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Explanatory Note 

This book is a translation from Romanian of "Probleme Compilate şi Rezolvate de 

Geometrie şi Trigonometrie" (University of Kishinev Press, Kishinev, 169 p., 1998), and 

includes problems of 2D and 3D Euclidean geometry plus trigonometry, compiled and 

solved from the Romanian Textbooks for 9th and 10th grade students, in the period 

1981-1988, when I was a professor of mathematics at the "Petrache Poenaru" National 

College in Balcesti, Valcea (Romania), Lycée Sidi El Hassan Lyoussi in Sefrou (Morocco), 

then at the "Nicolae Balcescu" National College in Craiova and Dragotesti General 

School (Romania), but also I did intensive private tutoring for students preparing their 

university entrance examination. After that, I have escaped in Turkey in September 1988 

and lived in a political refugee camp in Istanbul and Ankara, and in March 1990 I 

immigrated to United States. The degree of difficulties of the problems is from easy 

and medium to hard. The solutions of the problems are at the end of each chapter. 

One can navigate back and forth from the text of the problem to its solution using 

bookmarks. The book is especially a didactical material for the mathematical students 

and instructors. 

The Author 
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Problems in Geometry (9th grade) 
 

1. The measure of a regular polygon’s interior angle is four times bigger than 

the measure of its external angle. How many sides does the polygon have?  

Solution to Problem 1 

 

2. How many sides does a convex polygon have if all its external angles are 

obtuse? 

Solution to Problem 2 

 

3. Show that in a convex quadrilateral the bisector of two consecutive angles 

forms an angle whose measure is equal to half the sum of the measures of 

the other two angles. 

Solution to Problem 3 

 

4. Show that the surface of a convex pentagon can be decomposed into two 

quadrilateral surfaces. 

Solution to Problem 4 

 

5. What is the minimum number of quadrilateral surfaces in which a convex 

polygon with 9, 10, 11 vertices can be decomposed? 

Solution to Problem 5 

 

6. If (𝐴𝐵𝐶)̂ ≡ (𝐴′𝐵′𝐶′)̂ , then ∃  bijective function 𝑓 = (𝐴𝐵𝐶)̂ → (𝐴′𝐵′𝐶′)̂  such 

that for ∀ 2 points 𝑃, 𝑄 ∈ (𝐴𝐵𝐶)̂ , ‖𝑃𝑄‖ = ‖𝑓(𝑃)‖, ‖𝑓(𝑄)‖, and vice versa. 

Solution to Problem 6 
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7. If ∆𝐴𝐵𝐶 ≡ ∆𝐴′𝐵′𝐶′ then ∃  bijective function 𝑓 = 𝐴𝐵𝐶 → 𝐴′𝐵′𝐶′ such that 

(∀) 2 points 𝑃, 𝑄 ∈ 𝐴𝐵𝐶, ‖𝑃𝑄‖ = ‖𝑓(𝑃)‖, ‖𝑓(𝑄)‖, and vice versa.  

Solution to Problem 7 

 

8. Show that if ∆𝐴𝐵𝐶~∆𝐴′𝐵′𝐶′, then [𝐴𝐵𝐶]~[𝐴′𝐵′𝐶′]. 

Solution to Problem 8 

 

9. Show that any two rays are congruent sets. The same property for lines. 

Solution to Problem 9 

 

10. Show that two disks with the same radius are congruent sets. 

Solution to Problem 10 

 

11. If the function 𝑓:𝑀 → 𝑀′ is isometric, then the inverse function 𝑓−1:𝑀 → 𝑀′ 

is as well isometric. 

Solution to Problem 11 

 

12. If the convex polygons 𝐿 = 𝑃1, 𝑃2, … , 𝑃𝑛 and 𝐿′ = 𝑃1
′, 𝑃2

′ , … , 𝑃𝑛
′ have |𝑃𝑖 , 𝑃𝑖+1| ≡

|𝑃𝑖
′, 𝑃𝑖+1

′ | for 𝑖 = 1, 2, … , 𝑛 − 1, and 𝑃𝑖𝑃𝑖+1𝑃𝑖+2̂ ≡𝑃𝑖
′𝑃𝑖+1
′ 𝑃𝑖+2

′̂ , (∀) 𝑖 = 1, 2, … , 𝑛 −

2, then 𝐿 ≡ 𝐿′ and [𝐿] ≡ [𝐿′]. 

Solution to Problem 12 

 

13. Prove that the ratio of the perimeters of two similar polygons is equal to 

their similarity ratio. 

Solution to Problem 13 

 

14. The parallelogram 𝐴𝐵𝐶𝐷 has ‖𝐴𝐵‖  =  6, ‖𝐴𝐶‖ =  7 and 𝑑(𝐴𝐶)  =  2. Find 

𝑑(𝐷, 𝐴𝐵). 

Solution to Problem 14 
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15. Of triangles 𝐴𝐵𝐶 with ‖𝐵𝐶‖ = 𝑎 and ‖𝐶𝐴‖ = 𝑏, 𝑎 and 𝑏 being given 

numbers, find a triangle with maximum area. 

Solution to Problem 15 

 

16. Consider a square 𝐴𝐵𝐶𝐷 and points 𝐸, 𝐹, 𝐺, 𝐻, 𝐼, 𝐾, 𝐿,𝑀 that divide each side 

in three congruent segments. Show that 𝑃𝑄𝑅𝑆 is a square and its area is 

equal to 
2

9
𝜎[𝐴𝐵𝐶𝐷]. 

Solution to Problem 16 

 

17. The diagonals of the trapezoid 𝐴𝐵𝐶𝐷 (𝐴𝐵||𝐷𝐶) cut at 𝑂.  

a. Show that the triangles 𝐴𝑂𝐷 and 𝐵𝑂𝐶 have the same area; 

b. The parallel through 𝑂 to 𝐴𝐵 cuts 𝐴𝐷 and 𝐵𝐶 in 𝑀 and 𝑁. Show that 

||𝑀𝑂||  =  ||𝑂𝑁||. 

Solution to Problem 17 

 

18. 𝐸 being the midpoint of the non-parallel side [𝐴𝐷] of the trapezoid 𝐴𝐵𝐶𝐷, 

show that 𝜎[𝐴𝐵𝐶𝐷]  =  2𝜎[𝐵𝐶𝐸]. 

Solution to Problem 18 

 

19. There are given an angle (𝐵𝐴𝐶)̂  and a point 𝐷 inside the angle. A line 

through 𝐷 cuts the sides of the angle in 𝑀 and 𝑁. Determine the line 𝑀𝑁 

such that the area ∆𝐴𝑀𝑁 to be minimal. 

Solution to Problem 19 

 

20. Construct a point 𝑃 inside the triangle 𝐴𝐵𝐶, such that the triangles 𝑃𝐴𝐵, 

𝑃𝐵𝐶, 𝑃𝐶𝐴 have equal areas. 

Solution to Problem 20 

 

21. Decompose a triangular surface in three surfaces with the same area by 

parallels to one side of the triangle. 

Solution to Problem 21 
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22. Solve the analogous problem for a trapezoid. 

Solution to Problem 22 

 

23. We extend the radii drawn to the peaks of an equilateral triangle inscribed 

in a circle 𝐿(𝑂, 𝑟), until the intersection with the circle passing through the 

peaks of a square circumscribed to the circle 𝐿(𝑂, 𝑟). Show that the points 

thus obtained are the peaks of a triangle with the same area as the 

hexagon inscribed in 𝐿(𝑂, 𝑟). 

Solution to Problem 23 

 

24. Prove the leg theorem with the help of areas. 

Solution to Problem 24 

 

25. Consider an equilateral ∆𝐴𝐵𝐶 with ‖𝐴𝐵‖ = 2𝑎. The area of the shaded 

surface determined by circles 𝐿(𝐴, 𝑎), 𝐿(𝐵, 𝑎), 𝐿(𝐴, 3𝑎) is equal to the area of 

the circle sector determined by the minor arc (𝐸𝐹)̂ of the circle 𝐿(𝐶, 𝑎). 

Solution to Problem 25 

 

26. Show that the area of the annulus between circles 𝐿(𝑂, 𝑟2) and 𝐿(𝑂, 𝑟2) is 

equal to the area of a disk having as diameter the tangent segment to 

circle 𝐿(𝑂, 𝑟1) with endpoints on the circle 𝐿(𝑂, 𝑟2). 

Solution to Problem 26 

 

27. Let [𝑂𝐴], [𝑂𝐵] two ⊥ radii of a circle centered at [𝑂]. Take the points 𝐶 and 

𝐷 on the minor arc 𝐴𝐵𝐹̂ such that 𝐴𝐶̂≡𝐵𝐷̂ and let 𝐸, 𝐹 be the projections of 

𝐶𝐷 onto 𝑂𝐵. Show that the area of the surface bounded by [𝐷𝐹], [𝐹𝐸[𝐸𝐶]] 

and arc 𝐶𝐷̂ is equal to the area of the sector determined by arc 𝐶𝐷̂ of the 

circle 𝐶(𝑂, ‖𝑂𝐴‖). 

Solution to Problem 27 
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28. Find the area of the regular octagon inscribed in a circle of radius 𝑟. 

Solution to Problem 28 

 

29. Using areas, show that the sum of the distances of a variable point inside 

the equilateral triangle 𝐴𝐵𝐶 to its sides is constant. 

Solution to Problem 29 

 

30. Consider a given triangle 𝐴𝐵𝐶 and a variable point 𝑀 ∈ |𝐵𝐶|. Prove that 

between the distances 𝑥 = 𝑑(𝑀, 𝐴𝐵) and 𝑦 = 𝑑(𝑀, 𝐴𝐶) is a relation of 𝑘𝑥 +

𝑙𝑦 = 1 type, where 𝑘 and 𝑙 are constant. 

Solution to Problem 30 

 

31. Let 𝑀 and 𝑁 be the midpoints of sides [𝐵𝐶] and [𝐴𝐷] of the convex 

quadrilateral 𝐴𝐵𝐶𝐷 and {𝑃} = 𝐴𝑀 ∩ 𝐵𝑁 and {𝑄} = 𝐶𝑁 ∩ 𝑁𝐷. Prove that the 

area of the quadrilateral 𝑃𝑀𝑄𝑁 is equal to the sum of the areas of triangles 

𝐴𝐵𝑃 and 𝐶𝐷𝑄. 

Solution to Problem 31 

 

32. Construct a triangle having the same area as a given pentagon. 

Solution to Problem 32 

 

33. Construct a line that divides a convex quadrilateral surface in two parts 

with equal areas. 

Solution to Problem 33 

 

34. In a square of side 𝑙, the middle of each side is connected with the ends of 

the opposite side. Find the area of the interior convex octagon formed in 

this way. 

Solution to Problem 34 
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35. The diagonal [𝐵𝐷] of parallelogram 𝐴𝐵𝐶𝐷 is divided by points 𝑀, 𝑁, in 3 

segments. Prove that 𝐴𝑀𝐶𝑁 is a parallelogram and find the ratio between 

𝜎[𝐴𝑀𝐶𝑁] and 𝜎[𝐴𝐵𝐶𝐷]. 

Solution to Problem 35 

 

36. There are given the points 𝐴, 𝐵, 𝐶, 𝐷, such that 𝐴𝐵 ∩ 𝐶𝐷 = {𝑝}. Find the 

locus of point 𝑀 such that 𝜎[𝐴𝐵𝑀] = 𝜎[𝐶𝐷𝑀]. 

Solution to Problem 36 

 

37. Analogous problem for 𝐴𝐵||𝐶𝐷. 

Solution to Problem 37 

 

38. Let 𝐴𝐵𝐶𝐷 be a convex quadrilateral. Find the locus of point 𝑥1 inside 𝐴𝐵𝐶𝐷 

such that 𝜎[𝐴𝐵𝑀] + 𝜎[𝐶𝐷𝑀] = 𝑘, 𝑘 – a constant. For which values of 𝑘 the 

desired geometrical locus is not the empty set? 

Solution to Problem 38 
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Solutions 
 

Solution to Problem 1. 

180 (𝑛 − 2)

𝑛
= 4

180

5
  𝑛 = 10 

 

Solution to Problem 2. 

Let 𝑛 = 3
𝑥1, 𝑥2, 𝑥3∢ ext

 ⟹

𝑥1 > 90
0

𝑥2 > 90
0

𝑥3 > 90
0

}⟹ 𝑥1 + 𝑥2 + 𝑥3 > 270
0, so 𝑛 = 3 is possible. 

Let 𝑛 = 4
𝑥1, 𝑥2, 𝑥3, 𝑥4∢ ext

 ⟹
𝑥1 > 90

0

⋮
𝑥3 > 90

0
} ⟹ 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 > 360

0, so 𝑛 = 4 is impossible. 

Therefore, 𝑛 = 3. 

 

Solution to Problem 3. 
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m(𝐴𝐸𝐵̂) =  
m(𝐷̂) +  m(𝐶̂)

2
 

m(𝐴̂) +  m(𝐵̂) +  m(𝐶̂) +  m(𝐷̂) = 360° 

m(𝐴̂) +  m(𝐵̂)

2
 = 180° − 

m(𝐶̂) + m(𝐷̂)

2
 

m(𝐴𝐸𝐵̂) = 180° − 
m(𝐴̂)

2
−
m(𝐵̂)

2
 = 

= 180° − 180° +
m(𝐶̂) + m(𝐷̂)

2
 =
m(𝐶̂) + (𝐷̂)

2
 

 

Solution to Problem 4. 

Let 𝐸𝐷𝐶̂ ⇒  𝐴, 𝐵 ∈ int. 𝐸𝐷𝐶̂. Let 𝑀 ∈ |𝐴𝐵| ⇒  𝑀 ∈ int. 𝐸𝐷𝐶̂ ⇒ |𝐷𝑀 ⊂ int. 𝐸𝐷𝐶̂, |𝐸𝐴| ∩

|𝐷𝑀 =  ∅ ⇒ 𝐷𝐸𝐴𝑀 quadrilateral. The same for 𝐷𝐶𝐵𝑀. 

 

 

Solution to Problem 5. 

 

9 vertices;       10 vertices;   11 vertices; 

4 quadrilaterals.         4 quadrilaterals.   5 quadrilaterals. 
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Solution to Problem 6. 

We assume that ABĈ ≡ A’B’C’̂  . We construct a function 𝑓: 𝐴𝐵𝐶̂ → 𝐴′𝐵′𝐶′̂  such that 

{
𝑓 (B) = B′                              

if P ∈  |BA, 𝑓(P) ∈ B′A′
 

𝑃 ∈ |𝐵𝐶, 𝑓(𝑃) ∈ 𝐵′𝐶′ such that ‖𝐵𝑃‖ = ‖𝐵′𝑃′‖ where 𝑃′ = 𝑓(𝐹). 

The so constructed function is bijective, since for different arguments there are 

different corresponding values and ∀ point from 𝐴′𝐵′𝐶′ is the image of a single 

point from 𝐴𝐵𝐶̂ (from the axiom of segment construction). 

 

 

 

If 𝑃, 𝑄 ∈ this ray, 

‖BP‖ = ‖B′P′‖

‖BQ‖ = ‖B′Q′‖
} ⟹ ‖PQ‖ = ‖BQ‖ − ‖BP‖ = ‖B′Q′‖ − ‖B′P′‖ = ‖P′Q′‖ = ‖𝑓(P), 𝑓(Q)‖. 

 

If 𝑃, 𝑄 ∈ a different ray, 

‖BP‖ = ‖B′P′‖
‖BQ‖ = ‖B′Q′‖

PBQ̂ ≡  P′B′Q̂′

} ⟹ ∆PBQ = ∆P′B′Q′ ‖PQ‖ = ‖P′Q′‖ = ‖𝑓 (P), 𝑓 (Q)‖. 

 

Vice versa. 

Let 𝑓 ∶ ABC → A′B′C′ such that 𝑓 bijective and ‖PQ‖ = ‖𝑓(P), 𝑓(Q)‖. 

 

 

Let 𝑃, 𝑄 ∈ |𝐵𝐴 and 𝑅𝑆 ∈ |𝐵𝐶. 
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‖PQ‖ = ‖P′Q′‖
‖PS‖ = ‖P′S′‖
‖QS‖ = ‖Q′S′‖

} ⟹ ∆PQS ≡ ∆P′Q′S′⟹  QPŜ ≡ Q′P′S′̂ ⟹BPŜ ≡ B′P′S′̂    (1); 

‖𝑃𝑆‖ = ‖𝑃′𝑆′‖
‖𝑅𝑃‖ = ‖𝑅′𝑃′‖
‖𝑃𝑆‖ = ‖𝑃′𝑆′‖

} ⟹ ∆PRS ≡ ∆P′R′S′′ ⟹ PSB̂ ≡ P′S′B′̂     (2). 

From (1) and (2) ⟹ PBĈ ≡ P′B′S′̂  (as diff. at 180°) i.e. ABĈ ≡ A′B′C′̂ . 

 

Solution to Problem 7. 

 

Let ∆𝐴𝐵𝐶 ≡ ∆𝐴′𝐵′𝐶′. 

We construct a function 𝑓 ∶ 𝐴𝐵𝐶 → 𝐴′𝐵′𝐶′ such that 𝑓(𝐴) = 𝐴′, 𝑓(𝐵) = 𝐵′, 𝑓(𝐶) = 𝐶′ 

and so  𝑃 ∈ |𝐴𝐵| → 𝑃′ = 𝑓(𝑃) ∈ |𝐴′𝐵′| such that ||𝐴𝑃|| = ||𝐴′𝑃′||; 

𝑃 ∈ |𝐵𝐶| → 𝑃′ = 𝑓(𝑃) ∈ |𝐵′𝐶′|  such that ||𝐵𝑃||  = ||𝐵′𝑃′||; 

𝑃 ∈ |𝐶𝐴| → 𝑃′ = 𝑓(𝑃) ∈ |𝐶′𝐴′|  such that ||𝐶𝑃|| = ||𝐶′𝑃′||. 

The so constructed function is bijective. 

Let 𝑃 ∈ |𝐴𝐵| and 𝑎 ∈ |𝐶𝐴| ⟹ 𝑃′ ∈ |𝐴′𝐵′| and 𝑄′ ∈ |𝐶′𝐴′|. 

‖AP‖ = ‖A′P′‖

‖CQ‖ = ‖C′Q′‖

‖CA‖ = ‖C′A′‖
} ⟹ ‖AQ‖ = ‖A′Q′‖; A ≡ A′⟹ ∆APQ ≡ ∆A′P′Q′ ⟹ ‖PQ‖ = ‖P′Q′‖. 

Similar reasoning for (∀) point 𝑃 and 𝑄. 

 

Vice versa.  

We assume that ∃ a bijective function 𝑓 ∶  𝐴𝐵𝐶 →  𝐴′𝐵′𝐶′ with the stated 

properties. 

We denote 𝑓(A) = A′′, 𝑓(B) = B′′, 𝑓(C) = C′′ 

⟹ ‖AB‖ = ‖A′′B′′‖, ‖BC‖ = ‖B′′C′′‖, ‖AC‖ = ‖A′′C′′‖∆ABC = ∆A′′B′′C′′. 

Because 𝑓(ABC) = 𝑓([AB] ∪ [BC] ∪ [CA]) = 𝑓([AB]) ∪ 𝑓([BC]) ∪ 𝑓([CA]) 

= [A′′B′′] ∪ [B′′C′′][C′′A′′] = A′′B′′C′′. 

But by the hypothesis 𝑓(𝐴𝐵𝐶) = 𝑓(𝐴’𝐵’𝐶’), therefore 

A′′B′′C′′ = ∆A′B′C′⟹ ∆ABC ≡ ∆A′B′C′. 
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Solution to Problem 8. 

If ∆𝐴𝐵𝐶~∆𝐴’𝐵’𝐶’ then (∀) 𝑓: 𝐴𝐵𝐶 → 𝐴’𝐵’𝐶’ and 𝑘 > 0 such that: 

||𝑃𝑄|| = 𝑘 ||𝑓(𝑃), 𝑓(𝑄)||, 𝑃, 𝑄 ∈ 𝐴𝐵𝐶; 

∆𝐴𝐵𝐶~∆𝐴′𝐵′𝐶′ ⟹

‖AB‖

‖A′B′‖
=

‖BC‖

‖B′C′‖
=

‖CA‖

‖C′A′‖
= 𝑘

Â ≡ A′̂; B̂ ≡ B′̂; Ĉ ≡ C′̂
} ⟹

‖AB‖ = 𝑘‖A′B′‖

‖BC‖ = 𝑘‖B′C′‖
‖CA‖ = 𝑘‖C′A′‖

 . 

We construct a function 𝑓: 𝐴𝐵𝐶 → 𝐴′𝐵′𝐶′ such that 𝑓(𝐴) = 𝐴′, 𝑓(𝐵) = 𝐵′, 𝑓(𝐶) = 𝐶′; 

    if 𝑃 ∈ |𝐵𝐶| → 𝑃 ∈ |𝐵′𝐶′| such that ||𝐵𝑃|| = 𝑘||𝐵′𝑃′||; 

    if 𝑃 ∈ |𝐶𝐴| → 𝑃 ∈ |𝐶′𝐴′| such that ||𝐶𝑃|| = 𝑘||𝐶′𝑃′||; 𝑘 – similarity constant. 

 

Let 𝑃, 𝑄 ∈ 𝐴𝐵 such that 𝑃 ∈ |𝐵𝐶|, 𝑄 ∈ |𝐴𝐶| ⟹ 𝑃′ ∈ |𝐵′𝐶′| and ||𝐵𝑃|| = 𝑘||𝐵′𝑃′|| 

           Q′ ∈ |A′C′| and ‖CQ‖  = 𝑘‖C′Q′‖ (1); 

As ‖BC‖ = 𝑘‖B′C′‖ ⟹ ‖PC‖ = ‖BC‖ − ‖BP‖ = 𝑘‖B′C′‖ − 𝑘‖B′P′‖ = 

                            = 𝑘(‖B′C′‖ − ‖B′P′‖) = 𝑘‖P′C′‖ (2);               

Ĉ ≡ C′̂  (3). 

From (1), (2), and (3) ⟹ ∆PCQ~∆P′C′Q′  ⟹ ‖PQ‖ = 𝑘‖P′Q′‖ . 

Similar reasoning for 𝑃, 𝑄 ∈ 𝐴𝐵𝐶. 

We also extend the bijective function previously constructed to the interiors of 

the two triangles in the following way: 

 

Let 𝑃 ∈ int. 𝐴𝐵𝐶 and we construct 𝑃’ ∈ int. 𝐴’𝐵’𝐶’ such that ||𝐴𝑃|| = 𝑘||𝐴’𝑃’|| (1). 

Let 𝑄 ∈ int. 𝐴𝐵𝐶 → 𝑄′ ∈ int. 𝐴’𝐵’𝐶’ such that BAQ̂ ≡ B’A’Q’̂  and ||𝐴𝑄|| = 𝑘||𝐴’𝑄’|| (2). 
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From (1) and (2), 

AP

A′P′
=
AQ

A′Q′
= 𝑘, PAQ̂ ≡ P′A′Q′̂ ⟹∆APQ ~ ∆A′P′Q′⟹ ‖PQ‖ = 𝑘‖P′Q′‖, 

but 𝑃, 𝑄 ∈ [𝐴𝐵𝐶], so [𝐴𝐵𝐶] ~[𝐴′𝐵′𝐶′]. 

 

Solution to Problem 9. 

a. Let |𝑂𝐴 and |𝑂′𝐴′ be two rays: 

 

Let 𝑓: |𝑂𝐴 → |𝑂′𝐴′ such that 𝑓(𝑂) = 𝑂′ and 𝑓(𝑃) = 𝑃′ with ||𝑂𝑃|| = ||𝑂′𝑃′|.  

The so constructed point 𝑃′ is unique and so if 𝑃 ≠ 𝑄 ⟹ ||𝑂𝑃|| ≠ ||𝑂𝑄|| ⟹

||𝑂′𝑃′|| ≠ ||𝑂′𝑄′|| ⟹ 𝑃′ ≠ 𝑄′ and (∀)𝑃′ ∈ |𝑂′𝐴′ (∃) a single point 𝑃 ∈ |𝑂𝐴 such that 

||𝑂𝑃|| = ||𝑂′𝑃′||. 

The constructed function is bijective. 

If 𝑃, 𝑄 ∈ |𝑂𝐴, 𝑃 ∈ |𝑂𝑄| → 𝑃′𝑄′ ∈ |𝑂′𝐴′ such that ‖OP‖ = ‖O′P′‖; ‖OQ‖ = ‖O′Q′‖  ⟹ 

‖PQ‖  = ‖OQ‖ − ‖OP‖ = ‖O′Q′‖ − ‖O′P′‖ = ‖P′Q′‖(∀)P;𝑄 ∈  |OA       

⟹ the two rays are congruent. 

 

b. Let 𝑑 and 𝑑′ be two lines. 

 

Let  𝑂 ∈ 𝑑 and 𝑂′ ∈ 𝑑′. We construct a function 𝑓: 𝑑 → 𝑑′ such that 𝑓(𝑂) = 𝑂′ and 

𝑓 (|𝑂𝐴) = |𝑂′𝐴′ and 𝑓 (|𝑂𝐵) = |𝑂′𝐵′ as at the previous point.  

It is proved in the same way that 𝑓  is bijective and that ||𝑃𝑄|| = ||𝑃′𝑄′|| when 𝑃 

and 𝑄 belong to the same ray.  
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If 𝑃, 𝑄 belong to different rays: 

‖𝑂𝑃‖ = ‖𝑂′𝑃′‖
‖𝑂𝑄‖ = ‖𝑂′𝑄′‖

} ⟹ ‖𝑃𝑄‖ = ‖𝑂𝑃‖ + ‖𝑂𝑄‖ = ‖𝑂′𝑃′‖ + ‖𝑂′𝑄′‖ = ‖𝑃′𝑄′‖ 

and so the two rays are congruent. 

 

Solution to Problem 10. 

 

We construct a function 𝑓:𝐷 → 𝐷′ such that 𝑓(𝑂) = 𝑂′, 𝑓(𝐴) = 𝐴′ and a point 

(∀) 𝑃 ∈ 𝐷 → 𝑃′ ∈ 𝐷′ which are considered to be positive.  

From the axiom of segment and angle construction ⟹ that the so constructed 

function is bijective, establishing a biunivocal correspondence between the elements 

of the two sets. 

Let 𝑄 ∈ 𝐷 → 𝑄′ ∈ 𝐷′ such that ||𝑂𝑄′|| = ||𝑂𝑄||;  𝐴𝑂𝑄̂ ≡ 𝐴′𝑂′𝑄′̂ . 

As: 

‖𝑂𝑃‖ = ‖𝑂′𝑃′‖
‖𝑂𝑄‖ = ‖𝑂′𝑄′‖

𝑃𝑂𝑄̂ ≡ 𝑃′𝑂′𝑄′̂
}⟹∆𝑂𝑃𝑄 ≡ 𝑃′𝑂′𝑄′̂ ⟹‖𝑃𝑄‖ = ‖𝑃′𝑄′‖, (∀) 𝑃, 𝑄 ∈ 𝐷 ⟹ 𝐷 ≡ 𝐷′. 

 

Solution to Problem 11. 
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𝑓:𝑀 → 𝑀′ is an isometry ⟹ 𝑓 is bijective and (∀) 𝑃, 𝑄 ∈  𝑀 we have ||𝑃𝑄|| =

||𝑓(𝑃), 𝑓(𝑄)||, 𝑓 – bijective ⟹ 𝑓 – invertible and 𝑓−1 – bijective. 

‖𝑃′𝑄′‖ = ‖𝑓(𝑃); 𝑓(𝑄)‖ = ‖𝑃𝑄‖

‖𝑓−1(𝑃′); 𝑓−1(𝑄′)‖ = ‖𝑓−1(𝑓(𝑃)), 𝑓−1(𝑓(𝑄))‖ = ‖𝑃𝑄‖
} ⟹ 

‖𝑃′𝑄′‖ = ‖𝑓−1(𝑓(𝑃′)), 𝑓−1(𝑓(𝑄′))‖, (∀)𝑃′, 𝑄′ ∈ 𝑀, 

therefore 𝑓−1:𝑀′ → 𝑀 is an isometry. 

 

Solution to Problem 12. 

We construct a function 𝑓 such that 𝑓(𝑃𝑖) = 𝑃𝑖
′, 𝑖 = 1, 2, … , 𝑛, and if 𝑃 ∈

|𝑃𝑖 , 𝑃𝑖+1|. 

 

The previously constructed function is also extended inside the polygon as 

follows: Let 𝑂 ∈ int. 𝐿 → 𝑂′ ∈ int. 𝐿′ such that 𝑂𝑃𝑖𝑃𝑖+1̂ ≡ 𝑂′𝑃′𝑖𝑃′𝑖+1̂  and ‖𝑂𝑃𝑖‖ =

‖𝑂′𝑃′𝑖‖. We connect these points with the vertices of the polygon. It can be easily 

proved that the triangles thus obtained are congruent. 

We construct the function 𝑔: [𝐿] → [𝐿′] such that 

𝑔(𝑃) = {

𝑓(𝑃), if 𝑃 ∈ 𝐿                            

𝑂′, if 𝑃 = 𝑂                               
𝑃′, if 𝑃 ∈ [𝑃𝑖𝑂𝑃𝑖+1] such that

 

𝑃𝑖𝑂𝑃̂ ≡ 𝑃𝑖′𝑂′𝑃′̂  (∀)𝑖 = 1, 2, … , 𝑛 − 1 

The so constructed function is bijective (∀) 𝑃, 𝑄 ∈ [𝐿]. It can be proved by the 

congruence of the triangles 𝑃𝑂𝑄 and 𝑃′𝑂′𝑄′ that ||𝑃𝑄|| = ||𝑃′𝑄′||, so [𝐿] = [𝐿′] 

 

⟹ if two convex polygons are decomposed  

in the same number of triangles  

respectively congruent,  

they are congruent. 
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Solution to Problem 13. 

𝐿 = 𝑃1𝑃2… , 𝑃𝑛; 𝐿
′ = 𝑃1

′𝑃2
′ … , 𝑃𝑛

′ 

𝐿~𝐿′ ⟹ (∃)𝐾 > 0 and 𝑓: 𝐿 → 𝐿′ such that ‖𝑃𝑄‖ = 𝑘‖𝑓(𝑃)𝑓(𝑄)‖ (∀)𝑃, 𝑄 ∈ 𝐿, 

and 𝑃𝐼
′ = 𝑓(𝑃𝑖). 

Taking consecutively the peaks in the role of 𝑃 and 𝑄, we obtain: 

‖𝑃1𝑃2‖ = 𝑘‖𝑃1
′𝑃2
′‖ ⇒

‖𝑃1𝑃2‖

‖𝑃1
′𝑃2
′‖
= 𝑘

‖𝑃2𝑃3‖ = 𝑘‖𝑃2
′𝑃3
′‖ ⇒

‖𝑃2𝑃3‖

‖𝑃2
′𝑃3
′‖
= 𝑘

⋮

‖𝑃𝑛−1𝑃𝑛‖ = 𝑘‖𝑃𝑛−1
′ 𝑃𝑛

′‖ ⇒
‖𝑃𝑛−1𝑃𝑛‖

‖𝑃𝑛−1
′ 𝑃𝑛′‖

= 𝑘

‖𝑃𝑛𝑃1‖ = 𝑘‖𝑃𝑛
′𝑃1
′‖ ⇒

‖𝑃𝑛𝑃1‖

‖𝑃𝑛′𝑃1
′‖
= 𝑘

}
 
 
 
 

 
 
 
 

⟹ 

⟹ 𝑘 =
‖𝑃1𝑃2‖

‖𝑃1
′𝑃2
′‖
=
‖𝑃2𝑃3‖

‖𝑃2
′𝑃3
′‖
= ⋯ =

‖𝑃1𝑃2‖ + ‖𝑃2𝑃3‖ +⋯+ ‖𝑃𝑛−1𝑃𝑛‖ + ‖𝑃𝑛𝑃1‖

‖𝑃1
′𝑃2
′‖ + ‖𝑃2

′𝑃3
′‖ +⋯+ ‖𝑃𝑛−1

′ 𝑃𝑛′‖ + ‖𝑃𝑛′𝑃1
′‖
=
𝑃

𝑃′
 . 

 

 

Solution to Problem 14. 

 

𝜎[𝐴𝐷𝐶] =
2∙7

2
= 7; 𝜎[𝐴𝐵𝐶𝐷] = 2 ∙ 7 = 14 = 6‖𝐷𝐹‖ ⟹ ‖𝐷𝐹‖ =

14

6
=
7

3
 . 

 

Solution to Problem 15. 
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ℎ = 𝑏 ∙ sin𝐶 ≤ 𝑏; 

𝜎[𝐴𝐵𝐶] =
𝑎∙ℎ

2
  is max. when ℎ is max. 

max. ℎ =  𝑏 when sin𝐶 = 1 

⇒ 𝑚(𝐶) = 90 ⇒ 𝐴𝐵𝐶 has a right angle at 𝐶. 

 

Solution to Problem 16. 

 

‖𝑀𝐷‖ = ‖𝐷𝐼‖ ⟹ 𝑀𝐷𝐼 – an isosceles triangle. 

⟹𝑚(𝐷𝑀𝐼̂) = 𝑚(𝑀𝐼𝐷̂) = 450 ; 

The same way, 𝑚(𝐹𝐿𝐴̂) = 𝑚(𝐴𝐹𝐿̂) = 𝑚(𝐵𝐸𝐻̂) = 𝑚(𝐸𝐻𝐵̂). 

‖𝑅𝐾‖⟹ ‖𝑆𝑃‖ = ‖𝑃𝑄‖ = ‖𝑄𝑅‖ = ‖𝑅𝑆‖ ⟹ 𝑆𝑅𝑄𝑃 is a square.  

‖𝐴𝐵‖ = 𝑎, ‖𝐴𝐸‖ =
2𝑎

3
, ‖𝑀𝐼‖ = √

4𝑎2

9
+
4𝑎2

9
=
2𝑎√2

3
 ; 

2‖𝑅𝐼‖2 =
𝑎2

9
⟹ ‖𝑅𝐼‖2 =

𝑎2

18
⟹ ‖𝑅𝐼‖ =

𝑎

3√2
=
𝑎√2

6
 ; 

‖𝑆𝑅‖ =
2𝑎√2

3
− 2

𝑎√2

6
=
𝑎√2

3
 ; 

𝜎[𝑆𝑅𝑄𝑃] =
2𝑎2

9
=
2

9
𝜎[𝐴𝐵𝐶𝐷]. 

 

Solution to Problem 17. 

𝜎[𝐴𝐶𝐷] =
‖𝐷𝐶‖ ∙ ‖𝐴𝐸‖

2

𝜎[𝐵𝐶𝐷] =
‖𝐷𝐶‖ ∙ ‖𝐵𝐹‖

2
‖𝐴𝐸‖ = ‖𝐵𝐹‖ }

 
 

 
 

⟹ 𝜎[𝐴𝐶𝐷] = 𝜎[𝐵𝐶𝐷] 
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𝜎[𝐴𝑂𝐷] = 𝜎[𝐴𝑀𝑂] + 𝜎[𝑀𝑂𝐷]

𝜎[𝐴𝑀𝑂] = 𝜎[𝑀𝑃𝑂] =
‖𝑀𝑂‖ ∙ ‖𝑂𝑃‖

2

𝜎[𝑀𝑂𝐷] = 𝜎[𝑀𝑂𝑄] =
‖𝑂𝑀‖ ∙ ‖𝑂𝑄‖

2 }
 
 

 
 

⟹  𝜎[𝐴𝑂𝐷] =
‖𝑂𝑀‖(‖𝑂𝑃‖ + ‖𝑂𝑄‖)

2
=
‖𝑂𝑀‖ ∙ ℎ

2
 

The same way, 

𝜎[𝐵𝑂𝐶] =
‖𝑂𝑁‖ ∙ ℎ

2
 . 

Therefore, 

𝜎[𝐴𝑂𝐷] = 𝜎[𝐵𝑂𝐶] ⟹
‖𝑂𝑀‖ ∙ ℎ

2
=
‖𝑂𝑁‖ ∙ ℎ

2
⟹ ‖𝑂𝑀‖ = ‖𝑂𝑁‖. 

 

Solution to Problem 18. 

‖𝐴𝐸‖ = ‖𝐸𝐷‖ ; 

We draw 𝑀𝑁 ⊥ 𝐴𝐵;𝐷𝐶; 

‖𝐸𝑁‖ = ‖𝐸𝑀‖ =
ℎ

2
; 

𝜎[𝐵𝐸𝐶] =
(‖𝐴𝐵‖ + ‖𝐷𝐶‖) ∙ ℎ

2
−
‖𝐴𝐵‖ ∙ ℎ

4
−
‖𝐷𝐶‖ ∙ ℎ

4
=
(‖𝐴𝐵‖ + ‖𝐷𝐶‖) ∙ ℎ

4
=
1

2
𝜎[𝐴𝐵𝐶𝐷]; 

Therefore, [𝐴𝐵𝐶𝐷] = 2𝜎[𝐵𝐸𝐶] . 

 

Solution to Problem 19. 

𝜎[𝐴𝐸𝐷𝑁′] is ct. because 𝐴, 𝐸, 𝐷,𝑁′ are fixed points.  

Let a line through 𝐷, and we draw ∥ to sides 𝑁𝐷 and 𝐷𝐸.  

No matter how we draw a line through 𝐷, 𝜎[𝑄𝑃𝐴] is formed of: 𝜎[𝐴𝐸𝐷𝑁] +

𝜎[𝑁𝑃𝑂] + 𝜎[𝐷𝐸𝑄].  

We have 𝜎[𝐴𝐸𝐷𝑁] constant in all triangles 𝑃𝐴𝑄. 
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Let’s analyse: 

𝜎[𝑃𝑁′𝐷] + 𝜎[𝐷𝐸𝑄] =
‖𝑁′𝐷‖ ∙ ℎ1

2
+
‖𝐸𝑄′‖ ∙ ℎ2

2
=
‖𝑁′𝐷‖

2
(ℎ1 +

‖𝐸𝑄‖

‖𝑁𝐷‖
∙ ℎ2)

=
‖𝑁′𝐷‖

2
∙ (ℎ1 +

ℎ2
ℎ1
∙ ℎ2) =

‖𝑁′𝐷‖

2ℎ1
[(ℎ1 − ℎ2)

2 + 2ℎ1ℎ2]. 

∆𝐴𝑀𝑁 is minimal when ℎ1 = ℎ2⟹𝐷 is in the middle of |𝑃𝑄|. The construction is 

thus: ∆𝐴𝑁𝑀 where 𝑁𝑀 || 𝐸𝑁′. In this case we have |𝑁𝐷| ≡ |𝐷𝑀|. 

 

Solution to Problem 20. 

 

𝜎[𝐴𝐵𝐶] =
‖𝐵𝐶‖ ∙ ‖𝐴𝐴′‖

2
 

Let the median be |𝐴𝐸|, and 𝑃 be the centroid of the triangle. 

Let 𝑃𝐷 ⊥ 𝐵𝐶. 𝜎[𝐵𝑃𝐶] =
‖𝐵𝐶‖∙‖𝑃𝐷‖

2
 . 

𝐴𝐴′ ⊥ 𝐵𝐶
𝑃𝐷 ⊥ 𝐵𝐶

} ⇒ 𝐴𝐴′ ∥ 𝑃𝐷 ⇒ ∆𝑃𝐷𝐸~∆𝐴𝐴′𝐸 ⇒
‖𝑃𝐷‖

‖𝐴𝐴′‖
=
‖𝑃𝐸‖

‖𝐴𝐸‖
=
1

3
⇒ ‖𝑃𝐷‖ =

‖𝐴𝐴′‖

3
⇒ 𝜎[𝐵𝑃𝐶]

=
‖𝐵𝐶‖ ∙

‖𝐴𝐴′‖
3

2
=
1

3

‖𝐵𝐶‖ ∙ ‖𝐴𝐴′‖

2
=
1

3
𝜎[𝐴𝐵𝐶]. 

We prove in the same way that 𝜎[𝑃𝐴𝐶] = 𝜎[𝑃𝐴𝐵] =
1

3
𝜎[𝐴𝐵𝐶], so the specific 

point is the centroid. 
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Solution to Problem 21. 

