inequality, provided their
difference is not finite (see Theorems 2.2 and 2.3). Demonstrating this, consider a condition
with an infinitesimal difference, so the inequality exists in ∗G, but not R.

Example 2.5. Show : f < g does not imply ef ≺ eg. δ ∈ Φ; g = f + δ, f = ∞, f < g,
f < f + δ|δ=0, ef z ef+δ|δ=0, 1 z eδ|δ=0, 1 z 1 + δ + 1

2
δ2 + . . . |δ=0, 0 z δ + 1

2
δ2 + . . . |δ=0,

0 z δ|δ=0, z = <, but z is not ≺.

If we realize the infinitesimals ∗G 7→ R and we have equality. 1 z 1 + δ|δ=0, δ 7→ 0, 1 == 1.

Theorem 2.2. f =∞, g =∞, If f < g and f − g ≺ ∞ ⇒ ef < eg

Proof. f < g, 0 < g − f , e0 < eg−f , 1 < eg−f , ef < eg

Theorem 2.3. f =∞, g =∞, if f < g and g − f =∞ ⇒ ef ≺ eg

Proof. ef z eg, e0 z eg−f , 1 z e∞, z = ≺.

Theorem 2.4. f =∞, g =∞, if f ≺ g then g − f =∞

Proof. δ ∈ Φ; since f ≺ g, let f = δg. Consider g − f = g − gδ = g(1− δ) ' g =∞.

Theorem 2.5. f =∞, g =∞, if f ≺ g then ef ≺ eg

Proof. f ≺ g, g − f =∞. ef z eg, 1 z eg−f , 1 z e∞, 1 z ∞, z = ≺

Proposition 2.1. f =∞, g =∞, if f � g then ln f − ln g =∞
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Proof. f � g then let fδ = g where δ ∈ +Φ; f = δ−1g. Consider ln f − ln g = ln(δ−1g)− ln g
= ln δ−1 + ln g − ln g = ln δ−1 =∞.

In reducing a large number, the log function applied to both sides of a relation can decrease
the inequality.

Theorem 2.6. f =∞, g =∞ If f < g then ln f < ln g

Proof. f < g, at any point let g = f 1+δ, δ > 0. Compare ln f z ln g, ln f z ln f 1+δ,
ln f z (1 + δ)ln f , 0 z δ ln f , z = < then ln f < ln g.

Theorem 2.7. f =∞, g =∞ If f ≺ g then ln f < ln g

Proof. f ≺ g then f
g

= δ; δ ∈ Φ+; f = δg Since g is not an infinitesimal, multiplying by
an infinitesimal decreases the number, then f < g. Alternatively f z g, δg z g, δ z 1,
z = < as an infinitesimal is smaller than any positive number. As ln preserves the relation,
f < g ⇒ ln f < ln g

In reducing an infinite number with a log from a much less than relation does not imply
another much less than relation, nor does it exclude it.

Proposition 2.2. f =∞, g =∞, f ≺ g ; ln f ≺ ln g

Proof. Counter example: Example 2.6

Theorem 2.8. f =∞, g =∞, if f � g then Df � Dg.

Proof. Df z Dg, 1 z Dg
Df

, but Dg
Df

= g
f

then 1 z g
f
. g = δf ; δ ∈ Φ+; 1 z δ, z = �

Example 2.6. e3x � e2x|x=∞ ; 3x � 2x|x=∞ as 3x
2x
|x=∞ = 3

2
6=∞.

When asking what happens when we reduce an infinity, in a similarly way to magnifying the
relationship, we can consider the two complete cases g − f ≺ ∞ and g − f = ∞, thereby
showing these conditions to be necessary and sufficient for determining what happens when
reducing the relation.

Proposition 2.3. f =∞, g =∞, f ∝ g ⇔ ln g − ln f ≺ ∞,

Proof. f ∝ g then f
g

= αn ≺ ∞, lnf
g

= lnαn, ln f − ln g ≺ ∞.

Proposition 2.4. f =∞, g =∞, f � g ⇔ ln g − ln f ≺ ∞,
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Proof. By definition f � g then f � g and f � g [2]. a, b ∈ R+; If f � g then a < f
g
< b.

Case a < f
g
, ag < f , ln a + ln g (ln <) ln f ln a (ln <) ln f − ln g. Similarly, f

g
< b,

f < bg, ln f (ln <) ln b + ln g, ln f − ln g (ln <) ln b. Putting the two conditions together,
ln a (ln <) ln f − ln g (ln <) ln b. By Theorem 2.6, ln < = <. ln a < ln f − ln g < ln b.
Similarly ; a′, b′ ∈ R+; then a′ < g

f
< b′ gives finite bounds.

