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Abstract. We discuss the P versus NP problem from the perspective
of addition operation about polynomial functions. Two contradictory
propositions for the addition operation are presented. With the proposi-
tion that the sum of k (k < n) polynomial functions on n always yields
a polynomial function, we prove that P = NP, considering the maxi-
mum clique problem. However, we also get a contradiction if we accept
the proposition. So, we conclude that the sum of k polynomial functions
may yield a exponential function. Accepting this proposition, we prove
that P # NP by constructing an abstract decision problem IT.
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1 Introduction

As one of the most important problems in mathematics and computer science,
the P versus NP problem is to determine whether every language accepted by
some nondeterministic algorithm in polynomial time is also accepted by some
(deterministic) algorithm in polynomial time [1]. Since first mentioned in a 1956
letter written by Kurt Gédel to John von Neumann [2] and precisely stated in
1971 by Stephen Cook [3], the problem has been considered by many papers
[4]. However, it is still open [5]. For detailed introduction of the P versus NP
problem, please refer to the excellent survey articles by eminent authors (see [4]-
[10]).

In this paper, we will discuss the P versus N P problem based on the addition
operation of polynomial functions. It is often thought that the sum of k (k < n)
polynomial functions on n always yields a polynomial function. Applying the
binomial theorem, we can prove that P = NP in this situation. However, we
can also get a contradiction if we accept this proposition. So we conclude that
the sum of £ polynomial functions may yield an exponential function. With this
proposition, we construct an problem separating P from N P.

The rest of this paper is organized as follows. Section 2 presents two simple
and interesting properties about the binomial theorem. Section 3 presents two
propositions for the addition operation. Section 4 discusses the P versus NP
problem according to the propositions. Finally, Section 5 concludes this paper.
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2 Story of Binomial Theorem

Firstly, let’s remember the binomial theorem which is also called Yang Hui tri-
angle in China [11].

(a+b)" = C%" + Cla" b+ C2a" 2% + -+ CPLab™ L + O™ (1)

where Cf = g for k = 0,1,---,n and Ci = CF_y + Gyt for k =
0,1,---,n—1.
We present two simple and interesting properties about Eq. (1) in the fol-

lowing.

Lemma 1. Let k be an arbitrary integer number such that 0 < k <n —1. We
have that Cy™ = CF_, +CF_,+---+Cf +1.

Proof. Noting that Ck+1 = Ck_| + Ck1 = Ck_, + (CF_, + CFT)) =

Ck  +CF 4+ + (C’,]j+1 + C’gill) and C,ljill = 1 the lemma, follows. O

Lemma 2. 2" =CY+CL +... 4+ Cr=t + On.

Proof. Replacing a =b =1 in Eq. (1), the lemma follows. ad

3 Two Contradictory Propositions

Let hi(n), ha(n),- - -, hx(n) be arbitrary k polynomial functions on n, and H(n) =
hi(n) + hi(n) + +hk( ), where k < n.
Is H(n) polynomlal or exponential? Noting that H(n) < k Inax {h (n)} <

n max {h;(n)}, youmay say H(n) is polynomial since max, {h; ( )} is polynomi-

al. Is this always right? Maybe not! And we have the following two propositions,
which are applied to prove that P = NP and P # NP, respectively. It may
sound interesting.

Proposition 1. Given arbitrary k (k < n) polynomial functions on n, i.e.,
hi(n),ha(n), -, hg(n), and H(n) = h1(n)+ha(n)+---+hr(n), H(n) is always
polynomaal.

Proposition 2. There exist k (k < n) polynomial functions on n, i.e., hi(n),

ha(n), - -+, hg(n), such that H(n) is exponential, where H(n) = hy(n) + ha(n) +
<+ hg(n).

4 Discussion for the P versus NP Problem

Two subsections are considered according to the two propositions above.
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4.1 Proposition 1 holds

Considering the maximum clique problem, which is NP-complete [12], we will
prove P = NP in the following. Given a graph G with n vertices, we can find
the maximum clique of G by Enumerative Algorithm(EA) with the worst case
run time f(n) =CY+CL +...+CP= 1+ COn,

Theorem 1. P = NP if Proposition 1 holds.

Proof. Tt is sufficient to prove that f(n) is polynomial. Noting Proposition 1, it
is now sufficient to prove that C2, C} ..., C" are all polynomial. Mathematical
induction is applied in the following.

Firstly, it is obvious that C? and C} are both polynomial. Now we suppose
that C* is polynomial for some k (1 < k < n — 1) and try to prove that C*+1
is also polynomial. Noting that C,’jH < C,’:+2 <. < CF | < CFand CFis

polynomial, we have that CF 1 Cck FTEREN Ck_| are all polynomial. Remember-
ing Lemma 1 and Proposition 1, we have that C**! is polynomial. The theorem
follows. a

However, according to Lemma 2, we have that f(n) = 27, which is expo-
nential, contradicting to the proof for Theorem 2. So, we have an extraordinary
conclusion that Proposition 1 does not hold.

Remark 1. Proposition 1 does not hold.

4.2 Proposition 2 holds

We will prove that P # NP in the following. It is often thought that proving
P # NP involves proving a superpolynomial lower bound on the run time of any
algorithm for some NP-complete problem such as SAT [6]. However, instead of
any NP-complete problem, we will construct an abstract problem 17, such that
IT € NP and II ¢ P.

From Proposition 2, we know that there exist k& (k < n) polynomial functions
on n, ie., hi(n),h5(n),---, and hj(n), such that H*(n) is exponential, where
H*(n) = hi(n) +hi(n) + -+ hi(n).

Remember that the return of a decision problem is just a ”yes” or "no”. Let
m; (i =1,2,--- k) denote an abstract decision problem with input I;, where the
length of I; is n and the worst case run time for m; is hf(n). Moreover, we let
II be a decision problem which is to ask if there exists a ”yes” in the returns of
1, s, - -+, and 7. Note that the input of IT are I, I, -- and I with a total
length of nk < n?.

Theorem 2. P # NP if Proposition 2 holds.

Proof. Tt is sufficient to prove that IT € NP and IT ¢ P.

Note that Iy, I, -- and I are unrelated. So, for any deterministic Turing
Machine, the worst case of solving II is to check the k returns of 71, ms, -
and 7. And the total run time is hj(n) + h3(n) + --- + hj(n). Noting that
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H*(n) = hi(n) + hi(n) + --- + hj(n) and H*(n) is exponential, we get that
I ¢ P.
For a non-deterministic Turing Machine, it is sufficient to check the return of
one of the k decision problems with polynomial run time. So it is that IT € N P.
The theorem follows. a

5 Conclusion

In this paper, we discuss the P versus N P problem from the perspective of ad-
dition operation about polynomial functions. According to the two propositions,
i.e. whether the sum of k (kK < n) polynomial functions on n always yields a
polynomial function, P = NP and P # NP are proved, respectively. However,
we can also get a contradiction if the first proposition holds. And we have to
conclude that P # NP.

However, it is still hard for us to understand Proposition 2. Buddha Sakya-
muni said that inequality of heart yields annoyance. Maybe that the polynomial
and exponential functions are not absolutely different but naturally interrelated.
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