Let 𝑀,𝑁 ∈ 𝐴𝐵 such that 𝑀 ∈ |𝐴𝑁|. 

We take 𝑀𝑀′ ∥ 𝐵𝐶, 𝑀𝑁′ ∥ 𝐵𝐶. 

 

∆𝐴𝑀𝑀′~∆𝐴𝐵𝐶 ⇒
𝜎[𝐴𝑀𝑀′]

𝜎[𝐴𝐵𝐶]
= (
𝐴𝑀

𝐴𝐵
) 

𝜎[𝐴𝑀𝑀′] =
1

3
𝜎,  (

‖𝐴𝑀‖

‖𝐴𝐵‖
)

2

=
1

3
 , ‖𝐴𝑀‖ =

‖𝐴𝐵‖

√3
; ∆𝐴𝑁𝑁′~∆𝐴𝐵𝐶 ⟹ 

𝜎[𝐴𝑁𝑁′]

𝜎[𝐴𝐵𝐶]
=  (

‖𝐴𝑁‖

‖𝐴𝐵‖
)

2

𝜎[𝐴𝑁𝑁′] =
2

3
𝜎[𝐴𝐵𝐶]

}
 
 

 
 

⟹  (
‖𝐴𝑁‖

‖𝐴𝐵‖
)

2

=
2

3
⟹ ‖𝐴𝑁‖ = √

2

3
‖𝐴𝐵‖ . 

 

Solution to Problem 22. 

 

‖𝑂𝐷‖ = 𝑎, ‖𝑂𝐴‖ = 𝑏 ; 

𝜎[∆𝐶𝑀′𝑀] = 𝜎[𝑀𝑀′𝑁′𝑁] = 𝜎[𝑁𝑁′𝐵𝐴] =
1

3
𝜎[𝐴𝐵𝐶𝐷] ; 

∆𝑂𝐷𝐶~∆𝑂𝐴𝐵 ⟹
𝜎[𝑂𝐷𝐶]

𝜎[𝑂𝐴𝐵]
=
‖𝑂𝐷‖2

‖𝑂𝐴‖2
=
𝑎

𝑏
 ⟹

𝜎[𝑂𝐷𝐶]

𝜎[𝑂𝐴𝐵] − 𝜎[𝑂𝐷𝐶]
=

𝑎2

𝑏2 − 𝑎2
⟹

𝜎[𝑂𝐷𝐶]

𝜎[𝐴𝐵𝐶𝐷]

=
𝑎2

𝑏2 − 𝑎2
   (1) 
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∆𝑂𝐷𝐶~∆𝑂𝑀𝑀′⟹
𝜎[𝑂𝐷𝐶]

𝜎[𝑂𝑀𝑀′]
= (

‖𝑂𝐷‖

‖𝑂𝑀‖
)

2

⟹
𝜎[𝑂𝐷𝐶]

𝜎[𝑂𝑀𝑀′] − 𝜎[𝑂𝐷𝐶]
=

𝑎2

‖𝑂𝑀‖2

⟹
𝜎[𝑂𝐷𝐶]

𝜎[𝐷𝐶𝑀𝑀′]
=

𝑎2

‖𝑂𝑀‖2 − 𝑎2
⟹

𝜎[𝑂𝐷𝐶]

1
3
𝜎[𝐴𝐵𝐶𝐷]

=
𝑎2

‖𝑂𝑀‖2 − 𝑎2
   (2) 

∆𝑂𝑁𝑁′~∆𝑂𝐷𝐶 ⟹
𝜎[𝑂𝐷𝐶]

𝜎[𝐷𝑁𝑁′]
=
‖𝑂𝐷‖

‖𝑂𝑁‖
=

𝑎2

‖𝑂𝑁‖
⟹

𝜎[𝐼𝐷𝐶]

𝜎[𝑂𝑁𝑁′] − 𝜎[𝑂𝐷𝐶]
=

𝑎2

‖𝑂𝑁‖2

⟹
𝜎[𝑂𝐷𝐶]

𝜎[𝐷𝐶𝑁𝑁′]
=

𝑎2

‖𝑂𝑁‖2 − 𝑎2
⟹

𝜎[𝑂𝐷𝐶]

2
3
𝜎[𝐴𝐵𝐶𝐷]

=
𝑎2

‖𝑂𝑁‖2 − 𝑎2
   (3) 

We divide (1) by (3): 

2

3
=
‖𝑂𝑁‖2 − 𝑎2

𝑏2 − 𝑎2
 ⟹ 3‖𝑂𝑁‖2 − 3𝑎2 = 2𝑏2 − 2𝑎2⟹ ‖𝑂𝑁‖2 =

𝑎2 + 2𝑏2

3
 . 

 

Solution to Problem 23. 

‖𝑂𝐴‖ = 𝑟 → ‖𝐷𝐸‖ = 2𝑟; 𝜎hexagon =
3𝑟2√2

2
   (1) 

𝐷𝐸𝐹𝑂 a square inscribed in the circle with radius 𝑅 ⟹ 

⟹ 𝑙4 = 𝑅√2 = ‖𝐷𝐸‖ ⟹ 𝑃√2 = 2𝑟 ⟹ 𝑅 = 𝑟√2 

‖𝑂𝑀‖ = 𝑅 = 𝑟√2 

𝜎[𝑂𝑀𝑁] =
‖𝑂𝑀‖ ∙ ‖𝑂𝑁‖ sin 120

2
=
𝑟√2 ∙ 𝑟√2 ∙

√3
2

2
=
𝑟2√3

2
 

𝜎[𝑀𝑁𝑃] = 3𝜎[𝑂𝑀𝑁] = 3
𝑟2√3

2
=
3𝑟2√2

2
   (2) 

From (1) and (2) ⟹ 𝜎[𝑀𝑁𝑃] = 𝜎hexagon. 
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Solution to Problem 24. 

 

‖𝐴𝐵‖2 = ‖𝐵𝐶‖ ∙ ‖𝐵𝐴′‖ 

We construct the squares 𝐵𝐶𝐸𝐷 on the hypotenuse and 𝐴𝐵𝐹𝐺 on the leg. 

We draw 𝐴𝐴′ ⊥ 𝐵𝐶. 

𝜎[𝐴𝐵𝐹𝐺] = ‖𝐴𝐵‖2 
𝜎[𝐴′𝐵𝐷𝐻] = ‖𝐵𝐷‖ ∙ ‖𝐵𝐴′‖ = ‖𝐵𝐶‖ ∙ ‖𝐵𝐴′‖… 

 

Solution to Problem 25. 

 

𝜎(𝑠1) = 𝜎[𝐴𝐵𝐶] − 3𝜎[sect. 𝐴𝐷𝐻] 

𝜎[𝐴𝐵𝐶] =
𝑙2√3

4
=
(2𝑎)2√3

4
= 𝑎2√3 

𝜎[sect. 𝐴𝐷𝐻] =
𝑟2

2
𝑚(𝐷𝐻̂) 

𝑚(𝐷𝐻̂) =
𝜋

180
𝑚(𝐷𝐻̂) =

𝜋

180
∙ 600 =

𝜋

3
 

𝜎[sect. 𝐴𝐷𝐻] =
𝑎2

2
∙
𝜋

3
=
𝜋𝑎2

2
 

𝜎(𝑠1) = 𝑎
2√3 − 3

𝜋𝑎2

6
= 𝑎2√3 −

𝜋𝑎2

2
   (1) 
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𝜎(𝑠2) = 𝜎[sect. 𝐴𝐸𝐺] − 𝜎[sect. 𝐴𝐵𝐶] − 𝜎[sect. 𝐸𝐶𝐹] − 𝜎[sect. 𝐺𝐵𝐹]

=
(3𝑎)2

2
∙
𝜋

180
∙ 60 − 𝑎2√3 −

𝑎2

2
∙
𝜋

180
∙ 120 =

9𝑎2

2
∙
𝜋

3
− 𝑎2√3 −

𝜋𝑎2

3
−
𝜋𝑎2

3

=
3𝜋𝑎2

2
−
2𝜋𝑎2

3
− 𝑎2√3   (2) 

From (1) and (2) 

⟹  𝜎(𝑠1) + 𝜎(𝑠2) =
3𝜋𝑎2

2
−
2𝜋𝑎2

3
−
𝜋𝑎2

2
=
2𝜋𝑎2

6
=
𝜋𝑎2

3
 . 

 

Solution to Problem 26. 

 

‖𝐴𝐷‖2 = 𝑟2
2 − 𝑟1

2 

𝜎[𝐿(𝑂, 𝑟1)] = 𝜋𝑟1
2 

𝜎[𝐿(𝑂, 𝑟2)] = 𝜋𝑟2
2 

𝜎[annulus] = 𝜋𝑟2
2 − 𝜋𝑟1

2 = 𝜋(𝑟2
2 − 𝑟1

2)   (1) 

𝜎[disk diameter‖𝐴𝐵‖] = 𝜋‖𝐴𝐷‖2 = 𝜋(𝑟2
2 − 𝑟1

2)   (2) 

From (1) and (2) ⟹  𝜎[annulus] = 𝜎[disk diameter]. 

 

Solution to Problem 27. 
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𝜎[𝐶𝐷𝐸𝐹] =
𝜎[𝐶𝐷𝐷′𝐶′]

2
 

𝜎[𝐶𝐷𝐷′𝐶′] = 𝜎seg[𝐶𝐷𝐵𝐷′𝐶′] − 𝜎seg[𝐷𝐵𝐷′] 

We denote 𝑚(𝐴𝐶̂) = 𝑚(𝐵𝐷̂) = 𝑎 ⟹ 𝑚(𝐶𝐷̂) =
𝜋

2
− 2𝑎 

𝜎sect. =
𝑟2

2
(𝛼 − sin𝛼) 

𝜎[𝐶𝐷𝐵𝐷′𝐶′] =
𝑟2

2
[𝜋 − 2𝛼 − sin(𝜋 − 2𝛼)] = 𝑞

𝑟2

2
[𝜋 − 2𝛼 − sin(𝜋 − 2𝛼)] 

𝜎𝐴 =
𝑟2

2
(2𝛼 − sin 2𝛼) 

𝜎[𝐶𝐷𝐷′𝐶′] = 𝜎[𝐶𝐷𝐵𝐷′𝐶′] − 𝜎[𝐷𝐵𝐷′] =
𝑟2

2
(𝜋 − 2𝛼 − sin2𝛼) =

𝑟2

2
(2𝛼 − sin2𝛼)

=
𝑟2

2
(𝜋 − 2𝛼 − sin 2𝛼 − 2𝛼 + sin 2𝛼) =

𝑟2

2
(𝜋 − 4𝛼) 

⟹ 𝜎[𝐶𝐷𝐸𝐹] =
𝜎[𝐶𝐷𝐷′𝐶′]

2
=
𝑟2

4
(𝜋 − 4𝛼) =

𝑟2

2
(
𝜋

2
− 2𝛼)   (1) 

𝜎[sect. 𝐶𝑂𝐷] =
𝑟2

2
𝑚(𝐶𝐷̂) =

𝑟2

2
(
𝜋

2
− 2𝛼)   (2) 

From (1) and (2) ⟹ 𝜎[𝐶𝐷𝐸𝐹] = 𝜎[sect. 𝐶𝑂𝐷]. 

‖𝑂1𝐹‖ = ‖𝑂𝐸‖ 

𝜎[square] = ‖𝐷𝐸‖2 = ‖𝑂𝐴‖2 =
𝑏𝑐

2
= 𝑉[𝐴𝐵𝐶] 

 

Solution to Problem 28. 

 

𝜇(𝐴𝑂𝐵̂) =
𝜋

4
 

𝜎[𝐴𝑂𝐵] =
𝑟2 sin

𝜋
4

2
=
𝑟2
√2
2
2

=
𝑟2√2

4
 

𝜎[orthogon] = 8 ∙
𝑟2√2

4
= 2√2𝑟2 
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Solution to Problem 29. 

 

𝜎[𝐴𝐵𝐶] = 𝜎[𝐴𝑀𝐵] + 𝜎[𝐴𝑀𝐶] + 𝜎[𝑀𝐵𝐶] 
⟹ 𝑎ℎ𝑎 = 𝑎𝑑3 + 𝑎𝑑2 + 𝑎𝑑1 

𝑑1 + 𝑑2 + 𝑑3 = ℎ𝑎 (𝑎 is the side of equilateral triangle) 

⟹ 𝑑1 + 𝑑2 + 𝑑3 =
𝑎√3

2
 (because ℎ𝑎 =

𝑎√3

2
 ). 

Solution to Problem 30. 

 

𝐴𝐵𝐶 − given ∆ ⟹ 𝑎, 𝑏, 𝑐, ℎ − constant 

𝜎[𝐴𝐵𝐶] =
𝑎ℎ

2
 

𝜎[𝐴𝐵𝐶] = 𝜎[𝐴𝑀𝐵] + 𝜎[𝐴𝑀𝐶] 

⟹
𝑎ℎ

2
=
𝑐𝑥

2
+
𝑏𝑦

2
⟹ 𝑐𝑥 + 𝑏𝑦 = 𝑎𝑏 ⟹

𝑐

𝑎ℎ
𝑥 +

𝑏

𝑎ℎ
𝑦 = 1 ⟹ 𝑘𝑥 + 𝑙𝑦 = 1, 

where 𝑘 =
𝑐

𝑎ℎ
 and 𝑙 =

𝑏

𝑎ℎ
 . 

 

Solution to Problem 31. 
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We draw 𝐴𝐴′ ⊥ 𝐵𝐶;𝑁𝑁′ ⊥ 𝐵𝐶;𝐷𝐷′ ⊥ 𝐵𝐶 ⇒
𝐴𝐴′ ∥ 𝑁𝑁′ ∥ 𝐷𝐷′

‖𝐴𝑁‖ = ‖𝑁𝐷‖
} ⟹ 𝑀𝑁′median line in 

the trapezoid 𝐴𝐴′𝐷′𝐷 ⟹ ‖𝑁𝑁′‖ =
‖𝐴𝐴′‖+‖𝐷𝐷′‖

2
, 𝜎[𝐵𝐶𝑁] =

‖𝐵𝐶‖+‖𝑁𝑁′‖

2
. 

 

 

Solution to Problem 32. 

 

First, we construct a quadrilateral with the same area as the given pentagon. We 

draw through C a parallel to BD and extend |AB| until it intersects the parallel at M. 

𝜎[𝐴𝐵𝐶𝐷𝐸] = 𝜎[𝐴𝐵𝐷𝐸] + 𝜎[𝐵𝐶𝐷], 

𝜎[𝐵𝐶𝐷] = 𝜎[𝐵𝐷𝑀] (have the vertices on a parallel at the base). 

Therefore, 𝜎[𝐴𝐵𝐶𝐷𝐸] = 𝜎[𝐴𝑀𝐷𝐸]. 

Then, we consider a triangle with the same area as the quadrilateral 𝐴𝑀𝐷𝐸. 

We draw a parallel to 𝐴𝐷,𝑁 is an element of the intersection with the same 

parallel. 

𝜎[𝐴𝑀𝐷𝐸] = 𝜎[𝐴𝐷𝐸] + 𝜎[𝐴𝐷𝐸] = 𝜎[𝐴𝐷𝐸] + 𝜎[𝐴𝐷𝑁] = 𝜎[𝐸𝐷𝑁]. 
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Solution to Problem 33. 

 

‖𝐴𝐸‖ = ‖𝐸𝐶‖ 

‖𝐸𝐹‖𝐵𝐷 ⟹ 𝜎[𝐵𝐷𝐹] = 𝜎[𝐵𝐷𝐸] 

𝜎[𝐴𝐵𝐹𝐷] = 𝜎[𝐴𝐵𝐸𝐷] (1) 

𝜎[𝐴𝐷𝐸] = 𝜎[𝐷𝐸𝐶] equal bases and the same height; 

𝜎[𝐴𝐷𝐸] = 𝜎[𝐷𝐸𝐶] 

𝜎[𝐴𝐵𝐸𝐷] = 𝜎[𝐵𝐸𝐷𝐶] (2) 

𝜎[𝐷𝐸𝐹] = 𝜎[𝐵𝐸𝐹]  the same base and the vertices on parallel lines at the base; 
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Solution to Problem 34. 

 

 

It is proved in the same way that: 

 

⟹𝑀𝑁𝑃𝑄 rhombus with right angle⟹𝑀𝑁𝑃𝑄 is a square. 

 

It is proved in the same way that all the peaks of the octagon are elements of the 

axis of symmetry of the square, thus the octagon is regular. 
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Consider the square separately. 

 

 

 

 

Solution to Problem 35. 

 

‖𝑂𝑀‖ = ‖𝑁𝑀‖ = ‖𝑁𝐵‖ 
‖𝐷𝐶‖?⟹ ∆𝑀𝑂𝐶 = ∆𝑁𝐵𝐴 ⟹ ‖𝑀𝐶‖ = ‖𝐴𝑁‖ 

It is proved in the same way that ∆𝐷𝐴𝑀 = ∆𝐵𝐶𝑁 ⟹ ‖𝑀𝐶‖ = ‖𝑁𝐶‖. 

Thus 𝐴𝑁𝐶𝑀 is a parallelogram. 
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Solution to Problem 36. 

 

To determine the angle α: 

 

 

We write 

 

 

thus we have established the positions of the lines of the locus. 

 

constant for 𝐴, 𝐵, 𝐶, 𝐷 – fixed points. 

We must find the geometrical locus of points 𝑀 such that the ratio of the 

distances from this point to two concurrent lines to be constant. 
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‖𝑀𝐸‖

‖𝑀𝐹‖
= 𝑘. Let M' be another point with the same property, namely 

‖𝑀′𝐸′‖

‖𝑀′𝐹′‖
= 𝑘. 

 

 

 

 

𝑃,𝑀,𝑀′ collinear ⟹  the locus is a line that passes through 𝑃. 

When the points are in ∢𝐶𝑃𝐵 we obtain one more line that passes through 𝑃. 

Thus the locus is formed by two concurrent lines through 𝑃, from which we 

eliminate point 𝑃, because the distances from 𝑃 to both lines are 0 and their ratio is 

indefinite. 

Vice versa, if points 𝑁 and 𝑁′ are on the same line passing through 𝑃, the ratio 

of their distances to lines 𝐴𝐵 and 𝐶𝐷 is constant. 

 

 

 

Solution to Problem 37. 

We show in the same way as in the previous problem that: 

‖𝑀𝐸‖

‖𝑀𝐹‖
= 𝑘 ⟹

‖𝑀𝐸‖

‖𝑀𝐹‖ + ‖𝑀𝐸‖
=

𝑘

1 − 𝑘
⟹ ‖𝑀𝐸‖ =

𝑘𝑑

1 + 𝑘
 , 

and the locus of the points which are located at a constant distance from a given 

line is a parallel to the respective line, located between the two parallels. 

If ||𝐴𝐵|| > ||𝐶𝐷|| ⟹ 𝑑(𝑀𝐴𝐸) < 𝑑(𝑀𝐶𝐷). 
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Then, if   

𝑀𝐸

𝑀𝐹
= 𝑘 ⟹

𝑀𝐸

𝑀𝐹 −𝑀𝐸
=

𝑘

1 − 𝑘
⟹
𝑀𝐸

𝑑
=

𝑘

1 − 𝑘
⟹ 𝑀𝐸 =

𝑘𝑑

1 − 𝑘
 , 

thus we obtain one more parallel to 𝐴𝐵. 

 

Solution to Problem 38. 

Solution no. 1  

 

We suppose that ABCD is not a parallelogram. Let {𝐼} = 𝐴𝐵 ∩ 𝐶𝐷. We build 𝐸 ∈

(𝐼𝐴 such that 𝐼𝐸 = 𝐴𝐵 and 𝐹 ∈ (𝐼𝐶 such that 𝐼𝐹 = 𝐶𝐷. If 𝑀 a point that verifies 

𝜎[𝐴𝐵𝑀] + 𝜎[𝐶𝐷𝑀] = 1 (1), then, because 𝜎[𝐴𝐵𝑀] = 𝜎[𝑀𝐼𝐸] and 𝜎[𝐶𝐷𝑀] = 𝜎[𝑀𝐼𝐹], it 

results that 𝜎[𝑀𝐼𝐸] + 𝜎[𝑀𝐼𝐹] = 𝑘 (2). 

We obtain that 𝜎[𝑀𝐸𝐼𝐹] = 𝑘. 

On the other hand, the points 𝐸, 𝐹 are fixed, therefore 𝜎[𝐼𝐸𝐹] = 𝑘′ = const. That 

is, 𝜎[𝑀𝐸𝐹] = 𝑘 − 𝑘′ = const. 

Because 𝐸𝐹 = const., we have 𝑑(𝑀, 𝐸𝐹) =
2(𝑘−𝑘′)

𝐸𝐹
= const., which shows that 𝑀 

belongs to a line that is parallel to 𝐸𝐹, taken at the distance 
2(𝑘−𝑘′)

𝐸𝐹
 . 

Therefore, the locus points are those on the line parallel to 𝐸𝐹, located inside the 

quadrilateral 𝐴𝐵𝐶𝐷. They belong to the segment [𝐸′𝐹′] in Fig. 1. 

Reciprocally, if 𝑀 ∈ [𝐸′𝐹′], then 𝜎[𝑀𝐴𝐵] + 𝜎[𝑀𝐶𝐷] = 𝜎[𝑀𝐼𝐸] + 𝜎[𝑀𝐼𝐹] =

𝜎[𝑀𝐸𝐼𝐹] = 𝜎[𝐼𝐸𝐹] + 𝜎[𝑀𝐸𝑃] = 𝑘′ +
𝐸𝐹∙2(𝑘−𝑘′)

2∙𝐸𝐹
= 𝑘. 
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In conclusion, the locus of points 𝑀 inside the quadrilateral 𝐴𝐵𝐶𝐷 which occurs 

for relation (1) where 𝑘 is a positive constant smaller than 𝑆 = 𝜎[𝐴𝐵𝐶𝐷] is a line 

segment. 

If 𝐴𝐵𝐶𝐷 is a trapeze having 𝐴𝐵 and 𝐶𝐷 as bases, then we reconstruct the 

reasoning as 𝐴𝐷 ∩ 𝐵𝐶 = {𝐼} and 𝜎[𝑀𝐴𝐷] + 𝜎[𝑀𝐵𝐶] = 𝑠 − 𝑘 = const. 

If 𝐴𝐵𝐶𝐷 is a parallelogram, one shows without difficulty that the locus is a 

segment parallel to 𝐴𝐵. 

 

Solution no. 2 (Ion Patrascu)  

We prove that the locus of points 𝑀 which verify the relationship 𝜎[𝑀𝐴𝐵] +

𝜎[𝑀𝐶𝐷] = 𝑘 (1) from inside the convex quadrilateral 𝐴𝐵𝐶𝐷 of area 𝑠 (𝑘 ⊂ 𝑠) is a line 

segment. 

Let’s suppose that 𝐴𝐵 ∩ 𝐶𝐷 = {𝐼}, see Fig. 2. There is a point 𝑃 of the locus which 

belongs to the line 𝐶𝐷. Therefore, we have (𝑃; 𝐴𝐵) =
2𝑘

𝐴𝐵
 . Also, there is the point 

𝑄 ∈ 𝐴𝐵 such that 𝑑(𝑄; 𝐶𝐷) =
2𝑘

𝐶𝐷
 . 

Now, we prove that the points from inside the quadrilateral 𝐴𝐵𝐶𝐷 that are on 

the segment [𝑃𝑄] belong to the locus. 

 

Let 𝑀 ∈ int[𝐴𝐵𝐶𝐷] ∩ [𝑃𝑄]. We denote 𝑀1 and 𝑀2 the projections of 𝑀 on 𝐴𝐵 and 

𝐶𝐷 respectively. Also, let 𝑃1 be the projection of 𝑃 on 𝐴𝐵 and 𝑄1 the projection of 

𝑄 on 𝐶𝐷. The triangles 𝑃𝑄𝑄1 and 𝑃𝑀𝑀2  are alike, which means that 

𝑀𝑀2
𝑄𝑄1

=
𝑀𝑃

𝑃𝑄
  (2), 
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and the triangles 𝑀𝑀1𝑄 and 𝑃𝑃1𝑄 are alike, which means that 

𝑀𝑀1
𝑃𝑃1

=
𝑀𝑄

𝑃𝑄
  (3). 

By adding member by member the relations (2) and (3), we obtain 

𝑀𝑀2
𝑄𝑄1

+
𝑀𝑀1
𝑃𝑃1

=
𝑀𝑃 +𝑀𝑄

𝑃𝑄
= 1   (4). 

Substituting in (4), 𝑄𝑄1 =
2𝑘

𝐶𝐷
 and 𝑃1 =

2𝑘

𝐴𝐵
 , we get 𝐴𝐵 ∙ 𝑀𝑀1 + 𝐶𝐷 ∙ 𝑀𝑀2 = 2𝑘, that 

is 𝜎[𝑀𝐴𝐵] + 𝜎[𝑀𝐶𝐷] = 𝑘. 

We prove now by reductio ad absurdum that there is no point inside the 

quadrilateral 𝐴𝐵𝐶𝐷 that is not situated on the segment [𝑃𝑄], built as shown, to 

verify the relation (1). 

Let a point 𝑀′ inside the quadrilateral 𝐴𝐵𝐶𝐷 that verifies the relation (1), 𝑀′ ∉

[𝑃𝑄]. We build 𝑀′𝑇 ∩ 𝐴𝐵, 𝑀′𝑈 ∥ 𝐶𝐷, where 𝑇 and 𝑈 are situated on [𝑃𝑄], see Fig. 3. 

 

We denote 𝑀1
′ , 𝑇1, 𝑈1 the projections of 𝑀1, 𝑇, 𝑈 on 𝐴𝐵 and 𝑀2

′ , 𝑇2, 𝑈2 the 

projections of the same points on 𝐶𝐷. 

We have the relations: 

𝑀′𝑀1
′ ∙ 𝐴𝐵 +𝑀′𝑀2

′ ∙ 𝐶𝐷 = 2𝑘   (5), 

𝑇𝑇1 ∙ 𝐴𝐵 + 𝑇𝑇2 ∙ 𝐶𝐷 = 2𝑘   (6). 

Because 𝑀′𝑀1
′ = 𝑇𝑇1 and 𝑀′𝑀2

′ = 𝑈𝑈2, substituting in (5), we get:  

𝑇𝑇1 ∙ 𝐴𝐵 + 𝑈𝑈2 ∙ 𝐶𝐷 = 2𝑘   (7). 

From (6) and (7), we get that 𝑇𝑇2 = 𝑈𝑈2, which drives us to 𝑃𝑄 ∥ 𝐶𝐷, false! 
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Problems in Geometry and Trigonometry 
 

39. Find the locus of the points such that the sum of the distances to two 

concurrent lines to be constant and equal to 𝑙. 

Solution to Problem 39 

 

40. Show that in any triangle 𝐴𝐵𝐶 we have: 

a. 𝑏 𝑐𝑜𝑠𝐶 + 𝑐 𝑐𝑜𝑠𝐵 = 𝑎; b. 𝑏 𝑐𝑜𝑠𝐵 + 𝑐 𝑐𝑜𝑠𝐶 = 𝑎 𝑐𝑜𝑠(𝐵 − 𝐶). 

Solution to Problem 40 

 

41. Show that among the angles of the triangle 𝐴𝐵𝐶 we have: 

a. 𝑏 𝑐𝑜𝑠𝐶 − 𝑐 𝑐𝑜𝑠𝐵 =
𝑏2−𝑎2

𝑎
; 

b. 2(𝑏𝑐 𝑐𝑜𝑠𝐴 + 𝑎𝑐 𝑐𝑜𝑠𝐵 + 𝑎𝑏 𝑐𝑜𝑠𝐶 = 𝑎2 + 𝑏2 + 𝑐2. 

Solution to Problem 41 

 

42. Using the law of cosines prove that 4𝑚
2

𝑎
= 2(𝑏2 + 𝑐2) − 𝑎2, where 𝑚𝑎 is the 

length of the median corresponding to the side of 𝑎 length. 

Solution to Problem 42 

 

43. Show that the triangle 𝐴𝐵𝐶 where 
𝑎+𝑐

𝑏
= cot

𝐵

2
 is right-angled. 

Solution to Problem 43 

 

44. Show that, if in the triangle 𝐴𝐵𝐶 we have cot 𝐴 + cot𝐵 = 2 cot 𝐶 ⇒ 𝑎2 +

𝑏2 = 2𝑐2. 

Solution to Problem 44 

 

45. Determine the unknown elements of the triangle 𝐴𝐵𝐶, given: 

a. 𝐴, 𝐵 and 𝑝; 

b. 𝑎 + 𝑏 = 𝑚, 𝐴 and 𝐵; 

c. 𝑎, 𝐴; 𝑏 − 𝑐 = 𝑎. 

Solution to Problem 45 
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46. Show that in any triangle 𝐴𝐵𝐶 we have tan
𝐴−𝐵

2
tan

𝐶

2
=
𝑎−𝑏

𝑎+𝑏
 (tangents 

theorem). 

Solution to Problem 46 

 

47. In triangle 𝐴𝐵𝐶 it is given 𝐴̂ = 60° and  
𝑏

𝑐
= 2 + √3. Find tan

𝐵−𝐶

2
 and angles 

𝐵 and 𝐶. 

Solution to Problem 47 

 

48. In a convex quadrilateral 𝐴𝐵𝐶𝐷, there are given ‖𝐴𝐷‖ = 7(√6 − √2), ‖𝐶𝐷‖ =

13, ‖𝐵𝐶‖ = 15, 𝐶 = arccos
33

65
, and 𝐷 =

𝜋

4
+ arccos

5

13
 . The other angles of the 

quadrilateral and ‖𝐴𝐵‖ are required. 

Solution to Problem 48 

 

49. Find the area of ∆𝐴𝐵𝐶 when: 

a. 𝑎 = 17, 𝐵 = arcsin 
24

25
, 𝐶 = arcsin 

12

13
; 

b. 𝑏 = 2, 𝐴̂ ∈ 135°, 𝐶̂ ∈ 30°; 

c. 𝑎 = 7, 𝑏 = 5, 𝑐 = 6; 

d. 𝐴̂ ∈ 18°, 𝑏 = 4, 𝑐 = 6.  

Solution to Problem 49 

 

50. How many distinct triangles from the point of view of symmetry are there 

such that 𝑎 = 15, 𝑐 = 13, 𝑠 = 24? 

Solution to Problem 50 

 

51. Find the area of ∆𝐴𝐵𝐶 if 𝑎 = √6, 𝐴̂ ∈ 60°, 𝑏 + 𝑐 = 3 + √3. 

Solution to Problem 51 

 

52. Find the area of the quadrilateral from problem 48. 

Solution to Problem 52 

 



Florentin Smarandache 

40 

 

 

53. If 𝑆𝑛 is the area of the regular polygon with 𝑛 sides, find: 

𝑆3, 𝑆4, 𝑆6, 𝑆8, 𝑆12, 𝑆20 in relation to 𝑅, the radius of the circle inscribed in the 

polygon. 

Solution to Problem 53 

 

54. Find the area of the regular polygon 𝐴𝐵𝐶𝐷…𝑀 inscribed in the circle with 

radius 𝑅, knowing that: 
1

‖𝐴𝐵‖
=

1

‖𝐴𝐶‖
+

1

‖𝐴𝐷‖
 . 

Solution to Problem 54 

 

55. Prove that in any triangle ABC we have: 

a. 𝑟 = (𝑝 − 𝑎) tan
𝐴

2
;  

b. 𝑆 = (𝑝 − 𝑎) tan
𝐴

2
; 

c. 𝑝 = 4𝑅 cos
𝐴

2
cos

𝐵

2
cos

𝐶

2
; 

d. 𝑝 − 𝑎 = 4𝑅 cos
𝐴

2
cos

𝐵

2
cos

𝐶

2
; 

e. 𝑚𝑎
2 = 𝑅2(sin2 𝐴 + 4 cos𝐴 sin 𝐵 sin 𝐶; 

f. ℎ𝑎 = 2𝑅 sin𝐵 sin 𝐶. 

Solution to Problem 55 

56. If 𝑙 is the center of the circle inscribed in triangle 𝐴𝐵𝐶 show that ‖𝐴𝐼‖ =

4𝑅 sin
𝐵

2
sin

𝐶

2
 . 

Solution to Problem 56 

 

57. Prove the law of sine using the analytic method. 

Solution to Problem 57 

 

58. Using the law of sine, show that in a triangle the larger side lies opposite 

to the larger angle. 

Solution to Problem 58 

 

59. Show that in any triangle 𝐴𝐵𝐶 we have: 

a.
𝑎 cos 𝐶 − 𝑏 cos𝐵

𝑎 cos𝐵 − 𝑏 cos𝐴
+ cos𝐶 = 0, 𝑎 ≠ 𝑏; 
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b.
sin(𝐴 − 𝐵) sin𝐶

1 + cos(𝐴 − 𝐵) cos𝐶
=
𝑎2 − 𝑏2

𝑎2 + 𝑏2
; 

c. (𝑎 + 𝑐) cos
𝐵

4
+ 𝑎 cos(𝐴 +

3𝐵

4
) = 2𝑐 cos

𝐵

2
cos
𝐵

4
 . 

Solution to Problem 59 

 

60. In a triangle 𝐴𝐵𝐶, 𝐴 ∈ 45°, ‖𝐴𝐵‖ = 𝑎, ‖𝐴𝐶‖ =
2√2

3
𝑎. Show that tan𝐵 = 2. 

Solution to Problem 60 

 

61. Let 𝐴′, 𝐵′, 𝐶′ be tangent points of the circle inscribed in a triangle 𝐴𝐵𝐶 with 

its sides. Show that 
𝜎[𝐴′𝐵′𝐶′]

𝜎[𝐴𝐵𝐶]
=

𝑟

2𝑅
. 

Solution to Problem 61 

 

62. Show that in any triangle 𝐴𝐵𝐶 sin
𝐴

2
≤

𝑎

2√𝑏𝑐
 . 

Solution to Problem 62 

 

63. Solve the triangle 𝐴𝐵𝐶, knowing its elements 𝐴, 𝐵 and area 𝑆. 

Solution to Problem 63 

 

64. Solve the triangle 𝐴𝐵𝐶, knowing 𝑎 = 13, arc cos
4

5
 , and the corresponding 

median for side 𝑎,𝑚𝑎 =
1

2
√15√3 . 

Solution to Problem 64 

 

65. Find the angles of the triangle 𝐴𝐵𝐶, knowing that 𝐵 − 𝐶 =
2𝜋

3
 and 𝑅 = 8𝑟, 

where 𝑅 and 𝑟 are the radii of the circles circumscribed and inscribed in the 

triangle. 

Solution to Problem 65 
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Solutions 
 

Solution to Problem 39. 

 

Let 𝑑1 and 𝑑2 be the two concurrent lines. We draw 2 parallel lines to 𝑑1 located 

on its both sides at distance 𝑙. These intersect on 𝑑2 at 𝐷 and 𝐵, which will be 

points of the locus to be found, because the sum of the distances 𝑑(𝐵, 𝑑1) +

𝑑(𝐵, 𝑑2) = 𝑙 + 0 verifies the condition from the statement. 

We draw two parallel lines with 𝑑2 located at distance 𝑙 from it, which cut 𝑑1 in 𝐴 

and 𝐶, which are as well points of the locus to be found. The equidistant parallel 

lines determine on 𝑑2 congruent segments ⟹
|𝐷𝑂| ≡ |𝑂𝐵|
|𝐴𝑂| ≡ |𝑂𝐶|

, in the same way 𝐴𝐵𝐶𝐷 

is a parallelogram. 

∆𝐵𝑂𝐶,
‖𝐶𝐶′‖ = 𝑑(𝐶, 𝑑2)

‖𝐵𝐵′‖ = 𝑑(𝐵, 𝑑1)
} ⟹ ‖𝐶𝐶′‖ = ‖𝐵𝐵′‖ 

⟹ ∆𝐵𝑂𝐶 is isosceles. 

⟹ ||𝑂𝐶|| = ||𝑂𝐵|| ⟹ 𝐴𝐵𝐶𝐷 is a rectangle. Any point 𝑀 we take on the sides of this 

rectangle, we have ||𝑅1, 𝑑1|| + ||𝑀, 𝑑2|| = 𝑙, using the propriety according to which 

the sum of the distances from a point on the base of an isosceles triangle at the 

sides is constant and equal to the height that starts from one vertex of the base, 

namely 𝑙. Thus the desired locus is rectangle 𝐴𝐵𝐶𝐷. 

 

Solution to Problem 40. 
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Solution to Problem 41. 

 

 

 

Solution to Problem 42. 

 

𝑚𝑎
2 = 𝑐2 +

𝑎2

4
− 2

𝑎

2
𝑐 cos𝐵 ; 

4𝑚𝑎
2 = 4𝑐2 + 𝑎2 − 4𝑎𝑐 cos𝐵 = 4𝑐2 + 𝑎2 − 4𝑎𝑐

𝑎2 + 𝑐2 − 𝑏2

2𝑎𝑐
= 4𝑐2 + 𝑎2 − 2𝑎 − 2𝑐2 + 2𝑏2

= 2𝑐2 + 2𝑏2 − 𝑎2 = 2(𝑏2 + 𝑐2) − 𝑎2 . 
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Solution to Problem 43. 

Using the sine theorem, 𝑎 = 𝑚sin𝐴. 

 

 

 

 

𝐴 − 𝐶

2
= −

𝐵

2
⟹ 𝐴 − 𝐵 = 𝐶 or 𝐴 − 𝐶 = 𝐵 ⟹

𝐴 = 𝐵 + 𝐶 2𝐴 = 1800 𝐴 = 900

or ⟹ or ⟹ or
𝐴 + 𝐵 = 𝐶 2𝐶 = 1800 𝐶 = 900

 

 

Solution to Problem 44. 

 

 

 

By substitution: 
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Solution to Problem 45. 

a. Using the law of sine, 

 

b.  

 

c.  

 

Therefore, 

 

We solve the system, and find 𝐵 and 𝐶. Then we find 𝑏 =
𝑎 sin𝐵

sin𝐴
 and 𝑐 = 𝑏 − 𝑑. 

 

Solution to Problem 46. 

𝑎

sin𝐴
=

𝑏

sin𝐵
=

𝑐

sin𝐶
= 𝑚⟹

𝑎 = 𝑚sin𝐴
𝑏 = 𝑚sin𝐵

 ; 

𝑎 − 𝑏

𝑎 + 𝑏
=
𝑚sin𝐴 −𝑚sin𝐵

𝑚 sin𝐴 +𝑚sin𝐵
=
sin𝐴 − sin𝐵

sin𝐴 + sin𝐵
=
2 sin

𝐴 − 𝐵
2 cos

𝐴 + 𝐵
2

2 sin
𝐴 + 𝐵
2 cos

𝐴 − 𝐵
2

= tan
𝐴 − 𝐵

2

sin
𝐶
2

cos
𝐶
2

= tan
𝐴 − 𝐵

2
tan
𝐶

2
 . 
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Solution to Problem 47. 

Using tangents’ theorem, 

 

 

 

 

 

So 

 

 

Solution to Problem 48. 

 

 

In ∆𝐵𝐷𝐶 we have 
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In ∆𝐴𝐷𝐵, 

 

In ∆𝐴𝐷𝐵 we apply sine’s theorem: 

 

 

 

 

Or we find 𝜇(𝐷𝐵𝐶̂) and we add it to 
𝜋

6
 . 

 

Solution to Problem 49. 
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sin𝐴 =
−1+√5

4
, because 𝑚(𝐴) < 1800 and sin𝐴 > 0. 

 

Solution to Problem 50. 
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Solution to Problem 51. 
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Solution to Problem 52. 

 

 

At problem 9 we’ve found that 

 

With Heron’s formula, we find the area of each triangle and we add them up. 

 

 

Solution to Problem 53. 

The formula for the area of a regular polygon: 
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Solution to Problem 54. 

 

 

In ∆𝐵𝑂𝑀: 

 

In ∆𝑁𝑂𝐶: 

 

In ∆𝑃𝑂𝐷: 

 

 

Substituting (1), (2), (3) in the given relation: 

 

or 

 

which is impossible. 

 

𝑛 =
𝑚(complete circle)

𝑚(𝐴𝐵̂)
=
2𝜋

2𝜋
7

= 7. 