The development of solving for the unknown relation as a variable comes about through
comparing functions, which includes the calculation of limits, see [4, Part 5]. After developing
the theory, while investigating infinitesimals in Orders of Infinity [8], similar problems were
found and some of du Bois-Reymond’s known theorems were rediscovered. At this point the
alternate calculation was already useful, rather than trying to follow Hardy’s calculations.

Using the equality symbol as an operator reading from left to right, define z1 = z2, from
Definition 2.7 a table of relation implications, the equals symbol is interpreted from left to
right, generally leading to the right side being a generalization from the left. As an operator
analogy; Mercedes = car; BMW = car. The right-hand side is the generalisation of the left.

When using equality operator = for generalization, place the variable relation being solved
for, on the left side of the equals sign. For example, writing ln z = � instead of � = ln z.
Then the generalisation can be combined with solving the variable. ln z = �, eln z = e� = �,
z = �. Examples of exponential and log functions:

In ∗G, given f =∞, g =∞, f z g and φ(f) (φ(z)) φ(g), then φ(z) = z2. The functions are
continuous and monotonic in ∗G.

φ({<,≺}) φ({>,�}) Condition Reference
e< = < e> = > f − g ≺ ∞ Th. 2.2
e< = ≺ e> = � f − g =∞ Th. 2.3
≺ = < � = > Th. 2.1
e≺ = ≺ e� = � Th. 2.5
ln< = < ln> = > Th. 2.6
ln≺ = < ln� = > Th. 2.7
ln≺ = ≺ f ≺≺ g [4, Part 5]∫
≺ = ≺

∫
� = � Ignore integration constants [5, Part 6]

D≺ = ≺ D� = � Th. 2.8∫
< = <

∫
> = > [5, Part 6]∫

≤ = ≤
∫
≤ = ≤ [5, Part 6]

D< = < D> = > Df −Dg is not constant [5, Part 6]
D≤ = ≤ D≥ = ≥ Df −Dg is not constant [5, Part 6]

Table 2: Relation simplification for positive divergent functions
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Example 2.7. Decreasing/reducing the infinities

3x > 2x|x=∞

ln(3x) (ln >) ln(2x)|x=∞

ln 3 + lnx (ln >) ln 2 + lnx|x=∞

ln 3 (ln >) ln 2

ln 3 > ln 2 then ln > = >

Example 2.8. Increasing/magnifying the infinities

3x > 2x|x=∞

e3x (e>) e2x|x=∞ ( e
3x

e2x
|x=∞ = ex|x=∞ =∞)

e3x � e2x|x=∞ then e> = �

To show how all this works, take an example problem from [8, p.8]. Solve for z the following,
where ∆ is an arbitrarily large but fixed value.

Example 2.9.

ex z x∆|x=∞

ln ex (ln z) lnx∆|x=∞

x (ln z) ∆ lnx|x=∞

ln z = �, z = e� = �
ex � x∆|x=∞

At first, raising a relation to a power may seem silly, but it is useful when applied as a
notational aid in the solution; understood as a magnification it makes sense. However, the
solution is not always unique, z = e� = > is true too, as � = > with the left-to-right
reading.

The comparison at infinity can ignore added constants, that is, the comparison is with infinite
elements.

Proposition 2.5. If f =∞, g =∞, f � α, g � β, z ∈ {>,≥,�,�} then

f + α z g + β ⇒ f z g

Proof. f + α z g + β, f z g + β because (f + α = f as f � α), f z g as g � β
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Example 2.10. Demonstrated by example, another problem from [8, p.8]. Given Pm(x) =∑m
k=0 pkx

k, pk is positive and Qn(x) =
∑n

k=0 qkx
k, qk is positive. Show ln lnPm(x) ∼

ln lnQn(x)|x=∞

ln lnPm(x) z ln lnQn(x)|x=∞

ln ln
m∑
k=0

pkx
k z ln ln

n∑
k=0

qkx
k|x=∞ (Apply xk � xk−1, pkx

k + pk−1x
k−1 = pkx

k|x=∞)

ln ln pmx
m z ln ln qnx

n|x=∞

ln(ln pm +m lnx) z ln(ln qn + n lnx)|x=∞

ln(m lnx) z ln(n lnx)|x=∞

lnm+ ln lnx z lnn+ ln lnx|x=∞

ln lnx z ln lnx|x=∞ (from ln2 x � lnm, ln2 x � lnn)

z = ∼

Contrast the above with an example where the highest order diverging terms are simplified
(subtracting equally infinite quantities); the next highest order diverging terms determine
the relation.

