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Abstract

In this paper, the symmetric character of the tlaroonductivity tensor for linear anisotropic
material is established as the result of argumdrasm tensor analysis for Duhamel’s
generalization of Fourier's heat conduction. Tlo@-8ingular nature of the conductivity tensor
plays the fundamental role in establishing this stry, as well as its positive (or negative)
definiteness. Significantly, the second law ofrthedynamics does not contribute here in
establishing these characteristics, but does uitiiyjadecide that the conductivity tensor is

indeed positive definite.

1. Introduction

The conductivity tensor characterizes the generadal heat conduction relation between
temperature gradients and heat flux in heterogenemisotropic material. By using non-
equilibrium statistical mechanics, Onsagdij has shown that the conductivity tensor is
symmetric. Since classical continuum thermodynandid not provide any direct reasoning for
this property for a long time, there had been theegal belief that the symmetry condition can
only be derived based on additional physical assimamy For instance, Day and Gurti®| |

have introduced the requirement that the thermakviunctional has a weak relative minimum

at equilibrium.



Recently, HadjesfandiarB[ has established the symmetric character of tmelwctivity tensor

by using arguments from tensor analysis and liredgebra regarding the generalization of
Fourier’'s heat conduction law. Interestingly, thedamental ground in this establishment is the
non-singularity of the conductivity tensor. Thethoal of proof is based on the consistency of
the system of linear equations representing thé¢ beaduction law in different coordinate
systems. This proof clearly demonstrates thasidakcontinuum thermodynamics can provide
the mathematical reason for the symmetric charaotethe conductivity tensor, which is a
necessary condition for having consistent tensoelations in classical heat conduction theory.
As a result, one might speculate that there arerotiays to establish this character, although the

fundamental step still remains the non-singulasitthe conductivity tensor.

Here we establish the symmetric character of thedgctivity tensor by focusing on the
conductivity tensor itself, without using the limdgeat conduction equation. As mentioned, the
fundamental ground in this establishment is algortbn-singularity of the conductivity tensor.
The method of proof is based on the fact that tr&lactivity tensor cannot be skew-symmetric.
Significantly, this proof shows the subtle charactetensors in three-dimensional space, which
has not been recognized previously. Interestinglg, form of this proof also shows that the
conductivity tensor is either positive or negatefinite. It should be emphasized that the
second law of thermodynamics and Clausius-Duhemquialdy do not have any role here in
establishing the symmetry character of the condiigtiensor. They only establish that the

conductivity tensor is positive, rather than neggtdefinite.

The paper is organized as follows. In Sectpnve provide an overview of the classical heat
conduction relations for linear anisotropic materidfter that in Section3, the symmetric
character of the conductivity tensor is establishgdising the arguments from tensor analysis.
Finally, Section4 contains a summary and some general conclusidggendix A presents

properties of the eigenvalue problem for secon@otehsors.

2. Linear heat conduction theory

Consider the three dimensional orthogonal coordisgstemx x,X, as the reference frame. For

linear anisotropic material, Duhamel’s general@matf Fourier's heat conduction lav[is
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g = _kijT,j . (1)

Here the tensok; is the material thermal conductivity tensor, whiekates the heat flux vector

g to the gradient of the temperature fiflld The minus sign inlj assures that the heat flow

occurs from a higher to a lower temperature whes raterial is isotropic with positive
conductivity in Fourier’s original law. From a pigal standpoint, we postulate that there is a

one to one relationship between the temperaturdiegraT; and the heat fluxg in (1). This

condition requires that the conductivity tensomio@-singular, as will be demonstrated in detail

in the next section.

In terms of components, the second order condtigtiensork in the coordinate systemx,X,

can be written as

[kij]z Ky Ky Kol (2)

Since we have not established the symmetry charaétg; , the nine components &, are
independent of each other at this stage. Theretbeeconductivity tensok; is specified by

nine independent components in the general casea Fesult, the conductivity tensor can be
represented by points of an abstract nine-dimeasigpace. However, as will be seen, there are
some restrictions on the conductivity tensor, whodmfines the domain of the conductivity

tensor in this abstract space.

By decomposing the thermal conductivity tenspr into symmetrick(ij) and skew-symmetric
k[”.] parts, we have

=k g @
where
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Notice that here we have introduced parentheseswuding a pair of indices to denote the

symmetric part of a second order tensor, whereaarsdorackets are associated with the skew-

symmetric part. Since the general conductivitystenk; is specified by nine independent
components, the tensot%) and k[ij] are specified by six and three independent commene
respectively. In the following section, we provett k[”.] vanishes based exclusively on tensor

analysis.