Thus the polygon has 7 sides. 
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Solution to Problem 55. 

 

 

 

 

 

 

 

 

 

Solution to Problem 56. 
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We apply the law of sine in ∆𝐴𝐵𝐼: 

 

 

The law of sine applied in ∆𝐴𝐵𝐶: 

 

 

Solution to Problem 57. 

 

In ∆𝐴𝐶𝐶′: sin(1800 − 𝐴) =
‖𝐶𝐶′‖

𝑏
⟹ ‖𝐶𝐶′‖ = 𝑏 sin𝐴 ; cos(1800 − 𝐴) = 𝑏 cos𝐴. 

So the coordinates of 𝐶 are (−𝑏 cos𝐴 , 𝑏 sin𝐴). 

The center of the inscribed circle is at the intersection of the perpendicular lines 

drawn through the midpoints of sides 𝐴𝐵 and 𝐴𝐶. 

 

The equation of the line 𝐸𝑂: 
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If we redo the calculus for the same draw, we have the following result: 

(𝑏 cos𝐴 , 𝑏 sin𝐴). 

 

 

 

using the law of cosine. 

 

Solution to Problem 58. 

𝑎

sin𝐴
=

𝑏

sin𝐵
=

𝑐

sin𝐶
= 2𝑅. 

We suppose that 𝑎 > 𝑏. Let’s prove that 𝐴 > 𝐵. 

𝑎

sin𝐴
=

𝑏

sin𝐵
⇒
𝑎

𝑏
=
sin𝐴

sin𝐵

𝑎 > 𝑏 ⇒
𝑎

𝑏
> 1

}⟹
sin𝐴

sin𝐵
> 1 ⟹ 𝐴,𝐵, 𝐶 ∈ (0, 𝜋) ⟹ sin𝐵 > 0 ⟹ sin𝐴 > sin𝐵

⟹ sin𝐴 − sin𝐵 > 0 ⟹ 2sin
𝐴 − 𝐵

2
cos
𝐴 + 𝐵

2
> 0 ⟹

𝐴+ 𝐵

2
=
1800 − 𝐶

2

= 900 −
𝐶

2
 . 
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cos
𝐴+𝐵

2
= cos (90circ −

𝐶

2
) = sin

𝐶

2
> 0, therefore  

𝐴−𝐵

2
> 0⟹ 𝐴 > 𝐵; 

(−
𝜋

2
<
𝐴 − 𝐵

2
<
𝜋

2
). 

 

Solution to Problem 59. 

 

b. We transform the product into a sum: 

 

 

 

 

From (1) and (2) ⟹ 

 

 

We consider the last two terms: 
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Solution to Problem 60. 

We apply the law of cosines in triangle ABC: 

 

 

 

 

Solution to Problem 61. 

‖𝐼𝐴‖ = ‖𝐼𝐵‖ = ‖𝐼𝐶‖ = 𝑟 
𝐼𝐶′ ⊥ 𝐴𝐵
𝐼𝐴′ ⊥ 𝐵𝐶

} ⇒ 𝐼𝐴′𝐵′𝐶′ inscribable quadrilateral 

𝑚(𝐴′𝐼𝐶′) = 180 − 𝐵̂ ⟹ sin(𝐴′𝐼𝐶′̂) = sin 𝐵̂ 

Similarly, 𝐴′𝐼𝐵′̂ = sin𝐶 and 𝐶′𝐼𝐵′̂ = sin𝐴. 
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In the same way, 

 

 

 

 

Solution to Problem 62. 

0 < 𝐴 ⇒<
𝐴

2
<
𝜋

2
⇒ sin

𝐴

2
> 0 ; 

sin
𝐴

2
=√

1 − cos𝐴

2
⟹ 

sin2
𝐴

2
=
1 − cos𝐴

2

cos𝐴 =
𝑏2 + 𝑐2 − 𝑎2

2𝑏𝑐

} 

⟹ sin2
𝐴

2
=
1 −

𝑏2 − 𝑎2 + 𝑐2

2𝑏𝑐
2

=
𝑎2 − (𝑏 − 𝑐)2

4𝑏𝑐
≤
𝑎2

4𝑏𝑐
⟹ sin

𝐴

2
≤

𝑎

2√𝑏𝑐
 . 

 

Solution to Problem 63. 

𝐶 = 𝜋 − (𝐴 + 𝐵) 

𝑆 =
𝑎2 sin𝐵 sin𝐶

2 sin𝐴

𝐴, 𝐵, 𝐶 are known
} ⟹ We find 𝑎. 

𝑎

sin𝑎
=

𝑏

sin𝑏
⟹ 𝑏 =

𝑎 sin𝐵

sin𝐴
. In the same way, we find 𝑐. 

 

Solution to Problem 64. 
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𝑏2 + 𝑐2 = 841
𝑏𝑐 = 420

} ⟹ {
𝑏 = 21
𝑐 = 20

 or {
𝑏 = 20
𝑐 = 21

  

 

We find 𝐵. 

 

 

We find the sum. 

Or 

 

 

Solution to Problem 65. 

 

We already know that 

𝑟

𝑅
= 4 sin

𝐴

2
sin
𝐵

2
sin
𝐶

2
 

 

 

 

We write sin
𝐴

2
= 𝑡. We have 
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From this system we find 𝐵 and 𝐶. 
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Other Problems in Geometry 

and Trigonometry (10th grade) 
 

 

66. Show that a convex polygon can’t have more than three acute angles. 

Solution to Problem 66 

 

67. Let 𝐴𝐵𝐶 be a triangle. Find the locus of points 𝑀 ∈ (𝐴𝐵𝐶), for which 

𝜎[𝐴𝐵𝑀]  =  𝜎[𝐴𝐶𝑀]. 

Solution to Problem 67 

 

68. A convex quadrilateral 𝐴𝐵𝐶𝐷 is given. Find the locus of points 𝑀 ∈

𝑖𝑛𝑡. 𝐴𝐵𝐶𝐷, for which 𝜎[𝑀𝐵𝐶𝐷] = 𝜎[𝑀𝐵𝐴𝐷]. 

Solution to Problem 68 

 

69. Determine a line 𝑀𝑁, parallel to the bases of a trapezoid 𝐴𝐵𝐶𝐷 (𝑀 ∈

|𝐴𝐷|, 𝑁 ∈ |𝐵𝐶|) such that the difference of the areas of [𝐴𝐵𝑁𝑀] and [𝑀𝑁𝐶𝐷] 

to be equal to a given number. 

Solution to Problem 69 

 

70. On the sides of ∆𝐴𝐵𝐶 we take the points 𝐷, 𝐸, 𝐹 such that 
𝐵𝐷

𝐷𝐶
=
𝐶𝐸

𝐸𝐴
=
𝐴𝐹

𝐹𝐵
= 2. 

Find the ratio of the areas of triangles 𝐷𝐸𝐹 and 𝐴𝐵𝐶. 

Solution to Problem 70 

 

71. Consider the equilateral triangle 𝐴𝐵𝐶 and the disk [𝐶 (𝑂,
𝑎

3
)], where 𝑂 is the 

orthocenter of the triangle and 𝑎 = ‖𝐴𝐵‖. Determine the area [𝐴𝐵𝐶] −

[𝐶 (𝑂,
𝑎

3
)]. 

Solution to Problem 71 

 



255 Compiled and Solved Problems in Geometry and Trigonometry 

61 

 

 

72. Show that in any triangle 𝐴𝐵𝐶 we have: 

a. 1 + cos𝐴 cos(𝐵 − 𝐶) =
𝑏2+𝑐2

4𝑅2
; 

b. (𝑏2 + 𝑐2 = 𝑎2) tan𝐴 = 4𝑆; 

c. 
𝑏+𝑐

2𝑐 cos
𝐴

2

=
sin(

𝐴

2
+𝐶)

sin(𝐴+𝐵)
; 

d. 𝑝 = 𝑟 (cot
𝐴

2
+ cot

𝐵

2
+ cot 𝐶2); 

e. cot
𝐴

2
+cot

𝐵

2
+ cot

𝐶

2
=
𝑝

𝑟
 . 

Solution to Problem 72 

 

73. If 𝐻 is the orthocenter of triangle 𝐴𝐵𝐶, show that: 

a. ‖𝐴𝐻‖ = 2𝑅 cos 𝐴; 

b. 𝑎‖𝐴𝐻‖ + 𝑏‖𝐵𝐻‖ + 𝑐‖𝐶𝐻‖ = 4𝑆. 

Solution to Problem 73 

 

74. If 𝑂 is the orthocenter of the circumscribed circle of triangle 𝐴𝐵𝐶 and 𝐼 is 

the center of the inscribed circle, show that ‖𝑂𝐼‖2 = 𝑅(𝑅 –  2𝑟). 

Solution to Problem 74 

 

75. Show that in any triangle 𝐴𝐵𝐶 we have: cos2
𝐵−𝐶

2
≥
2𝑟

𝑅
 . 

Solution to Problem 75 

 

76. Find 𝑧𝑛 +
1

𝑧𝑛
 knowing that 𝑧 +

1

𝑧
= 2 sin 𝛼. 

Solution to Problem 76 

 

77. Solve the equation: (𝑧 + 1)𝑛 − (𝑧 − 1)𝑛 = 0. 

Solution to Problem 77 

 

78. Prove that if 𝑧 <
1

2
 then |(1 + 𝑖)𝑧3 + 𝑖𝑧| ≤

3

4
 . 

Solution to Problem 78 
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79. One gives the lines 𝑑 and 𝑑′. Show that through each point in the space 

passes a perpendicular line to 𝑑 and 𝑑′. 

Solution to Problem 79 

 

80. There are given the lines 𝑑 and 𝑑′, which are not in the same plane, and 

the points 𝐴 ∈ 𝑑, 𝐵 ∈ 𝑑′. Find the locus of points 𝑀 for which pr𝑑𝑀 = 𝐴 and 

pr𝑑′𝑀 = 𝐵. 

Solution to Problem 80 

 

81. Find the locus of the points inside a trihedral angle 𝑎𝑏𝑐̂ equally distant 

from the edges of 𝑎, 𝑏, 𝑐. 

Solution to Problem 81 

 

82. Construct a line which intersects two given lines and which is perpendicular 

to another given line. 

Solution to Problem 82 

 

83. One gives the points 𝐴 and 𝐵 located on the same side of a plane; find in 

this plane the point for which the sum of its distances to 𝐴 and 𝐵 is 

minimal. 

Solution to Problem 83 

 

84. Through a line draw a plane onto which the projections of two lines to be 

parallel. 

Solution to Problem 84 

 

85. Consider a tetrahedron [𝐴𝐵𝐶𝐷] and centroids 𝐿,𝑀,𝑁 of triangles 

𝐵𝐶𝐷, 𝐶𝐴𝐷, 𝐴𝐵𝐷. 

a. Show that (𝐴𝐵𝐶) ∥ (𝐿𝑀𝑁); 

b. Find the ratio 
𝜎[𝐴𝐵𝐶]

𝜎[𝐿𝑀𝑁]
 . 

Solution to Problem 85 
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86. Consider a cube [𝐴𝐵𝐶𝐷𝐴′𝐵′𝐶′𝐷′]. The point 𝐴 is projected onto 𝐴′𝐵, 𝐴′𝐶, 𝐴′𝐷 

respectively in 𝐴1, 𝐴2, 𝐴3. Show that: 

a. 𝐴′𝐶 ⊥ (𝐴1𝐴2𝐴3); 

b. 𝐴𝐴1 ⊥ 𝐴1𝐴2, 𝐴𝐴3 ⊥ 𝐴3𝐴2; 

c. 𝐴𝐴1𝐴2𝐴3 is an inscribable quadrilateral. 

Solution to Problem 86 

 

87. Consider the right triangles 𝐵𝐴𝐶 and 𝐴𝐵𝐷 (𝑚(𝐵𝐴𝐶̂)) = 𝑚((𝐴𝐵𝐷)̂ = 900) 

located on perpendicular planes 𝑀 and 𝑁, being midpoints of segments 

[𝐴𝐵], [𝐶𝐷]. Show that 𝑀𝑁 ⊥ 𝐶𝐷. 

Solution to Problem 87 

 

88. Prove that the bisector half-plane of a dihedral angle inside a tetrahedron 

divides the opposite edge in proportional segments with the areas of the 

adjacent faces. 

Solution to Problem 88 

 

89. Let 𝐴 be a vertex of a regular tetrahedron and 𝑃, 𝑄 two points on its 

surface. Show that 𝑚(𝑃𝐴𝑄̂) ≤ 600. 

Solution to Problem 89 

 

90. Show that the sum of the measures of the dihedral angles of a tetrahedron 

is bigger than 360°. 

Solution to Problem 90 

 

91. Consider lines 𝑑1, 𝑑2 contained in a plane 𝛼 and a line 𝐴𝐵 which intersects 

plane 𝛼 at point 𝐶. A variable line, included in 𝛼 and passing through 𝐶 all 

𝑑1, 𝑑2 respectively at 𝑀𝑁.  Find the locus of the intersection 𝐴𝑀 ∩ 𝐵𝑁. In 

which case is the locus an empty set? 

Solution to Problem 91 
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92. A plane 𝛼 intersects sides [𝐴𝐵], [𝐵𝐶], [𝐶𝐷], [𝐷𝐴] of a tetrahedron [𝐴𝐵𝐶𝐷] at 

points 𝐿,𝑀,𝑁, 𝑃. Prove that ‖𝐴𝐿‖ ∙ ‖𝐵𝑀‖ ∙ ‖𝐶𝑁‖ ∙ ‖𝑃𝐷‖ = ‖𝐵𝐿‖ ∙ ‖𝐶𝑀‖ ∙

‖𝐷𝑁‖ ∙ ‖𝐴𝑃‖. 

Solution to Problem 92 

 

93. From a point 𝐴 located outside a plane 𝛼, we draw the perpendicular line 

𝐴𝑂, 𝑂 ∈ 𝛼, and we take 𝐵, 𝐶 ∈ 𝛼. Let 𝐻,𝐻1 be the orthocenters of triangles 

𝐴𝐵𝐶, 𝑂𝐵𝐶; 𝐴𝐷 and 𝐵𝐸 heights in triangle 𝐴𝐵𝐶; and 𝐵𝐸1 height in triangle 

𝑂𝐵𝐶. Show that: 

a. 𝐻𝐻1 ⊥ (𝐴𝐵𝐶); 

b. ‖
𝑂𝐴

𝐴𝐷
‖ ∙ ‖

𝐷𝐻1

𝐻1𝐵
‖ ∙ ‖

𝐵𝐸

𝐸𝐸1
‖ = 1. 

Solution to Problem 93 

 

94. Being given a tetrahedron [𝐴𝐵𝐶𝐷] where 𝐴𝐵 ⊥ 𝐶𝐷 and 𝐴𝐶 ⊥ 𝐵𝐷, show that: 

a. ‖𝐴𝐵‖2 + ‖𝐶𝐷‖2 = ‖𝐵𝐶‖2 + ‖𝐴𝐷‖2 = ‖𝐶𝐴‖2 + ‖𝐵𝐷‖2; 

b. The midpoints of the 6 edges are located on a sphere. 

Solution to Problem 94 

 

95. It is given a triangular prism [𝐴𝐵𝐶𝐴′𝐵′𝐶′] which has square lateral faces. Let 

𝑀 be a mobile point [𝐴𝐵′], 𝑁 the projection of 𝑀 onto (𝐵𝐶𝐶′) and 𝐴ʺ the 

midpoint of [𝐵′𝐶ʺ]. Show that 𝐴′𝑁 and 𝑀𝐴ʺ intersect in a point 𝑃 and find 

the locus of 𝑃. 

Solution to Problem 95 

 

96. We have the tetrahedron [𝐴𝐵𝐶𝐷] and let 𝐺 be the centroid of triangle 

𝐵𝐶𝐷. Show that if 𝑀 ∈ 𝐴𝐺 then 𝜐[𝑀𝐺𝐵𝐶] = 𝜐[𝑀𝐺𝐶𝐷] = 𝜐[𝑀𝐺𝐷𝐵]. 

Solution to Problem 96 

 

97. Consider point 𝑀 ∈ the interior of a trirectangular tetrahedron with its 

vertex in 𝑂. Draw through 𝑀 a plane which intersects the edges of the 
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respective tetrahedron in points 𝐴, 𝐵, 𝐶 so that 𝑀 is the orthocenter of 

∆𝐴𝐵𝐶. 

Solution to Problem 97 

 

98. A pile of sand has as bases two rectangles located in parallel planes and 

trapezoid side faces. Find the volume of the pile, knowing the dimensions 

𝑎′, 𝑏′ of the small base, 𝑎, 𝑏 of the larger base, and ℎ the distance between 

the two bases. 

Solution to Problem 98 

 

99. A pyramid frustum is given, with its height ℎ and the areas of the bases 𝐵 

and 𝑏. Unite any point 𝜎 of the larger base with the vertices 𝐴, 𝐵, 𝐴′, 𝐵′ of a 

side face. Show that 𝜐[𝑂𝐴′𝐵′𝐴] =
√6

√𝐵
𝜐[𝑂𝐴𝐵𝐵′]. 

Solution to Problem 99 

 

100. A triangular prism is circumscribed to a circle of radius 𝑅. Find the area 

and the volume of the prism. 

Solution to Problem 100 

 

101. A right triangle, with its legs 𝑏 and 𝑐 and the hypotenuse 𝑎, revolves by 

turns around the hypotenuse and the two legs, 𝑉1, 𝑉2, 𝑉3;  𝑆1, 𝑆2, 𝑆3 being the 

volumes, respectively the lateral areas of the three formed shapes, show 

that: 

a. 
1

𝑉1
2 =

1

𝑉2
2 =

1

𝑉3
2; 

b. 
𝑆2

𝑆3
+
𝑆3

𝑆2
=
𝑆2+𝑆3

𝑆1
 . 

Solution to Problem 101 

 

102. A factory chimney has the shape of a cone frustum and 10m height, the 

bases of the cone frustum have external lengths of 3,14m and 1,57m, and 

the wall is 18cm thick. Calculate the volume of the chimney. 

Solution to Problem 102 
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103. A regular pyramid, with its base a square and the angle from the peak of 

a side face of measure 𝛼 is inscribed in a sphere of radius 𝑅. Find: 

a. the volume of the inscribed pyramid; 

b. the lateral and total area of the pyramid; 

c. the value 𝛼 when the height of the pyramid is equal to the radius of 

the sphere. 

Solution to Problem 103 
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Solutions 
 

Solution to Problem 66. 

 

Let 𝐴1, 𝐴2…𝐴𝑛 the vertices of the convex polygon. Let’s assume that it has four 

acute angles. The vertices of these angles form a convex quadrilateral 𝐴𝑙𝐴𝑘𝐴𝑚𝐴𝑛. 

Due to the fact that the polygon is convex, the segments |𝐴𝑙𝐴𝑘|, |𝐴𝑘𝐴𝑚|, |𝐴𝑚𝐴𝑛|, 

|𝐴𝑛𝐴𝑙| are inside the initial polygon. We find that the angles of the quadrilateral are 

acute, which is absurd, because their sum is 360°. 

 

Another solution: We assume that 𝐴𝑙𝐴𝑘𝐴𝑚𝐴𝑛 is a convex polygon with all its 

angles acute ⟹ the sum of the external angles is bigger than 360°, which is absurd 

(the sum of the measures of the external angles of a convex polygon is 360°). 

 

Solution to Problem 67. 
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Let |𝐴𝐴′| be the median from 𝐴 and 𝐶𝑄 ⊥ 𝐴𝐴′, 𝐵𝑃 ⊥ 𝐴𝐴′. 

∆𝐵𝐴′𝑃 ≡ 𝐶𝐴′𝑄 because: 

{
𝑃𝐵𝐶̂ ≡ 𝐵𝐶𝑄̂   alternate interior

𝑃𝐴′𝐵̂ ≡ 𝐶𝐴′𝑄̂      vertical angles

𝐵𝐴′ ≡ 𝐴′𝐶                                   

 

⟹ ||𝐵𝑃|| = ||𝑄𝐶|| and by its construction 𝐵𝑃 ⊥ 𝐴𝐴′, 𝐶𝑄 ⊥ 𝐴𝐴′. 

The desired locus is median |𝐴𝐴′|. Indeed, for any 𝑀 ∈ |𝐴𝐴′| we have 𝜎[𝐴𝐵𝑀] =

𝜎[𝐴𝐶𝑀], because triangles 𝐴𝐵𝑀 and 𝐴𝐶𝑀 have a common side |𝐴𝑀| and its 

corresponding height equal ||𝐵𝑃|| = ||𝑄𝐶||. 

 

Vice-versa. If 𝜎[𝐴𝐵𝑀] = 𝜎[𝐴𝐶′𝑀], let’s prove that 𝑀 ∈ |𝐴𝐴′|.  

Indeed: 𝜎[𝐴𝐵𝑀] 𝜎[𝐴𝐶𝑀]  ⇒  𝑑 (𝐵, 𝐴𝑀) = 𝑑(𝐶, 𝐴𝑀), because |𝐴𝑀| is a common 

side, 𝑑 (𝐵, 𝐴𝑀) = ||𝐵𝑃|| and 𝑑(𝐶, 𝐴𝑀) = ||𝐶𝑄|| and both are perpendicular to 𝐴𝑀 ⟹

 𝑃𝐵𝑄𝐶 is a parallelogram, the points 𝑃,𝑀, 𝑄 are collinear (𝑃, 𝑄 the feet of the 

perpendicular lines from 𝐵 and 𝐶 to 𝐴𝑀). 

In parallelogram 𝑃𝐵𝑄𝐶 we have |𝑃𝑄| and |𝐵𝐶| diagonals ⟹ 𝐴𝑀 passes through 

the middle of |𝐵𝐶|, so 𝑀 ∈ |𝐴𝐴′|, the median from 𝐴. 

 

Solution to Problem 68. 

 

Let 𝑂 be the midpoint of diagonal |𝐴𝐶| ⟹ ‖𝐴𝑂‖ = ‖𝑂𝐶‖. 

𝜎[𝐴𝑂𝐷] = 𝜎[𝐶𝑂𝐷] (1) 

Because {
‖𝐴𝑂‖ = ‖𝑂𝐶‖

‖𝑂𝐷′‖ common height
 

𝜎[𝐴𝑂𝐵] = 𝜎[𝐶𝑂𝐵] (2) 
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the same reasons; we add up (1) and (2) ⟹   

𝜎[𝐴𝐷𝑂𝐵] = 𝜎[𝐷𝐶𝐵𝑂] (3), 

so 𝑂 is a point of the desired locus. 

We construct through 𝑂 a parallel to 𝐵𝐷 until it cuts sides |𝐵𝐶| and |𝐷𝐶| at 𝑃 

respectively 𝑄. The desired locus is |𝑃𝑄|. 

Indeed (∀)𝑀 ∈ |𝑃𝑄| we have: 

 

𝜎[𝐵𝐷𝑂] = 𝜎[𝐵𝐷𝑀] because 𝑀 and 𝑄 belongs to a parallel to 𝐵𝐷. 

 

𝐵,𝐷 ∈ a parallel to 𝑂𝑀. 

So 
𝜎[𝑀𝐵𝐴𝐷] = 𝜎[𝐴𝐵𝑂𝐷]

and  𝜎[𝐵𝐶𝐷𝑀] = 𝜎[𝑂𝐵𝐶𝐷]

and from (3)
} ⟹ 𝜎[𝑀𝐵𝐴𝐷] = 𝜎[𝐵𝐶𝐷𝑀]. 

Vice-versa: If 𝜎[𝑀𝐵𝐶𝐷] = 𝜎[𝑀𝐵𝐴𝐷], let’s prove that 𝑀 ∈ parallel line through 𝑂 to 

𝐵𝐷. Indeed: 

𝜎[𝐵𝐶𝐷𝑀] = 𝜎[𝑀𝐵𝐴𝐷]

and because 𝜎[𝐵𝐶𝐷𝑀] + 𝜎[𝑀𝐵𝐴𝐷] = 𝜎[𝐴𝐵𝐶𝐷] 
} ⟹ 𝜎[𝑀𝐵𝐶𝐷] = 𝜎[𝑀𝐵𝐴𝐷] =

𝜎[𝐴𝐵𝐶𝐷]

2
 (2). 

So, from (1) and (2) ⟹ 𝜎[𝑀𝐵𝐴𝐷] = 𝜎[𝐴𝐵𝑂𝐷] ⟹ 𝜎[𝐴𝐵𝐷] + 𝜎[𝐵𝐷𝑂] = 𝜎[𝐴𝐵𝐷] +

𝜎[𝐵𝐷𝑀] ⟹ 𝜎[𝐵𝐷𝑀] ⟹ 𝑀 and 𝑂 are on a parallel to 𝐵𝐷. 

 

Solution to Problem 69. 

 

We write ||𝐸𝐴|| = 𝑎 and ||𝐸𝐷|| = 𝑏, ||𝐸𝑀|| = 𝑥. 
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We subtract (2) from (3) 

 

We subtract (2) from (4) 

 

 

From the relation (3), by writing [𝐴𝐵𝐶𝐷] − 𝑆 ⟹ 𝜎[𝐸𝐶𝐷] =
𝑆𝑏2

𝑎2−𝑏2
 . 

We substitute this in the relation of 𝑥² and we obtain: 

 

and taking into consideration that ||𝐸𝑀|| = ||𝐷𝑀|| + 𝑏, we have  

 

so we have the position of point 𝑀 on the segment |𝐷𝐴| (but it was sufficient to 

find the distance ||𝐸𝑀||). 

 

Solution to Problem 70. 

 

We remark from its construction that 𝐸𝑄||𝐴𝐵||𝑅𝐷, more than that, they are 

equidistant parallel lines. Similarly, 𝐸𝑄, 𝑃𝐷, 𝐴𝐶 and 𝐴𝐵, 𝐸𝑄, 𝑅𝐷 are also equidistant 

parallel lines. 

from the hypothesis 
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We write 𝜎[𝐵𝐹𝑄] = 𝑆. 

Based on the following properties: 

 two triangles have equal areas if they have equal bases and the same 

height; 

 two triangles have equal areas if they have the same base and the third 

peak on a parallel line to the base, 

we have: 

 

 
by addition
⇒         

 

So 
𝜎[𝐷𝐸𝐹]

𝜎[𝐴𝐵𝐶]
=
3𝑆

9𝑆
=
1

3
 . 

(If necessary the areas 𝑆 can be arranged). 

 

Solution to Problem 71. 

 

‖𝑂𝐵‖ =
𝑎√3

6
  (𝐵𝐵′ median) 

In ∆𝑀𝑂𝐵′: 

 

So (𝑀𝑂𝑁̂) =
𝜋

3
 . 

We mark with 𝛴 the disk surface bordered by a side of the triangle outside the 

triangle.  
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𝜎[𝛴] = 𝜎[circle sector 𝑀𝑂𝑁] − 𝜎[𝑀𝑂𝑁]

=
𝜋𝑎2

9 ∙ 6
−
𝑎2

9 ∙ 2
sin 600 =

𝜋𝑎2

9 ∙ 6
−
𝑎2√3

4 ∙ 9
=
𝑎2

18
∙ (
𝜋

3
−
√3

2
). 

If through the disk area we subtract three times 𝜎[𝛴], we will find the area of the 

disk fraction from the interior of 𝐴𝐵𝐶. So the area of the disk surface inside 𝐴𝐵𝐶 is: 

 

The desired area is obtained by subtracting the calculated area form 𝜎[𝐴𝐵𝐶]. 

So:  

 

 

Solution to Problem 72. 

a. 1 + cos𝐴 ∙ cos(𝐵 − 𝐶) =
𝑏2+𝑐2

4𝑅2
 

 

b. We prove that tan𝐴 =
4𝑆

𝑏2+𝑐2−𝑎2
 . 
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⟹  All terms reduce. 

d. Let’s prove that cot
𝐴

2
+ cot

𝐵

2
+ cot 𝐶2 =

𝑝

𝑟
 . 

Indeed 

 

 

We now have to prove that: 

 

 

Solution to Problem 73. 
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a. In triangle 𝐴𝐵𝐵′: ‖𝐴𝐵′‖ = 𝑐 cos𝐴 

In triangle 𝐴𝐻𝐵′: 

 

 

We used:  

 

 

Solution to Problem 74. 

 

Using the power of point 𝐼 in relation to circle 𝐶(𝑂, 𝑅) 

 

Taking into consideration (1), we have ‖𝐼𝐴‖ ∙ ‖𝐼𝐷‖ = 𝑅2 − ‖𝑂𝐼‖². 

We now find the distances ||IA|| and ||ID|| 

In triangle ∆𝐼𝐴𝑃, 

 

We also find ‖𝐼𝐷‖: 𝜇(𝐵𝐼𝐷̂) = 𝜇(𝐷𝐵𝐼̂ ) have the same measure, more exactly: 
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In ∆𝐴𝐵𝐷 according to the law of sine, we have: 

 

So taking into consideration (3), 

 

Returning to the relation ‖𝐼𝐴‖ ∙ ‖𝐼𝐷‖ = 𝑅2 − ‖𝑂𝐼‖². with (2) and (4) we have: 

 

 

 

Solution to Problem 75. 

 

 

Note. We will have to show that 

 

Indeed: 

 

(by Heron’s formula). 
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Solution to Problem 76. 

 

So: 

 

We calculate for 𝑧1 and 𝑧2: 

 

so 𝑧𝑛 +
1

𝑧𝑛
 takes the same value for 𝑧1 and for 𝑧2 and it is enough if we 

calculate it for 𝑧1. 

 

Analogously: 

 

 

Solution to Problem 77. 
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(we substitute −1 with 𝑖² at denominator) 

 

 

Solution to Problem 78. 

 

 

Solution to Problem 79. 

We construct 𝛼 ⊥ 𝑑 and 𝐴 ∈ 𝛼. The so constructed plane is unique. Similarly we 

construct 𝛽 ⊥ 𝑑′ and 𝐴 ⊥ 𝛽, 𝛼 ∩ 𝛽 = 𝑎 ∋ 𝐴. 

 

 

From 
𝛼 ⊥ 𝑑 ⇒ 𝑑 ⊥ 𝑎
𝛽 ⊥ 𝑑′ ⇒ 𝑑′ ⊥ 𝑎

} ⟹ 𝑎 is a line which passes through 𝐴 and is perpendicular 

to 𝑑 and 𝑑′. The line 𝑎 is unique, because 𝛼 and 𝛽 constructed as above are unique. 

 

Solution to Problem 80. 

We construct plane 𝛼 such that 𝐴 ∈ 𝛼 and 𝑑 ⊥ 𝛼. We construct plane 𝛽 such that 

𝐵 ∈ 𝛽 and 𝑑′ ⊥ 𝛽.  
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The so constructed planes 𝛼 and 𝛽 are unique.  

Let 𝑎 = 𝛼 ∩ 𝛽 ⟹ 𝑎 ⊂ 𝛼 so (∀) 𝑀 ∈ 𝑎 has the property pr𝑑𝑀 = 𝐴. 

𝛼 ⊂ 𝛽 ⟹ (∀) 𝑀 ∈ 𝑎 has the property 𝑝𝑟𝑑′𝑀 = 𝐵. 

 

Vice-versa. If there is a point 𝑀 in space such that pr𝑑𝑀 = 𝐴 and 𝑝𝑟𝑑′𝑀 = 𝐵 ⟹

𝑀 ∈ 𝑎 and 𝑀 ∈ 𝛽 ⟹𝑀 ∈ 𝛼 ∩ 𝛽 ⟹ 𝑀 ∈ 𝑎 (𝛼 and 𝛽 previously constructed). 

 

Solution to Problem 81. 

 

Let 𝐴 ∈ 𝑎, 𝐵 ∈ 𝑏, 𝐶 ∈ 𝑐 such that ‖𝑂𝐴‖ = ‖𝑂𝐵‖ = ‖𝑂𝐶‖. Triangles 𝑂𝐴𝐵,𝑂𝐵𝐶, 𝑂𝐴𝐶 

are isosceles. The mediator planes of segments ‖𝐴𝐵‖, ‖𝐴𝐶‖, ‖𝐵𝐶 ‖ pass through 𝑂 

and 𝑂′ (the center of the circumscribed circle of triangle 𝐴𝐵𝐶). Ray |𝑂𝑂′| is the 

desired locus. 

Indeed (∀) 𝑀 ∈ |𝑂𝑂′| ⟹ 𝑀 ∈  mediator plane of segments |𝐴𝐵|, |𝐴𝐶| and |𝐵𝐶| ⟹

𝑀 is equally distant from 𝑎, 𝑏 and 𝑐. 

Vice-versa: (∀) 𝑀 with the property: 𝑑(𝑀, 𝑎) = 𝑑(𝑀, 𝑏) = 𝑑(𝑀, 𝑐) ⟹ 𝑀 ∈ mediator 

plan, mediator planes of segments |𝐴𝐵|, |𝐴𝐶| and |𝐵𝐶| ⟹ 𝑀 ∈ the intersection of 

these planes ⟹𝑀 ∈ |𝑂𝑂′|. 
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Solution to Problem 82. 

 

Let 𝑎, 𝑏, 𝑐 be the 3 lines in space. 

I. We assume 𝑎 ⊥ 𝑐 and 𝑏 ⊥ 𝑐. Let 𝛼 be a plane such that: 

 

The construction is possible because ⊥ 𝑐 and 𝑏 ⊥ 𝑐. Line 𝐴𝐵 meets 𝑎 on 𝑝 and it is 

perpendicular to 𝑐, because 𝐴𝐵 ⊂ 𝛼 and 𝑐 ⊥ 𝛼. 

II. If 𝑎 ⊥ 𝑐 or 𝑏 ⊥ 𝑐, the construction is not always possible, only if plane 𝑝(𝑎, 𝑏) 

is perpendicular to 𝑐. 

 

III. If 𝑎 ⊥ 𝑐 and 𝑏 ⊥ 𝑐, we construct plane 𝑎 ⊥ 𝑐 so that 𝑎 ⊂ 𝛼 and 𝑏 ⊂ 𝛼 ≠ ∅. Any 

point on line a connected with point 𝑏 ∩ 𝛼 is a desired line. 

 

Solution to Problem 83. 

We construct 𝐴′ the symmetrical point of 𝐴 in relation to 𝛼. 𝐴′ and 𝐵 are on 

different half-spaces, 𝛼 ∩ |𝐴′𝐵| =  𝑂. 
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𝑂 is the desired point, because ||𝑂𝐴|| + ||𝑂𝐵|| = ||𝑂𝐴′|| + ||𝑂𝐵|| is minimal when 

𝑂 ∈ |𝐴′𝐵|, thus the desired point is 𝑂 = |𝐴′𝐵| ∩ 𝛼. 

 

Solution to Problem 84. 

 

Let 𝑎, 𝑏, 𝑑 be the 3 given lines and through 𝑑 we construct a plane in which 𝑎 and 

𝑏 to be projected after parallel lines. 

Let 𝐴 be an arbitrary point on 𝑎.  Through 𝐴 we construct line 𝑏′||𝑏. It results from 

the figure 𝑏||𝛼, 𝛼 = 𝑝(𝑎, 𝑏′). 

Let 𝛽 such that 𝑑 ⊂ 𝛽 and 𝛽 ⊥ 𝛼. 

Lines 𝑎 and 𝑏′ are projected onto 𝛽 after the same line 𝑐. Line 𝑏 is projected onto 

𝛽 after 𝑏1 and 𝑏1 ∥ 𝑐. 

If 𝑏1 ∦ 𝑐,  

 

absurd because 𝑏||𝛼(𝑏||𝑏′). 

 

Solution to Problem 85. 

 

𝑀 is the centroid in ∆𝐴𝐶𝐷 ⟹   

⟹
|𝑀𝐷|

|𝑀𝑃|
= 2  (1) 
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𝑁 is the centroid in ∆𝐴𝐵𝐷 ⟹   

⟹
|𝑁𝐷|

|𝑁𝑄|
= 2  (2) 

𝐿 is the centroid in ∆𝐵𝐶𝐷 ⟹   

⟹
|𝐿𝐷|

|𝐿𝑆|
= 2  (3) 

From 1 and 2,   

and from 2 and 3   

 

 

because: 

 

So 

 

 

Solution to Problem 86. 

 

 

𝐵𝐷 ⊥ (𝐴𝐴′𝐶) from the hypothesis 𝐴𝐵𝐶𝐷𝐴′𝐵′𝐶′𝐷′ cube (1). 

𝐴1 midpoint of segment |𝐵𝐴′|

(𝐴𝐵𝐴′) isosceles and 𝐴𝐴1 ⊥ 𝐵𝐴′

𝐴3 midpoint of |𝐴′𝐷|

} |𝐴1𝐴3| mid-side in ∆𝐴′𝐵𝐷 ⟹ 𝐴1𝐴3 ∥ 𝐵𝐷 (2) 

From (1) and (2) ⟹ 𝐴1𝐴3 ∥ (𝐴𝐴′𝐶) ⟹ 𝐴′𝐶 ⊥ 𝐴1𝐴3 (3) 
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From ∆𝐴𝐶𝐴′: 

 

From ∆𝐴𝐵𝐴′:  

 

Similarly 

 

In ∆𝐴𝐶𝐴′: 

 

and  

 

 

 

 

𝐴1𝐴2𝐴′ right with 𝑚(𝐴′𝐴2𝐴1) = 90 because 

 

 

From (4) and (3) ⟹ 𝐴′𝐶 ⊥ (𝐴1𝐴2𝐴3). 

As 
𝐴′𝐶 ⊥ (𝐴1𝐴2𝐴3)

𝐴′𝐶 ⊥ 𝐴2𝐴 (by construction)
} ⟹ 𝐴1𝐴2𝐴3𝐴 coplanar ⟹ 𝐴1𝐴2𝐴3𝐴 quadrilateral with 

opposite angles 𝐴1 and 𝐴3 right ⟹ 𝐴1𝐴2𝐴3𝐴 inscribable quadrilateral. 

 

Solution to Problem 87. 

The conclusion is true only if ||𝐵𝐷|| = ||𝐴𝐶|| that is 𝑏 = 𝑐. 

 

𝑀𝑁 ⊥ 𝐷𝐶 if  
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Solution to Problem 88. 

 

bisector plane 

 

 

(𝑏 bisector half-plane) 

In triangle 𝐷𝐷1𝐷′: 

 

 

 

But 
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From 1, 2, 3 ⟹
𝜎[𝐴𝐵𝐷]

𝜎[𝐴𝐵𝐶]
=
‖𝐷𝐸‖

‖𝐸𝐶‖
 q.e.d. 

 

Solution to Problem 89. 

 

Because the tetrahedron is regular 𝐴𝐵 = …  = 

 

 

we increase the denominator 

 

If one of the points 𝑃 or 𝑄 is on face 𝐶𝐵𝐷 the problem is explicit. 

 

Solution to Problem 90. 

We consider tetrahedron 𝑂𝑥𝑦𝑧, and prove that the sum of the measures of the 

dihedral angles of this trihedron is bigger than 360°. Indeed: let 100′ be the internal 

bisector of trihedron 𝑂𝑥𝑦𝑧 (1000′ the intersection of the bisector planes of the 3 

dihedral angles) of the trihedron in 𝐴, 𝐵, 𝐶. 
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The size of each dihedron with edges 𝑜𝑥, 𝑜𝑦, 𝑜𝑧 is bigger than the size of the 

corresponding angles of  𝐴𝐵𝐶, the sum of the measures of the dihedral angles of 

trihedron 𝑂𝑥𝑦𝑧 is bigger than 180°. 

Let (𝑎, 𝑏) be a plane ⊥ to 𝑜𝑧 at 𝐶; 𝑎 ⊥ 𝑜𝑧, 𝑏 ⊥ 𝑜𝑧, but |𝐶𝐴 and |𝐶𝐵 are on the same 

half-space in relation to (𝑎𝑏) ⇒ 𝑚(𝐶̂) <  𝑚(𝑎𝑏̂). 

In tetrahedron 𝐴𝐵𝐶𝐷, let 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 and 𝑎6 be the 6 dihedral angles formed 

by the faces of the tetrahedron. 

 

according to the inequality previously established. 

 

 

Solution to Problem 91. 