Example 2.11. Solve for z, for the comparison nnn z enn!|n=∞. n lnn + lnn (ln z) n +∑n
k=1 lnk|n=∞. Given

∑n
k=1 lnk = n lnn−n|n=∞ [

∑n
k=1 lnk n =

∫ n
1

lnk n dn = n lnn−n|n=∞]
then, n lnn + lnn (ln z) n + n lnn − n|n=∞, lnn (ln z) 0|n=∞, ln z = �, z = e� = �,
nnn � enn!|n=∞

The application of the logarithm has simplified the problem from products of functions to
sums of functions.

Example 2.12. Consider the following theorems from [8, pp.300–302] Theorem 7.11. If
a > 0, b > 0 we have

lim
x→∞

(lnx)b/xa = 0, lim
x→∞

xb/eax = 0

Proof. lnx ≺ x|x=∞, lnx z xa|x=∞, ln2 x (ln z) a lnx|x=∞, ln2 x ≺ a lnx|x=∞, z = e≺ = ≺,
lnx ≺ xa|x=∞, (ln x)b z2 xa|x=∞, b ln2 x (ln z2) a lnx|x=∞, b ln2 x ≺ a lnx|x=∞, (ln x)b ≺
xa|x=∞. (lnx)b/xa|x=∞ = 0

Proof. ex � x|x=∞, ex z xb|x=∞, x (ln z) b lnx|x=∞, x � b lnx|x=∞, z = e� = �,
ex � xb|x=∞, eax z2 xb|x=∞, ax (ln z2) b lnx|x=∞, ax � b lnx|x=∞, eax � xb|x=∞.
xb/eax|x=∞ = 0

Applying infinitary calculus to problems can result in choosing whether to use a theorem,
or solving by calculating directly.
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Example 2.13. Find lim
x→0+

xα lnx, where α > 0, xα lnx|x=0+, x−α lnx−1|x=∞, lnx−1 z xα|x=∞,

lnx−1 ≺ xα|x=∞, x−α lnx−1|x=∞ = 0, xα lnx|x=0+ = 0.
Another way. Let y = xα lnx|x=0+ = x−α lnx−1|x=∞, ln y = ln(x−α lnx−1)|x=∞ = ln x−α +
ln2 x

−1|x=∞ = lnx−α|x=∞ as lnx � ln2 x|x=∞, y = x−α|x=∞ = 0

Example 2.14. [8, p.31] Compare the rate of increase of f = (lnx)(lnx)µ and φ = x(lnx)−v .

f z φ|x=∞

(lnx)(lnx)µ z x(lnx)−v |x=∞

(lnx)µ ln2 x (ln z) (ln x)−v lnx|x=∞

µ ln2 x+ ln3 x (ln2 z) − v ln2 x+ ln2 x|x=∞

(µ+ v) ln2 x+ ln3 x (ln2 z) ln2 x|x=∞

Case µ+ v = 1, ln3 x (ln2 z) 0|x=∞, f � φ.
Case µ+ v < 1, (µ+ v) ln2 x (ln2 z) ln2 x|x=∞, 0 ≺ (1− µ− v)ln2 x|x=∞, f ≺ φ.
Case µ+ v > 1, (µ+ v) ln2 x (ln2 z) ln2 x|x=∞, (µ+ v − 1)ln2 x|x=∞ � 0, f � φ.

In solving relations of infinite magnitude, another case occasionally arises where both sides
of the relation are infinite, but opposite in sign. Raise all parts to a power, with the effect of
pushing the positive infinity further to infinity, and the negative infinity to zero, effectively
pulling the relation further apart.

Example 2.15. n =∞

−n (ln z) lnn

e−n z elnn

e−(n+1) z eln(n+1)

e−(n+2) z eln(n+2)

0← z →∞

Proposition 2.6.
If f =∞, g =∞, − f z g then e−f ≺ eg

Proof. Solving for z, e−f z eg, 1
ef
z eg, 0 ≺ ∞, as ef = +∞ then e−f = 0. z = ≺.

Example 2.16. Solve n lnx (ln z) lnn|n=∞ when x = (0, 1). Within this interval lnx is
negative. n lnx � lnn|n=∞, en lnx (e�) elnn|n=∞, xn (e�) n|n=∞, xn ≺ n|n=∞, z = e� = ≺.

Definition 2.8. Let == mean an equality relation.

Definition 2.9. Let z = == mean equality is assigned to the variable z
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We have further introduced a use of assignment as a left-to-right generalisation. As maths
is a language, this decision was made to chain together implications.