3. Symmetric character of the conductivity tensor

Now we establish that the conductivity tensprcannot be singular. Appendixdemonstrates

that singular tensors have at least one zero eseev Therefore, if we assume that the
conductivity tensor is singulaat least one of its eigenvalues vanishes. Letrbigrarily choose

the third eigenvalue to be one of these eigenvathes is, A, =0, where its corresponding real
eigenvector isv'®. For a non-zero temperature gradigntin the direction ofv(S), where
T =7, (6)
with & as an arbitrary non-zero constant, there woulddkeat flux; that is
g =-kT, =-ky =0. ) (7
However, this physically contradicts the fact ttisdre is a one to one relationship between the

temperature gradient; and the heat fluxg, in (1). Therefore, this contradiction requires that
the conductivity tensok; be non-singular, that is
det(k) = def k; |# C (8)

This shows that the conductivity tensor is inveetib

Interestingly, we notice thadet(k): 0 specifies an eight-dimensional hyper-surface i@ th

abstract nine-dimensional space of the conductteitygor. This hyper-surface divides the nine-

dimensional space into two exclusive subspacesceShe domain of the conductivity tensor is



continuous in the abstract nine-dimensional speeconstraintg) requires that this domain be
in only one of these two subspaces. The more fuedtal meaning of this restriction will be

elucidated shortly.

In AppendixA, we demonstrate the well-known fact that all threeehsional skew-symmetric

tensors are singular. As a result, the non-simgadeductivity tensork; cannot be skew-

symmetric. For now, we concentrate on this impurharacter and ignore the general non-

singularity character of the conductivity tendqr.

For further investigation, we consider the decontpmos

Ky =K+ ®

Let us assume the skew-symmetric tenlﬁl(ﬂr part is non-zero. Since, the conductivity tensor
cannot become skew-symmetric, the symmetric p%r)t is also non-zero. However, the
symmetric partk(”.)can become as arbitrarily small as we wish. Thezms that the tensd,

can approach to the non-zero limit valk{ﬁ in many arbitrary ways, but it cannot become equal
to k[ij]. Mathematically, this states that the condugtit@nsor is not defined Aﬁij], although it

is defined in its neighborhood. However, we notitat this restriction is in contradiction with
the continuity of the domain of definition of theoructivity tensor. Therefore, this

contradiction requires that the skew-symmetric [kﬁ]'tvanish, that is

i) =0 Ky = k) (10)
This result states that the conductivity tens@yimmetric, that is
kij = kji : (11)

Therefore, the general conductivity tensor is dptby six independent components.

For more clarification, we demonstrate the abovasoeing by using the symbolic three-

dimensional coordinate system in Fig. 1, wherehbgzontal plane including two coordinate



axis represents the six-dimensional spacek(lcl))f, and the vertical axis represents the three-
dimensional space d¢;,. Notice that the origin corresponds to the zdr&g andk;, . Since

the conductivity tensok; cannot be skew-symmetric, it cannot be on the cadrtine, although it

can be at any point around it. Therefore, theiaartine is the location of impossible values for
the conductivity tensor. However, this is incotesi$ with the continuity of the conductivity
tensor in its domain. As a result, this contradictrequires that points representing the
consistent conductivity tensor must lie in the hontal plane that passes continuously through

the point k[ij] =0. Only in this plane is the conductivity tensomtiouous. Since the skew-

symmetric part is zero everywhere in this planes thermal conductivity tensor must be

symmetric.

v

K

Fig. 1 Symbolic representation of abstract nine-dimamadiconductivity space

Now we notice that the eigenvalues of the symmeitductivity tensok; are all real and their
corresponding real eigenvectors are mutually ohagfor distinct eigenvalues or can be taken
mutually orthogonal for repeated eigenvalues. €quently, we can generally diagonalize the

conductivity tensor by choosing the new coordirgtgemx;x,X;, such that the coordinate axes

! !

X , X% and x; are along the orthogonal eigenvectd, v? and v¥. As a result, the

representation of the conductivity tensor in thesvrcoordinate system becomes



k, 0 O

(k]=| 0 Kk, o, 12
0 0 Ky
where we have
/]1 = k1'.1’ /]2 = k’22' AS = k:'%3 (13)

On the other hand, the non-singularity of the catigiity tensor also imposes more restrictions

on this symmetric tensor. In particular, if théseno restriction on the signs of eigenvaluks
A, and A, then they can also become zero. However, &siglris in contradiction to the non-

singularity of the conductivity tensor. Therefotiee strictly non-singular conductivity tensor is

symmetric and is either positive or negative dédinilnterestingly, we notice that this shows that

the hyper-surfacejet(k) = 0 divides the abstract space of the symmetric candtyctensor

space into positive and negative definite conditgtiensor subspaces. Notice that to this stage,

there has been no reference to the second laveohtdynamics.

The combination of the first and second law of th@dynamics $] results in the Clausius-
Duhem inequality

<0. (14)

This inequality shows that the heat flux vector m@nhave any positive component in the
direction of temperature gradient. By using theatteh (1) for heat flux, we can write the
Clausius-Duhem inequality §) as

k.T.T. =0. (15)

i
Since the conductivity tensor is a non-singular swyatric tensor, the Clausius-Duhem inequality
in the form of (5 shows that this tensor is positive definite. sTmeans that all of the

eigenvaluesl3) are positive.

As mentioned before, the second law of thermodyosmand Clausius-Duhem inequality do not
have any role here in establishing the symmetrazadtter of the conductivity tensor. The proof

has been solely based on the tensorial charactgquanitities in Duhamel’s generalization of
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Fourier's heat conduction lawl); The Clausius-Duhem inequalityl4) imposes only the

positive definite restriction on the symmetric cantivity tensork; .