 

We mark with a the intersection of planes (𝐴, 𝑑1) and (𝐵, 𝑑2). So 

 

Let 𝑏 be a variable line that passes through 𝐶 and contained in 𝛼, which cuts 𝑑1 

and 𝑑2 at 𝑀 respectively 𝑁. We have: 𝑀𝐴 ⊂ (𝐴, 𝑑1),𝑀𝐴 ∩ 𝑁𝐵 = 𝑃(𝑀𝐴 and 𝑁𝐵 

intersect because they are contained in the plane determined by (𝐴𝑀, 𝑏)). 

Thus 𝑃 ∈ (𝐴, 𝑑1) and 𝑃 ∈ (𝐵, 𝑑2), ⟹𝑃 ∈ 𝑎, so 𝑃 describes line a the intersection of 

planes (𝐴, 𝑑1) and (𝐵, 𝑑2).  

Vice-versa: let 𝑄 ∈ 𝑎. 

  In the plane (𝐴, 𝑑1): 𝑄𝐴 ∩ 𝑑1 = 𝑀′ 

  In the plane (𝐵, 𝑑2): 𝑄𝐵 ∩ 𝑑2 = 𝑁′ 
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Lines 𝑁′𝑀′ and 𝐴𝐵 are coplanar (both are on plane (𝑄, 𝐴, 𝐵)). But because 𝑁′𝑀′ ⊂

𝛼 and 𝐴𝐵 has only point 𝐶 in common with 𝛼 ⟹ 𝑀′𝑁′ ∩ 𝐴𝐵 = 𝐶. 

So 𝑀′𝑁′ passes through 𝐶. If planes (𝐴, 𝑑1) and (𝐵, 𝑑2) are parallel, the locus is the 

empty set. 

 

Solution to Problem 92. 

 

Remember the theorem: If a plane 𝛾 intersects two planes 𝛼 and 𝛽 such that 

𝜎||𝛼 ⟹ (𝛾 ∩ 𝛼)||(𝛾 ∩ 𝛽). If plane (𝐿𝑀𝑁𝑃)||𝐵𝐷 we have: 

 

If (𝐿𝑀𝑁𝑃)||𝐴𝐶 we have:  

 

 

⟹ relation 𝑎. 

Solution: 

Let 𝐴′, 𝐵′, 𝐶′, 𝐷′ the projections of points 𝐴, 𝐵, 𝐶, 𝐷 onto plane (𝑀𝑁𝑃𝐿). 

For ex. points 𝐵′, 𝐿, 𝐴′ are collinear on plane (𝐿𝑃𝑀𝑁) because they are on the 

projection of line 𝐴𝐵 onto this plane. 

 

Similarly we obtain:  
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By multiplying the 4 relations, 

 

⟹ relation (𝑎) from 𝑑. 

 

Solution to Problem 93. 

 

𝑀 – Midpoint of |𝐵𝐶|. 

 

Solution to Problem 94. 

 

(1)  𝐴𝐵 ⊥ 𝐶𝐷 (hypothesis) 

 

From 1 and 2 

 

height in ∆𝐴𝐵𝐶  a 

 

From 3 and 4  𝐴𝐶 ⊥ (𝐵𝐷𝐻) ⟹ 𝐴𝐶 ⊥ 𝐵𝐻 ⟹ 𝐵𝐻 height in ∆𝐴𝐵𝐶   b 

From a and b  ⟹𝐻 orthocenter ∆𝐴𝐵𝐶. Let 𝐶1 be the diametrical opposite point to 

𝐶 in circle 𝐶(𝐴𝐵𝐶)𝐶𝐶1 diameter 𝑚(𝐶1𝐵𝐶̂) = 90
0 but 𝐴𝐻 ⊥ 𝐵𝐶 ⟹ 𝐴𝐻 ∥ 𝐵𝐶1. Similarly 

𝐵𝐻||𝐶1𝐴, so 𝐴𝐻𝐵𝐶1 parallelogram, we have: 
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similarly 

 

diametrical opposite to B 

 

but 

 

by substituting above, we have: 

 

Let 𝑁,𝑀,𝑄, 𝑃, 𝑆, 𝑅 midpoints of the edges of the quadrilateral 𝑁𝑀𝑃𝑄 because: 

𝑁𝑀||𝐶𝐷||𝑃𝑄 (median lines), 𝑄𝑀||𝐴𝐵||𝑃𝑁 (median lines), but 𝐶𝐷 ⊥ 𝐴𝐵 ⇒ 𝑀𝑁𝑄𝑃  

rectangle |𝑁𝑄| ∩ |𝑃𝑀| = {0}. 

Similarly 𝑀𝑆𝑃𝑅 rectangle with |𝑀𝑃| common diagonal with a, the first rectangle, 

so the 6 points are equally distant from “𝑂” the midpoint of diagonals in the two 

rectangles ⟹ the 6 points are on a sphere. 

 

Solution to Problem 95. 

 

𝑀 arbitrary point on |𝐴𝐵′| 

 

𝐴ʺ midpoint of segment [𝐵′𝐶′] 

When 𝑀 = 𝐵′, point 𝑃 is in the position 𝐵′. 
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When 𝑀 = 𝐴, point 𝑃 is in the position {𝑃1} = [𝐴′𝐴1] ∩ [𝐴𝐴′′] 

(𝐴′𝐴′′𝐴1𝐴 rectangle, so 𝑃1 is the intersection of the diagonals of the rectangle) 

[The locus is [𝐵′𝑃1]]. 

Let 𝑀 be arbitrary point 𝑀 ∈ |𝐴𝐵′|. 

 

because:  

 

By the way it was constructed 

 

⟹ (∀) plane that contains 𝐴𝐴1 is perpendicular to (𝐵′𝐶𝐶′′), particularly to (𝐵′𝐴𝐴1) ⊥

(𝐵′𝐶′𝐶). 

 

because 𝐵′, 𝑃 ∈ (𝐵′𝐴𝐴′′) 

 

from this reason 𝐵′, 𝑃1 ∈ (𝐴′𝐵′𝐴1). 

From 1 and 2  

 

Let  

 

So (∀) 𝑀 ∈ |𝐵′𝐴| 

and we have 

 

Vice-versa. Let 𝑃 arbitrary point, 𝑃 ∈ |𝐵′𝑃1| and 

  In plane  

 

  In plane  

 

Indeed: 𝐴′𝐴′′ || (𝐵′𝐴𝐴1) thus any plane which passes through 𝐴′𝐴′′ will intersect 

(𝐵′𝐴𝐴1) after a parallel line to 𝐴′𝐴′′. Deci 𝑀𝑁||𝐴′𝐴′′ or 𝑀𝑁||𝐴𝐴1 as 𝑀 ∈ (𝐵′𝐴𝐴1) ⟹

𝑀𝑁 ⊥ (𝐵′𝐶𝐶′′). 

We’ve proved 
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and 

 

we have 

 

describes |𝐵′𝑃1| and vice-versa,  

 

there is 𝑀|𝐵′𝐴| and 𝑁|𝐵′𝐴1| such that 

 

and 𝑃 is the intersection of the diagonals of the quadrilateral 𝐴′𝑁𝑀𝐴′′. 

 

Solution to Problem 96. 

 

 

known result 

 

From 1 and 3 

 

 

Solution to Problem 97. 

From the hypothesis: 

𝑂𝐴 ⊥ 𝑂𝐵 ⊥ 𝑂𝐶 ⊥ 𝑂𝐴 

We assume the problem is solved.  

Let 𝑀 be the orthocenter of triangle 𝐴𝐵𝐶. 
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But 𝐶𝐶′ ⊥ 𝐴𝐵 ⟹
𝐴𝐵 ⊥ (𝑂𝐶𝐶′)

𝑀𝑂 ⊥ (𝐶𝑂𝐶′)
} ⟹ 𝐴𝐵 ⊥ 𝑂𝑀 ⟹𝑀𝑂 ⊥ 𝐴𝐵 (1) 

𝐴𝑂 ⊥ (𝐶𝑂𝐵) ⟹ 𝐴𝑂 ⊥ 𝐵𝐶, but 𝐴𝐴′ ⊥ 𝐵𝐶 ⟹
𝐵𝐶 ⊥ (𝐴𝑂𝐴′)

𝑀𝑂 ⊂ (𝐴𝑂𝐴′)
} ⟹ 𝐵𝐶 ⊥ 𝑀𝑂 ⟹ 𝑀𝑂 ⊥ 𝐵𝐶 (2) 

From (1) and (2) ⟹𝑀𝑂 ⊥ (𝐴𝐵𝐶) 

So the plane (𝐴𝐵𝐶) that needs to be drawn must be perpendicular to 𝑂𝑀 at 𝑀. 

 

Solution to Problem 98. 

 

𝐴′𝑁 ⊥ 𝐴𝐷, 𝐵′𝑀 ⊥ 𝐵𝐶 

‖𝐵𝑀‖ =
𝑎−𝑎′

2
, ‖𝑃𝑀‖ =

𝑏−𝑏′

2
 

𝑣[𝐵𝑀𝑃𝑆𝐵′] =
𝑎 − 𝑎′

2
∙
𝑏 − 𝑏′

2
∙
ℎ

3
 

𝑣[𝑆𝑃𝑊𝑅𝐴′𝐵′] =
𝜎[𝑆𝑃𝐵′] ∙ ‖𝐵′𝐴′‖

3
=
𝑎 − 𝑎′

2
∙
ℎ

2
∙ 𝑏′ 

𝑣[𝐵′𝐴′𝑁𝑀𝐶′𝐷′𝐷1𝐶1] =
(𝑏 + 𝑏′)ℎ

2
∙ 𝑎′ 

𝑣[𝐴𝐵𝐴′𝐵′𝐶𝐷𝐶′𝐷′] = 2 [2 ∙
𝑎−𝑎′

2
∙
𝑏−𝑏′

2
∙
ℎ

3
+
𝑎−𝑎′

2
∙
ℎ

2
∙ 𝑏′] + (

(𝑏+𝑏′)ℎ

2
) ∙ 𝑎′ =

ℎ

6
(2𝑎𝑏 − 2𝑎𝑏′ − 2𝑎′𝑏′ + 3𝑎𝑏′ − 3𝑎′𝑏′ + 3𝑎′𝑏 + 3𝑎′𝑏′) =

ℎ

6
[𝑎𝑏 + 𝑎′𝑏′ +

(𝑎 + 𝑎′)(𝑏 + 𝑏′)]. 
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Solution to Problem 99. 

 

𝑣[𝑂𝐴𝐵𝐵′] =
𝐵 ∙ ℎ

2
 

𝑣[𝑂𝐴′𝐵′𝐴] = 𝑣[𝐴𝐵𝑂𝑂′𝐴′𝐵′] − 𝑣[𝐴𝐵𝐵′𝑂] − 𝑣[𝐴′𝐵′𝑂′𝑂] =
ℎ

3
(𝐵 + 𝑏 + √𝐵𝑏) −

𝐵ℎ

3
−
𝑏ℎ

3
=

ℎ

3
√𝑏𝐵. 

So: 

𝑣[𝑂𝐴′𝐵′𝐴]

𝑣[𝐷𝐴𝐵𝐵′]
=

ℎ
3√𝐵𝑏 ∙ √𝐵𝑏

𝐵ℎ
3 ∙ 𝐵

=
√𝑏

√𝐵
⟹ 𝑣[𝑂𝐴′𝐵′𝐴] =

√𝑏

√𝐵
∙ 𝑣[𝑂𝐴𝐵𝐵′] 

For the relation above, determine the formula of the volume of the pyramid 

frustum. 

 

Solution to Problem 100. 

 

𝑑(𝐺𝐺′) = ℎ = 2𝑅 

Let 𝑙 = ‖𝐴𝐶‖ ⟹ ‖𝐴𝐷‖ =
𝑙√3

2
⟹ ‖𝐺𝐷‖ =

𝑙√3

6
 

Figure 𝐺𝐷𝑀𝑂 rectangle ⟹ ‖𝐺𝐷‖ = ‖𝑂𝑀‖ ⟹
𝑙√3

6
= 𝑅 = 2√3𝑅 
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So, the lateral area is 𝑆𝑙 = 3 ∙ 2√3𝑅 ∙ 𝑅 = 12√3𝑅
2. 

𝑣[𝐴𝐵𝐶𝐴′𝐵′𝐶′] = 𝜎[𝐴𝐵𝐶] ∙ 2𝑅 = 2√3𝑅 ∙
2√3𝑅√3

4
∙ 2𝑅 = 6√3𝑅2. 

The total area: 

𝑆𝑡 = 𝑆𝑙 + 2𝜎[𝐴𝐵𝐶] = 12√3𝑅
2 + 2 ∙ 3𝑅√3𝑅2 = 18√3𝑅2 

 

Solution to Problem 101. 

 

Let 𝑉1 and 𝑆1 be the volume, respectively the area obtained revolving around 𝑎. 

𝑉2 and 𝑆2 be the volume, respectively the area obtained after revolving around 𝑏. 

𝑉3 and 𝑆3 be the volume, respectively the area obtained after revolving around c. 

So: 

𝑉1 =
𝜋 ∙ 𝑖2(‖𝐶𝐷‖ + ‖𝐷𝐵‖)

3
=
𝜋 ∙ 𝑖2 ∙ 𝑎

3
 

𝑆1 = 𝜋 ∙ 𝑖 ∙ 𝑐 + 𝜋 ∙ 𝑖 ∙ 𝑏 = 𝜋 ∙ 𝑖 ∙ (𝑏 + 𝑐) 

𝑉2 =
𝜋𝑐2𝑏

3
=
𝜋𝑐2𝑏2

3𝑏
=
𝜋𝑏2𝑐2𝑎

3𝑎2
 

𝑆2 = 𝜋 ∙ 𝑐 ∙ 𝑎 

𝑉3 =
𝜋𝑏2𝑐

3
=
𝜋𝑏2𝑐2

3𝑐
=
𝜋𝑏2𝑐2

3𝑎
 

𝑆3 = 𝜋 ∙ 𝑏 ∙ 𝑎 

Therefore: 

1

𝑉1
2 =

1

𝑉2
2 +

1

𝑉3
2⟺

9𝑎2

(𝜋𝑏2𝑐2)2
=

9𝑐2

(𝜋𝑏2𝑐2)2
+

9𝑐2

(𝜋𝑏2𝑐2)2
 

𝑆2
𝑆3
+
𝑆3
𝑆2
=
𝑆2 + 𝑆3
𝑆1

⟺
𝑐

𝑏
+
𝑏

𝑐
=
𝜋𝑎(𝑏 + 𝑐)

𝜋𝑖(𝑏 + 𝑐)
⟺
𝑐2 + 𝑏2

𝑏 ∙ 𝑐
=
𝑎

𝑖
 

But 𝑖 ∙ 𝑎 = 𝑏 ∙ 𝑐 ⟹
𝑐2+𝑏2

𝑏𝑐
=
𝑎2

𝑏𝑐
 , ‖𝐴𝐷‖ = 𝑖. 
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Solution to Problem 102. 

 

𝑟 = ‖𝑂𝐴‖ = 25 𝑐𝑚 

𝑅 = ‖𝑂′𝐵‖ = 50 𝑐𝑚 

2𝜋𝑟 = 1,57 ⟹ 𝑟 = 0,25 𝑚 

2𝜋𝑅 = 3,14 ⟹ 𝑅 = 0,50 𝑚 

‖𝐶𝑁‖ = 18 𝑐𝑚 = 0,18 𝑚 

‖𝐴′𝐵‖ = 25 𝑐𝑚 

‖𝐴𝐵‖ = √100 + 0,0625 = 10,003125 

‖𝐴′𝑀‖ =
‖𝐴𝐴′‖ ∙ ‖𝐴′𝐵‖

‖𝐴𝐵‖
=
10 ∙ 0,25

10,003125
≈ 0,25 

‖𝐶𝑁‖

‖𝐴′𝑀‖
=
‖𝐶𝐵‖

‖𝐵𝐴′‖
⟹
0,18

0,25
=
‖𝐶𝐵‖

0,25
⟹ ‖𝐶𝐵‖ = 0,18 

‖𝑂′𝐶‖ = 𝑅′ = 0,50 − 0,18 = 0,32 

‖𝑂𝑃‖ = 𝑟′ = 0,25 − 0,18 = 0,07 

𝑉 =
𝜋1

3
(𝑅2 + 𝑟2 + 𝑅𝑟) 

𝑉 =
𝜋10

3
(0,502 + 0,252 + 0,50 ∙ 0,25 − 0,322 − 0,072 − 0,32 ∙ 0,07)

=
𝜋10

3
(0,4375 − 0,1297) = 1,026𝜋𝑚3 

 

Solution to Problem 103. 

‖𝑉𝑃‖ =
𝑎

2 sin
𝛼
2

cos
𝛼

2
 

In ∆𝑉𝐴𝑃: ‖𝑉𝐴‖ =
𝐴

2 sin
𝛼

2

 . 
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In ∆𝑉𝐴𝑂′: ‖𝑉𝑂′‖2 =
𝑎2

4 sin2
𝛼

2

−
𝑎2

2
 . 

‖𝑉𝑂′‖ =
𝑎√cos𝛼

2 sin
𝛼
2

 

In ∆𝑉𝑂𝑂′: ‖𝑂𝑂′‖ =
𝑎√cos𝛼

2 sin
𝛼

2

− 𝑅. 

𝑅2 =
𝑎2

2
+ (

𝑎√cos𝛼

2 sin
𝛼
2

− 𝑅)

2

⟹
𝑎2

2
+
𝑎2 cos 𝛼

4 sin2
𝛼
2

−
2𝑎𝑅√cos𝛼

2 sin
𝛼
2

⟹ 𝑎 =
4𝑅√cos𝛼 sin2

𝛼
2

sin
𝛼
2
(2 cos2

𝛼
2
+ cos𝛼)

⟹ 𝑎 = 4𝑅√cos𝛼 ∙ sin
𝛼

2
 

 

𝐴𝑙 = 4
𝑎2 cos

𝛼
2

2 ∙ 2 sin
𝛼
2

=
𝑎2 cos

𝛼
2

sin
𝛼
2

= 16𝑅2 cos 𝛼 sin2
𝛼

2
∙
cos
𝛼
2

sin
𝛼
2

= 8𝑅2 cos𝛼 sin𝛼 = 4𝑅2 sin 2𝛼 

𝐴𝑡 = 𝐴𝑙 + 𝑎
2 = 4𝑅2 sin 2𝛼 + 16𝑅2 cos𝛼 sin2

𝛼

2
 

 

‖𝑉𝑂′‖ = 𝑅 ⟹ 𝑅 =
𝑎√cos𝛼

2 sin
𝑎
2

⟹ 𝑅 = 4𝑅√cos𝛼 sin
𝛼

2
∙
√cos𝛼

2 sin
𝛼
2

⟹ 2cos𝛼 = 1 ⟹ 𝛼 = 600. 
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Various Problems  
 

104. Determine the set of points in the plane, with affine coordinates 𝑧 that 

satisfy: 

a. |𝑧| = 1; 

b. 𝜋 < arg 𝑧 ≤
3𝜋

2
; 𝑧 ≠ 0; 

c. arg 𝑧 >
4𝜋

3
, 𝑧 ≠ 0; 

d. |𝑧 + 𝑖| ≤ 2 . 

Solution to Problem 104 

 

105. Prove that the 𝑛 roots of the unit are equal to the power of the particular 

root 𝜀1. 

Solution to Problem 105 

 

106. Knowing that complex number 𝑧 verifies the equation 𝑧𝑛 = 𝑛, show that 

numbers 2, −𝑖𝑧 and 𝑖𝑧 verify this equation. 

Application: Find (1 − 2𝑖)4 and deduct the roots of order 4 of the number 

−7 + 24𝑖. 

Solution to Problem 106 

 

107. Show that if natural numbers 𝑚 and 𝑛 are coprime, then the equations 

𝑧𝑚 − 1 = 0 and 𝑧𝑛 − 1 = 0 have a single common root. 

Solution to Problem 107 

 

108. Solve the following binomial equation: (2 − 3𝑖)𝑧6 + 1 + 5𝑖 = 0. 

Solution to Problem 108 

 

109. Solve the equations: 
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Solution to Problem 109 

 

110. Solve the equation 𝑧̅ = 𝑧𝑛−1, 𝑛 ∈ 𝑁, where 𝑧̅ the conjugate of 𝑧. 

Solution to Problem 110 

 

111. The midpoints of the sides of a quadrilateral are the vertices of a 

parallelogram. 

Solution to Problem 111 

 

112. Let 𝑀1𝑀2𝑀3𝑀4 and 𝑁1𝑁2𝑁3𝑁4 two parallelograms and 𝑃𝑖 the midpoints of 

segments [𝑀𝑖𝑁𝑖], 𝑖 ∈ {1, 2, 3, 4}. Show that 𝑃1𝑃2𝑃3𝑃4 is a parallelogram or a 

degenerate parallelogram. 

Solution to Problem 112 

 

113. Let the function 𝑓: 𝐶 → 𝐶, 𝑓(𝑧) = 𝑎𝑧 + 𝑏; (𝑎, 𝑏, 𝑐 ∈ 𝐶, 𝑎 ≠ 0). If 𝑀1 and 

𝑀2  are of affixes 𝑧1  and 𝑧2, and 𝑀1
′
 and 𝑀2

′  are of affixes 𝑓(𝑧1), 𝑓(𝑧2),  show 

that ‖𝑀1
′𝑀2

′‖ = |𝑎| ∙ ‖𝑀1𝑀2‖. We have ‖𝑀1
′𝑀2

′‖ = ‖𝑀1𝑀2‖ ⇔ |𝑎| = 1. 

Solution to Problem 113 

 

114. Prove that the function z → z̅, z ∈ C defines an isometry. 

Solution to Problem 114 

 

115. Let M1M2 be of affixes 𝑧1, 𝑧2 ≠ 0 and z2 = αz1. Show that rays |OM1, |OM2 

coincide (respectively are opposed) ⟺  α > 0 (respectively α < 0). 

Solution to Problem 115 
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116. Consider the points M1M2M3 of affixes 𝑧1𝑧2𝑧3 and 𝑀1 ≠ 𝑀2. Show that: 

a. M3 ∈ |M1M2⟺
z3−z1

z2−z1
> 0; 

b. M3 ∈ M1M2⟺
z3−z1

z2−z1
∈ R . 

Solution to Problem 116 

 

117. Prove Pompeiu’s theorem. If the point 𝑀 from the plane of the equilateral 

triangle 𝑀1𝑀2𝑀3 ∉ the circumscribed circle ∆ 𝑀1𝑀2𝑀3  there exists a 

triangle having sides of length ‖𝑀𝑀1‖, ‖𝑀𝑀2‖, ‖𝑀𝑀3‖. 

Solution to Problem 117 
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Solutions 
 

Solution to Problem 104. 

a. 
|𝑧| = 1

|𝑧| = √𝑥2 + 𝑦2
} ⟹ 𝑥2 + 𝑦2 = 1, so the desired set is the circle 𝐶(0,1). 

b. 𝜋 < arg𝑧 ≤
3𝜋

2
 . 

The desired set is given by all the points of quadrant III, to which ray |𝑂𝑦 is added, 

so all the points with 𝑥 < 0, 𝑦 < 0. 

c. 
arg𝑧 >

4𝜋

3
 , 𝑧 ≠ 0

arg𝑧 ∈ [0, 2𝜋]
} ⟹

4𝜋

2
< arg𝑧 < 2𝜋 

 

The desired set is that of the internal points of the angle with its sides positive 

semi-axis and ray |𝑂𝐵. 

d. |𝑧 + 𝑖| ≤ 2; 𝑧 = 𝑥 + 𝑦𝑖, its geometric image 𝑀. 

 

where 𝑂′(0,−1). 

Thus, the desired set is the disk centered at 𝑂(0,−1)
′  and radius 2. 

 



Florentin Smarandache 

100 

 

Solution to Problem 105. 

 

 

Solution to Problem 106. 

Let the equation 𝑧4 = 𝑛. If 𝑧4 = 4 (𝑧 is the solution) then: (−𝑧)4 = (−1)4𝑧4 = 1 ∙ 𝑛 =

𝑛, so –  𝑧 is also a solution. 

 

⟹ 𝑖𝑧 is the solution; 

 

⟹−𝑖𝑧 is the solution; 

 

 

⟹ is the solution of the equation 𝑧4 = −7 + 24𝑖. 

The solutions of this equation are: 

 

but based on the first part, if 𝑧 − 1 − 2𝑖 is a root, then 

 

are solutions of the given equation. 

 

Solution to Problem 107. 

 

If there exist 𝑘 and 𝑘′ with 𝑧𝑘 = 𝑧𝑘′, then 
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because (𝑚, 𝑛) = 1. Because 𝑘′ < 𝑛, 𝑘 < 𝑚, we have 𝑘′ = 0, 𝑘 = 0. 

Thus the common root is 𝑧0. 

 

Solution to Problem 108. 

 

 

Solution to Problem 109. 

 

 

Solution to Problem 110. 

 

As: 
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From: 

 

 positive  

 

The given equation becomes 

 

 

Solution to Problem 111. 

 

 

We find the sum of the abscissa of the opposite points: 

 

 

⟹𝑀𝑁𝑃𝑄 a parallelogram. 

Solution to Problem 112.  

In the quadrilateral 𝑀1𝑀3𝑁3𝑁1 by connecting the midpoints we obtain the 

parallelogram 𝑂′𝑃1𝑂
′′𝑃3, with its diagonals intersecting at 𝑂, the midpoint of |𝑂′𝑂′′| 

and thus |𝑃1𝑂| ≡ |𝑂𝑃3|. (1) 
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In the quadrilateral 𝑀4𝑀2𝑁2𝑁4 by connecting the midpoints of the sides we obtain 

the parallelogram 𝑂′𝑃2𝑂
′′𝑃4 with its diagonals intersecting in 𝑂, the midpoint of  

|𝑂′𝑂′′| and thus |𝑃2𝑂| ≡ |𝑂𝑃4|.  (2) 

 

From (1) and (2) 𝑃1𝑃2𝑃3𝑃4 a parallelogram. 

 

Solution to Problem 113. 

 

If: 

 

If: 

 

 

Solution to Problem 114. 

 

Let 𝑀1 and 𝑀2 be of affixes 𝑧1 and 𝑧2. Their images through the given function 

𝑀1
′ and 𝑀2

′  with affixes 𝑧1̅ and 𝑧2̅, so 
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From (1) and (2) ⟹ ‖𝑀1𝑀2‖ = ‖𝑀1
′𝑀2

′‖ or ‖𝑀1
′𝑀2

′‖ = |𝑧2̅𝑧1̅| = |√𝑧2 − 𝑧1| =

|𝑧2 − 𝑧1| = ‖𝑀1𝑀2‖. 

So 𝑓: 𝐶 → 𝐶, 𝑓(𝑧) = 𝑧̅ defines an isometry because it preserves the distance 

between the points. 

 

Solution to Problem 115. 

We know that the argument (𝑎𝑧1) = arg𝑧1 + arg𝑧𝛼 − 2𝑘𝜋, where 𝑘 = 0 or 𝑘 = 1. 

Because arg𝑧2 = arg(𝑎𝑧1), arg𝑧2 = arg𝑧1 + arg𝑧𝛼 − 2𝑘𝜋. 

a. We assume that  

 

 

Vice versa,  

 

 

 

 b. Let |𝑂𝑀1 and |𝑂𝑀2 be opposed ⟹ arg𝑧2 = arg𝑧1 + 𝜋 

 

∈ to the negative ray |𝑂𝑥′⟹ 𝛼 < 0. Vice versa, 

 

𝑘 = 0 or 𝑘 = 1 ⟹

arg𝑧2 = arg𝑧1 + 𝜋
or

arg𝑧2 = arg𝑧1 − 𝜋
} ⟹ |𝑂𝑀1 and |𝑂𝑀2 are opposed. 
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Solution to Problem 116. 

If n and 𝑛′ are the geometric images of complex numbers 𝑧 and 𝑧′, then the image 

of the difference 𝑧– 𝑧′ is constructed on |OM1| and |𝑀′𝑀| as sides. 

We assume that 𝑀3 ∈ |𝑀1𝑀2 

We construct the geometric image of 𝑧2– 𝑧1 . It is the fourth vertex of the 

parallelogram 𝑂𝑀1𝑀2𝑄1. The geometric image of 𝑧3– 𝑧1 is 𝑄2, the fourth vertex of the 

parallelogram 𝑂𝑀1𝑀3𝑄2. 

 

𝑂𝑄1 ∥ 𝑀1𝑀2
𝑂𝑄2 ∥ 𝑀1𝑀3

𝑀1𝑀2𝑀3collinear       
} ⟹ 𝑄1, 𝑄2, 𝑄3 collinear ⟹ 

 

Vice versa, we assume that 

 

 

If 𝑀3 and 𝑀2  ∈ the opposite ray to 𝑂, then 𝑧3– 𝑧1 = 𝛼(𝑧2– 𝑧1) with 𝛼 < 0.  

We repeat the reasoning from the previous point for the same case.  
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Thus, when 𝑀3 ∈ 𝑀1𝑀2𝑀3 +𝑀2 we obtain for the respective ratio positive, 

negative or having 𝑀3 = 𝑀1, so 
z3−z1

z2−z1
∈ R. 

 

Solution to Problem 117. 

The images of the roots of order 3 of the unit are the peaks of the equilateral 

triangle. 

 

But ɛ1 = ɛ2
2, so if we write ɛ2 = 𝜀, then ɛ1 = ɛ2.  

Thus 𝑀1(1),𝑀2(𝜀),𝑀3(𝜀
2). 

We use the equality: 

 

adequate (∀)𝑧 ∈ ℂ. 

 

But 

 

 

Therefore,  

 

 

By substitution: 

 

but 

 



255 Compiled and Solved Problems in Geometry and Trigonometry 

107 

 

thus 

 

 

Therefore ‖𝑀𝑀1‖, ‖𝑀𝑀2‖, ‖𝑀𝑀3‖ sides of a ∆. 

Then we use ‖𝑥| − |𝑦‖ ≤ |𝑥 − 𝑦| and obtain the other inequality. 
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Problems in Spatial Geometry 
 

 

118. Show that if a line 𝑑 is not contained in plane 𝛼, then 𝑑 ∩ 𝛼 is ∅ or it is 

formed of a single point. 

Solution to Problem 118 

 

119. Show that (∀) 𝛼, (∃) at least one point which is not situated in 𝛼. 

Solution to Problem 119 

 

120. The same; there are two lines with no point in common. 

Solution to Problem 120 

 

121. Show that if there is a line 𝑑 (∃) at least two planes that contain line 𝑑. 

Solution to Problem 121 

 

122. Consider lines 𝑑, 𝑑′, 𝑑′′, such that, taken two by two, to intersect. Show 

that, in this case, the 3 lines have a common point and are located on the 

same plane. 

Solution to Problem 122 

 

123. Let 𝐴, 𝐵, 𝐶 be three non-collinear points and 𝐷 a point located on the 

plane (𝐴𝐵𝐶). Show that: 

a. The points 𝐷, 𝐴, 𝐵 are not collinear, and neither are 𝐷, 𝐵, 𝐶; 𝐷, 𝐶, 𝐴. 

b. The intersection of planes (𝐷𝐴𝐵), (𝐷𝐵𝐶), (𝐷𝐶𝐴) is formed of a single 

point. 

Solution to Problem 123 
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124. Using the notes from the previous exercise, take the points 𝐸, 𝐹, 𝐺 distinct  

from 𝐴, 𝐵, 𝐶, 𝐷, such that 𝐸 ∈ 𝐴𝐷, 𝐹 ∈ 𝐵𝐷, 𝐺 ∈ 𝐶𝐷. Let 𝐵𝐶 ∩ 𝐹𝐺 = {𝑃}, 𝐺𝐸 ∩

𝐶𝐴 = {𝑄}, 𝐸𝐹 ∩ 𝐴𝐵 = {𝑅}. Show that 𝑃, 𝑄, 𝑅 are collinear (T. Desarques). 

Solution to Problem 124 

 

125. Consider the lines 𝑑 and 𝑑′ which are not located on the same plane and 

the distinct points 𝐴, 𝐵, 𝐶 ∈ 𝑑 and 𝐷, 𝐸 ∈ 𝑑′. How many planes can we draw 

such that each of them contains 3 non-collinear points of the given points? 

Generalization. 

Solution to Problem 125 

 

126. Show that there exist infinite planes that contain a given line 𝑑. 

Solution to Problem 126 

 

127. Consider points 𝐴, 𝐵, 𝐶, 𝐷 which are not located on the same plane.  

a. How many of the lines 𝐴𝐵, 𝐴𝐶, 𝐴𝐷, 𝐵𝐶, 𝐵𝐷, 𝐶𝐷 can be intersected by a 

line that doesn’t pass through 𝐴, 𝐵, 𝐶, 𝐷? 

b. Or by a plane that doesn’t pass through 𝐴, 𝐵, 𝐶, 𝐷? 

Solution to Problem 127 

 

128. The points 𝛼 and 𝛽 are given, 𝐴, 𝐵 ∈ 𝛼. Construct a point 𝑀 ∈ 𝛼 at an 

equal distance from 𝐴 and 𝐵, that ∈ also to plan 𝛽. 

Solution to Problem 128 

 

129.  Determine the intersection of three distinct planes 𝛼, 𝛽, 𝛾. 

Solution to Problem 129 

 

130. Given: plane 𝛼, lines 𝑑1, 𝑑2 and points 𝐴, 𝐵 ∉ 𝛼 ∪ 𝑑1 ∪ 𝑑2. Find a point 𝑀 ∈

𝛼 such that the lines 𝑀𝐴,𝑀𝐵 intersect 𝑑1 and 𝑑2. 

Solution to Problem 130 
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131. There are given the plane 𝛼, the line 𝑑 ∉ 𝛼, the points 𝐴, 𝐵 ∉  𝛼 ∪ 𝑑, and 

𝐶 ∈ 𝛼. Let 𝑀 ∈ 𝑑 and 𝐴′, 𝐵′ the points of intersection of the lines 𝑀𝐴,𝑀𝐵 

with plane 𝛼 (if they exist). Determine the point 𝑀 such that the points 

𝐶, 𝐴′, 𝐵′ to be collinear. 

Solution to Problem 131 

 

132. If points 𝐴 and 𝐵 of an open half-space 𝜎, then [𝐴𝐵] ⊂ 𝜎. The property is 

as well adherent for a closed half-space. 

Solution to Problem 132 

 

133. If point 𝐴 is not situated on plane 𝛼 and 𝐵 ∈ 𝛼 then |𝐵𝐴 ⊂ |𝛼𝐴. 

Solution to Problem 133 

 

134. Show that the intersection of a line 𝑑 with a half-space is either line 𝑑 or 

a ray or an empty set. 

Solution to Problem 134 

 

135. Show that if a plane 𝛼 and the margin of a half-space 𝜎 are secant 

planes, then the intersection 𝜎 ∩ 𝛼 is a half-plane. 

Solution to Problem 135 

 

136. The intersection of a plane 𝛼 with a half-space is either the plane 𝛼 or a 

half-plane, or an empty set. 

Solution to Problem 136 

 

137.  Let 𝐴, 𝐵, 𝐶, 𝐷 four non coplanar points and 𝛼 a plane that doesn’t pass 

through one of the given points, but it passes trough a point of the line 

|𝐴𝐵|. How many of the segments |𝐴𝐵|, |𝐴𝐶|, |𝐴𝐷|, |𝐵𝐶|, |𝐵𝐷|, |𝐶𝐷| can be 

intersected by plane 𝛼? 

Solution to Problem 137 
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138. Let 𝑑 be a line and 𝛼, 𝛽 two planes such that 𝑑 ∩ 𝛽 = ∅ and 𝛼 ∩ 𝛽 = ∅. 

Show that if 𝐴 ∈ 𝑑 and 𝐵 ∈ 𝛼, then 𝑑 ⊂ |𝛽𝐴 and 𝛼 ⊂ |𝛽𝐵. 

Solution to Problem 138 

 

139. Let |𝛼𝐴 and |𝛽𝐵 be two half-spaces such that 𝛼 ≠ 𝛽 and |𝛼𝐴 ⊂ |𝛽𝐵 or 

|𝛼𝐴 ∩ |𝛽𝐵 = ∅. Show that 𝛼 ∩ 𝛽 = ∅. 

Solution to Problem 139 

 

140. Show that the intersection of a dihedral angle with a plane 𝛼 can be: a 

right angle, the union of two lines, a line, an empty set or a closed half-

plane and cannot be any other type of set. 

Solution to Problem 140 

 

141. Let 𝑑 be the edge of a proper dihedron ∠𝛼′𝛽′, 𝐴 ∈ 𝛼′– 𝑑, 𝑏 ∈ 𝛽′– 𝑑 and 

𝑃 ∈ int.∠𝛼′𝛽′. Show that: 

a. (𝑃𝑑) ∩ int.∠𝛼′𝛽′ = |𝑑𝑃; 

b. If 𝑀 ∈ 𝑑, int.∠𝐴𝑀𝐵 = int. 𝛼′𝛽′ ∩ (𝐴𝑀𝐵). 

Solution to Problem 141 

 

142. Consider the notes from the previous problem. Show that: 

a. The points 𝐴 and 𝐵 are on different sides of the plane (𝑃𝑑); 

b. The segment |𝐴𝐵| and the half-plane |𝑑𝑃 have a common point. 

Solution to Problem 142 

 

143. If ∠𝑎𝑏𝑐 is a trihedral angle, 𝑃 ∈ int.∠𝑎𝑏𝑐 and 𝐴, 𝐵, 𝐶 are points on edges 

𝑎, 𝑏, 𝑐, different from 𝑂, then the ray |𝑂𝑃 and int. 𝐴𝐵𝐶 have a common 

point. 

Solution to Problem 143 

 

144. Show that any intersection of convex sets is a convex set. 

Solution to Problem 144 
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145. Show that the following sets are convex planes, half-planes, any open or 

closed half-space and the interior of a dihedral angle. 

Solution to Problem 145 

 

146. Can a dihedral angle be a convex set? 

Solution to Problem 146 

 

147. Which of the following sets are convex: 

a. a trihedral angle; 

b. its interior; 

c. the union of its faces; 

d. the union of its interior with all its faces? 

Solution to Problem 147 

 

148. Let 𝜎 be an open half-space bordered by plane 𝛼 and 𝑀 a closed convex 

set in plane 𝛼. Show that the set 𝑀 ∩ 𝜎 is convex. 

Solution to Problem 148 

 

149. Show that the intersection of sphere 𝑆(𝑂, 𝑟) with a plane which passes 

through 𝑂, is a circle. 

Solution to Problem 149 

 

150. Prove that the int. 𝑆(𝑂, 𝑟) is a convex set. 

Solution to Problem 150 

 

151. Show that, by unifying the midpoints of the opposite edges of a 

tetrahedron, we obtain concurrent lines. 

Solution to Problem 151 
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152. Show that the lines connecting the vertices of a tetrahedron with the 

centroids of the opposite sides are concurrent in the same point as the 

three lines from the previous example. 

Solution to Problem 152 

 

153. Let 𝐴𝐵𝐶𝐷 be a tetrahedron. We consider the trihedral angles which have 

as edges [𝐴𝐵, [𝐴𝐸, [𝐴𝐷, [𝐵𝐴, [𝐵𝐶, [𝐵𝐷, [𝐶𝐴, [𝐶𝐵, [𝐶𝐷, [𝐷𝐴, [𝐷𝐵, [𝐷𝐶. Show that 

the intersection of the interiors of these 4 trihedral angles coincides with 

the interior of tetrahedron [𝐴𝐵𝐶𝐷]. 

Solution to Problem 153 

 

154. Show that (∀) 𝑀 ∈ int. [𝐴𝐵𝐶𝐷] (∃) 𝑃 ∈ |𝐴𝐵| and 𝑄 ∈ |𝐶𝐷| such that 𝑀 ∈

‖𝑃𝑄. 

Solution to Problem 154 

 

155. The interior of tetrahedron [𝐴𝐵𝐶𝐷] coincides with the union of segments 

|𝑃𝑄| with 𝑃 ∈ |𝐴𝐵| and 𝑄 ∈ |𝐶𝐷|, and tetrahedron [𝐴𝐵𝐶𝐷] is equal to the 

union of the closed segments [𝑃𝑄], when 𝑃 ∈ [𝐴𝐵] and 𝑄 ∈ [𝐶𝐷]. 