Having the context of the problem being solved for is important.

Multiplying by −1 reverses the orders direction, the order relations {<,≤, >,≥} are not
effected by positive multiplication or addition.

Comparison in an additive sense ‘is’ effected by adding and subtracting terms. Not in the
sense of the order as described, but the magnitudes can be shifted, hence the magnitude
relations can change direction. If a � b, a+−a ≺ b− a, 0 ≺ b− a. [2]

When adding the same value to both sides the much-greater-than relation can change direc-
tion, unlike inequalities {<,≤} which are invariant.

Example 2.17.

x2 � x|x=∞

x2 − x2 ≺ −x2 + x|x=∞ (direction changes)

0 ≺ −x2 + x|x=∞

In solving a relation, say relation z, if the aim in solving is to satisfy all the expressions
involving z, then adding to both sides can introduce contradictory solutions. If after addition,
the highest terms magnitude is removed, the next highest order determines the magnitude
relation.

Example 2.18. Solve z1 and z2 for the same relation.

n2 + 3 z1 n
2 + n|n=∞ (subtract n2)

3 z2 n|n=∞

z1 = <, z2 = <

However, for usability, we really do not wish to be this formal.

Example 2.19.

n2 + 3 z n2 + n|n=∞ (subtract n2)

3 z n|n=∞ (solving z = ≺ contradicts the first expression)

z = < (True for both expressions)

This management of variables is part of the mathematics. At times, it is only necessary to
solve with forward implications. Other times, for example in constructing proofs, reversibil-
ity, having implications in both directions is required. Or more generally, we want to solve
not for several binary relation variables, when we can do so with one.
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Up till now we have explored some of the mechanics for solving the relation. Of course, the
premise was simple, solve for the relation as a variable.

However, infinitary calculus concerns itself with functions and curves, and continuous families
of curves; we imagine curves between curves as real numbers between other real numbers.
Just as the relation separated and defined different numbers, relations again separate and
define different curves.

In discussing the infinity of curves near an existing curve, G. Fisher [9, pp 109–110] comments
and beautifully quotes du Bois-Reymond in developing an infinity of curves close to y = x,
with the following relationship at infinity. x

p
p+1 < xln2(x)/ln2(x+1) < x|x=∞, p ∈ N. That is,

there is a function between x
p
p+1 and x, and there are an infinitely many such functions,

x
p
p+1 < φ(x) < x|x=∞. Therefore, there are an infinitely many functions close to y = x at

infinity, where the space of real valued functions diverge, f(x)|x=∞ =∞.

Example 2.20. There exists an infinity of curves infinitesimally close to the straight line

y = x. Show x
p
p+1 < x

ln2 x
ln2(x+1) < x1|x=∞ .

We will use an indirect inequality approach, where we introduce another inequality. Undoing
the base x, show p

p+1
< x

x+1
< ln2 x

ln2(x+1)
|x=∞ < 1.

p

p+ 1
z

x

x+ 1
|x=∞

p(x+ 1) z (p+ 1)x|x=∞

px+ p z px+ x|x=∞

p z x|x=∞, z = <

x
x
x+1 |x=∞ z xln2(x)/ln2(x+1)|x=∞

x

x+ 1
· lnx (ln z) ln2(x)/ln2(x+ 1) · lnx|x=∞

x

x+ 1
(ln z) ln2(x)/ln2(x+ 1)|x=∞

x ln2(x+ 1) (ln z) (x+ 1) ln2 x|x=∞

lnx+ ln3(x+ 1) (ln2 z) ln(x+ 1) + ln3 x|x=∞

lnx (ln2 z) ln(x+ 1)|x=∞ (as ln x � ln3 x|x=∞)

x (ln z) x+ 1|x=∞

ln z = <, z = e< = <

The last relation trivially follows, ln2 x
ln2(x+1)

z 1|x=∞, ln2 x z ln2(x + 1)|x=∞, z = <. Then

x
p
p+1 < x

ln2 x
ln2(x+1) < x1|x=∞.

We did not need to introduce the additional inequality. However, like algebra in general, we
may not get the minimal solution. The same calculation, without the added inequality, and
using an asymptotic approximation could have been used, see [7, Example 2.5].
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As a rule of thumb, think of infinity as being as large as the reals, so that you could construct
any graph there, and then know that the space is larger still. However what is striking is the
existence of the relations themselves, and this property, to not just partition, but develop
algorithms at infinity. It is obvious then that if you can iterate in that space, have relations
existing in that space, then you can construct algorithms and mathematical reasoning in
that space.