4. Conclusions

By using arguments from tensor analysis, we hatabkshed the symmetric character of the
conductivity tensor for linear anisotropic materidhterestingly, the non-singular character of
the conductivity tensor is fundamental in estalofighthis statement. The proof here shows that
classical continuum thermodynamics can provide rtteghematical reason for the symmetric
character of the conductivity tensor. Remarkalitys method of proof also shows that the
conductivity tensor is either positive or negatiglefinite. However, the Clausius-Duhem

inequality requires this tensor to be positive i

The method of proof used here shows the subtleacterof tensors and their interrelationships
in three-dimensional space, which has not beey &xploited in studying physical phenomena
from this mathematical view. By using the charactetensors, we may find important results,
which could not have been imagined previously assical physics. As shown in this paper, the
tensorial proof refutes the general belief thatsidametry condition for the conductivity tensor
can be derived only based on additional physicalimptions, such as the requirement that the

thermal work functional have a weak relative minimat equilibrium.

It should be emphasized that the singularity otfake-dimensional skew-symmetric tensors has
played a vital role in establishing the symmetharacter of the conductivity tensor. However,
we should remember that skew-symmetric tensor®mlgesingular in odd dimensional spaces,
such as the three-dimensional physical space cemesichere. Skew-symmetric tensors in even
dimensional spaces are not necessarily singulars Means that if our physical space had been
even dimensional, e.g., two-dimensional, the cohdity tensor would not have been

symmetric, unless other physical arguments wer@sag.

As one might expect, the symmetric character ofréséstivity tensor in Ohm’s law for electric
conduction and the diffusion coefficient tensor Fock’s law in mass transfer and other diffusive
systems can be established using analogous methods.
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Appendix A. Eigenvalue problem for second order tensors

Consider the general second order ten€orin three-dimensional space. The eigenvalue
problem for this tensor is defined as
C,v, = v, (A1)
where the parametet is the eigenvalue or principal value and the veetas the eigenvector or
principal direction. The eigenvalue probleAi] can be written as
(c,-24;)v, =o0. (A2)
The condition for A2) to possess a non-trivial solution fgris
det(C, -19,) =0, (A3)
which in terms of elements can be written as
Cu —A Ci Cis
dett C,, C,,-4 C, |[=0. (A4)
Ca Cs, C33_/]

This gives the cubic characteristic equation Aoas
A =1 A%+1,A-1,=0, 0AS

where the real coefficientls, |, and |; are the invariants of the tensGr expressed as

|, =tracgC)=C;, (A6)
l, =%[(traceC)2 - trace(Cz)} =_;[(C|i )’ _CijCjiJ ’ (A7)
|3 =det(C) :%a”kapqrqpchckr . (A8)

The symbolg;;, in (A8) is the alternating or Levi-Civita symbol.

It should be noticed that since the vectois normalized, we have
vy =1, (A9)

whereV is the complex conjugate of.



Let us call the eigenvalue}, A, and A;. The cubic equatiomrAS) with real coefficients has at
least one real root. Therefore, in any case, ayenealue and its corresponding eigenvector are
real, which we denote as the third eigensolutignand vl?. We notice that the other two
eigenvalues4, and A,, and their corresponding eigenvector@ and v\? are either real or
complex conjugate of each other. However, forrdad eigenvaluel, with the corresponding

real normalized eigenvectm“), we have

vV =1, (A10)

Interestingly, we notice that the invariants of ttemsor C can be expressed in terms of

eigenvalues, where

L= A+ A, 4 Ay (AL1)
I, =AA, + A A3+ A4, (A12
= A, (A13)

If a tensor is singular, the relatioAX3) shows that at least one of the eigenvalues vagish

A second order tensd? is symmetric, if
P'=P, P, =R. @1

ji
It is seen that a general symmetric second ordeiotan three-dimensional space is specified by
six independent values. The eigenvalues of thensstmc tensorP, are all real and their
corresponding real eigenvectors are mutually ohagfor distinct eigenvalues or can be taken
mutually orthogonal for repeated eigenvalues. Timieans there is a primed orthogonal

coordinate systenx x;X;, where the representation Bf is diagonal, that is

R, 0 0
[R]=|0 B, © (A15
0 0 P,

A second order tensd@ is skew-symmetric, if
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Q'=-0Q, i =Q. (Al6)

As a result, a general skew-symmetric tensor ieeffttimensional space is specified by three

independent values. For the determinant of thmsdeg we have
det(Q) = de(-Q). 1A

Since the tensoR is three-dimensional, we have

det(-Q) =(~1° de(Q)

. (A18)
=~ defQ)
Therefore, A17) becomes
det(Q) =-de(Q). 19)
This shows that the determinant of the ter@ovanishes; that is
det(Q) = 0. (A20)

This in turn shows that one of the eigenvalues hef skew-symmetric tenso®,; is zero.

Therefore, all three-dimensional skew-symmetricstea are singular and have one zero

eigenvalue. Interestingly, the other two eigenealof any skew-symmetric tens@; form a

purely imaginary conjugate pair.
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