Solution to Problem 155 

 

156. The tetrahedron is a convex set. 

Solution to Problem 156 

 

157. Let 𝑀1 and 𝑀2 convex sets. Show that by connecting segments [𝑃𝑄], for 

which 𝑃 ∈ 𝑀1 and 𝑄 ∈ 𝑀2 we obtain a convex set. 

Solution to Problem 157 

 

158. Show that the interior of a tetrahedron coincides with the intersection of 

the open half-spaces determined by the planes of the faces and the 

opposite peak. Define the tetrahedron as an intersection of half-spaces. 

Solution to Problem 158 
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Solutions 
 

Solution to Problem 118. 

We assume that 𝑑 ∩ 𝛼 = {𝐴, 𝐵} ⇒ 𝑑 ⊂ 𝛼. 

It contradicts the hypothesis ⟹ 𝑑 ∩ 𝛼 = {𝐴} or 𝑑 ∩ 𝛼 = ∅. 

 

Solution to Problem 119. 

We assume that all the points belong to the plane 𝛼 ⟹ (∄) for the points that 

are not situated in the same plane. False! 

 

Solution to Problem 120. 

∃  𝐴, 𝐵, 𝐶, 𝐷, which are not in the same plane. We assume that 𝐴𝐵 ∩ 𝐶𝐷 = {0} ⟹ 

𝐴𝐵 and 𝐶𝐷 are contained in the same plane and thus 𝐴, 𝐵, 𝐶, 𝐷 are in the same 

plane. False, it contradicts the hypothesis ⟹𝐴𝐵 ∩ 𝐶𝐷 = ∅⟹ (∃)  lines with no 

point in common. 

 

Solution to Problem 121. 

(∃) 𝐴 ∉  𝑑 (if all the points would ∈ 𝑑, the existence of the plane and space would 

be negated). Let 𝛼 = (𝑑𝐴), (∃)𝐵 ∉ 𝛼 (otherwise the space wouldn’t exist). Let 𝛽 =

(𝐵𝑑), 𝛼 ≠ 𝛽 and both contain line 𝑑. 

 

Solution to Problem 122. 

We show that 𝑑 ≠ 𝑑′ ≠ 𝑑′′ ≠ 𝑑. 

Let   𝑑 ∩ 𝑑′ = {𝐴} = (𝑑, 𝑑′) ⟹ {
𝑑 ⊂ 𝛼
𝑑′ ⊂ 𝛼

 

𝑑 ∩ 𝑑′ = {𝐵}
𝐵 ≠ 𝐴

⟹ {
𝐵 ∈ 𝑑
𝑑 ⊂∝

⟹ 𝐵 ∈ 𝑎 , 𝐵 ∈ 𝑑′ 
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𝑑′′ ∩ 𝑑′ = {𝐶}
𝐶 ≠ 𝐵
𝐶 ≠ 𝐴

⟹ 𝐶 ∈ 𝑑′

𝑑′ ⊂ ∝
⟹ 𝐶 ∈ 𝛼, 𝐶 ∈ 𝑑′′ 

⟹
𝑑 = 𝑑′

or
𝑑 = 𝑑′′

 

⟹ 𝑑′′ ⊂ 𝛼, so the lines are located on the same plane α. 

 

If 
𝑑 ∩ 𝑑′ = {𝐴} ⟹ 𝐴 ∈ 𝑑′

𝑑′′ ∩ 𝑑 = {𝐴} ⟹ 𝐴 ∈ 𝑑′′
} ⟹ 𝑑′ ∩ 𝑑′′ = {𝐴}, and the three lines have a point in 

common. 

 

Solution to Problem 123. 

 

a. 𝐷 ∉ (𝐴𝐵𝐶). 

We assume that 𝐷, 𝐴, 𝐵 collinear ⟹ (∃)𝑑 such that 
𝐷 ∈ 𝑑, 𝐴 ∈ 𝑑, 𝐵 ∈ 𝑑
𝐴 ∈ (𝐴𝐵𝐶), 𝐵 ∈ (𝐴𝐵𝐶)

}
𝑇2
⇒  𝑑 ⊂

(𝐴𝐵𝐶) ⟹ 𝐷 ∈ (𝐴𝐵𝐶) – false. Therefore, the points 𝐷, 𝐴, 𝐵 are not collinear. 

b. Let (𝐷𝐴𝐵) ∩ (𝐵𝐶𝐷) ∩ (𝐷𝐶𝐴) = 𝐸.  

As the planes are distinct, their intersections are: 
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(𝐷𝐴𝐵) ∩ (𝐷𝐵𝐶) = 𝐷𝐵
(𝐷𝐴𝐵) ∩ (𝐷𝐶𝐴) = 𝐷𝐴
(𝐷𝐵𝐶) ∩ (𝐷𝐶𝐴) = 𝐷𝐶

}
⟹  If (𝐷𝐴𝐵) = (𝐷𝐵𝐶)                                                     
⟹ 𝐴, 𝐵, 𝐶, 𝐷 coplanar, contrary to the hypothesis.

 

We suppose that (∃)𝑀 ∈ 𝐸,𝑀 ≠ 𝐷 ⟹
𝑀 ∈ 𝐷𝐵
𝑀 ∈ 𝐷𝐴

} ⟹
𝐵 ∈ 𝑀𝐷
𝐴 ∈ 𝑀𝐷

}⟹ 𝐴, 𝐵, 𝐷 are collinear 

(false, contrary to point a.). Therefore, set 𝐸 has a single point 𝐸 =  {𝐷}. 

 

Solution to Problem 124. 

 

We showed at the previous exercise that if 𝐷 ∉ (𝐴𝐵𝐶), (𝐷𝐴𝐵) ≠ (𝐷𝐵𝐶). We show 

that 𝐸, 𝐹, 𝐺 are not collinear. We assume the opposite. Then, 

 

Having three common points 𝐷,𝐵 and 𝐺 ⟹ false. So 𝐸, 𝐹, 𝐺 are not collinear and 

determine a plane (𝐸𝐹𝐺).  

 

⟹𝑃,𝑄, 𝑅 are collinear because ∈ to the line of intersection of the two planes. 
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Solution to Problem 125. 

The planes are (𝐴, 𝑑′); (𝐵, 𝑑′); (𝐶, 𝑑′). 

 

Generalization: The number of planes corresponds to the number of points on 

line 𝑑 because 𝑑′ contains only 2 points. 

 

Solution to Problem 126. 

Let line 𝑑 be given, and 𝐴 any point such that 𝐴 ∉ 𝑑. 

 

We obtain the plane 𝛼 = (𝐴, 𝑑), and let 𝑀 ∉ 𝛼. The line 𝑑′ = 𝐴𝑀, 𝑑′ ⊄ 𝛼 is not 

thus contained in the same plane with 𝑑. The desired planes are those of type 

(𝑀𝑑),𝑀 ∈ 𝑑′, that is an infinity of planes. 

 

Solution to Problem 127. 

a. (∀) 3 points determine a plane. Let plane (𝐴𝐵𝐷). We choose in this plane 𝑃 ∈

|𝐴𝐷| and 𝑄 ∈ |𝐴𝐵| such that 𝑃 ∈ |𝐵𝑄|, then the line 𝑃𝑄 separates the points 𝐴 

and 𝐷, but does not separate 𝐴 and 𝐵, so it separates 𝑃 and 𝐷 ⇒ 𝑃𝑄 ∩ |𝐵𝐷| = 𝑅, 

where 𝑅 ∈ |𝐵𝐷|. 

Thus, the line 𝑃𝑄 meets 3 of the given lines. Let’s see if it can meet more. 
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We assume that 

 

it has two points in common with the plane. 

 

⟹𝐴,𝐵, 𝐶, 𝐷 coplanar – false.  

Thus, 

 

false. 

We show in the same way that 𝑃𝑄 does not cut 𝐴𝐶 or 𝐷𝐶, so a line meets at 

most three of the given lines. 

b. We consider points 𝐸, 𝐹, 𝐺 such that 𝐸 ∈ |𝐵𝐶|, 𝐴 ∈ |𝐷𝐹|, 𝐷 ∈ |𝐵𝐺|. These points 

determine plane (𝐸𝐹𝐺) which obviously cuts the lines 𝐵𝐶, 𝐵𝐷 and 𝐵𝐷. 𝐹𝐺 does not 

separate 𝐴 and 𝐷 or 𝐵𝐷 ⟹ it does not separate 𝐴 or 𝐵 ⟹ 𝐴 ∈ |𝐵𝑅|.  
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 Let’s show that (𝐸𝐹𝐺) meets as well the lines 𝐴𝐵, 𝐶𝐷, 𝐴𝐶. In the plane (𝐴𝐵𝐷) we 

consider the triangle 𝐹𝐷𝐺 and the line 𝐴𝐵. 

As this line cuts side |𝐹𝐷|, but it does not cut |𝐷𝐺|, it must cut side |𝐹𝐺|, so 𝐴𝐵 ∩

|𝐹𝐺| = {𝑅} ⟹ 𝑅 ∈ |𝐹𝐺| ⊂ (𝐸𝐹𝐺), so 𝐴𝐵 ∩ (𝐸𝐹𝐺) = {𝑅}. In the plane (𝐵𝐶𝐷), the line 

𝐸𝐺 cuts |𝐵𝐶| and does not cut |𝐵𝐷|, so 𝐸𝐺 cuts the side |CD|, 𝐸𝐺 ∩ |𝐶𝐷| = {𝑃} ⟹

𝑃 ∈ 𝐸𝐺 ⊂ (𝐸𝐹𝐺) ⟹ 𝐶𝐷 ∩ (𝐸𝐹𝐺) = {𝑃}. 

𝑅 ∈ (𝐸𝐹𝐺), 𝑅 does not separate 𝐴 and 𝐵
𝐸 separates 𝐵 and 𝐶

} ⟹ 𝑅 ∈∩ |𝐴𝐶| = 𝑄 ⟹ 𝑄 ∈ 𝑅𝐸 ⟹ 𝑄

∈ (𝐸𝐹𝐺) ∩ 𝐴𝐶 = {𝑄}. 

  

Solution to Problem 128. 

We assume problem is solved, if 
𝑀 ∈ 𝛼
𝑀 ∈ 𝛽

} ⟹ 𝛼 ∩ 𝛽 ≠ ∅,⟹ 𝛼 ∩ 𝛽 = 𝑑. 

 

As ||𝑀𝐴|| = ||𝑀𝐵|| ⟹ 𝑀 ∈ the bisecting line of the segment [𝐴𝐵]. 

So, to find 𝑀, we proceed as follows: 

1. We look for the line of intersection of planes 𝛼 and 𝛽, d. If 𝛼 ∥ 𝛽, the 

problem hasn’t got any solution. 

2. We construct the bisecting line 𝑑′ of the segment [𝐴𝐵] in the plane 𝛼. 

3. We look for the point of intersection of lines 𝑑 and 𝑑′. If 𝑑 ∥ 𝑑′, the problem 

hasn’t got any solution. 
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Solution to Problem 129. 

If 𝛼 ∩ 𝛽 = ∅⟹ 𝛼 ∩ 𝛽 ∩ 𝛾 = ∅. If 𝛼 ∩ 𝛽 = 𝑑, the desired intersection is 𝑑 ∩ 𝛾, which 

can be a point (the 3 planes are concurrent), the empty set (the line of intersection 

of two planes is || with the third) or line 𝑑 (the 3 planes which pass through 𝑑 are 

secant). 

 

Solution to Problem 130. 

To determine 𝑀, we proceed as follows: 

1. We construct plane (𝐴𝑑1) and we look for the line of intersection with 𝛼1, 𝑑1. 

If 𝑑1 (/∃), ∄ neither does 𝑀. 

2. We construct plane (𝐵𝑑2) and we look for the line of intersection with 𝛼, 𝑑2′. 

If 𝑑2′ does not exist, neither does 𝑀. 

3. We look for the point of intersection of lines 𝑑1′ and 𝑑2′. The problem has 

only one solution if the lines are concurrent, an infinity if they are coinciding 

lines and no solution if they are parallel. 

 

Solution to Problem 131. 

 

We assume the problem is solved. 

a. First we assume that 𝐴. 𝐵, 𝐶 are collinear. As 𝐴𝐴′ and 𝐵𝐵′ are concurrent lines, 

they determine a plane 𝛽, that intersects 𝛼 after line 𝐴′𝐵′. 

As 

 

and points 𝐶, 𝐴, 𝐵′ are collinear (∀)𝑀 ∈ 𝑑. 
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b. We assume that 𝐴, 𝐵, 𝐶 are not collinear. 

We notice that: (𝐴𝐴′, 𝐵𝐵′) = 𝛽 (plane determined by 2 concurrent lines). 

𝛽 ∪ 𝛼 = 𝑑′ and 𝐶 ∈ 𝑑′. 

 

To determine 𝑀 we proceed as follows: 

1) We determine plane (𝐴𝐵𝐶); 

2) We look for the point of intersection of this plane with line 𝑑, so 𝑑 ∩

(𝐴𝐵𝐶) = {𝑀} is the desired point. 

Then (𝐴𝐵𝐶) ∩ 𝛼 = 𝑑′. 

 

⟹ 𝐴′,𝐵′, 𝐶′ are collinear. 

 

Solution to Problem 132. 

 

𝐴 ∈ 𝜎 and 𝐵 ∈ 𝜎 ⟹ [𝐴𝐵] ∩ 𝛼 ≠ ∅. 

Let 𝜎 = |𝛼𝐴 = |𝛼𝐵. 

Let 𝑀 ∈ |𝐴𝐵| and we must show that 𝑀 ∈ 𝜎(∀)𝑀 inside the segment. 

We assume the contrary that 𝑀 ∉ 𝜎 ⟹ (∃)𝑃 such that [𝐴𝑀] ∩ 𝑑 = {𝑃} ⟹ 𝑃 ∈

[𝐴𝑀] ⟹ 𝑃 ∈ [𝐴𝐵] ⟹ [𝐴𝐵] ∩ 𝛼 ≠ ∅ false. 

𝑃 ∈ 𝛼, so 𝑀 ∈ 𝜎. The property is also maintained for the closed half-space.  
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Compared to the previous case there can appear the situation when one of the 

points 𝐴 and 𝐵 ∈ 𝛼 or when both belong to 𝛼. 

 

If 𝐴 ∈ 𝛼, 𝐵 ∈ 𝜎, |𝐴𝐵| ∩ 𝛼 ≠ ∅  and we show as we did above that: 

 

If: 

 

 

Solution to Problem 133. 

 

Let 

 

So 

 

 

Solution to Problem 134. 

Let 𝛼 be a plane and 𝜎1, 𝜎2 the two half-spaces that it determines. We consider 

half-space  𝜎1. 
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𝑃 determines on 𝑑 two rays, |𝑃𝐴 and |𝑃𝐵 where 

 

𝐴 and 𝐵 are in different half-spaces. 

We assume 

 

 

Solution to Problem 135. 

 

Let 𝜎 be an open half-space and 𝑝 its margin and let 𝑑 = 𝛼 ∩ 𝛽. 

We choose points 𝐴 and 𝐵 ∈ 𝛼 –  𝑑, on both sides of line 𝑑 ⟹ 

 

⟹ 𝐴,𝐵 are on one side and on the other side of 𝛽 and it means that only one of 

them is on 𝜎. 

We assume that 𝐴 ∈ 𝜎 ⟹ 𝐵 ∈ 𝜎. We now prove 𝛼 ∩ 𝜎 = |𝑑𝐴. 

𝛼 ∩ 𝜎 ⊂ |𝑑𝐴 
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Let 

 

[𝑀𝐵] ∈ 𝑑 ≠ ∅ ⟹ 𝑀 and 𝐵 are on one side and on the other side of line 𝑑 ⟹ 𝑀 is 

on the same side of line 𝑑 with 𝐴 ⟹ 𝑀 ∈ |𝑑𝐴 

 

⟹𝑀 ∈ 𝑎 ∩ 𝜎, so |𝑑𝐴 ⊂ 𝑎 ∩ 𝜎. 

 

Solution to Problem 136. 

Let σ be the considered half-space and β its margin. There are more possible 

cases: 

 

In this case it is possible that: 

 

Let 

 

 

is a half-plane according to a previous problem. 

 

Solution to Problem 137. 
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The intersection of two planes is a line and it cuts only two sides of a triangle. 

There are more possible cases: 

1. 𝑑 cuts |𝐴𝐵| and |𝐵𝐶| 

𝑑′ cuts |𝐴𝐵| and |𝐴𝐷|, 𝛼 cuts |𝐴𝐷| so it has a point in common with (𝐴𝐷𝐶) and let 

(𝐴𝐷𝐶) ∩ 𝛼 = 𝑑′′. 

𝑑′′ cuts |𝐴𝐷| and does not cut |𝐴𝐶| ⟹ 𝑑′′ cuts |𝐷𝐶| 

𝛼 cuts |𝐷𝐶| and |𝐵𝐶| ⟹ it does not cut |𝐵𝐷|. In this case 𝛼 cuts 4 of the 6 

segments (the underlined ones). 

2. 𝑑 cuts |𝐴𝐵| and |𝐴𝐶|, it does not cut |𝐵𝐷| 

𝑑′ cuts |𝐴𝐵| an |𝐴𝐷|, it does not cut |𝐵𝐷| 

𝑑′′ cuts |𝐴𝐷| an |𝐴𝐶|, it does not cut |𝐷𝐶| 

⟹ 𝛼 does not intersect plane (𝐵𝐶𝐷). In this case 𝛼 intersects only 3 of the 6 

segments. 

3. 𝑑 cuts |𝐴𝐵| and |𝐵𝐶|, it does not cut |𝐴𝐶| 

𝑑′ cuts |𝐴𝐵| an |𝐵𝐷|, it does not cut |𝐷𝐶| 

𝛼 intersects |𝐵𝐷| and |𝐵𝐶|, so it does not cut |𝐷𝐶| 

In ∆𝐵𝐷𝐶 ⟹ 𝛼 does not intersect plane (𝐴𝐷𝐶) 

In this case 𝛼 intersects only three segments. 

4. 𝑑 cuts |𝐴𝐵| and |𝐴𝐶|, it does not cut |𝐵𝐶| 

𝑑′ cuts |𝐴𝐵| an |𝐵𝐷|, it does not cut |𝐴𝐷| 

𝑑′′ cuts |𝐴𝐶| an |𝐷𝐶| 

𝛼 does not cut |𝐵𝐶| in triangle 𝐵𝐷𝐶. So 𝛼 intersects 4 or 3 segments. 

 

Solution to Problem 138. 

 

Let 

 

 

Let 
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Solution to Problem 139. 

We first assume that 𝛼 ≠ 𝛽 and |𝛼𝐴 ⊂ |𝛽𝐵. 

 

As 

 

The hypothesis can then be written as 𝛼 ≠ 𝛽 and |𝛼𝐴 ⊂ |𝛽𝐵. Let’s show that 𝛼 ∩

𝛽 = ∅. By reductio ad absurdum, we assume that 𝛼 ∩ 𝛽 ≠ ∅⟹ (∃)𝑑 = 𝛼 ∩ 𝛽 and let 

𝑂 ∈ 𝑑, so 𝑂 ∈ 𝛼 and 𝑂 ∈ 𝛽. We draw through 𝐴 and 𝑂 a plane 𝑟, such that 𝑑 ∈ 𝑟, so 

the three planes 𝛼, 𝛽 and 𝑟 do not pass through this line. As 𝑟 has the common 

point 𝑂 with 𝛼 and 𝛽, it is going to intersect these planes. 

 

which is a common point of the 3 planes. Lines 𝛿 and 𝛿′ determine 4 angles in 

plane 𝑟, having 𝑂 as a common peak, 𝐴 ∈ the interior of one of them, let  𝐴 ∈ int. 

ℎ𝑘̂. We consider 𝐶 ∈ int. ℎ𝑘̂. 

Then 𝐶 is on the same side with 𝐴 in relation to 𝛿′, so 𝐶 is on the same side with 

𝐴 in relation to 𝛼 ⟹ 𝐶 ∈ |𝛼𝐴. 
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But 𝐶 is on the opposite side of 𝐴 in relation to 𝛿, so 𝐶 is on the opposite side of 

𝐴 in relation to 𝛽 ⟹ 𝐶 ∉ |𝛽𝐴. So |𝛼𝐴 ⊄ |𝛽𝐴 – false – it contradicts the hypothesis ⟹ 

So 𝛼 ∩ 𝛽 = ∅. 

 

Solution to Problem 140. 

Let 𝑑 be the edge of the given dihedral angle. Depending on the position of a line 

in relation to a plane, there can be identified the following situations: 

 

 

 

The ray with its origin in 𝑂, so 𝛼 ⊂ 𝛽′𝛾′̂ = 𝑑′𝑑′′̂ thus an angle. 

 

 

 

Indeed, if we assumed that 𝑑′ ∩ 𝑑′′ ≠ ∅ ⟹ (∃)𝑂 ∈ 𝑑′ ∩ 𝑑′′. 

 

false – it contradicts the hypothesis. 

 



Florentin Smarandache 

128 

 

Or 

 

in this case 𝛼 ∩ 𝛽′𝛾 ′̂ = 𝑑′′ - a line.  

 

 

Then 𝛼 ∩ 𝛽′𝛾 ′̂ = ∅. 

 

 

𝑑 ∩ 𝛼 = 𝑑, but 𝛼 ≠ 𝛽, 𝛼 ≠ 𝛾 

𝛼 ∩ 𝛽′𝛾 ′̂ = 𝑑 thus the intersection is a line. 

 

In this case the intersection is a closed half-plane. 

 

Solution to Problem 141. 

 

 

is a half-plane 
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From (*) and (**), 

 

 

 

Solution to Problem 142. 

 

 

 

⟹ points 𝐴 and 𝐵 are on different sides of (𝑑𝑃). 

 

Solution to Problem 143. 

 

is a half-plane 

so they are secant planes 
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Let rays  

As 𝑃 is interior to the dihedron formed by any half-plane passing through 𝑂 of the 

trihedral, so 

 

So 

 

𝑃 and 𝑄 in the same half-plane det. 𝑂𝐴 ⇒ 𝑃 and 𝑄 on the same side of 𝑂𝐴 (1)  

 

⟹ 𝑃 and 𝐴 are on the same side of (𝑂𝐵𝐶) ∩ 𝛾′ ⟹  𝑃 and 𝐴 are on the same side of 

𝑂𝑄 (2). 

From (1) and (2) ⟹ 

 

 

 

Solution to Problem 144. 

Let 𝑀 and 𝑀′′be two convex sets and 𝑀 ∩𝑀′ their intersection. Let 

 

 

so the intersection is convex. 

 

Solution to Problem 145. 

 

a. Let 𝑃, 𝑄 ∈ 𝛼; 𝑃 ≠ 𝑄 ⟹ |𝑃𝑄 = 𝑃𝑄 (the line is a convex set) 

𝑃𝑄 ⊂ 𝛼, so |𝑃𝑄| ⊂ 𝛼, so the plane is a convex set. 
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b. Half-planes: Let 𝑆 = |𝑑𝐴 and 𝑃, 𝑄 ∈ 𝑆 ⟹ |𝑃𝑄| ∩ 𝑑 = ∅. Let 𝑀 ∈ |𝑃𝑄| ⟹ |𝑃𝑀| ⊂

|𝑃𝑄| ⟹ |𝑃𝑀| ∩ 𝑑 = ∅ ⟹  𝑃 and 𝑀 are in the same half-plane ⟹𝑀 ∈ 𝑆. So 

|𝑃𝑄| ⊂ 𝑆 and 𝑆 is a convex set. 

 

Let 𝑆′ = [𝑑𝐴. There are three situations: 

1) 𝑃, 𝑄 ∈ |𝑑𝐴 – previously discussed; 

2) 𝑃, 𝑄 ∈ 𝑑 ⟹ |𝑃𝑄| ⊂ 𝑑 ⊂ 𝑆′; 

3) 𝑃 ∈ 𝑑, 𝑄 ∉ 𝑑 ⟹ |𝑃𝑄| ⊂ |𝑑𝑄 ⟹ |𝑃𝑄| ⊂ |𝑑𝐴 ⊂ [𝑑𝐴 so [𝑑𝐴 is a convex set. 

 

c. Half-spaces: Let 𝜎 = |𝛼𝐴 and let 𝑃, 𝑄 ∈ 𝜎 ⟹ |𝑃𝑄| ∩ 𝛼 = ∅. 

Let 𝑀 ∈ |𝑃𝑄| ⟹ |𝑃𝑀| ⊂ |𝑃𝑄| ⟹ |𝑃𝑀| ∩ 𝛼 = ∅. 

Let 𝜎′ = [𝛼𝐴. There are three situations: 

1) 𝑃, 𝑄 ∈ |𝛼𝐴 previously discussed; 

2) 𝑃, 𝑄 ∈ 𝛼 ⟹ |𝑃𝑄| ⊂ 𝛼 ⊂ 𝜎′; 

3) 𝑃 ∈ 𝛼, 𝑄 ∉ 𝛼. 

 

and so 𝜎′ is a convex set. 

 

d. the interior of a dihedral angle: 

𝑖𝑛𝑡. 𝛼′𝛽′ = |𝛼𝐴 ∩ |𝛽𝐵 and as each half-space is a convex set and their intersection 

is the convex set. 
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Solution to Problem 146. 

No. The dihedral angle is not a convex set, because if we consider it as in the 

previous figure 𝐴 ∈ 𝛽′ and 𝐵 ∈ 𝛼′. 

 

Only in the case of the null or straight angle, when the dihedral angle 

becomes a plane or closed half-plane, is a convex set. 

 

Solution to Problem 147. 

 

a. No. The trihedral angle is not the convex set, because, if we take 𝐴 ∈ 𝑎 and 𝑄 ∈  

the int. 𝑏𝑐̂ determined by 𝑃 ∈ the int. 𝑎𝑏𝑐̂, (∃)𝑅 such that |𝑂𝑃 ∩ the int. 𝐴𝐵𝐶 =

{𝑅}, 𝑅 ∈ |𝐴𝑄|, 𝑅 ∉ 𝑎𝑏𝑐̂. 

So 𝐴, 𝑄 ∈ 𝑎𝑏𝑐̂, but |𝐴𝑄| ∉ 𝑎𝑏𝑐. 

b. 𝛣 = (𝑂𝐶𝐴), 𝛾 = (𝑂𝐴𝐵) is a convex set as an intersection of convex sets. 

    C) It is the same set from a. and it is not convex. 

    D) The respective set is [𝛼𝐴 ∩ [𝛽𝐵 ∩ [𝛾𝐶, intersection of convex sets and, thus, it 

is convex. 

 

Solution to Problem 148. 

 

Let 𝜎 = |𝛼𝐴 and 𝑀 ⊂ 𝛼. Let 𝑃, 𝑄 ∈ 𝑀 ∩ 𝜎. 

We have the following situations: 
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Solution to Problem 149. 

 

 

Solution to Problem 150. 

 

Let 

 

In plane (𝑂𝑃𝑄), let 𝑀 ∈ (𝑃𝑄). 

 

 

 

Solution to Problem 151. 

Let:  𝑃 midpoint of |𝐴𝐵| 

  𝑅 midpoint of |𝐵𝐶| 

  𝑄 midpoint of |𝐷𝐶| 

  𝑆 midpoint of |𝐴𝐷| 

  𝑇 midpoint of |𝐵𝐷| 

   𝑈 midpoint of |𝐴𝐶| 

 

or 
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In triangle ABC: 

 

In triangle DAC: 

 

 

⟹ parallelogram ⟹ |𝑃𝑄| and |𝑆𝑅| intersect at their midpoint 𝑂. 

 

⟹ 𝑆𝑇𝑅𝑈 parallelogram. 

⟹ |𝑇𝑈| passes through midpoint 𝑂 of |𝑆𝑅|. 

Thus the three lines 𝑃𝑅, 𝑆𝑅, 𝑇𝑈 are concurrent in 𝑂. 

 

Solution to Problem 152. 

 

Let tetrahedron 𝐴𝐵𝐶𝐷 and 𝐸 be the midpoint of |𝐶𝐷|. The centroid 𝐺 of the face 

𝐴𝐶𝐷 is on |𝐴𝐸| at a third from the base. The centroid 𝐺′ of the face 𝐵𝐶𝐷 is on |𝐵𝐸| 

at a third from the base |𝐶𝐷|. 

We separately consider ∆𝐴𝐸𝐵. Let 𝐹 be the midpoint of 𝐴𝐵, so 𝐸𝐹 is median in 

this triangle and, in the previous problem, it was one of the 3 concurrent segments 

in a point located in the middle of each. 

Let 𝑂 be the midpoint of |𝐸𝐹|. We write 𝐴𝑂 ∩ 𝐸𝐵 = {𝐺′} and 𝐵𝐺 ∩ 𝐸𝐴 = {𝐺}. 
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From (1) and (2)  

 

⟹ 𝐺′ is exactly the centroid of face 𝐵𝐶𝐷, because it is situated on median |𝐸𝐵| at 

a third from 𝐸. We show in the same way that 𝐺 is exactly the centroid of face 𝐴𝐶𝐷. 

We’ve thus shown that 𝐵𝐺 and 𝐴𝐺′ pass through point 𝑂 from the previous 

problem. 

We choose faces 𝐴𝐶𝐷 and 𝐴𝐶𝐵 and mark by 𝐺′′ the centroid of face 𝐴𝐶𝐵, we 

show in the same way that 𝐵𝐺 and 𝐷𝐺′′ pass through the middle of the segment 

|𝑀𝑁| (|𝐴𝑀| ≡ |𝑀𝐶|, |𝐵𝑁| ≡ |𝑁𝐷|) thus also through point 𝑂, etc. 

 

Solution to Problem 153. 

 

We mark planes (𝐴𝐵𝐶) = 𝛼, (𝐴𝐷𝐶) = 𝛽, (𝐵𝐷𝐶) = 𝛾, (𝐴𝐵𝑂) = 𝛿. 

Let 𝑀 be the intersection of the interiors of the 4 trihedral angles. 

We show that: 

𝑀 = int. [𝐴𝐵𝐶𝐷], by double inclusion. 

1. 𝑃 ∈ 𝑀 ⟹ 𝑃 ∈ int. 𝑎𝑏𝑐̂ ∩ int. 𝑎𝑓𝑑̂ ∩ int. 𝑑𝑒𝑐̂ ∩ int. 𝑏𝑓𝑐̂ ⟹ 𝑃 ∈ |𝛼𝐷 ∩ |𝛾𝐶 ∩ 𝛽𝐵 and 

𝑃 ∈ |𝛿𝐴 ∩ |𝛾𝐶 ∩ |𝛽𝐵 ⟹ 𝑃 ∈ |𝛼𝐷 and 𝑃 ∈ |𝛽𝐵 and 𝑃 ∈ |𝛾𝐶 and 𝑃 ∈ |𝛿𝐶 ⟹ 𝑃 ∈

|𝛼𝐷 ∩ |𝛾𝐶 ∩ 𝛽𝐵 ∩ 𝛿𝐴 ⟹ 𝑃 ∈ int. [𝐴𝐵𝐶𝐷]. So 𝑀 ∈ [𝐴𝐵𝐶𝐷]. 

2. Following the inverse reasoning we show that [𝐴𝐵𝐶𝐷] ⊂ 𝑀 from where the 

equality. 
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Solution to Problem 154. 

 

 

such that 

 

such that 𝑁 ∈ |𝐶𝑃|, (𝐴𝐷𝐵) ∩ (𝐷𝑃𝐶) = 𝐷𝑃. 

From 𝑁 ∈ |𝐶𝑃| and ∈ |𝐷𝑁| 
𝑙𝑒𝑚𝑚𝑎
⇒     int. 𝐷𝑃𝐶 ⟹ 𝑀 ∈ int. 𝐷𝑃𝐶 ⟹ (∃)𝑄 ∈ |𝐷𝐶|. 

So we showed that (∃)𝑃 ∈ |𝐴𝐵| and 𝑄 ∈ |𝐷𝐶| such that 𝑀 ∈ |𝑃𝑄|. 

 

Solution to Problem 155. 

Let ℳ be the union of the open segments |𝑃𝑄|. We must prove that: int. [𝐴𝐵𝐶𝐷] =

ℳ through double inclusion. 

1. Let 𝑀 ∈ int. [𝐴𝐵𝐶𝐷] ⟹ (∀)𝑃 ∈ |𝐴𝐵 and 𝑄 ∈ |𝐶𝐷 such that 𝑀 ∈ |𝑃𝑄| ⟹ 𝑀 ∈ ℳ so 

int. [𝐴𝐵𝐶𝐷] ⊂ ℳ. 

2. Let 𝑀 ∈ℳ ⟹ (∃)𝑃 ∈ |𝐴𝐵| and 𝑄 ∈ |𝐶𝐷| such that 𝑀 ∈ |𝑃𝑄|. Points 𝐷, 𝐶 and 𝑃 

determine plane (𝑃𝐷𝐶) and (𝑃𝐷𝐶) ∩ (𝐴𝐶𝐵) = 𝑃𝐶, (𝑃𝑈𝐶) ∩ (𝐴𝐷𝐵) = 𝑃𝐷. 

As (∀)𝑄 ∈ |𝐶𝐷| such that 𝑀 ∈ |𝑃𝑄| ⟹ 𝑀 ∈ [𝑃𝐶𝐷] ⟹ |(∀)𝑅 ∈ |𝑃𝐶| such that 𝑀 ∈ |𝐷𝑅|. 

If 𝑃 ∈ |𝐴𝐵| and 𝑅 ∈ |𝑃𝐶| ⟹ 𝑅 ∈  int. 𝐴𝐶𝐵 such that 𝑀 ∈ |𝐷𝑅| ⟹ 𝑀 int. [𝐴𝐵𝐶𝐷] ⟹

ℳ ⊂ int. [𝐴𝐵𝐶𝐷]. 

Working with closed segments we obtain that (∀)𝑅 ∈ [𝐴𝐶𝐵] such that 𝑀 ∈ [𝐷𝑅], 

thus obtaining tetrahedron [𝐴𝐵𝐶𝐷]. 

 

Solution to Problem 156. 

Let 𝑀 ∈ [𝐴𝐵𝐶𝐷]  ⟹ (∃) 𝑃 ∈ [𝐴𝐵𝐶] such that 𝑀 ∈ [𝐷𝑃]. 

Let 𝑁 ∈ [𝐴𝐵𝐶𝐷] ⟹ (∃) 𝑄 ∈ [𝐴𝐵𝐶] such that 𝑁 ∈ [𝐷𝑄]. 

The concurrent lines 𝐷𝑀 and 𝐷𝑁 determine angle 𝐷𝑀𝑁. 

The surface of triangle 𝐷𝑃𝑄 is a convex set. 
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Let  

 

such that 𝑂 ∈ [𝐷𝑅]. But [𝑃𝑄] ⊂ [𝐴𝐵𝐶] because 𝑃 ∈ [𝐴𝐵𝐶] ∩ 𝑄 ∈ [𝐴𝐵𝐶] and the 

surface of the triangle is convex. So (∃)𝑅 ∈ [𝐴𝐵𝐶] such that  

 

and the tetrahedron is a convex set. 

 

Note: The tetrahedron can be regarded as the intersection of four closed half-

spaces which are convex sets.  

 

Solution to Problem 157. 

Let ℳ be the union of the segments [𝑃𝑄] with 𝑃 ∈ ℳ1 and 𝑄 ∈ ℳ2. 

Let 𝑥, 𝑥’ ∈ ℳ ⟹ (∀)𝑃 ∈ ℳ1 and 𝑄 ∈ ℳ2 such that 𝑥 ∈ [𝑃𝑄]; 

(∃)𝑃′ ∈ ℳ1 and 𝑄′ ∈ ℳ2 such that 𝑥′ ∈ [𝑃′𝑄′]. 

From 𝑃, 𝑃′ ∈ ℳ1 ⟹ [𝑃𝑃′]′ ∈ ℳ1 which is a convex set. 

From 𝑄,𝑄′ ∈ ℳ2⟹ [𝑄𝑄′] ∈ ℳ2 which is a convex set. 

The union of all the segments [𝑀𝑁] with 𝑀 ∈ [𝑃𝑃′] and 𝑁 ∈ [𝑄𝑄′] is tetrahedron 

[𝑃𝑃′𝑄𝑄′] ⊂ ℳ.  

So from 𝑥, 𝑥′ ∈ ℳ ⟹ |𝑥𝑥’| ⊂  ℳ, so set ℳ is convex. 

 

Solution to Problem 158. 

The interior of the tetrahedron coincides with the union of segments |𝑃𝑄|, 𝑃 ∈

|𝐴𝐵| and 𝑄 ∈ |𝐶𝐷|, that is int. [𝐴𝐵𝐶𝐷] = {|𝑃𝑄| ∖ 𝑃 ∈ |𝐴𝐵|, 𝑄 ∈ |𝐶𝐷|}. 

Let’s show that: 
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1. Let  

 

 

 

2. Let  

 

 

If we assume 𝑁 ∈ |𝐷𝑀| ⟹ |𝐷𝑀| ∩ (𝐴𝐵𝐶) ≠ ∅ ⟹ 𝑀 and 𝐷 are in different half-

spaces in relation to (𝐴𝐵𝐶) ⟹ 𝑀 ∉ (𝐴𝐵𝐶), 𝐷, false (it contradicts the hypothesis). 

     So  

 

and the second inclusion is proved. 

As regarding the tetrahedron: [𝐴𝐵𝐶𝐷] = {[𝑃𝑄] ∖ 𝑃 ∈ [𝐴𝐵] and 𝑄 ∈ [𝐶𝐷]}. 
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If 

𝑃 = 𝐴,𝑄 ∈ [𝐶𝐷], [𝑃𝑄] describes face [𝐴𝐷𝐶]

𝑃 = 𝐵,𝑄 ∈ [𝐶𝐷], [𝑃𝑄] describes face [𝐵𝐷𝐶]

𝑄 = 𝐶, 𝑃 ∈ [𝐴𝐵], [𝑃𝑄] describes face [𝐴𝐵𝐶].

 

Because the triangular surfaces are convex sets and along with their two points 𝑃, 

𝑄, segment [𝑃𝑄] is included in the respective surface. 

So, if we add these two situations to the equality from the previous case, we 

obtain: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Florentin Smarandache 

140 

 

 

Lines and Planes 
 

159. Let 𝑑, 𝑑′ be two parallel lines. If the line 𝑑 is parallel to a plane 𝛼, show 

that 𝑑′||𝛼 or 𝑑′ ⊂ 𝛼. 

Solution to Problem 159 

 

160. Consider a line 𝑑, parallel to the planes 𝛼 and 𝛽, which intersects after the 

line 𝑎. Show that 𝑑‖𝑎. 

 Solution to Problem 160 

 

161. Through a given line 𝑑, draw a parallel plane with another given line 𝑑′. 

Discuss the number of solutions. 

Solution to Problem 161 

 

162. Determine the union of the lines intersecting a given line 𝑑 and parallel 

to another given line 𝑑′ (𝑑 ∦ 𝑑′). 

Solution to Problem 162 

 

163. Construct a line that meets two given lines and that is parallel to a third 

given line. Discuss. 

Solution to Problem 163 

 

164. If a plane 𝛼 intersects the secant planes after parallel lines, then 𝛼 is 

parallel to line 𝛽 ∩ 𝛾. 

Solution to Problem 164 

 

165. A variable plane cuts two parallel lines in points 𝑀 and 𝑁. Find the 

geometrical locus of the middle of segment [𝑀𝑁]. 

Solution to Problem 165 
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166. Two lines are given. Through a given point, draw a parallel plane with 

both lines. Discuss. 

Solution to Problem 166 

 

167. Construct a line passing through a given point, which is parallel to a 

given plane and intersects a given line. Discuss. 

Solution to Problem 167 

 

168. Show that if triangles 𝐴𝐵𝐶 and 𝐴′𝐵′𝐶′, located in different planes, have 

𝐴𝐵 ∥ 𝐴′𝐵′, 𝐴𝐶 ∥ 𝐴′𝐶′ and 𝐵𝐶 ∥ 𝐵′𝐶′, then lines 𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′ are concurrent or 

parallel. 

Solution to Problem 168 

 

169. Show that, if two planes are parallel, then a plane intersecting one of 

them after a line cuts the other one too.  