In comparing sequences and functions, monotonic sequences and functions, that is sequences
and functions which are either equal to or increasing, or equal to and decreasing, are of great
interest.

Since a monotonic sequence can be made into a monotonic function, and a monotonic func-
tion back into a monotonic sequence, the theory of functions given is true for sequences.

Roughly, if we can determine that two functions are monotonic, we can do other things such
as compare their ratio, and other mathematics.

Hence, the interest with Hardy’s L-functions, which are monotonic functions, that comprise
of a finite combination of {+,−,÷,×, ln, e} operations.

Also, with monotonic functions, the association of a sequence of points to a curve would
allow sequences and functions to be connected, via the same relations.

As sequences are indexed, a connection between the discrete and continuous can be made.

Proposition 2.7. Given a relation z, and functions (f, g), then (z, (f, g)) is a relation if
for all values in the domain, there is no contradiction. If there is a contradiction, (z, (f, g))
is not a relation, and is disproved as one.

Proof. Transforming the functions into sets, since the set generated by (z, (f, g)) is not an
exact subset of the relation set generated from z, by definition (z, (f, g)) is not a relation.

Example 2.21. Show n2 > en|n=∞ contradicts. By using L’Hopital [4, Part 5], ∞ > ∞,
differentiate, 2n > en|n=∞, 2 > en|n=∞, contradicts as 2 ≺ en|n=∞.

Another approach is by solving, and showing that the symbols are contradictory.

n2 z en|n=∞, ln(n2) (ln z) ln(en)|n=∞, 2 lnn (ln z) n|n=∞, (ln z) = ≺, z = e≺ = ≺. Since
both arguments are positive, ≺ implies < which contradicts >.

Propositions and theorems for the infinitely small can be similarly constructed.

Proposition 2.8. If ; f, g ∈ +Φ; and z ∈ {<,≤,=, >,≥},

f z g ⇔ ef z eg

13



Proof. Assuming the partial sums of the exponential function with an infinitesimal are

asymptotic to the infinite sum, eδ = 1 + δ + δ2

2
+ . . . ∼ 1 + δ +

∑w
i=0

f (i)

i!
.

We have the general partial sum comparisons zi, 1 + f z 1 + g, 1 + f + f2

2
z2 1 + g + g2

2
,

1 + f + f2

2
+ f3

3!
z3 1 + g + g2

2
+ g3

3!
, . . ..

Case ef z eg implies f z g: ef z eg, 1 + f + f2

2
+ . . . z 1 + g + g2

2
+ . . ., apply non-reversible

addition [4, Part 5 Theorem 2.1] to f and g partial sums, for example f i

i!
+ f i+1

(i+1)!
= f i

i!
as

f i � f i+1 and zi+1 = zi. 1 + f z 1 + g, f z g.

Reversing the process to prove the implication in the other direction. Adding the infinitesimal
does not change the relation as the next term is much less than in magnitude to the previous
term. f z g, 1 + f z 1 + g, 1 + f + f2

2!
z 1 + g+ g2

2!
, 1 + f + f2

2
+ f3

3!
. . . z 1 + g+ g2

2
+ g3

3!
+ . . .,

recognising the expression as the exponential functions, ef z eg.

For comparing of functions, we do need well behaved functions, hence the monotonic re-
quirements. The classes of functions may appear to be restricted, but this can be expanded
in many ways. Non-reversible arithmetic can be used to remove transient terms. For an
additive comparison, we may only need f − g to be ultimately monotonic, and not the ratio.

So important is the determination of these classes of functions that they lead to the following
definition and conjecture.

In accordance with redefining other infinitary calculus relations, we redefine the L-function
in ∗G.

Definition 2.10. Define an L-function in ∗G without implicit complex numbers as a finite
combination of {+,−,÷,×, ln, e} operations.

The following is given by Hardy as a theorem [8, p.24 Appendix I], but here stated as a
conjecture because we re-defined the L-functions in ∗G instead of R. For example, the limit
in ∗G [5, Part 6] can be a function, as it can contain infinitesimals and infinities. A transfer
of the theorem in ∗G 7→ R [3, Part 4] would result in the theorem stated by Hardy.

Conjecture 2.1. Any L-functions at infinity is ultimately continuous and monotonic.

If f and g are L-functions then at f z g|n=∞, z is unique and z ∈ {≺, �, ∝}

Additionally the L-functions have the property that if f and g are L-functions, so is their
ration f/g. Truncated infinite series can also be L-functions.

Example 2.22. x2 = e2 lnx|x=∞ is an L-function.
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