Solution to Problem 169 

 

170. Through the parallel lines 𝑑 and 𝑑′ we draw the planes 𝛼 and 𝛼′ distinct 

from (𝑑, 𝑑′). Show that 𝛼 ∥ 𝛼′ or (𝛼 ∩ 𝛼′) ∥ 𝑑. 

Solution to Problem 170 

 

171. Given a plane 𝛼, a point 𝐴 ∈ 𝛼 and a line 𝑑 ⊂ 𝛼. 

a. Construct a line 𝑑′ such that 𝑑′ ⊂ 𝛼, 𝐴 ∈ 𝑑′ and 𝑑′ ∥ 𝑑. 

b. Construct a line through 𝐴 included in 𝛼, which forms with 𝑑 an angle 

of a given measure 𝑎. How many solutions are there? 

Solution to Problem 171 

 

172. Show that relation 𝛼 ∥ 𝛽 defined on the set of planes is an equivalence 

relation. Define the equivalence classes. 

Solution to Problem 172 
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173. Consider on the set of all lines and planes the relation “𝑥 ∥ 𝑦” or 𝑥 = 𝑦, 

where 𝑥 and 𝑦 are lines or planes. Have we defined an equivalence 

relation? 

Solution to Problem 173 

 

174. Show that two parallel segments between parallel planes are concurrent. 

Solution to Problem 174 

 

175. Show that through two lines that are not contained in the same plane, we 

can draw parallel planes in a unique way. Study also the situation when the 

two lines are coplanar. 

Solution to Problem 175 

 

176. Let 𝛼 and 𝛽 be two parallel planes, 𝐴, 𝐵 ∈ 𝛼, and 𝐶𝐷 is a parallel line with 

𝛼 and 𝛽. Lines 𝐶𝐴, 𝐶𝐵, 𝐷𝐵, 𝐷𝐴 cut plane 𝛽 respectively in 𝑀,𝑁, 𝑃, 𝑄. Show 

that these points are the vertices of a parallelogram. 

Solution to Problem 176 

 

177. Find the locus of the midpoints of the segments that have their 

extremities in two parallel planes. 

Solution to Problem 177 
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Solutions 
 

Solution to Problem 159. 

 

Let  

𝐴 ∈ 𝛼
𝑑 ∥ 𝛼 
𝑑′′ ∥ 𝑑

} ⟹ 𝑑′′ ∥ 𝛼 

𝑑′ ∥ 𝑑
𝑑′′ ∥ 𝑑

} ⟹ 𝑑′ ∥ 𝑑′′
}
 
 

 
 

⟹ 𝑑′′ ∥ 𝛼 or 𝑑′ ⊂ 𝛼. 

 

Solution to Problem 160. 

Let 𝐴 ∈ 𝑎 ⇒ 𝐴 ∈ 𝛼 ∩ 𝐴 ∈ 𝛽. We draw through A, 𝑑′ ∥ 𝑑. 

 

𝐴 ∈ 𝛼,
𝑑 ∥ 𝛼
𝑑′ ∥ 𝑑

} ⟹ 𝑑′ ⊂ 𝛼

𝐴 ∈ 𝛽,
𝑑 ∥ 𝛽

𝑑′ ∥ 𝑑
} ⟹ 𝑑′ ⊂ 𝛽

}⟹
𝑑′ ⊂ 𝛼 ⊂ 𝛽
𝛼 ∩ 𝛽 = 𝑎

} ⟹
𝑑′ = 𝑎
𝑑′ ∥ 𝑑

} ⟹ 𝑎 ∥ 𝑑 

 

Solution to Problem 161. 

a. If 𝑑 ∦ 𝑑′ there is only one solution and it can be obtained as it follows: 

Let 𝐴 ∈ 𝑑. In the plane (𝐴, 𝑑′′) we draw 𝑑′′ ∥ 𝑑′. The concurrent lines 𝑑 and 𝑑′′ 

determine plane 𝑎. As 𝑑′′ ∥ 𝑑 ⟹ 𝑑 ∥ 𝛼, in the case of the non-coplanar lines. 
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b. If 𝑑 ∥ 𝑑′ || d'', (∃) infinite solutions. Any plane passing through 𝑑 is parallel to 

𝑑′′, with the exception of plane (𝑑, 𝑑′). 

c. 𝑑 ∦ 𝑑′, but they are coplanar (∄) solutions. 

 

 

Solution to Problem 162. 

 

Let 𝐴 ∈ 𝑑, we draw through 𝐴, 𝑑1 ∥ 𝑑′. We write 𝛼 = (𝑑, 𝑑1). As 𝑑1 ∥ 𝑑′ ⟹ 𝑑′ ∥ 𝛼. 

Let 𝑀 ∈ 𝑑, arbitrary ⟹𝑀 ∈ 𝛼. 

We draw 
𝛿 ∥ 𝛿′,𝑀 ∈ 𝛿
𝑑′ ∥ 𝑎

} ⟹ 𝛿 ⊂ 𝛼, so all the parallel lines to 𝑑′ intersecting 𝑑 are 

contained in plane 𝛼. 

Let 𝛾 ⊂ 𝛼, 𝛾 ∥ 𝑑′⟹ 𝛾 ∩ 𝑑 = 𝐵, so (∀) parallel to 𝑑′ from 𝛼 intersects 𝑑. Thus, the 

plane 𝛼 represents the required union. 
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Solution to Problem 163. 

 

We draw 𝑑 through 𝑀 such that 
𝑑 ∥ 𝑑′
𝑑′ ∥ 𝑑3

} ⟹ 𝑑 ∥ 𝑑3. According to previous 

problem: 𝑑 ∩ 𝑑1 = {𝑁}. Therefore, 

 

a. If 𝑑3 ∥ 𝑑1, the plane 𝛼 is unique, and if 𝑑2 ∩ 𝛼 ≠ ∅, the solution is unique.  

b. If 𝑑1 ∥ 𝑑3, (∄) 
𝑑 ∥ 𝑑1

𝑑 ∩ 𝑑1 ≠ ∅
, because it would mean that we can draw through a 

point two parallel lines 𝑑, 𝑑1 to the same line 𝑑3. So there is no solution. 

c. If 𝑑1 ∦ 𝑑3 and 𝑑2 ∩ 𝛼 ≠ ∅, all the parallel lines to 𝑑2 cutting 𝑑1 are on the plane 𝛼 

and none of them can intersect 𝑑2, so the problem has no solution. 

d. If 𝑑2 ⊂ 𝛼, 𝑑1 ∩ 𝑑2 ≠ ∅, let 𝑑1 ∩ 𝑑2 = {𝑂},  and the required line is parallel to 𝑑3 

drawn through 𝑂 ⟹ one solution. 

 

e. If 𝑑2 ⊂ 𝛼, 𝑑1 ∥ 𝑑2. The problem has infinite solutions, (∀) || to 𝑑3 which cuts 𝑑1, 

also cuts 𝑑2. 
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Solution to Problem 164. 

 

 

 

 

 

Solution to Problem 165. 

 

 

The problem is reduced to the geometrical locus of the midpoints of the 

segments that have extremities on two parallel lines. 𝑃 is such a point |𝑀𝑃|  =  |𝑃𝑁|. 

We draw 𝐴𝐵 ⊥ 𝑑1 ⇒ 𝐴𝐵?𝑀𝑃𝐴̂ = 𝐵𝑃𝑁 ⟹̂ 𝛥𝑀𝐴𝑃 = 𝛥𝑁𝐵𝑃 ⟹ |𝑃𝐴| ≡ |𝑃𝐵| ⟹ ||𝐴𝑃||?⟹

  the geometrical locus is the parallel to 𝑑1 and 𝑑2 drawn on the mid-distance 

between them. It can also be proved vice-versa. 
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Solution to Problem 166. 

 

 

Let 𝑑1 ∦ 𝑑2. In plane (𝑑,𝑀) we draw 𝑑1
′ ∥ 𝑑1, 𝑀 ∈ 𝑑1

′ . In plane (𝑑2𝑀) we draw 

𝑑2
′ ∥ 𝑑2, 𝑀 ∈ 𝑑2

′ . We note 𝛼 = 𝑑1
′𝑑2
′  the plane determined by two concurrent lines. 

 

𝑀 ∈ 𝛼 the only solution. 

Let 𝑑1 ∥ 𝑑2, 𝑁 ∉ 𝑑1,𝑀 ∉ 𝑑2. 

𝑑1 = 𝑑1
′ = 𝑑2

′  

In this case 𝑑1
′ = 𝑑2

′ = 𝑑 and infinite planes pass through 𝑑; 

𝑑2 ∥ 𝑑
𝑑1 ∥ 𝑑

} ⟹ 𝑑1, 𝑑2 are parallel lines with (∀) of the planes passing through 𝑑. 

The problem has infinite solutions. But 𝑀 ∈ 𝑑1 or 𝑀 ∈ 𝑑2, the problem has no 

solution because the plane can’t pass through a point of a line and be parallel to 

that line. 

 

Solution to Problem 167. 

Let 𝐴 be the given point, 𝛼 the given plane and 𝑑 the given line. 

a. We assume that 𝑑 ∦ 𝛼, 𝑑 ∩ 𝛼 = {𝑀}. Let plane (𝑑𝐴) which has a common point 

𝑀 with 𝛼 ⇒ (𝑑𝐴) ∩ 𝛼 = 𝑑′. 

 

 

We draw in plane (𝑑𝐴) through point 𝐴 a parallel line to 𝑑′. 
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⟹ 𝑎 is the required line. 

b. 𝑑 ∥ 𝛼, (𝑑𝐴) ∩ 𝛼 ≠ ∅. 

Let (dA) ∩ α = α’

𝑑 ∥ 𝛼
} ⇒ 𝑑′ ∥ 𝑑 

 

All the lines passing through 𝐴 and intersecting 𝑑 are contained in plane (𝑑𝐴). But 

all these lines also cut 𝑑′ ∥ 𝑑, so they can’t be parallel to 𝛼. There is no solution. 

c. 𝑑 ∥ 𝛼, (𝑑𝐴) ∩ 𝛼 = ∅. 

 

 

Let 𝑀 ∈ 𝑑 and line 𝐴𝑀 ⊂ (𝑑𝐴); (𝑑𝐴) ∩ 𝛼 = ∅ ⟹ 𝐴𝑀 ∩ 𝛼 = ∅⟹ 𝐴𝑀 ∥ 𝛼, (∀)𝑀 ∈ 𝑑. 

The problem has infinite solutions. 

 

Solution to Problem 168. 

 

(𝐴𝐵𝐶) and (𝐴′𝐵′𝐶′) are distinct planes, thus the six points 𝐴, 𝐵, 𝐶, 𝐴′, 𝐵′, 𝐶′ can’t be 

coplanar. 

𝐴𝐵 ∥ 𝐴′𝐵’ ⟹ 𝐴,𝐵, 𝐴′, 𝐵′ are coplanar. 
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The points are coplanar four by four, that is (𝐴𝐵𝐵′𝐴), (𝐴𝐶𝐶′𝐴′), (𝐵𝐶𝐶′𝐵′), and 

determine four distinct planes. If we assumed that the planes coincide two by two, 

it would result other 6 coplanar points and this is false.  

In plane 𝐴𝐵𝐵′𝐴′, lines 𝐴𝐴′, 𝐵𝐵′ can be parallel or concurrent. 

First we assume that: 

 

 

is a common point to the 3 distinct planes, but the intersection of 3 distinct 

planes can be only a point, a line or ∅. It can’t be a line because lines 

 

⟹ are distinct if we assumed that two of them coincide, the 6 points would be 

coplanar, thus there is no common line to all the three planes. There is one 

possibility left, that is they have a common point 𝑆 and from 

 

 

 

We assume 𝑑 ∩ 𝛽 = ∅⟹ 𝑑 ∥ 𝛽 ⟹ 𝑑 ∈ plane ∥ 𝛽 drawn through 𝐴 ⟹ 𝑑 ⊂ 𝛼, false. 

So 𝑑 ∩ 𝛽 = {𝐵}. 

 

Solution to Problem 169. 

Hypothesis: 𝛼 ∥ 𝛽, 𝛾 ∩ 𝛼 = 𝑑1. 

Conclusion: 𝛾 ∩ 𝛽 = 𝑑2. 

We assume that 𝛾 ∩ 𝛽 = ∅⟹ 𝛾 ∥ 𝛽. 

Let 
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because from a point we can draw only one parallel plane with the given plane. 

But this result is false, it contradicts the hypothesis 𝛾 ∩ 𝛼 = 𝑑1 so 𝛾 ∩ 𝛽 = 𝑑2. 

 

 

Solution to Problem 170. 

 

Hypothesis: 𝑑 ∥ 𝑑′;  𝑑 ⊂ 𝛼; 𝑑′ ⊂ 𝛼′;  𝛼, 𝑎′ ≠ (𝑑𝑑′). 

Conclusion: 𝛼 ∥ 𝛼′ or 𝑑′′ ∥ 𝑑. 

As 𝛼, 𝑎′ ≠ (𝑑𝑑′) ⟹ 𝛼 ≠  𝑎′. 

If 𝑎 ∩ 𝑎′ = ∅ ⟹ 𝑎 ∥ 𝑎′. 

If 𝑎 ∩ 𝑎′ = ∅ ⟹ 𝑎 ∩ 𝑎′ = 𝑑′′. 

If 
𝑑 ∥ 𝑑′′

𝑑′ ⊂ 𝑎′
⟹
𝑑 ∥ 𝑎′

𝑑 ⊂ 𝑎
} ⟹ 𝑑′′‖𝑑. 

 

Solution to Problem 171. 

 

a. If 𝐴 ∈ 𝑑, then 𝑑′ = 𝑑. If 𝐴 ∉ 𝑑, we draw through 𝐴, 𝑑′ ∥ 𝑑. 
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b. We draw 𝑑1 ⊂ 𝛼, 𝐴 ∈ 𝑑, such that 𝑚(𝑑1𝑑
′̂) = 𝑎 and 𝑑 ⊂ 𝛼, 𝐴 ∈ 𝑑2, such that 

𝑚(𝑑2𝑑
′̂) = 𝑎, a line in each half-plane determined by 𝑑′. So (∃) 2 solutions 

excepting the situation 𝑎 = 0 or 𝑎 = 90 when (∃) only one solution. 

 

Solution to Problem 172. 

𝛼 ∥ 𝛽 or 𝛼 = 𝛽 ⟺ 𝛼~𝛽  

1. 𝛼 = 𝛼 ⟹ 𝛼~𝛼, the relation is reflexive; 

2. 𝛼~𝛽 ⟹ 𝛽~ ∝, the relation is symmetric. 

𝛼 ∥ 𝛽 or 𝛼 = 𝛽 ⟹ 𝛽 ∥ 𝛼 or 𝛽 = 𝛼 ⟹ 𝛽~ ∝; 

3. 𝛼~𝛽 ∩ 𝛽~𝛾 ⟹ 𝛼~𝛾. 

If 𝛼 = 𝛽 ∩ 𝛽~𝛾 ⟹ 𝛼~𝛾. 

If 
𝛼 ≠ 𝛽 and 𝛼~𝛽 ⟹ 𝛼 ∥ 𝛽
𝛽~𝛾 ⟹ 𝛽 = 𝛾 or 𝛽 ∥ 𝛾

} ⟹ 𝛼 ∥ 𝛾 ⟹ 𝛼~𝛾. 

The equivalence class determined by plane 𝛼 is constructed of planes 𝛼′ with 𝛼′~𝛼, 

that is of 𝛼 and all the parallel planes with 𝛼. 

 

Solution to Problem 173. 

 

 

No, it is an equivalence relation, because the transitive property is not true. For 

example, 𝑥 is a line, 𝑦 a plane, 𝑧 a line. From 𝑥 || 𝑦 and  || 𝑧 ⇏ 𝑥 || 𝑧, lines 𝑥 and 𝑧 

could be coplanar and concurrent or non-coplanar. 
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Solution to Problem 174. 

 

 

⟹ 𝐴𝐵𝐶𝐷 parallelogram. 

So ||𝐴𝐶||  =  ||𝐵𝐷||. 

 

Solution to Problem 175. 

 

We consider 𝐴 ∈ 𝑑 and draw through it 𝑑1 ∥ 𝑑
′. We consider 𝐵 ∈ 𝑑′ and draw  

𝑑2 ∥ 𝑑. Plane (𝑑1𝑑2) ∥ (𝑑𝑑1), because two concurrent lines from the first plane are 

parallel with two concurrent lines from the second plane. 

When 𝑑 and 𝑑′ are coplanar, the four lines 𝑑, 𝑑1, 𝑑2 and 𝑑′ are coplanar and the 

two planes coincide with the plane of the lines 𝑑 and 𝑑′. 

 

Solution to Problem 176. 

Let planes: 
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From (1), (2), (3), (4) ⟹𝑀𝑁𝑃𝑄 parallelogram. 

 

Solution to Problem 177. 

Let [𝐴𝐵] and [𝐶𝐷] be two segments, with 𝐴, 𝐶 ∈ 𝛼 and 𝐵,𝐷 ∈ 𝛽 such that |𝐴𝑀| =

|𝑀𝐵| and |𝐶𝑁| = |𝑁𝐷|. 

 

In plane (𝑀𝐶𝐷) we draw through 𝑀,𝐸𝐹||𝐶𝐷 ⟹ 𝐸𝐶||𝐷𝐹 ⟹ 𝐸𝐹𝐷𝐶 parallelogram 

 ⟹ |𝐸𝐹| ≡ |𝐶𝐷|. 

Concurrent lines 𝐴𝐵 and 𝐸𝐹 determine a plane which cuts planes 𝛼 after 2 parallel 

lines ⟹ 𝐸𝐴||𝐵𝐹. 

In this plane, |𝐴𝑀| ≡ |𝐵𝑀|. 

𝐸𝑀𝐴̂ ≡ 𝐵𝑀𝐹 (angles opposed at peak)̂

𝐸𝐴𝑀̂ ≡ 𝐹𝐵𝑀(alternate interior angles)̂
} 

 

In parallelogram 𝐸𝐶𝐷𝐹,  
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So the segment connecting the midpoints of two of the segments with the 

extremity in 𝛼 and 𝛽 is parallel to these planes. We also consider [𝐺𝐻] with 𝐺 ∈

𝛼,𝐻 ∈ 𝛽 and |𝐺𝑄| ≡ |𝑄𝐻| and we show in the same way that 𝑂𝑀||𝛼 and 𝑂𝑀||𝛽. (2) 

From (1) and (2) ⟹𝑀,𝑁, 𝑄 are elements of a parallel plane to 𝛼 and 𝛽, marked by 

𝛾. 

Vice-versa, let’s show that any point from this plane is the midpoint of a segment, 

with its extremities in 𝛼 and 𝛽. 

Let segment [𝐴𝐵] with 𝐴 ∈ 𝛼 and 𝐵 ∈ 𝛽 and |𝐴𝑀| = |𝐵𝑀|. Through 𝑀, we draw the 

parallel plane with 𝛼 and 𝛽 and in this plane we consider an arbitrary point 𝑂 ∈ 𝛾. 

Through 𝑂 we draw a line such that 𝑑 ∩ 𝛼 = {𝐼} and 𝑑 ∩ 𝛽 = {𝐼}. 

In plane (𝑂𝐴𝐵) we draw 𝐴′𝐵′ || 𝐴𝐵. Plane (𝐴𝐴′𝐵′𝐵) cuts the three parallel planes 

after parallel lines ⟹ 

 

In plane (𝐴′𝐵′𝐼) ⟹ |𝐴′𝑂| ≡ |𝑂𝐵′| ⟹ 𝐼𝐴′ || 𝐵′𝐼 and thus 
|𝐴′𝑂| ≡ |𝑂𝐵′|

𝐼𝑂𝐴′̂ ≡ 𝐼𝑂𝐵′̂
 and 𝐼𝐴′𝑂̂ ≡

𝐼𝐵′𝑂̂ ⟹ 

 

𝑂 is the midpoint of a segment with extremities in planes 𝛼 and 𝛽. 

Thus the geometrical locus is plane 𝛾, parallel to 𝛼 and 𝛽 and passing through the 

mid-distance between 𝛼 and 𝛽. 
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Projections 
 

178. Show that if lines 𝑑 and 𝑑′ are parallel, then pr𝛼𝑑 ∥ pr𝛼𝑑
′ or pr𝛼𝑑 = pr𝛼𝑑

′. 

What can we say about the projective planes of 𝑑 and 𝑑′? 

Solution to Problem 178 

 

179. Show that the projection of a parallelogram on a plane is a parallelogram 

or a segment. 

Solution to Problem 179 

 

180. Knowing that side [𝑂𝐴 of the right angle 𝐴𝑂𝐵 is parallel to a plane 𝛼, 

show that the projection of 𝐴𝑂𝐵̂ onto the plane 𝛼 is a right angle. 

Solution to Problem 180 

 

181. Let 𝐴′𝐵′𝐶′ be the projection of ∆𝐴𝐵𝐶 onto a plane 𝛼. Show that the 

centroid of ∆𝐴𝐵𝐶 is projected onto the centroid of ∆𝐴’𝐵’𝐶’. Is an analogous 

result true for the orthocenter? 

Solution to Problem 181 

 

182. Given the non-coplanar points 𝐴, 𝐵, 𝐶, 𝐷, determine a plane on which the 

points 𝐴, 𝐵, 𝐶, 𝐷 are projected onto the peaks of parallelogram. 

Solution to Problem 182 

 

183. Consider all triangles in space that are projected onto a plane 𝛼 after the 

same triangle. Find the locus of the centroid. 

Solution to Problem 183 

 

184. Let 𝐴 be a point that is not on line 𝑑. Determine a plane 𝛼 such that pr𝛼𝑑 

passes through pr𝛼𝐴. 

Solution to Problem 184 
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185. Determine a plane onto which three given lines to be projected after 

concurrent lines. 

Solution to Problem 185 

 

186. Let 𝛼, 𝛽 be planes that cut each other after a line 𝑎 and let 𝑑 be a 

perpendicular line to 𝑎. Show that the projections of line 𝑑 onto 𝛼, 𝛽 are 

concurrent. 

Solution to Problem 186 

 

187. Consider lines 𝑂𝐴,𝑂𝐵, 𝑂𝐶 ⊥ two by two. We know that ||𝑂𝐴||  =  𝑎, 

||𝑂𝐵||  =  𝑏, ||𝑂𝐶||  =  𝑐. Find the measure of the angle of planes (𝐴𝐵𝐶) and 

(𝑂𝐴𝐵). 

Solution to Problem 187 

 

188. A line cuts two perpendicular planes 𝛼 and 𝛽 at 𝐴 and 𝐵. Let 𝐴′ and 𝐵′ be 

the projections of points 𝐴 and 𝐵 onto line 𝛼 ∩ 𝛽. 

a. Show that ||𝐴𝐵||² =  ||𝐴𝐴′||² +  ||𝐴′𝐵′||² +  ||𝐵′𝐵||²; 

b. If 𝑎, 𝑏, 𝑐 are the measures of the angles of line 𝐴𝐵 with planes 𝛼, 𝛽 and 

with 𝛼 ∩ 𝛽, then cos 𝑐
‖𝐴′𝐵′‖

‖𝐴𝐵‖
 and sin2 𝑎 + sin2 𝑏 = sin2 𝑐. 

Solution to Problem 188 

 

189. Let 𝐴𝐵𝐶 be a triangle located in a plane 𝛼, 𝐴′𝐵′𝐶′ the projection of  

∆𝐴′𝐵′𝐶′ onto plane 𝛼. We mark with 𝑆, 𝑆′, 𝑆′′ the areas of ∆𝐴𝐵𝐶,

∆𝐴′𝐵′𝐶′, ∆𝐴ʺ𝐵ʺ𝐶ʺ, show that 𝑆′ is proportional mean between 𝑆 and 𝑆′′. 

Solution to Problem 189 

 

190.  A trihedral [𝐴𝐵𝐶𝐷] has |𝐴𝐶| ≡ |𝐴𝐷| ≡ |𝐵𝐶| ≡ |𝐵𝐷|. 𝑀,𝑁 are the midpoints 

of edges [𝐴𝐵], [𝐶𝐷], show that: 

a. 𝑀𝑁 ⊥ 𝐴𝐵,𝑀𝑁 ⊥ 𝐶𝐷, 𝐴𝐵 ⊥ 𝐶𝐷 



255 Compiled and Solved Problems in Geometry and Trigonometry 

157 

 

b. If 𝐴′, 𝐵′, 𝐶′, 𝐷′ are the feet of the perpendicular lines drawn to the peaks 

𝐴, 𝐵, 𝐶, 𝐷 on the opposite faces of the tetrahedron, points 𝐵, 𝐴′, 𝑁 are 

collinear and so are 𝐴, 𝐵′, 𝑁;  𝐷, 𝐶′,𝑀;  𝐶, 𝐷′, 𝑀. 

c. 𝐴𝐴′, 𝐵𝐵′,𝑀𝑁 and 𝐶𝐶′, 𝐷𝐷′,𝑀𝑁 are groups of three concurrent lines. 

Solution to Problem 190 

 

191. If rays [𝑂𝐴 and [𝑂𝐵 with their origin in plane 𝛼, 𝑂𝐴 ⊥ 𝛼, then the two rays 

form an acute or an obtuse angle, depending if they are or are not on the 

same side of plane 𝛼. 

Solution to Problem 191 

 

192. Show that the 6 mediator planes of the edges of a tetrahedron have a 

common point. Through this point pass the perpendicular lines to the faces 

of the tetrahedron, drawn through the centers of the circles of these faces. 

Solution to Problem 192 

 

193. Let 𝑑 and 𝑑′ be two non-coplanar lines. Show that (∃) unique points 𝐴 ∈

𝑑, 𝐴′ ∈ 𝑑′ such that 𝐴𝐴′ ⊥ 𝑑 and 𝐴𝐴′ ⊥ 𝑑′. The line 𝐴𝐴′ is called the common 

perpendicular of lines 𝑑 and 𝑑′. 

Solution to Problem 193 

 

194. Consider the notations from the previous problem. Let 𝑀 ∈ 𝑑, 𝑀′ ∈ 𝑑′. 

Show that ‖𝐴𝐴′‖ ≤ ‖𝑀𝑀′‖. The equality is possible only if 𝑀 = 𝐴, 𝑀′ = 𝐴′. 

Solution to Problem 194 

 

195. Let 𝐴𝐴′ be the common ⊥ of non-coplanar lines 𝑑, 𝑑′′ and 𝑀 ∈ 𝑑, 𝑀′ ∈ 𝑑′ 

such that |𝐴𝑀| ≡ |𝐴′𝑀′|. Find the locus of the midpoint of segment [𝑀𝑀′]. 

Solution to Problem 195 

 

196. Consider a tetrahedron 𝑉𝐴𝐵𝐶 with the following properties. 𝐴𝐵𝐶 is an 

equilateral triangle of side 𝑎, (𝐴𝐵𝐶) ⊥ (𝑉𝐵𝐶), the planes (𝑉𝐴𝐶) and (𝑉𝐴𝐵) 
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form with plane (𝐴𝐵𝐶) angles of 60°. Find the distance from point 𝑉 to 

plane (𝐴𝐵𝐶). 

Solution to Problem 196 

 

197. All the edges of a trihedral are of length a. Show that a peak is projected 

onto the opposite face in its centroid. Find the measure of the dihedral 

angles determined by two faces. 

Solution to Problem 197 

 

198. Let 𝐷𝐸 be a perpendicular line to the plane of the square 𝐴𝐵𝐶𝐷. Knowing 

that ‖𝐵𝐸‖ = 𝑙 and that the measure of the angle formed by [𝐵𝐸 and (𝐴𝐵𝐶) 

is 𝛽, determine the length of segment 𝐴𝐸 and the angle of [𝐴𝐸 with plane 

(𝐴𝐵𝐶). 

Solution to Problem 198 

 

199. Line 𝐶𝐷 ⊥ plane of the equilateral ∆𝐴𝐵𝐶 of side 𝑎, and [𝐴𝐷 and [𝐵𝐷 form 

with plane (𝐴𝐵𝐶) angles of measure 𝛽. Find the angle of planes (𝐴𝐵𝐶) and 

𝐴𝐵𝐷. 

Solution to Problem 199 

 

200. Given plane 𝛼 and ∆𝐴𝐵𝐶, ∆𝐴’𝐵’𝐶’ that are not on this plane. Determine a 

∆𝐷𝐸𝐹, located on 𝛼 such that on one side lines 𝐴𝐷, 𝐵𝐸, 𝐶𝐹 and on the 

other side lines 𝐴′𝐷, 𝐵′𝐸, 𝐶′𝐹 are concurrent. 

Solution to Problem 200 
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Solutions 
 

Solution to Problem 178. 

Let 𝑑 ∥ 𝑑′, 𝛽 the projective plane of 𝑑. 

 

We assume that 𝑑′ ⊄ 𝛽, which means that is plane 𝑑, 𝑑′ ⊥  𝛼, ⟹ the projective 

plane of 𝑑′ is 𝛽′. We want to show that pr𝑎𝑑 ∥ pr𝑎𝑑
′. We assume that pr𝑎𝑑 ∩

pr𝑎𝑑
′ = {𝑃} ⇒ (∃) 𝑀 ∈ 𝑑 such that pr𝑎𝑀 = 𝑃 and (∃)𝑀′ ∈ 𝑑′ such that pr𝑎𝑀

′ = 𝑃. 

⟹
𝑃𝑀 ⊥ 𝛼
𝑃𝑀′ ⊥ 𝛼

} ⟹ in the point 𝑃 on plane 𝛼 we can draw two distinct perpendicular 

lines. False. 

If 𝛽 is the projective plane of 𝑑 and 𝛽 of 𝑑′, then 𝛽 ∥ 𝛽′, because if they had a 

common point their projections should be elements of pr𝑎𝑑 and pr𝑎𝑑
′, and thus 

they wouldn’t be anymore parallel lines. 

If 𝑑′ ⊂ 𝛽 or 𝑑 ⊂ 𝛽′, that is (𝑑, 𝑑′) ⊥ 𝛼 ⟹ 𝑑 and 𝑑′ have the same projective plane 

⟹ pr𝑎𝑑 = pr𝑎𝑑
′. 

 

Solution to Problem 179. 
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We assume that 𝐴𝐵𝐶𝐷 ⊥  𝛼. Let 𝐴′, 𝐵′, 𝐶′, 𝐷′ be the projections of points 𝐴, 𝐵, 𝐶, 𝐷. 

𝐴𝐵 ∥ 𝐷𝐶
𝑝𝑟1
⇒ 𝐴′𝐵′ ∥ 𝐷′𝐶′

𝐴𝐷 ∥ 𝐵𝐶 ⟹ 𝐴′𝐷′ ∥ 𝐵′𝐷′
} ⟹ 𝐴′, 𝐵′, 𝐶′, 𝐷′ parallelogram. 

If (𝐴𝐵𝐶𝐷) ⊥ 𝛼 ⇒ the projection 𝐴′, 𝐵′, 𝐶′, 𝐷′ ∈ the line (𝐴𝐵𝐶𝐷) ∩ 𝛼 ⟹ the 

projection of the parallelogram is a segment. 

 

Solution to Problem 180. 

 

If 𝑂𝐴||𝛼 ⟹ proj𝛼𝑂𝐴||𝑂𝐴 ⟹ 𝑂′𝐴′||𝑂𝐴 because (∀) a plane which passes through 

𝑂𝐴 cuts the plane 𝛼 after a parallel to 𝑂𝐴. 

 

⟹𝑂′𝐴′ ⊥ 𝑂′𝐵′ ⟹ 𝐴′𝑂′𝐵′̂  is a right angle. 

 

Solution to Problem 181. 

 

In the trapezoid 𝐵𝐶𝐶′𝐵′ (𝐵𝐵′||𝐶𝐶′), 
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⟹ 𝐴′𝑀′ is a median. 

𝑀𝑀′ ∥ 𝐴𝐴′⟹𝑀𝑀′𝐴′𝐴 trapezoid

‖𝐴𝐺‖

‖𝐺𝑀‖
= 2, 𝐺𝐺′ ∥ 𝐴𝐴′

}
‖𝐴′𝐺‖

‖𝐺′𝑀′‖
=
‖𝐴𝐺‖

‖𝐺𝑀‖
= 2 

⟹𝐺′ is on median A'M' at 2/3 from the peak and 1/3 from the base.  

Generally no, because the right angle 𝐴𝑀𝐶 should be projected after a 

right angle. The same thing is true for another height. This is achieved if the 

sides of the ∆ are parallel to the plane. 

 

Solution to Problem 182. 

 

Let 𝐴, 𝐵, 𝐶, 𝐷 be the 4 non-coplanar points and 𝑀,𝑁 midpoints of 

segments |𝐴𝐵| and |𝐶𝐷|.  

𝑀 and 𝑁 determine a line and let a plane 𝛼 ⊥ 𝑀𝑁,  𝑀 and 𝑁 are projected 

in the same point 𝑂 onto 𝛼.  

 

  ⟹ 𝐴′𝐵′𝐶′𝐷′ a parallelogram. 
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Solution to Problem 183. 

 

Let 𝐴′𝐵′𝐶′, 𝐴′′𝐵′′𝐶′′ two triangles of this type, with the following property:  

 

 

⟹ 𝐺′𝐺 = 𝐺𝐺′′⟹ 𝐺′′, 𝐺′, 𝐺 are collinear. 

Due to the fact that by projection the ratio is maintained, we show that 𝐺′′ is the 

centroid of 𝐴, 𝐵, 𝐶. 

 

 

Solution to Problem 184. 

Let 𝑀 ∈ 𝑑 and 𝐴 ∉ 𝑑. The two points determine a line and let 𝛼 be a 

perpendicular plane to this line, 𝐴𝑀 ⊥ 𝛼 ⟹ 𝐴 and 𝑀 are projected onto 𝛼 in the 

same point 𝐴′ through which also passes projα𝑑 = projα𝐴 ∈ projα𝑑. 
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Solution to Problem 185. 

We determine a line which meets the three lines in the following way. 

Let  

 

 

 

Let now a plane 

 

 

 

Solution to Problem 186. 

 

Let 𝛼 ∩ 𝛽 = 𝑎 and 𝑀 ∈ 𝑑. We project this point onto 𝛼 and 𝛽: 

 

 

⟹ 𝑎 ⊥ onto the projective plane of 𝑑 onto 𝛽. 
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Let 

 

⟹𝑂𝑀′ ∩ 𝑂𝑀′′ = {𝑂}, so the two projections are concurrent. 

 

Solution to Problem 187. 

 

 

the angle of planes (𝐴𝐵𝐶) and (𝑂𝐴𝐵) is 𝑂𝑀𝐶̂ = 𝛼. 

 

Solution to Problem 188. 

Let 𝛼 ∩ 𝛽 = a and 𝐴𝐴′ ⊥ 𝑎, 𝐵𝐵′ ⊥ 𝑎. 
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As  

 

⟹∢ of line 𝐴𝐵 with 𝛼, 𝐵𝐴𝐵′̂ = 𝑎 

 

⟹∢ of line 𝐴𝐵 with 𝛽, 𝐴𝐵𝐴′ = 𝑏 

In the plane 𝛽 we draw through 𝐵 a parallel line to 𝑎 and through 𝐴′ a parallel line 

to 𝐵𝐵′. Their intersection is 𝐶, and ||𝐴′𝐵′|| = ||𝐵𝐶||, ||𝐵𝐵′|| = ||𝐴′𝐶||. The angle of line 

𝐴𝐵 with 𝛼 is 𝐴𝐵𝐶̂ = 𝑐. 

As 𝐴𝐴’ ⊥ 𝛽 ⟹ 𝐴𝐴′ ⊥ 𝐴′𝐶 ⟹ ‖𝐴𝐶‖2 = ‖𝐴𝐴′‖2 + ‖𝐴′𝐶‖2 = ‖𝐴𝐴′‖2 + ‖𝐵′𝐵‖2(1) 

𝐵′𝐵𝐶𝐴 rectangle 

 

⟹ ∆𝐴𝐶𝐵 is right in 𝐶. 

We divide the relation (1) with ||𝐴𝐵||²: 

 

 

Solution to Problem 189. 
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Solution to Problem 190. 

 

a. 
 |𝐴𝐶| ≡ |𝐵𝐶| ⟹ ∆𝐴𝐶𝐵 isosceles

𝐶𝑀 median 
} ⟹ 𝐶𝑀 ⊥ 𝐴𝐵 (1) 

 |𝐴𝐷| ≡ |𝐵𝐶| ⟹ ∆𝐴𝐵𝐷 isosceles
𝐷𝑀 median 

} ⟹ 𝐷𝑀 ⊥ 𝐴𝐵 (2) 

From (1) and (2) ⟹ 𝐴𝐵 ⊥ (𝐷𝑀𝐶) =
𝐴𝐵 ⊥ 𝑀𝑁 
𝐴𝐵 ⊥ 𝐷𝐶 

} 

 |𝐵𝐶| ≡ |𝐵𝐷|
𝐵𝑁 median

} ⟹ 𝐵𝑁 ⊥ 𝐷𝐶

 |𝐴𝐷| ≡ |𝐴𝐶|
𝐴𝑁 median

} ⟹ 𝐴𝑁 ⊥ 𝐷𝐶
}⟹ 𝐷𝐶 ⊥ (𝐴𝐵𝑁) ⟹ 𝐷𝐶 ⊥ 𝑀𝑁 

b.  

 

⟹ 𝐴′ ∈ 𝐵𝑁 ⟹ 𝐵,𝐴′, 𝑁 are collinear. 

In the same way: 

From (𝐴𝐷𝐶) ⊥ (𝐴𝐵𝑁) ⟹ 𝐴,𝐵′, 𝑁 collinear 

      (𝐴𝐵𝐶) ⊥ (𝐷𝑀𝐶) ⟹ 𝑀,𝐷′, 𝐶 collinear  

      (𝐴𝐵𝐷) ⊥ (𝐷𝑀𝐶) ⟹ 𝐷, 𝐶′,𝑀 collinear 

C. At point a. we’ve shown that 𝑀𝑁 ⊥ 𝐴𝐵 

 

𝐴𝐴′, 𝐵𝐵′ and 𝑀𝑁 are heights in ∆𝐴𝐵𝑁, so they are concurrent lines. 

  In the same way, 𝐷𝐷′, 𝐶𝐶′,𝑀𝑁 will be heights in ∆𝐷𝑀𝐶. 
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Solution to Problem 191. 

 

We assume that [𝑂𝐴, [𝑂𝐵 are on the same side of plane 𝛼. 

We draw 

 

(∃) plane (𝐴𝐷, 𝐵𝐵′) = 𝛽 ⟹ |𝑂𝐴, |𝑂𝐵 are in the same half-plane. 

 

In plane 𝛽 we have 𝑚(𝐴𝑂𝐵̂) = 900 = 𝑚(𝐵𝑂𝐵̂′) < 900⟹ 𝐴𝑂𝐵̂ acute. 

We assume that [𝑂𝐴 and [𝑂𝐵 are in different half-planes in relation to 𝛼 ⟹ 𝐴 and 𝐵 are 

in different half-planes in relation to 𝑂𝐵′  in plane 𝛽 ⟹ |𝑂𝐵’ ⊂ int. 𝐵𝑂𝐴̂ ⟹ 𝑚(𝐴𝑂𝐵̂) =

900 +𝑚(𝐵𝑂𝐵’̂) > 900⟹ 𝐴𝑂𝐵 obtuse. 

 

Solution to Problem 192. 

 

We know the locus of the points in space equally distant from the peaks of ∆𝐵𝐶𝐷 

is the perpendicular line 𝑑 to the pl. ∆ in the center of the circumscribed circle of 

this ∆, marked with 𝑂. We draw the mediator plane of side |𝐴𝐶|, which intersects 

this ⊥ 𝑑 at point 𝑂. Then, point 𝑂 is equally distant from all the peaks of the 

tetrahedron ||𝑂𝐴|| = ||𝑂𝐵|| = ||𝑂𝐶|| = ||𝑂𝐷||. We connect 𝑂 with midpoint 𝐸 of side 

|𝐴𝐵|. From |𝑂𝐴| ≡ |𝑂𝐵| ⟹ ∆𝑂𝐴𝐵 isosceles ⟹𝑂𝐶 ⊥ 𝐴𝐵 (1). 
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We project 𝑂 onto plane (𝐴𝐵𝐷) in point 𝑂2. 

As 
|𝑂𝐴| ≡ |𝑂𝐵| ≡ |𝑂𝐷|
|𝑂)𝑂2 common side

} ⟹ ∆𝑂𝐴𝑂2 = ∆𝑂𝐵𝑂2 = ∆𝑂𝐷𝑂2 

⟹ |𝑂2𝐴| ≡ |𝐵𝑂2| ≡ |𝐷𝑂2| ⟹ 

⟹𝑂2 is the center of the circumscribed circle of  ∆𝐴𝐵𝐷. We show in the same 

way that 𝑂 is also projected on the other faces onto the centers of the 

circumscribed circles, thus through 𝑂 pass all the perpendicular lines to the faces of 

the tetrahedron. These lines are drawn through the centers of the circumscribed 

circles. So b. is proved. 

From |𝑂2𝐴| ≡ |𝑂𝐵2| ⟹ ∆𝑂2𝐴𝐵 isosceles 𝑂2𝐸 ⊥ 𝐴𝐵 (2) 

From (1) and (2) ⟹  
𝐴𝐵 ⊥ (𝐸𝑂2𝑂)
|𝐴𝐸| ≡ |𝐸𝐵|

} ⟹ 

⟹ (𝐸𝑂2𝑂) is a mediator plane of side |𝐴𝐵| and passes through 𝑂 and the 

intersection of the 3 mediator planes of sides |𝐵𝐶|, |𝐶𝐷|, |𝐵𝐷| belongs to line 𝑑, thus 

O is the common point for the 6 mediator planes of the edges of a tetrahedron. 

 

Solution to Problem 193. 

 

Let 𝑀 ∈ 𝑑 and 𝛿||𝑑′, 𝑀 ∈ 𝛿. Let = (𝑑, 𝛿) ⟹ 𝑑′||𝛼. 

Let  

 

= {𝐴} otherwise 𝑑 and 𝑑′ would be parallel, thus coplanar. Let 𝛽 be the projective 

plane of line 

 

In plane 𝛽 we construct a perpendicular to 𝑑′′ in point 𝐴 and 
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Solution to Problem 194. 

 

We draw 

 

We can obtain the equality only when 𝑀 = 𝐴 and 𝑀′ = 𝐴′. 

 

Solution to Problem 195. 

Let 𝑀 ∈ 𝑑, 𝑀′ ∈ 𝑑′ such that |𝐴𝑀| ≡ |𝐴′𝑀′|. Let 𝑑′′ = pr𝛼𝑑′ and 𝑀′𝑀′′ ⊥ 𝑑′′ ⟹

𝑀′𝑀′′ ⊥ 𝛼 ⟹ 𝑀′𝑀′′ ⊥ 𝑀′′𝑀. 

 

⟹ ∆𝐴𝑀𝑀′ isosceles. 

Let 𝑃 be the midpoint of |𝑀𝑀′| and 𝑃′ = pr𝛼𝑃 ⟹ 𝑃𝑃′ ∥ 𝑀′𝑀′′ ⟹ 𝑃′ is the midpoint 

of 𝑀𝑀′′, ∆𝐴𝑀𝑀′′ isosceles ⟹ [𝐴𝑃′ the bisector of  𝑀′𝐴𝑀̂. (𝑃𝑃′) is midline in  

∆𝑀′𝑀ʺ𝑀 ⟹ ‖𝑃𝑃′‖ =
1

2
‖𝑀′𝑀′′ =

1

2
‖𝐴′𝐴‖ = constant. 

Thus, the point is at a constant distance from line 𝐴𝑃′, thus on a parallel line to 

this line, located in the ⊥ plane 𝛼, which passes through 𝐴𝑃′. 

When 𝑀 = 𝐴 and 𝑀′ = 𝐴′ ⟹ ||𝐴𝑀|| = ||𝑁′𝐴′ = 0 ⟹ 𝑃 = 𝑅, where 𝑅 is the midpoint 

of segment |𝐴𝐴′|. So the locus passes through 𝑅 and because 

 

⟹ 𝑅𝑃 is contained in the mediator plane of segment |𝐴𝐴′|. 

So 𝑅𝑃 is the intersection of the mediator plane of segment |𝐴𝐴′| with the ⊥ plane 

to 𝛼, passing through one of the bisectors of the angles determined by 𝑑 and 𝑑′, 

we obtain one more line contained by the mediator plane of [𝐴𝐴′], the parallel line 

with the other bisector of the angles determined by 𝑑 and 𝑑′′. 

So the locus will be formed by two perpendicular lines. 



Florentin Smarandache 

170 

 

Vice-versa, let 𝑄 ∈ 𝑅𝑃 a (∀) point on this line and 𝑄’ = pr𝛼𝑄 ⟹ 𝑄′ ∈ |𝐴𝑃′ bisector. 

We draw 𝑁𝑁′′ ⊥ 𝐴𝑄′ and because 𝐴𝑄′ is both bisector and height ⟹ ∆𝐴𝑁𝑁′′ 

isosceles ⟹ |𝐴𝑄′| median ⟹ |𝑁𝑄′| ≡ |𝑄′𝑁′′|. 

We draw 

 

 

As  

 

⟹ |𝑄′𝑄| midline in ∆𝑁𝑁′𝑁′′⟹𝑄,𝑁′, 𝑁 collinear and |𝑄𝑁′| ≡ |𝑄𝑁|. 

 

Solution to Problem 196. 

 

 

where α = (ABC). 

 

 

 

 

 

VD common side 

coplanar 
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Solution to Problem 197. 

 

Let  

 

 

⟹𝑂 is the center of the circumscribed circle and as ∆𝐴𝐵𝐶 is equilateral ⟹𝑂 is the 

centroid  ⟹ 

 

 

 

Solution to Problem 198. 

 

In ∆𝐴𝐸𝐵, right in 𝐴: 

 

 

||VO|| common 

 



Florentin Smarandache 

172 

 

 

 

Solution to Problem 199. 

𝐶𝐸 ⊥ 𝐵𝐴
𝐷𝐸 ⊥ 𝐴𝐵

} ⟹ ∢pl. (𝐴𝐵𝐶) and 𝐴𝐵𝐷 are 𝑚(𝐷𝐸𝐶̂). 

𝐴𝐵𝐶 equilateral ⟹ ‖𝐶𝐸‖ =
𝑎√3

2
 . 

 

 

 

 

 

 

Solution to Problem 200. 

We consider the problem solved and we take on plane 𝛼, ∆𝐷𝐸𝐹, then points 𝑂 

and 𝑂′ which are not located on 𝛼. 

We also construct lines |𝐷𝑂, |𝐹𝑂, |𝐸𝑂 respectively |𝐷𝑂′, |𝐹𝑂′, |𝐸𝑂′. On these rays we 

take ∆𝐴𝐵𝐶 and ∆𝐴′𝐵′𝐶′. Obviously, the way we have constructed the lines 𝐴𝐷, 𝐵𝐸, 𝐶𝐹 

shows that they intersect at 𝑂. We extend lines 𝐵𝐴, 𝐵𝐶, 𝐶𝐴 until they intersect plane 
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𝛼 at points 𝐵, 𝐶 respectively 𝐴. Then, we extend lines 𝐶′𝐴′, 𝐶′𝐵′, 𝐴′𝐵′ until they 

intersect plane 𝛼 at points 𝐴2,  𝐶2 respectively 𝐵2. 

Obviously, points 𝐴1, 𝐵1, 𝐶1 are collinear (because ∈ 𝛼 ∩ (𝐴𝐵𝐶)) and 𝐴2, 𝐵2, 𝐶2 are as 

well collinear (because ∈ 𝛼 ∩ (𝐴′𝐵′𝐶′)). 

On the other side, points 𝐷, 𝐹, 𝐴1, 𝐴2 are collinear because: 

 

thus collinear (1) 

 

 

⟹𝐷,𝐹, 𝐴2 collinear (2) 

From (1) and (2) ⟹𝐷,𝐹, 𝐴1, 𝐴2 collinear. Similarly 𝐶, 𝐸, 𝐹, 𝐶2 collinear and 

𝐵1, 𝐸, 𝐷, 𝐷2 collinear.  

Consequently, 𝐷𝐸𝐹 is at the intersection of lines 𝐴1𝐴2, 𝐶1𝐶2 , 𝐵1𝐵2 on plane 𝛼, 

thus uniquely determined. 
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Review Problems  
 

201. Find the position of the third peak of the equilateral triangle, the affixes 

of two peaks being 𝑧1 = 1, 𝑧2 = 2 + 𝑖. 

Solution to Problem 201 

 

202. Let 𝑧1, 𝑧2, 𝑧3 be three complex numbers, not equal to 0, + two by 2, and 

of equal moduli. Prove that if 𝑧1 + 𝑧2𝑧3, 𝑧2 + 𝑧3𝑧1, 𝑧2 + 𝑧 1𝑧3 ∈ 𝑅 ⇒ 𝑧1𝑧2𝑧3 = 1. 

Solution to Problem 202 

 

203. We mark by 𝐺 the set of 𝑛 roots of the unit, 𝐺 = {𝜀0, 𝜀1, … , 𝜀𝑛−1}.  Prove 

that: 

a. 𝜀𝑖 ∙ 𝜀𝑗 ∈ 𝐺, (∀) 𝑖, 𝑗 ∈ {0, 1, … , 𝑛 − 1}; 

b. 𝜀𝑖
−1 ∈ 𝐺, (∀ ) 𝑖 ∈ {0, 1, … , 𝑛 − 1}. 

Solution to Problem 203 

 

204. Let the equation 𝑎𝑧² + 𝑏𝑧² + 𝑐 = 0, 𝑎, 𝑏, 𝑐 ∈ 𝐶 and arg𝑎 + arg𝑐 = 2arg𝑏, and 

|𝑎| + |𝑐| = |𝑏|. Show that the given equation has at list one root of unity. 

Solution to Problem 204 

 

205. Let 𝑧1, 𝑧2, 𝑧3 be three complex numbers, not equal to 0, such that |𝑧1|  =

 |𝑧2|  =  |𝑧3|. 

a. Prove that (∃) complex numbers 𝛼 and 𝛽 such that 𝑧2 = 𝛼𝑧1, 𝑧3 = 𝛽𝑧2 

and |𝛼| = |𝛽| = 1; 

b. Solve the equation 𝛼² + 𝛽²–𝛼 ∙ 𝛽– 𝛼– 𝛽 + 1 = 0 in relation to one of the 

unknowns. 

c. Possibly using the results from 𝑎. and 𝑏., prove that if 𝑧1
2 + 𝑧2

2 + 𝑧3
2 =

𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧1𝑧3 , then we have 𝑧1 = 𝑧2 = 𝑧3 or the numbers 𝑧1, 𝑧2, 𝑧3 

are affixes of the peaks of an equilateral ∆. 

Solution to Problem 205 
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206. Draw a plane through two given lines, such that their line of intersection 

to be contained in a given plane. 

Solution to Problem 206 

 

207. Let 𝑎, 𝑏, 𝑐 be three lines with a common point and 𝑃 a point not located 

on any of them. Show that planes (𝑃𝑎), (𝑃𝑏), (𝑃𝑐) contain a common line. 

Solution to Problem 207 

 

208. Let 𝐴, 𝐵, 𝐶, 𝐷 be points and 𝛼 a plane separating points 𝐴 and 𝐵, 𝐴 and 𝐶, 

𝐶 and 𝐷. Show that 𝛼 ∩ |𝐵𝐷| ≠ ∅ and 𝛼 ∩ |𝐴𝐷| = ∅. 

Solution to Problem 208 

 

209. On edges 𝑎, 𝑏, 𝑐 of a trihedral angle with its peak 𝑂, take points 𝐴, 𝐵, 𝐶; let 

then 𝐷 ∈ |𝐵𝐶| and 𝐸 ∈ |𝐴𝐷|. Show that |𝑂𝐸 ⊂ 𝑖𝑛𝑡. ∠𝑎𝑏𝑐. 

Solution to Problem 209 

 

210. Show that the following sets are convex: the interior of a trihedral angle, 

a tetrahedron without an edge (without a face). 

Solution to Problem 210 

 

211. Let 𝐴, 𝐵, 𝐶, 𝐷 be four non-coplanar points and 𝐸, 𝐹, 𝐺, 𝐻 the midpoints of 

segments [𝐴𝐵], [𝐵𝐶], [𝐶𝐷], [𝐷𝐴]. Show that 𝐸𝐹 || (𝐴𝐶𝐷) and points 𝐸, 𝐹, 𝐺, 𝐻 

are coplanar. 

Solution to Problem 211 

 

212. On lines 𝑑, 𝑑′ consider distinct points 𝐴, 𝐵, 𝐶; 𝐴′, 𝐵′, 𝐶′ respectively. Show 

that we can draw through lines 𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′ three parallel planes if and only 

if 
‖𝐴𝐵‖

‖𝐴′𝐵′‖
=

‖𝐵𝐶‖

‖𝐵′𝐶′‖
 . 

Solution to Problem 212 
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213. Let 𝑀,𝑀′ be each mobile points on the non-coplanar lines 𝑑, 𝑑′. Find the 

locus of points 𝑃 that divide segment |𝑀𝑀′| in a given ratio. 

Solution to Problem 213 

 

214. Construct a line that meets three given lines, respectively in 𝑀,𝑁, 𝑃 and 

for which 
‖𝑀𝑁‖

‖𝑁𝑃‖
 to be given ratio. 

Solution to Problem 214 

 

215. Find the locus of the peak 𝑃 of the triangle 𝑀,𝑁, 𝑃 if its sides remain 

parallel to three fixed lines, the peak 𝑀 describes a given line 𝑑, and the 

peak 𝑁 ∈ a given plane 𝛼. 

Solution to Problem 215 

 

216. On the edges [𝑂𝐴, [𝑂𝐵, [𝑂𝐶 of a trihedral angle we consider points 𝑀,𝑁, 𝑃 

such that ‖𝑂𝑀‖ = 𝜆‖𝑂𝐴‖, ‖𝑂𝑁‖ = 𝜆‖𝑂𝐵‖, ‖𝑂𝑃‖ =  𝜆‖𝑂𝐶‖, where 𝜆 is a 

positive variable number. Show the locus of the centroid of triangle 𝑀𝑁𝑃. 

Solution to Problem 216 

 

217. 𝐴𝐵𝐶𝐷 and 𝐴1𝐵1𝐶1𝐷1 are two parallelograms in space. We take the points 

𝐴2, 𝐵2, 𝐶2, 𝐷2 which divide segments [𝐴𝐴1], [𝐵𝐵1], [𝐶𝐶1], [𝐷𝐷1] in the same 

ratio. Show that 𝐴2𝐵2𝐶2𝐷2 is a parallelogram. 

Solution to Problem 217 

 

218. The lines 𝑑, 𝑑′ are given, which cut a given plane 𝛼 in 𝐴 and 𝐴′. Construct 

the points 𝑀,𝑀′ on 𝑑, 𝑑′ such that 𝑀𝑀′ ∥ 𝛼 and segment [𝑀𝑀′] to have a 

given length 𝑙. Discuss. 

Solution to Problem 218 

 

219. Construct a line which passes through a given point 𝐴 and that is 

perpendicular to two given lines 𝑑 and 𝑑′. 

Solution to Problem 219 



255 Compiled and Solved Problems in Geometry and Trigonometry 

177 

 

 

220. Show that there exist three lines with a common point, perpendicular two 

by two. 

Solution to Problem 220 

 

221. Let 𝑎 𝑏, 𝑐, 𝑑 four lines with a common point, 𝑑 is perpendicular to 𝑎 𝑏, 𝑐. 

Show that lines 𝑎, 𝑏, 𝑐 are coplanar. 

Solution to Problem 221 

 

222. Show that there do not exist four lines with a common point that are 

perpendicular two by two. 

Solution to Problem 222 

 

223. Let 𝑑 ⊥ 𝛼 and 𝑑′ ∥ 𝑑. Show that 𝑑′ ⊥ 𝛼. 

Solution to Problem 223 

 

224. Show that two distinct perpendicular lines on a plane are parallel. 

Solution to Problem 224 

 

225. Let 𝑑 ⊥ 𝛼 and 𝑑′[∥ 𝛼. Show that 𝑑′ ⊥ 𝑑. 

Solution to Problem 225 

 

226. Show that two perpendicular planes on the same line are parallel with 

each other. 

Solution to Problem 226 

 

227. Show that the locus of the points equally distant from two distinct points 

𝐴 and 𝐵 is a perpendicular plane to 𝐴𝐵, passing through midpoint 𝑂 of the 

segment [𝐴𝐵] (called mediator plane of  [𝐴𝐵]). 

Solution to Problem 227 
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228. Find the locus of the points in space equally distant from the peaks of a 

triangle 𝐴𝐵𝐶. 

Solution to Problem 228 

 

229. The plane 𝛼 and the points 𝐴 ∈ 𝛼, 𝐵 ∉ 𝛼 are given. A variable line 𝑑 passes 

through 𝐴 and it is contained in plane 𝛼. Find the locus of the ⊥ feet from 

𝐵 to 𝑑.  

Solution to Problem 229 

 

230. A line 𝛼, and a point 𝐴 ∉ 𝛼 are given. Find the locus of the feet of the 

perpendicular lines from 𝐴 to planes passing through 𝛼. 

Solution to Problem 230 

 

231. Consider a plane 𝛼 that passes through the midpoint of segment [𝐴𝐵]. 

Show that points 𝐴 and 𝐵 are equally distant from plane 𝛼. 

Solution to Problem 231 

 

232. Through a given point, draw a line that intersects a given line and is ⊥ to 

another given line. 

Solution to Problem 232 

 

233. Let 𝛼 and 𝛽 be two distinct planes and the line 𝑑 their intersection. Let 𝑀 

be a point that is not located on 𝛼 ∪ 𝛽. We draw the lines 𝑀𝑀1 and 𝑀𝑀2 ⊥ 

on 𝛼 and 𝛽. Show that the line 𝑑 is ⊥ to (𝑀𝑀1𝑀𝑀2). 

Solution to Problem 233 

 

234. A plane 𝛼 and a point 𝐴, 𝐴 ∉ 𝛼 are given. Find the locus of points 𝑀 ∈ 𝛼 

such that segment |𝐴𝑀| has a given length. 

Solution to Problem 234 
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235. Let 𝑂, 𝐴, 𝐵, 𝐶 be four points such that 𝑂𝐴 ⊥ 𝑂𝐵 ⊥ 𝑂𝐶 ⊥ 𝐷𝐴 and we write 

𝑎 = ‖𝑂𝐴‖, 𝑏 = ‖𝑂𝐵‖, 𝑐 = ‖𝑂𝐶‖. 

a. Find the length of the sides of ∆𝐴𝐵𝐶 in relation to 𝑎, 𝑏, 𝑐; 

b. Find 𝜎[𝐴𝐵𝐶] and demonstrate the relation 𝜎[𝐴𝐵𝐶]2 =  𝜎[𝐷𝐴𝐵]2 +

 𝜎[𝑂𝐵𝐶]2 +  𝜎[𝑂𝐶𝐴]2; 

c. Show that the orthogonal projection of point 𝑂 on plane (𝐴𝐵𝐶) is the 

orthocenter 𝐻 of ∆𝐴𝐵𝐶; 

d. Find the distance ‖𝑂𝐻‖. 

Solution to Problem 235 

 

236. Consider non-coplanar points 𝐴, 𝐵, 𝐶, 𝐷 and lines 𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′, 𝐷𝐷′ 

perpendicular to (𝐵𝐶𝐷), (𝐴𝐶𝐷), (𝐴𝐵𝐷). Show that if lines 𝐴𝐴′ and 𝐵𝐵′ are 

concurrent, then lines 𝐶𝐶′, 𝐷𝐷′ are coplanar. 

Solution to Problem 236 

 

237. Let 𝐴, 𝐵, 𝐶, 𝐷 four non-coplanar points. Show that 𝐴𝐵 ⊥ 𝐶𝐷 and 𝐴𝐶 ⊥ 𝐵𝐷   

⟹ 𝐴𝐷 ⊥ 𝐵𝐶. 

Solution to Problem 237 

 

238. On the edges of a triangle with its peak 𝑂, take the points 𝐴, 𝐵, 𝐶 such 

that |𝑂𝐴| ≡ |𝑂𝐵| ≡ |𝑂𝐶|. Show that the ⊥ foot in 𝑂 to the plane (𝐴𝐵𝐶) 

coincides with the point of intersection of the bisectors ∆𝐴𝐵𝐶. 

Solution to Problem 238 

 

239. Let a peak 𝐴 of the isosceles triangle 𝐴𝐵𝐶 (|𝐴𝐵| ≡ |𝐴𝐶|) be the 

orthogonal projection onto 𝐴′ on a plane 𝛼 which passes through 𝐵𝐶. Show 

that 𝐵𝐴′𝐶̂ > 𝐵𝐴𝐶̂. 

Solution to Problem 239 

 

240. With the notes of Theorem 1, let [𝐴𝐵′ be the opposite ray to [𝐴𝐵′′. Show 

that for any point 𝑀 ∈ 𝛼– [𝐴𝐵′′ we have 𝐵′′𝐴𝐵̂ > 𝑀𝐴𝐵̂. 

Solution to Problem 240 
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241. Let 𝛼 be a plane, 𝐴 ∈ 𝛼 and 𝐵 and 𝐶 two points on the same side of 𝛼 

such that 𝐴𝐶 ⊥ 𝛼. Show that 𝐶𝐴𝐵̂ is the complement of the angle formed 

by [𝐴𝐵 with 𝛼. 

Solution to Problem 241 

 

242. Let 𝛼′𝛽′ be a trihedral angle with edge 𝑚 and 𝐴 ∈ 𝑚. Show that of all the 

rays with origin at 𝐴 and contained in half-plane 𝛽′, the one that forms 

with plane 𝛼 the biggest possible angle is that ⊥ 𝑝 ∈ 𝑚 (its support is 

called the line with the largest slope of 𝛽 in relation to 𝛼). 

Solution to Problem 242 

 

243. Let 𝛼 be a plane, 𝜎 a closed half-plane, bordered by 𝛼, 𝛼′ a half-plane 

contained in 𝛼 and 𝑎 a real number between 00 and 1800. Show that there 

is only one half-space 𝛽′ that has common border with 𝛼′ such that 𝛽′ ⊂ 𝜎 

and 𝑚(𝛼′𝛽′) = 𝑎. 

Solution to Problem 243 

 

244. Let (𝛼′𝛽′̂) be a proper dihedral angle. Construct a half-plane 𝛾′ such that 

𝑚(𝛼′𝛽′̂) = 𝑚(𝛾′𝛽′̂). Show that the problem has two solutions, one of which 

is located in the int. 𝛼′𝛽′̂ (called bisector half-plane of 𝛼′𝛽′̂). 

Solution to Problem 244 

 

245. Show that the locus of the points equally distant from two secant planes 

𝛼, 𝛽 is formed by two ⊥ planes, namely by the union of the bisector planes 

of the dihedral angles 𝛼 and 𝛽. 

Solution to Problem 245 

 

246. If 𝛼 and 𝛽 are two  planes, 𝑄 ∈ 𝛽 and 𝑑 ⊥ through 𝑄 on 𝛼. Show that 𝑑 ⊂

𝛽. 

Solution to Problem 246 
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247. Consider a line 𝑑 ⊂ 𝛼. Show that the union of the ⊥ lines to 𝛼, which 

intersect line 𝑑, is a plane ⊥ 𝛼. 

Solution to Problem 247 

 

248. Find the locus of the points equally distant from two concurrent lines. 

Solution to Problem 248 

 

249. Show that a plane 𝛼 ⊥ to two secant planes is ⊥ to their intersection. 

Solution to Problem 249 

 

250. Let 𝐴 be a point that is not on plane 𝛼. Find the intersection of all the 

planes that contain point 𝐴 and are ⊥ to plane 𝛼. 

Solution to Problem 250 

 

251. From a given point draw a ⊥ plane to two given planes. 

Solution to Problem 251 

 

252. Intersect a dihedral angle with a plane as the angle of sections is right. 

Solution to Problem 252 

 

253. Show that a line 𝑑 and a plane 𝛼, which are perpendicular to another 

plane, are parallel or line 𝑑 is contained in 𝛼. 

Solution to Problem 253 

 

254. If three planes are ⊥ to a plane, they intersect two by two after lines 

𝑎, 𝑏, 𝑐. Show that 𝑎 ∥ 𝑏 ∥ 𝑐. 

Solution to Problem 254 

 

255. From a point 𝐴 we draw perpendicular lines 𝐴𝐵 and 𝐴𝐶 to the planes of 

the faces of a dihedral angle 𝛼′𝛽′̂. Show that 𝑚(𝐵𝐴𝐶̂) = 𝑚(𝛼′𝛽′̂) or 

𝑚(𝐵𝐴𝐶̂) = 1800 −𝑚(𝛼′𝛽′̂). 

Solution to Problem 255 
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Solutions 
 

Solution to Problem 201. 

𝑀1 − 𝑧1 = 1 

𝑀2 − 𝑧1 = 2 + 𝑖 

𝑀1 − 𝑧1 = 𝑥 + 𝑦𝑖 

∆𝑀1𝑀2𝑀3 equilateral ⟹ ‖𝑀1𝑀2‖ = ‖𝑀1𝑀3‖ = ‖𝑀2𝑀3‖ ⇒ |𝑧2 − 𝑧1| = |𝑧3 − 𝑧2| =

|𝑧1 − 𝑧3|  

⇒ √2 = √(𝑥 − 2)2 + (𝑦 − 1)2 ⇒ {
(𝑥 − 2)2 + (𝑦 − 1)2 = 2

(1 − 𝑥)2 + 𝑦2 = 2
⇒ {

𝑥 + 𝑦 = 2

𝑥2 + 𝑦2 − 2𝑥 = 1

⇒ 𝑦 = 2 − 𝑥 

𝑥2 + 4 + 𝑥2 − 4𝑥 − 2𝑥 = 1 ⇒ 𝑥1,2 =
3 ± √3

2
⇒

[
 
 
 
 𝑦1 =

1 − √3

2

𝑦2
1 + √3

2

 

Thus: 𝑀3 (
3+√3

2
,
1−√3

2
) or 𝑀3 (

3−√3

2
,
1+√3

2
). 

There are two solutions! 

 

Solution to Problem 202. 

𝑧1 = 𝑟(cos 𝑡1 + 𝑖 sin 𝑡1) 

𝑧2 = 𝑟(cos 𝑡2 + 𝑖 sin 𝑡2) 

𝑧3 = 𝑟(cos 𝑡3 + 𝑖 sin 𝑡3) 

𝑧1 ≠ 𝑧2 ≠ 𝑧3 ⇒ 𝑡1 ≠ 𝑡2 ≠ 𝑡3 

{

𝑧1 + 𝑧2𝑧3 ∈ ℝ ⇒ sin 𝑡1 + 𝑟 sin(𝑡2 + 𝑡3) = 0

𝑧2 + 𝑧3𝑧1 ∈ ℝ ⇒ sin 𝑡2 + 𝑟 sin(𝑡1 + 𝑡3) = 0

𝑧3 + 𝑧1𝑧2 ∈ ℝ ⇒ sin 𝑡3 + 𝑟 sin(𝑡1 + 𝑡2) = 0

⟹ 

{

sin 𝑡1(1 − 𝑟 cos 𝑡) + 𝑟 sin 𝑡 ∙ cos 𝑡1 = 0

sin 𝑡2(1 − 𝑟 cos 𝑡) + 𝑟 sin 𝑡 ∙ cos 𝑡2 = 0

sin 𝑡3(1 − 𝑟 cos 𝑡) + 𝑟 sin 𝑡 ∙ cos 𝑡3 = 0

 

𝑡1 ≠ 𝑡2 ≠ 𝑡3 

These equalities are simultaneously true only if 1 − 𝑟 ∙ cos 𝑡 = 0 and 𝑟 ∙

sin 𝑡 = 0, as 𝑟 ≠ 0 ⇒ sin 𝑡 = 0 ⇒ 𝑡 = 0 ⇒ cos 𝑡 = 1 ⇒ 1 − 𝑟 = 0 ⇒ 𝑟 = 1, so 

𝑧1𝑧2𝑧3 = 1 ∙ (cos 0 + sin 0) = 1. 
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Solution to Problem 203. 

a. 𝜀𝑘 =
2𝑘𝜋

𝑛
+ 𝑖 sin

2𝑘𝜋

𝑛
 , 𝑘 ∈ {0, 1, … , 𝑛 − 1}. 

So 
𝜀𝑖 = cos

2𝑖𝜋

𝑛
+ 𝑖 sin

2𝑖𝜋

𝑛

𝜀𝑗 = cos
2𝑗𝜋

𝑛
+ 𝑖 sin

2𝑗𝜋

𝑛

} ⟹ 𝜀𝑖𝜀𝑗 = cos
2𝜋(𝑖+𝑗)

𝑛
+ 𝑖 sin

2𝜋(𝑖+𝑗)

𝑛
, 𝑖, 𝑗 ∈ {0, 1, … , 𝑛 − 1}. 

1) 𝑖 + 𝑗 < 𝑛 − 1 ⟹ 𝑖 + 𝑗 = 𝑘 ∈ {0, 1, … , 𝑛 − 1} ⟹ 𝜀𝑖𝜀𝑗 = 𝜀𝑘 ∈ 𝐺; 

2) 𝑖 + 𝑗 = 𝑛 ⟹ 𝜀𝑖𝜀𝑗 = cos 2𝜋 + 𝑖 sin 2𝜋 = 1 = 𝜀𝑜 ∈ 𝐺; 

3) 𝑖 + 𝑗 > 𝑛 ⟹ 𝑖 + 𝑗 = 𝑛 ∙ 𝑚 + 𝑟, 0 ≤ 𝑟 < 𝑛, 𝜀𝑖𝜀𝑗 = cos
2𝜋(𝑛∙𝑚+𝑟)

𝑛
+ 𝑖 sin

2𝜋(𝑛∙𝑚+𝑟)

𝑛
=

cos (2𝜋𝑚 +
2𝜋𝑟

𝑛
) + 𝑖 sin (2𝜋𝑚+

2𝜋𝑟

𝑛
) = cos

2𝜋𝑟

𝑛
+ 𝑖 sin

2𝜋𝑟

𝑛
= 𝜀𝑟 ∈ 𝐺. 

b. 𝜀𝑖 = cos
2𝜋𝑖

𝑛
+ 𝑖 sin

2𝜋𝑖

𝑛
 

𝜀𝑖
−1 =

1

𝜀𝑖
=

cos0+𝑖 sin0

cos
2𝜋𝑖

𝑛
+𝑖 sin

2𝜋𝑖

𝑛

= cos (−
2𝜋𝑖

𝑛
) + 𝑖 sin (−

2𝜋𝑖

𝑛
) = cos (2𝜋 −

2𝜋𝑖

𝑛
) +

𝑖 sin (2𝜋 −
2𝜋𝑖

𝑛
) = cos

2𝜋𝑛−2𝜋𝑖

𝑛
+ 𝑖 sin

2𝜋𝑛−2𝜋𝑖

𝑛
= cos

2𝜋(𝑛−1)

𝑛
+ 𝑖 sin

2𝜋(𝑛−1)

𝑛
 , 

𝑖 ∈ {0, 1,… , 𝑛 − 1}. 

If 𝑖 = 0 ⟹ 𝑛 − 𝑖 = 𝑛 ⟹ 𝜀0
−1 = 𝜀0 ∈ 𝑔. 

If 𝑖 ≠ 0 ⟹ 𝑛 − 𝑖 ≤ 𝑛 − 1 ⟹ ℎ = 𝑛 − 𝑖 ∈ {0, 1, … , 𝑛 − 1}⟹ 𝜖−1 = cos
2𝜋ℎ

𝑛
+

𝑖 sin
2𝜋ℎ

𝑛
∈ 𝐺. 

 

Solution to Problem 204. 

 {

𝑎 = 𝑟1(cos 𝑡1 + 𝑖 sin 𝑡1)

𝑏 = 𝑟2(cos 𝑡2 + 𝑖 sin 𝑡2)

𝑐 = 𝑟3(cos 𝑡3 + 𝑖 sin 𝑡3)
 

 arg𝑎 + arg𝑐 = 2arg𝑏 ⟹ 𝑡1 + 𝑡3 = 2𝑡2 

and |𝑎| + |𝑐| = |𝑏| ⟹ 𝑟1 + 𝑟3 = 𝑟2 

𝑎𝑧2 + 𝑏𝑧 + 𝑐 = 0 ⟹ 𝑧1,2 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎

=
−𝑟2(cos 𝑡2 + 𝑖 sin 𝑡2) ± √𝑟2

2(cos2𝑡2 + 𝑖 sin2𝑡2) − 4𝑟1𝑟3(cos(𝑡1 + 𝑡3) + 𝑖 sin(𝑡1 + 𝑡3))

2𝑟1(cos 𝑡1 + 𝑖 sin 𝑡1)

=
−𝑟2(cos 𝑡2 + 𝑖 sin 𝑡2) ± √(cos 2𝑡2 + 𝑖 sin 2𝑡2)(𝑟2

2 − 4𝑟1𝑟3)

2𝑟1(cos 𝑡1 + 𝑖 sin 𝑡1)
 

But 𝑟1 + 𝑟3 = 𝑟2⟹ 𝑟2
2 = 𝑟1

2 + 𝑟1
2 + 𝑟3

2 + 2𝑟1𝑟3⟹ 𝑟2
2 − 4𝑟1𝑟3 = 𝑟1

2 + 𝑟1
2 + 𝑟3

2 + 2𝑟1𝑟3 −

4𝑟1𝑟3 = (𝑟1 − 𝑟3)
2. 
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Therefore: 

𝑧1,2 =
−𝑟2(cos 𝑡2 + 𝑖 sin 𝑡2) ± (cos 𝑡2 + 𝑖 sin 𝑡2)(𝑟1 − 𝑟3)

2𝑟1(cos 𝑡1 + 𝑖 sin 𝑡1)
 

We observe that: 

𝑧2 =
(cos 𝑡2+𝑖 sin 𝑡2)(−2𝑟1)

2𝑟1(cos 𝑡1+𝑖 sin 𝑡1)
= −[cos(𝑡2 − 𝑡1) + 𝑖 sin(𝑡2 − 𝑡1)] = cos[𝜋 + (𝑡2 − 𝑡1)] +

𝑖 sin[𝜋 + 𝑡2 − 𝑡1] and 𝑡2 = 1.  

 

Solution to Problem 205. 

Let 

 

Let 

 

 

 

So 𝛼 is determined. 

 

So 𝛽 is determined. 

If we work with reduced arguments, then 𝑡4 = 𝑡2 − 𝑡1 or 𝑡4 = 𝑡2 − 𝑡1 + 2𝜋, in the 

same way 𝑡5. 
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According to a. (∃) the complex numbers of modulus 1, 𝛼 and 𝛽 such that 𝑧2 = 𝛼𝑧1 

and 𝑧3 = 𝛽𝑧1. 

In the given relation, by substitution we obtain: 

 

𝛼 = 1 and 𝛽 = 1 verify this equality, so in this case 𝑧2 = 𝑧3 = 𝑧1. 

According to point b.,  

 

where 𝛽 = 𝑥 + 𝑖𝑦, when 

 

 

 

 

We construct the system: 

 

 

The initial solution leads us to 𝑧1 = 𝑧2 = 𝑧3. 

 

and gives 

 

By substituting, 
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|𝛼| = 2 does not comply with the condition |𝛼| = 1. 

But 

 

so 

 

If 

 

then 

 

and then 

 

If 

 

are on the circle with radius 𝑟 and the arguments are  

 

 

they are the peaks of an equilateral triangle. 

 

Solution to Problem 206. 

a. We assume that 𝑑 ∩ 𝛼 ≠ ∅ and 𝑑′ ∩ 𝛼 = {𝐵}. 
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Let 𝑑 ∩ 𝛼 = {𝐴} and 𝑑′ ∩ 𝛼 = {𝐵} and the planes determined by pairs of concurrent 

lines (𝑑, 𝐴𝐵); (𝑑′, 𝐴𝐵). 

We remark that these are the required planes, because  

 

 

b. We assume 𝑑 ∩ 𝛼 = {𝐴} and 𝑑′||𝛼. 

We draw through 𝐴, in plane 𝛼, line 𝑑′||𝑑 and we consider planes (𝑑, 𝑑′′) and 

(𝑑′, 𝑑′′) and we remark that 

 

 

 

c. We assume  𝑑 ∩ 𝛼 = ∅ and 𝑑′ ∩ 𝛼 = ∅ and 𝑑′ ∈ direction 𝑑. 

Let 𝐴 ∈ 𝛼 and 𝑑′′||𝑑 ⟹ 𝑑′′||𝑑′ and the planes are (𝑑, 𝑑′′) and (𝑑′, 𝑑′′). The reasoning 

is the same as above. 

 

 

Solution to Problem 207. 
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Solution to Problem 208. 

 

If 𝛼 separates points 𝐴 and 𝐵, it means they are in different half-spaces and let 

𝜎 = |𝛼𝐴 and 𝜎′ = |𝛼𝐵. 

Because 𝛼 separates 𝐴 and 𝐶 ⟹ 𝐶 ∈ 𝜎′. 

Because 𝛼 separates 𝐶 and 𝐷 ⟹ 𝐷 ∈ 𝜎. 

From 𝐵 ∈ 𝜎′ and 𝐷 ∈ 𝜎 ⟹ 𝛼 separates points 𝐵 and 𝐷 

 

From 𝐴 ∈ 𝜎 and 𝐷 ∈ 𝜎 ⟹ |𝐵𝐷| ∩ 𝛼 = ∅. 

 

Solution to Problem 209. 
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From (1), (2), (3) 

 

 

Solution to Problem 210. 

 

a. int. (|𝑉𝐴, |𝑉𝐵̂, |𝑉𝐶) = |(𝑉𝐴𝐵), 𝐶 ∩ |(𝑉𝐵𝐶), 𝐴 ∩ |(𝑉𝐴𝐶), 𝐵 is thus an intersection of 

convex set and thus the interior of a trihedron is a convex set. 

b. Tetrahedron [𝑉𝐴𝐵𝐶] without edge [𝐴𝐶]. We mark with ℳ1 = [𝐴𝐵𝐶]– [𝐴𝐶] = [𝐴𝐵, 𝐶 ∩

[𝐵𝐶, 𝐴 ∩ |𝐴𝐶, 𝐵 is thus a convex set, being intersection of convex sets. 

 

is a convex set. 

In the same way 

 

is a convex set, where 

 

But [𝑉𝐴𝐵𝐶] – [𝐴𝐶]  =  

 

and thus it is a convex set as intersection of convex sets. 

c. Tetrahedron [𝑉𝐴𝐵𝐶] without face [𝐴𝐵𝐶] 

 

 𝑉 is thus intersection of convex sets ⟹ is a convex set. 
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Solution to Problem 211. 

 

In plane (𝐵𝐴𝐶) we have 𝐸𝐹||𝐴𝐶. In plane (𝐷𝐴𝐶) we have 𝐴𝐶 ⊂ (𝐷𝐴𝐶) ⟹ 𝐸𝐹||(𝐷𝐴𝐶). 

In this plane we also have 𝐻𝐺||𝐴𝐶. So 𝐸𝐹||𝐻𝐺 ⟹ 𝐸, 𝐹, 𝐺, 𝐻 are coplanar and because 

‖𝐸𝐹‖ =
‖𝐴𝐶‖

2
= ‖𝐻𝐺‖ ⟹𝐸𝐹𝐺𝐻 is a parallelogram. 

 

Solution to Problem 212. 

We assume we have 𝛼||𝛽||𝛾 such that 𝐴𝐴’ ⊂ 𝛼, 𝐵𝐵’ ⊂ , 𝐶𝐶’ ⊂ 𝛾. 

 

We draw through 𝐴′ a parallel line with 𝑑: 𝑑′′||𝑑. As 𝑑 intersects all the 3 planes 

𝐴′ ⊂ 𝑑′′ at 𝐴, 𝐵, 𝐶 ⟹ and its || 𝑑’’ cuts them at 𝐴′, 𝐵′′, 𝐶′′. 

Because 

 

Let plane (𝑑′, 𝑑′′ ). Because this plane has in common with planes 𝛼, 𝛽, 𝛾 the points 

𝐴′, 𝐵′′, 𝐶′′ and because 𝛼 || 𝛽 || 𝛾 ⟹ it intersects them after the parallel lines 

 

Taking into consideration (1) and (2)  

 

The vice-versa can be similarly proved. 
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Solution to Problem 213. 

 

Let 

 

such that 

 

and  

 

such that 

 

So  

 

according to problem 7, three planes can be drawn || 𝛽 || 𝛼 || 𝛾 such that 

 

 

and 𝑃𝑃′ ⊂ 𝛼. 

So by marking 𝑃 and letting 𝑃′ variable, 𝑃′ ∈ a parallel plane with the two lines, 

which passes through 𝑃. It is known that this plane is unique, because by drawing 

through 𝑃 parallel lines to 𝑑 and 𝑑’ in order to obtain this plane, it is well 

determined by 2 concurrent lines. 

Vice-versa: Let 𝑃 ∈ 𝛼, that is the plane passing through 𝑃 and it is parallel to 𝑑 

and 𝑑’. 
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(𝑃′′, 𝑑) determines a plane, and (𝑃′′, 𝑑′) determines a plane ⟹ the two planes, 

which have a common point, intersect after a line(𝑃′′, 𝑑)∩ (𝑃′′, 𝑑′) = 𝑄𝑄′ where 𝑄 ∈

𝑑 and 𝑄′ ∈ 𝑑′. 

Because 

 

 such that 𝑀𝑄 ⊂ 𝛽, 𝛽||𝛼. 

Because 

 

such that 𝑀′𝑄′ ⊂ 𝛾, 𝛾||𝛼. 

So the required locus is a parallel plane with 𝑑 and 𝑑’. 

 

Solution to Problem 214. 

 

We consider the plane, which according to a previous problem, represents the 

locus of the points dividing the segments with extremities on lines 𝑑1 and 𝑑3 in a 

given ratio 𝑘. To obtain this plane, we take a point 𝐴 ∈ 𝑑1, 𝐵 ∈ 𝑑3  and point 𝐶 ∈ 𝐴𝐵 

such that 
‖𝐴𝐶‖

‖𝐶𝐵‖
= 𝑘. Through this point 𝐶 we draw two parallel lines 𝑑1 and 𝑑3 which 

determine the above mentioned plane 𝛼. 

Let 𝑑2 ∩ 𝛼 = {𝑁}. We must determine a segment that passes through 𝑁 and with 

its extremities on 𝑑1 and 𝑑3, respectively at 𝑀 and 𝑃. As the required line passes 

through 𝑁 and 𝑀 

 

The same line must pass through 𝑁 and 𝑃 and because 

 

𝑀,𝑁, 𝑃 collinear. 
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From (1) and (2) 

 

Then, according to previous problem 8: 

 

and the required line is 𝑀𝑃. 

 

Solution to Problem 215. 

 

Let ∆𝑀𝑁𝑃 such that  

 

Let ∆𝑀′𝑁′𝑃′ such that  

 

Line 𝑀𝑃 generates a plane 𝛽, being parallel to a fixed direction 𝑑1 and it is based 

on a given line 𝑑. In the same way, the line 𝑀𝑁 generates a plane 𝛾, parallel to a 

fixed direction 𝑑2, and based on a given line 𝑑. As 𝑑 is contained by 𝛾 ⟹ 𝑂 is a 

common point for 𝛼 and 𝛾 ⟹ 𝛼 ∩ 𝛾 ≠ ∅ ⟹ 𝛼 ∩ 𝛾 = 𝑑′, 𝑂 ∈ 𝑑′. 

 

(∀) the considered ∆, so 𝑁 also describes a line 𝑑′ ⊂ 𝛼. 

Because plane 𝛾 is well determined by line 𝑑 and direction 𝑑2, is fixed, so 𝑑′ = 𝛼 ∩

𝛾 is fixed. 

In the same way, 𝑃𝑁 will generate a plane 𝛿, moving parallel to the fixed direction 

𝑑3 and being based on the given line 𝑑’. 

As 
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(∀)𝑃 variable peak, 𝑃 ∈ 𝑑′′. 

Thus, in the given conditions, for any ∆𝑀𝑁𝑃, peak 𝑃 ∈ 𝑑′′. 

Vice-versa, let 𝑃′ ∈ 𝑑′′. On plane (𝑑′, 𝑑′′) we draw 𝑃′,𝑀′||𝑃𝑀 ⟹ (𝑀′𝑃′𝑁′)||(𝑃𝑀𝑁) ⟹

(𝑑𝑑′) the intersection of two parallel planes after parallel lines 𝑀′𝑁′||𝑀𝑁 and the so 

constructed ∆𝑀′𝑃′𝑁′ has its sides parallel to the three fixed lines, has 𝑀′ ∈ 𝑑 and 

𝑁′ ∈ 𝛼, so it is one of the triangles given in the text. 

So the locus is line 𝑑′′. We’ve seen how it can be constructed and it passes 

through 𝑂. 

In the situation when 𝐷||𝛼 we obtain 

 

 

In this case the locus is a parallel line with 𝑑. 

 

Let 𝑀𝑁𝑃 and 𝑀′𝑁′𝑃′ such that 
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We assume 𝛼 ∩ 𝛽 = 𝑑 and let 𝑑 ∩ (𝑀𝑁𝑃) = {𝑂} and 𝑑 ∩ (𝑀′𝑁′𝑃′) = {𝑂′} ⟹  

 

a plane cuts the parallel planes after parallel lines. 

In the same way, 𝑂𝑁||𝑂′𝑁′ and because 

 

 

 

We use the property: Let 𝜋1 and 𝜋2 2 parallel planes and 𝐴, 𝐵, 𝐶 ⊂ 𝜋1 and 𝐴′𝐵′𝐶′ ⊂

𝜋2, 𝐴𝐵 ∥ 𝐴′𝐵′, 

 

 

Let’s show that 𝐵𝐶||𝐵′𝐶′. Indeed (𝐵𝐵′𝐶′) is a plane which intersects the 2 planes 

after parallel lines. 

 

Applying in (1) this property  ⟹𝑂𝑃||𝑂′𝑃′. Maintaining 𝑂𝑃 fixed and letting 𝑃’ 

variable, always 𝑂𝑃||𝑂′𝑃′.=, so 𝑂′𝑃′ generates a plane which passes through 𝑑. We 

assume 𝛽||𝛼. 

 

 

𝑀𝑁𝑁′𝑀′ parallelogram 
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Considering 𝑃′ fix and 𝑃 variable ⟹ 𝑃𝑃′||𝛼 and the set of parallel lines drawn 

𝑃𝑃′||𝛽 to a plane through an exterior point is a parallel plane with the given plane. 

So the locus is a parallel plane with 𝛼 and 𝛽. 

 

Solution to Problem 216. 

 

 

 

In plane 𝐷𝐴𝐶 we have: 

 

In plane 𝐷𝐴𝐵 we have: 

 

In plane 𝑂𝐵𝐶 we have: 

 

From 𝑃𝑀||𝐴𝐶 and 𝑃𝑁||𝐵𝐶 ⟹ (𝑀𝑁𝑅)||(𝐴𝐵𝐶). 

Let 𝑄 and 𝐷 be midpoints of sides |𝑀𝑁| and |𝐴𝐵|. 

 

 

are collinear. 
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Concurrent lines 𝑂𝐷 and 𝑂𝐶 determine a plane which cuts the parallel planes  

 

 

are collinear.  

So 𝐺’ ∈ |𝑂𝐺 ⟹ the required locus is ray |𝑂𝐺. 

Vice-versa: we take a point on |𝑂𝐺, 𝐺′′, and draw through it a parallel plane 

to (𝐴𝐵𝐶), plane (𝑀′′, 𝑁′′, 𝑃′′), similar triangles are formed and the ratios from 

the hypothesis appear. 

 

Solution to Problem 217. 

Let 𝐴2, 𝐵2, 𝐶2, 𝐷2 such that 

 

Mark on lines 𝐴𝐷1 and 𝐵𝐶1 points 𝑀 and 𝑁 such that 

 

 

From 

 

 

Next is 

 

The same, 

 

 

 

As 
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we obtain 

 

 

From  

 

 

is a parallelogram. 

 

 is parallelogram. 

 

So  

 

is a parallelogram. 

 

Solution to Problem 218. 
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We draw through 𝐴′ a line 𝑑′′||𝑑. We draw two parallel planes with 𝛼, which will 

intersect the three lines in 𝐵′, 𝐵∗, 𝐵 and 𝐶′, 𝐶∗, 𝐶. Plane (𝑑, 𝑑∗) intersects planes 𝛼, 

(𝐵′𝐵∗𝐵), (𝐶′𝐶∗𝐶) after parallel lines 

 

= ‖𝐵𝐵∗‖ = ‖𝐶′𝐶∗‖. 

Plane (𝑑′, 𝑑∗) intersects parallel planes (𝐵′𝐵∗𝐵), (𝐶′𝐶∗𝐶) after parallel lines 

 

So (∀) parallel plane with 𝛼 we construct, the newly obtained triangle has a side of 

𝛼 length and the corresponding angle to 𝐵′𝐵∗𝐵̂ is constant. We mark with a line 

that position of the plane, for which the opposite length of the required angle is 𝑙. 

With the compass spike at 𝐶 and with a radius equal with 𝑙, we trace a circle arc 

that cuts segment | 𝐶′𝐶∗| at 𝑁 or line 𝐶′𝐶∗. Through 𝑁 we draw at (𝑑′, 𝑑∗) a parallel 

line to 𝑑∗ which precisely meets 𝑑′ in a point 𝑀′.  Through 𝑀′, we draw the || plane 

to 𝛼, which will intersect the three lines in 𝑀,𝑀′,𝑀∗. 

 

is a parallelogram. 

 

⟹ 𝐶𝑁𝑀′𝑀 is a parallelogram. 

 

and line 𝑀𝑀′, located in a parallel plane to 𝛼, is parallel to 𝛼. 

Discussion: 

Assuming the plane (𝐶′𝐶∗𝐶) is variable, as | 𝐶𝐶∗|  and 𝐶𝐶′𝐶∗̂  are constant, then 

𝑑(𝐶′𝐶∗𝐶) = 𝑏 = also constant 

If 𝑙 < 𝑑 we don’t have any solution. 

If 𝑙 = 𝑑 (∃) a solution, the circle of radius 𝑙, is tangent to 𝐶′𝐶∗. 

If 𝑙 > 𝑑 (∃ ) two solutions: circle of radius 𝑙, cuts 𝐶′𝐶∗ at two points 𝑁 and 𝑃. 
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Solution to Problem 219. 

 

We draw through 𝐴 planes 𝛼 ⊥ 𝑑 and 𝛼′ ⊥ 𝑑′. 

As 𝐴 is a common point  

 
⟹ 𝛼 ∩ 𝛼′ = ∆⟹ 𝐴 ∈ ∆. 

 

⟹ ∆ the required line 

If 𝛼 ≠ 𝛼′ - we have only one solution. 

If 𝛼 = 𝛼′ (∀) line from 𝛼 which passes through 𝐴 corresponds to the problem, so 

(∃) infinite solutions. 

 

Solution to Problem 220. 

 

Let 𝑑1 ⊥ 𝑑2 two concurrent perpendicular lines, 𝑑1 ∩ 𝑑2 = {𝑂}. They determine a 

plane 𝛼 = (𝑑1, 𝑑2) and 𝑂 ∈ 𝛼. We construct on 𝛼 in 𝑂. 

 

 



255 Compiled and Solved Problems in Geometry and Trigonometry 

201 

 

Solution to Problem 221. 

We use the reductio ad absurdum method. 

Let 𝑑 ⊥ 𝑎, 𝑑 ⊥ 𝑎, 𝑑 ⊥ 𝑐. We assume that these lines are not coplanar. Let 𝛼 =

(𝑏, 𝑐), 𝛼′ = (𝑎, 𝑏), 𝛼 ≠ 𝛼′. Then 𝑑 ⊥ 𝛼, 𝑑 ⊥ 𝛼’. 

Thus through point 𝑂, 2 perpendicular planes to 𝑑 can be drawn. False ⟹ 𝑎, 𝑏, 𝑐 are 

coplanar. 

 

Solution to Problem 222. 

By reductio ad absurdum: 

Let 𝑎 ∩  𝑏 ∩  𝑐 ∩  𝑑 =  {𝑂} and they are perpendicular two by two. From 𝑑 ⊥ 𝑎, 𝑑 ⊥

𝑎, 𝑑 ⊥ 𝑐   ⟹ 𝑎, 𝑏, 𝑐 are coplanar and 𝑏 ⊥ 𝑎, 𝑐 ⊥ 𝑎, so we can draw to point 𝑂 two 

distinct perpendicular lines. False. So the 4 lines cannot be perpendicular two by 

two. 

 

Solution to Problem 223. 

 

We assume that 𝑑 ⊥ 𝛼. 

In 𝑑′ ∩ 𝛼 = {𝑂} we draw line 𝑑′′ ⊥ 𝛼. Lines 𝑑′ and 𝑑′′ are concurrent and determine a 

plane 𝛽 = (𝑑′, 𝑑′′) and as 𝑂′ ∈ 𝛽, 𝑂′ ∈ 𝛼 ⟹ 

 

From (1) and (2) ⟹ in plane 𝛽, on line 𝑎, at point 𝑂′ two distinct perpendicular lines 

had been drawn. False. So 𝑑′||𝛼. 
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Solution to Problem 224. 

 

Reductio ad absurdum. Let 𝑑 ∦ 𝑑′. We draw 𝑑′′||𝑑 through 𝑂’. 

 

⟹ at point 𝑂′ we can draw two perpendicular lines to plane 𝛼. False.  

So 𝑑||𝑑′. 

 

Solution to Problem 225. 

 

Let 𝑑 ⊥ 𝛼 and 𝑑 ∩ 𝛼 = {𝑂}. We draw through 𝑂 a parallel to 𝑑′, which will be 

contained in 𝛼, then 𝑑||𝛼. 

 

 

Solution to Problem 226. 

 

We assume 𝛽 ⟹ 𝛼 ∩ 𝛽 ≠ ∅ and let 𝐴 ∈ 𝛼 ∩ 𝛽 ⟹ through a point 𝐴 there can be 

drawn two distinct perpendicular planes on this line. False. 

 ⟹ 𝛼 || 𝛽. 
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Solution to Problem 227. 

 

Let 𝑀 be a point in space with the property ||𝑀𝐴|| = ||𝑀𝐵||. 

We connect 𝑀 with the midpoint of segment [𝐴𝐵], point 𝑂. 

 

So 𝑀 is on a line drawn through 𝑂, perpendicular to 𝐴𝐵. 

But the union of all perpendicular lines drawn through 𝑂 to 𝐴𝐵 is the perpendicular 

plane to 𝐴𝐵 at point 𝑂, marked with 𝛼, so 𝑀 ∈ 𝛼. 

 

Vice-versa: let 𝑀 ∈ 𝛼, 

 

 

 

Solution to Problem 228. 

 

Let 𝑀 be a point in space with this property: 

 

Let 𝑂 be the center of the circumscribed circle ∆𝐴𝐵𝐶 ⟹ ||𝑂𝐴|| = 𝑂𝐵|| = ||𝑂𝐶||, so 

𝑂 is also a point of the desired locus. 

 

common side 
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According to the previous problem the locus of the points in space equally distant 

from 𝐴 and 𝐵 is in the mediator plane of segment [𝐴𝐵], which also contains 𝑀. We 

mark with 𝛼 this plane. The locus of the points in space equally distant from 𝐵 and 

𝐶 is in the mediator plane of segment [𝐵𝐶], marked 𝛽, which contains both 𝑂 and 

𝑀. So 𝛼 ∩ 𝛽 = 𝑂𝑀. 

 

so 𝑀 ∈ the perpendicular line to plane (𝐴𝐵𝐶) in the center of the circumscribed 

circle ∆𝐴𝐵𝐶. 

Vice-versa, let 𝑀 ∈ this perpendicular line 

 

= ||𝐶𝑀||, so 𝑀 has the property from the statement. 

 

Solution to Problem 229. 

 

We draw ⊥ from 𝐵 to the plane. Let 𝑂 be the foot of this perpendicular line. 

Let 

 

 

the circle of radius 𝑂𝐴. Vice-versa, let 𝑀 ∈ this circle    

 

so 𝑀 represents the foot from 𝐵 to 𝐴𝑀. 
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Solution to Problem 230. 

Let 𝛼 be a plane that passes through 𝑎 and let 𝑀 be the ⊥ foot from 𝐴 to 𝛼 ⟹

𝐴𝑀 ⊥ 𝛼. 

From  

 

so 𝑀 ∈ a perpendicular line to 𝑎 in 𝐴′, thus it is an element of the perpendicular 

plane to 𝑎 in 𝐴′, which we mark as 𝜋 and which also contains 𝐴. 

 

𝑀 ∈ the circle of radius 𝐴𝐴′ from plane π. 

 

*Vice-versa, let 𝑀 be a point on this circle of radius 𝐴𝐴′ from plane 𝜋. 

 

⟹𝑀 is the foot of a ⊥ drawn from 𝐴 to a plane that passes through 𝑎. 

 

Solution to Problem 231. 

 

Let 𝐴′ and 𝐵′ be the feet of the perpendicular lines from 𝐴 and 𝐵 to 𝛼 

 

(∃) a plane 𝛽 = (𝐴𝐴′, 𝐵𝐵′) and 𝐴𝐵 ⊂ 𝛽   
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are collinear. 

In plane 𝛽 we have 

 

 

 

Solution to Problem 232. 

 

Let 𝑑, 𝑑′ be given lines, 𝐴 given point. We draw through 𝐴 plane 𝛼 ⊥ to 𝑑′. 

If 𝑎 ∩ 𝛼 = {𝐵}, then line 𝐴𝐵 is the desired one, because it passes through 𝐴, meets 𝑑 

and from 𝑑′𝛼 𝑑′𝐴𝐵. If 𝑑 ∩ 𝛼 = ∅ there is no solution. 

If 𝑑 ⊂ 𝛼, then any line determined by 𝐴 and a point of 𝑑 represents solution to the 

problem, so there are infinite solutions. 

 

Solution to Problem 233. 

 

right 
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Solution to Problem 234. 

 

Let 𝑀 be a point such that ||𝐴𝑀|| = 𝑘. 

We draw 𝐴𝐴′ ⊥ 𝛼 ⇒ 𝐴′ fixed point and 𝐴𝐴′ ⊥ 𝐴′𝑀. 

We write ||𝐴𝐴′|| = 𝑎. 

Then  

 

𝑀 ∈ a circle centered at 𝐴′ and of radius √𝑘2 − 𝑎2, for 𝑘 > 𝑎. 

For 𝑘 = 𝑎 we obtain 1 point. 

For 𝑘 < 𝑎 empty set. 

Vice-versa, let 𝑀 be a point on this circle ⟹ 

 

 

so 𝑀 has the property from the statement. 

 

Solution to Problem 235. 
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In ∆𝑂𝐶𝑀: 

 

But 

 

 

 

3. Let 𝐻 be the projection of 𝑂 lcp. plane 𝐴𝐵𝐶,  so 

 

 

 

𝐻 ∈ corresponding heights of side 𝐴𝐵. We show in the same way that 𝐴𝐶 ⊥

𝐵𝐻 and thus 𝐻 is the point of intersection of the heights, thus orthocenter. 
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Solution to Problem 236. 

 

First we prove that if a line is ⊥ to two concurrent planes ⟹ the planes coincide. 

 

Let 

 

 

∆𝐴𝐵𝑀 has two right angles. False. We return to the given problem. 

 

 

being concurrent, they determine a plane ⟹ 𝐶𝐷 ⊥ 𝐴𝐵. 

 

𝐶, 𝐷, 𝐶′, 𝐷′ are coplanar ⟹  𝐶𝐶′ and 𝐷𝐷′ are coplanar. 
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Solution to Problem 237. 

 

We draw 

 

⟹ 𝐵𝐴′ height in ∆𝐵𝐶𝐷 (1) 

 

⟹ 𝐴′𝐶 height in ∆𝐴𝐵𝐶 (2) 

From (1) and (2) ⟹ 𝐴′ is the orthocenter ∆𝐴𝐵𝐶 ⟹ 𝑂𝐴′ ⊥ 𝐵𝐶. 

 

 

Solution to Problem 238. 

 

Let 

 

∆𝐵𝑂𝑂′ and ∆𝐶𝑂𝑂′ are right at 𝑂′. 
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As 
|𝑂𝐴| ≡ |𝑂𝐵| ≡ |𝑂𝐶|
|𝑂𝑂′| common side

} 

 

 is the center of the circumscribed circle ∆𝐴𝐵𝐶. 

 

Solution to Problem 239. 

 

Let 𝐷 be the midpoint of [𝐵𝐶] and 𝐸 ∈ |𝐷𝐴′ such that ||𝐷𝐸|| = ||𝐷𝐴||. 

𝐴𝐷 is median in the ∆ isosceles 

 

 

 

being external for 

 

 

Solution to Problem 240. 

 

Let 𝑀 be a point in the plane and |𝐴𝑀′ the opposite ray to 𝐴𝑀. 

According to theorem 1 

 

 

 

common 
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Solution to Problem 241. 

 

We construct 𝐵 on the plane 

 

 ⟹ 𝐴𝐶 and 𝐵𝐵′ determine a plane 𝛽 = (𝐴𝐶, 𝐵𝐵′) ⟹ 𝐴𝐵 ⊂ 𝛽 and on this plane 

𝑀(𝐶𝐴𝐵̂) = 900 −𝑚(𝐵𝐴𝐵′)̂ . 

 

Solution to Problem 242. 

 

Let ray |𝐴𝐵 ⊂ 𝛽′ such that 𝐴𝐵 ⊥ 𝑚. Let |𝐴𝐶 another ray such that |𝐴𝐶 ⊂ 𝛽’. We draw 

𝐵𝐵′ ⊥ 𝛼 and 𝐶𝐶′ ⊥ 𝛼 to obtain the angle of the 2 rays with 𝛼, namely 𝐵𝐴𝐵′̂ > 𝐶𝐴𝐶′̂. 

We draw line |𝐴𝐴’ such that 𝐴𝐴′ ⊥ 𝛼 and is on the same side of plane 𝛼 as well as 

half-plane 𝛽’. 

 

[𝐴𝐵 is the projection of ray [𝐴𝐴′ on plane 𝛽 

 

 

Solution to Problem 243. 

Let 𝑑 be the border of 𝛼′ and 𝐴 ∈ 𝑑. We draw a plane ⊥ on 𝑑 in 𝐴, which we mark 

as 𝛾.  
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In this plane, there is only one ray 𝑏, with its origin in 𝐴, such that 𝑚(𝑐, 𝑏̂) = 𝑎. 

The desired half-plane is determined by 𝑑 and ray 𝑏, because from 

 

 

 

Solution to Problem 244. 

 

Let 𝑑 be the edge of the dihedral angle and 𝐴 ∈ 𝑑. We draw 𝑎 ⊥ 𝑑, 𝑎 ⊂ 𝛼′ and 𝑏 ⊥

𝑑, 𝑏 ⊂ 𝛽’ two rays with origin in 𝐴. It results 𝑑 ⊥ (𝑎𝑏). We draw on plane (𝑎, 𝑏) ray 𝑐 

such that 𝑚(𝑎𝑐̂) = 𝑚(𝑐𝑏̂) (1). 

As 𝑑 ⊥ (𝑎𝑏) ⟹ 𝑑 ⊥ 𝑐. 

Half-plane 𝛾′ = (𝑑, 𝑐) is the desired one, because  

 

If we consider the opposite ray to 𝑐, 𝑐′, half-plane 𝛾′′ = (𝑑, 𝑐′) also forms 

concurrent angles with the two half-planes, being supplementary to the others. 
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Solution to Problem 245. 

Let 𝑀 be a point in space equally distant from the half-planes 𝛼′, 𝛽′ ⟹ ||𝑀𝐴|| =

||𝑀𝐵||. 

 

where 𝑑 = 𝛼 ∩ 𝛽. 

Let  

 

 

 

 

|𝑀𝐴| = |𝑀𝐵|
|𝑂𝑀| common side right triangle

} ⟹ 

 

⟹𝑀 ∈ bisector of the angle. 

𝐴𝐷𝐵̂ ⟹ 𝑀 ∈ bisector half-plane of the angle of half-planes 𝛼′, 𝛽′. 

If 𝑀′ is equally distant from half-planes 𝛽′ and 𝛼′′ we will show in the same way 

that 𝑀′ ∈ bisector half-plane of these half-planes. We assume that 𝑀 and 𝑀′ are on 

this plane ⊥ to 𝑑, we remark that 𝑚(𝑀𝑂𝑀′̂ ) = 900, so the two half-planes are ⊥. 

Considering the two other dihedral angles, we obtain 2 perpendicular planes, the 2 

bisector planes. 

 

Vice-versa: we can easily show that a point on these planes is equally distant form 

planes 𝛼 and 𝛽. 
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Solution to Problem 246. 

 

 

Let 𝛼 ∩ 𝛽 = 𝛼.  In plane 𝛽 we draw 

 

As  

 

but 

 

so from a point it can be drawn only one perpendicular line to a plane, 

 

 

Solution to Problem 247. 

 

Let 
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the line with the same direction. We know that the union of the lines with the same 

direction and are based on a given line is a plane. As this plane contains a 

perpendicular line to 𝛼, it is perpendicular to 𝛼. 

 

Solution to Problem 248. 

 

Let 𝛼 = (𝑑1, 𝑑2) the plane of the two concurrent lines and 𝑀 is a point with the 

property 𝑑(𝑀, 𝑑1) = 𝑑(𝑀, 𝑑2). We draw  

 

Let  

 

 

a bisector of the angle formed by the two lines, and 𝑀 is on a  line 𝛼 which 

meets a bisector  ⇒ 𝑀 ∈ a plane ⊥ 𝛼 and which intersects 𝛼 after a bisector. Thus 

the locus will be formed by two planes ⊥ α and which intersects 𝛼 after the two 

bisectors of the angle formed by 𝑑1, 𝑑2. The two planes are ⊥. 

⟹
‖𝑀′𝐴‖ = ‖𝑀′𝐵‖

||MM′|| common side
} ⟹ 𝑀𝐴 ⊥ 𝑑1 

 And in the same way 𝑀𝐵 ⊥ 𝑑2 ⇒ 𝑀 has the property from the statement. 

 

Solution to Problem 249. 
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Let 𝛽 ∩ 𝛾 = 𝑑 and 𝑀 ∈ 𝑑 ⟹ 𝑀 ∈ 𝛽,𝑀 ∈ 𝛾. We draw ⊥ from 𝑀  to 𝛼, line 𝑑’. 

According to a previous problem 

 

 

Solution to Problem 250. 

 

Let 𝛽 and 𝛾 be such planes, that is 

 

From  

 

are secant planes and ⊥ to 𝛼.  

 

So their intersection is ⊥ through 𝐴 to plane 𝛼. 

 

Solution to Problem 251. 

We construct the point on the two planes and the desired plane is determined by 

the two perpendicular lines. 

 

Solution to Problem 252. 

Let 𝛼 ∩ 𝛽 = 𝑑 and 𝑀 ∈ 𝑑. We consider a ray originating in 𝑀, 𝑎 ∈ 𝛼 and we 

construct a ⊥ plane to 𝑎 in 𝑀, plane 𝛾. 

Because  
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and let a ray originating in 𝑀, 𝑏 ⊂ 𝛽 ∩ 𝛾 ⇒ 𝑏 ⊂ 𝛽 , 𝑏 ⊂.𝛾 As 𝑎 ⊥ 𝛾  ⟹ 𝑎 ⊥ 𝑏 and the 

desired plane is that determined by rays (𝑎, 𝑏). 

Solution to Problem 253. 

Let 𝛼 ∩ 𝛽 = 𝑎 and 𝑑 ∩ 𝛽 = {𝐴}. 

We suppose that 𝐴 ∉ 𝑎. Let 𝑀 ∈ 𝑎, we build 𝑏 ⊥ 𝛽, 𝑀 ∈ 𝑏 ⟹ 𝑏 ⊂ 𝛼. 

If 

Solution to Problem 254. 
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From (1), (2), (3) ⟹ 𝑎 ∥ 𝑏 ∥ 𝑐. 

 

Solution to Problem 255. 

 

Let 𝐴 ∈ int. (𝛼′𝛽′̂), 𝛼 ∩ 𝛽 = 𝑑. 

 

Let 𝐴 ∈ int. (𝛼′′𝛽′̂). We show the same way that 

𝑚(𝐵𝐴𝐶̂) = 1800 −𝑚(𝛼′′𝛽′̂)

𝑚(𝛼′′𝛽′̂) = 1800 −𝑚(𝛼′𝛽′̂)
} ⟹ 𝑚(𝐵𝐴𝐶̂) = 1800 − 1800 +𝑚(𝛼′𝛽′̂) = 𝑚(𝛼′𝛽′̂). 

If 𝐴 ∈ int. (𝛼′′𝛽′′̂)⟹𝑚(𝐵𝐴𝐶̂) = 1800 −𝑚(𝛼′′𝛽′̂). 

If 𝐴 ∈ int. (𝛼′𝛽′′̂) ⟹ 𝑚(𝐵𝐴𝐶̂) = 1800 −𝑚(𝛼′𝛽′̂). 
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This book is a translation from Romanian of "Probleme Compilate şi Rezolvate de Geometrie şi 

Trigonometrie" (University of Kishinev Press, Kishinev, 169 p., 1998), and includes problems of 2D 

and 3D Euclidean geometry plus trigonometry, compiled and solved from the Romanian Textbooks 

for 9th and 10th grade students, in the period 1981-1988, when I was a professor of mathematics 

at the "Petrache Poenaru" National College in Balcesti, Valcea (Romania), Lycée Sidi El Hassan 

Lyoussi in Sefrou (Morocco), then at the "Nicolae Balcescu" National College in Craiova and 

Dragotesti General School (Romania), but also I did intensive private tutoring for students 

preparing their university entrance examination. After that, I have escaped in Turkey in September 

1988 and lived in a political refugee camp in Istanbul and Ankara, and in March 1990 I immigrated 

to United States. The degree of difficulties of the problems is from easy and medium to hard. The 

solutions of the problems are at the end of each chapter. One can navigate back and forth from 

the text of the problem to its solution using bookmarks. The book is especially a didactical 

material for the mathematical students and instructors. 

The Author 


	Problem1
	Problem2
	Problem3
	Problem4
	Problem5
	Problem6
	Problem7
	Problem8
	Problem9
	Problem10
	Problem11
	Problem12
	Problem13
	Problem14
	Problem15
	Problem16
	Problem17
	Problem18
	Problem19
	Problem20
	Problem21
	Problem22
	Problem23
	Problem24
	Problem25
	Problem26
	Problem27
	Problem28
	Problem29
	Problem30
	Problem31
	Problem32
	Problem33
	Problem34
	Problem35
	Problem36
	Problem37
	Problem38
	SolutionProblem1
	SolutionProblem2
	SolutionProblem3
	SolutionProblem4
	SolutionProblem5
	SolutionProblem6
	SolutionProblem7
	SolutionProblem8
	SolutionProblem9
	SolutionProblem10
	SolutionProblem11
	SolutionProblem12
	SolutionProblem13
	SolutionProblem14
	SolutionProblem15
	SolutionProblem16
	SolutionProblem17
	SolutionProblem18
	SolutionProblem19
	SolutionProblem20
	SolutionProblem21
	SolutionProblem22
	SolutionProblem23
	SolutionProblem24
	SolutionProblem25
	SolutionProblem26
	SolutionProblem27
	SolutionProblem28
	SolutionProblem29
	SolutionProblem30
	SolutionProblem31
	SolutionProblem32
	SolutionProblem33
	SolutionProblem34
	SolutionProblem35
	SolutionProblem36
	SolutionProblem37
	SolutionProblem38
	Problem39
	Problem40
	Problem41
	Problem42
	Problem43
	Problem44
	Problem45
	Problem46
	Problem47
	Problem48
	Problem49
	Problem50
	Problem51
	Problem52
	Problem53
	Problem54
	Problem55
	Problem56
	Problem57
	Problem58
	Problem59
	Problem60
	Problem61
	Problem62
	Problem63
	Problem64
	Problem65
	SolutionProblem39
	SolutionProblem40
	SolutionProblem41
	SolutionProblem42
	SolutionProblem43
	SolutionProblem44
	SolutionProblem45
	SolutionProblem46
	SolutionProblem47
	SolutionProblem48
	SolutionProblem49
	SolutionProblem50
	SolutionProblem51
	SolutionProblem52
	SolutionProblem53
	SolutionProblem54
	SolutionProblem55
	SolutionProblem56
	SolutionProblem57
	SolutionProblem58
	SolutionProblem59
	SolutionProblem60
	SolutionProblem61
	SolutionProblem62
	SolutionProblem63
	SolutionProblem64
	SolutionProblem65
	Problem66
	Problem67
	Problem68
	Problem69
	Problem70
	Problem71
	Problem72
	Problem73
	Problem74
	Problem75
	Problem76
	Problem77
	Problem78
	Problem79
	Problem80
	Problem81
	Problem82
	Problem83
	Problem84
	Problem85
	Problem86
	Problem87
	Problem88
	Problem89
	Problem90
	Problem91
	Problem92
	Problem93
	Problem94
	Problem95
	Problem96
	Problem97
	Problem98
	Problem99
	Problem100
	Problem101
	Problem102
	Problem103
	SolutionProblem66
	SolutionProblem67
	SolutionProblem68
	SolutionProblem69
	SolutionProblem70
	SolutionProblem71
	SolutionProblem72
	SolutionProblem73
	SolutionProblem74
	SolutionProblem75
	SolutionProblem76
	SolutionProblem77
	SolutionProblem78
	SolutionProblem79
	SolutionProblem80
	SolutionProblem81
	SolutionProblem82
	SolutionProblem83
	SolutionProblem84
	SolutionProblem85
	SolutionProblem86
	SolutionProblem87
	SolutionProblem88
	SolutionProblem89
	SolutionProblem90
	SolutionProblem91
	SolutionProblem92
	SolutionProblem93
	SolutionProblem94
	SolutionProblem95
	SolutionProblem96
	SolutionProblem97
	SolutionProblem98
	SolutionProblem99
	SolutionProblem100
	SolutionProblem101
	SolutionProblem102
	SolutionProblem103
	Problem104
	Problem105
	Problem106
	Problem107
	Problem108
	Problem109
	Problem110
	Problem111
	Problem112
	Problem113
	Problem114
	Problem115
	Problem116
	Problem117
	SolutionProblem104
	SolutionProblem105
	SolutionProblem106
	SolutionProblem107
	SolutionProblem108
	SolutionProblem109
	SolutionProblem110
	SolutionProblem111
	SolutionProblem112
	SolutionProblem113
	SolutionProblem114
	SolutionProblem115
	SolutionProblem116
	SolutionProblem117
	Problem118
	Problem119
	Problem120
	Problem121
	Problem122
	Problem123
	Problem124
	Problem125
	Problem126
	Problem127
	Problem128
	Problem129
	Problem130
	Problem131
	Problem132
	Problem133
	Problem134
	Problem135
	Problem136
	Problem137
	Problem138
	Problem139
	Problem140
	Problem141
	Problem142
	Problem143
	Problem144
	Problem145
	Problem146
	Problem147
	Problem148
	Problem149
	Problem150
	Problem151
	Problem152
	Problem153
	Problem154
	Problem155
	Problem156
	Problem157
	Problem158
	SolutionProblem118
	SolutionProblem119
	SolutionProblem120
	SolutionProblem121
	SolutionProblem122
	SolutionProblem123
	SolutionProblem124
	SolutionProblem125
	SolutionProblem126
	SolutionProblem127
	SolutionProblem128
	SolutionProblem129
	SolutionProblem130
	SolutionProblem131
	SolutionProblem132
	SolutionProblem133
	SolutionProblem134
	SolutionProblem135
	SolutionProblem136
	SolutionProblem137
	SolutionProblem138
	SolutionProblem139
	SolutionProblem140
	SolutionProblem141
	SolutionProblem142
	SolutionProblem143
	SolutionProblem144
	SolutionProblem145
	SolutionProblem146
	SolutionProblem147
	SolutionProblem148
	SolutionProblem149
	SolutionProblem150
	SolutionProblem151
	SolutionProblem152
	SolutionProblem153
	SolutionProblem154
	SolutionProblem155
	SolutionProblem156
	SolutionProblem157
	SolutionProblem158
	Problem159
	Problem160
	Problem161
	Problem162
	Problem163
	Problem164
	Problem165
	Problem166
	Problem167
	Problem168
	Problem169
	Problem170
	Problem171
	Problem172
	Problem173
	Problem174
	Problem175
	Problem176
	Problem177
	SolutionProblem159
	SolutionProblem160
	SolutionProblem161
	SolutionProblem162
	SolutionProblem163
	SolutionProblem164
	SolutionProblem165
	SolutionProblem166
	SolutionProblem167
	SolutionProblem168
	SolutionProblem169
	SolutionProblem170
	SolutionProblem171
	SolutionProblem172
	SolutionProblem173
	SolutionProblem174
	SolutionProblem175
	SolutionProblem176
	SolutionProblem177
	Problem178
	Problem179
	Problem180
	Problem181
	Problem182
	Problem183
	Problem184
	Problem185
	Problem186
	Problem187
	Problem188
	Problem189
	Problem190
	Problem191
	Problem192
	Problem193
	Problem194
	Problem195
	Problem196
	Problem197
	Problem198
	Problem199
	Problem200
	SolutionProblem178
	SolutionProblem179
	SolutionProblem180
	SolutionProblem181
	SolutionProblem182
	SolutionProblem183
	SolutionProblem184
	SolutionProblem185
	SolutionProblem186
	SolutionProblem187
	SolutionProblem188
	SolutionProblem189
	SolutionProblem190
	SolutionProblem191
	SolutionProblem192
	SolutionProblem193
	SolutionProblem194
	SolutionProblem195
	SolutionProblem196
	SolutionProblem197
	SolutionProblem198
	SolutionProblem199
	SolutionProblem200
	Problem201
	Problem202
	Problem203
	Problem204
	Problem205
	Problem206
	Problem207
	Problem208
	Problem209
	Problem210
	Problem211
	Problem212
	Problem213
	Problem214
	Problem215
	Problem216
	Problem217
	Problem218
	Problem219
	Problem220
	Problem221
	Problem222
	Problem223
	Problem224
	Problem225
	Problem226
	Problem227
	Problem228
	Problem229
	Problem230
	Problem231
	Problem232
	Problem233
	Problem234
	Problem235
	Problem236
	Problem237
	Problem238
	Problem239
	Problem240
	Problem241
	Problem242
	Problem243
	Problem244
	Problem245
	Problem246
	Problem247
	Problem248
	Problem249
	Problem250
	Problem251
	Problem252
	Problem253
	Problem254
	Problem255
	SolutionProblem201
	SolutionProblem202
	SolutionProblem203
	SolutionProblem204
	SolutionProblem205
	SolutionProblem206
	SolutionProblem207
	SolutionProblem208
	SolutionProblem209
	SolutionProblem210
	SolutionProblem211
	SolutionProblem212
	SolutionProblem213
	SolutionProblem214
	SolutionProblem215
	SolutionProblem216
	SolutionProblem217
	SolutionProblem218
	SolutionProblem219
	SolutionProblem220
	SolutionProblem221
	SolutionProblem222
	SolutionProblem223
	SolutionProblem224
	SolutionProblem225
	SolutionProblem226
	SolutionProblem227
	SolutionProblem228
	SolutionProblem229
	SolutionProblem230
	SolutionProblem231
	SolutionProblem232
	SolutionProblem233
	SolutionProblem234
	SolutionProblem235
	SolutionProblem236
	SolutionProblem237
	SolutionProblem238
	SolutionProblem239
	SolutionProblem240
	SolutionProblem241
	SolutionProblem242
	SolutionProblem243
	SolutionProblem244
	SolutionProblem245
	SolutionProblem246
	SolutionProblem247
	SolutionProblem248
	SolutionProblem249
	SolutionProblem250
	SolutionProblem251
	SolutionProblem252
	SolutionProblem253
	SolutionProblem254
	SolutionProblem255

