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Abstract  

In this paper, the symmetric character of the thermal conductivity tensor for linear anisotropic 

material is established as the result of arguments from tensor analysis for Duhamel’s 

generalization of Fourier’s heat conduction.  The non-singular nature of the conductivity tensor 

plays the fundamental role in establishing this symmetry, as well as its positive (or negative) 

definiteness.  Significantly, the second law of thermodynamics does not contribute here in 

establishing these characteristics, but does ultimately decide that the conductivity tensor is 

indeed positive definite. 

 

1.  Introduction 
 
The conductivity tensor characterizes the general linear heat conduction relation between 

temperature gradients and heat flux in heterogeneous anisotropic material.  By using non-

equilibrium statistical mechanics, Onsager [1] has shown that the conductivity tensor is 

symmetric.  Since classical continuum thermodynamics did not provide any direct reasoning for 

this property for a long time, there had been the general belief that the symmetry condition can 

only be derived based on additional physical assumptions.   For instance, Day and Gurtin [2] 

have introduced the requirement that the thermal work functional has a weak relative minimum 

at equilibrium.   
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Recently, Hadjesfandiari [3] has established the symmetric character of the conductivity tensor 

by using arguments from tensor analysis and linear algebra regarding the generalization of 

Fourier’s heat conduction law.  Interestingly, the fundamental ground in this establishment is the 

non-singularity of the conductivity tensor.  The method of proof is based on the consistency of 

the system of linear equations representing the heat conduction law in different coordinate 

systems.  This proof clearly demonstrates that classical continuum thermodynamics can provide 

the mathematical reason for the symmetric character of the conductivity tensor, which is a 

necessary condition for having consistent tensorial relations in classical heat conduction theory.   

As a result, one might speculate that there are other ways to establish this character, although the 

fundamental step still remains the non-singularity of the conductivity tensor. 

 

Here we establish the symmetric character of the conductivity tensor by focusing on the 

conductivity tensor itself, without using the linear heat conduction equation.   As mentioned, the 

fundamental ground in this establishment is also the non-singularity of the conductivity tensor.  

The method of proof is based on the fact that the conductivity tensor cannot be skew-symmetric.  

Significantly, this proof shows the subtle character of tensors in three-dimensional space, which 

has not been recognized previously.  Interestingly, the form of this proof also shows that the 

conductivity tensor is either positive or negative definite.  It should be emphasized that the 

second law of thermodynamics and Clausius-Duhem inequality do not have any role here in 

establishing the symmetry character of the conductivity tensor.  They only establish that the 

conductivity tensor is positive, rather than negative, definite.    

 

The paper is organized as follows.  In Section 2, we provide an overview of the classical heat 

conduction relations for linear anisotropic material.  After that in Section 3, the symmetric 

character of the conductivity tensor is established by using the arguments from tensor analysis.  

Finally, Section 4 contains a summary and some general conclusions.  Appendix A presents 

properties of the eigenvalue problem for second order tensors. 

 

2.  Linear heat conduction theory 
 
Consider the three dimensional orthogonal coordinate system 321 xxx  as the reference frame.  For 

linear anisotropic material, Duhamel’s generalization of Fourier’s heat conduction law [4] is 
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,i ij jq k T= − .                                                           (1) 

 

Here the tensor ijk  is the material thermal conductivity tensor, which relates the heat flux vector 

iq  to the gradient of the temperature field T .  The minus sign in (1) assures that the heat flow 

occurs from a higher to a lower temperature when the material is isotropic with positive 

conductivity in Fourier’s original law.  From a physical standpoint, we postulate that there is a 

one to one relationship between the temperature gradient ,iT  and the heat flux iq  in (1).  This 

condition requires that the conductivity tensor be non-singular, as will be demonstrated in detail 

in the next section. 

 

In terms of components, the second order conductivity tensor k  in the coordinate system 1 2 3x x x  

can be written as 

11 12 13

21 22 23

31 32 33

 
   =   
  

ij

k k k

k k k k

k k k

.                                                  (2) 

 

Since we have not established the symmetry character of ijk , the nine components of ijk  are 

independent of each other at this stage.  Therefore, the conductivity tensor ijk  is specified by 

nine independent components in the general case.  As a result, the conductivity tensor can be 

represented by points of an abstract nine-dimensional space.  However, as will be seen, there are 

some restrictions on the conductivity tensor, which confines the domain of the conductivity 

tensor in this abstract space. 

 

By decomposing the thermal conductivity tensor ijk  into symmetric ( )ijk  and skew-symmetric 

[ ]ijk  parts, we have 

( ) [ ]ij ij ijk k k= + ,                                                        (3) 

where 

( ) ( ) ( )
1

2 ij jiij jik k k k= + = ,                                                 (4) 
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[ ] ( ) [ ]
1

2 ij jiij jik k k k= − = − .                                                (5) 

Notice that here we have introduced parentheses surrounding a pair of indices to denote the 

symmetric part of a second order tensor, whereas square brackets are associated with the skew-

symmetric part.  Since the general conductivity tensor ijk  is specified by nine independent 

components, the tensors ( )ijk  and  [ ]ijk  are specified by six and three independent components, 

respectively.  In the following section, we prove that [ ]ijk  vanishes based exclusively on tensor 

analysis. 

 

3.  Symmetric character of the conductivity tensor 
 
Now we establish that the conductivity tensor ijk  cannot be singular.  Appendix A demonstrates 

that singular tensors have at least one zero eigenvalue.  Therefore, if we assume that the 

conductivity tensor is singular, at least one of its eigenvalues vanishes.  Let us arbitrarily choose 

the third eigenvalue to be one of these eigenvalues, that is, 3 0λ = , where its corresponding real 

eigenvector is ( )3v .  For a non-zero temperature gradient ,iT  in the direction of ( )3v , where 

( )3
,i iT vϑ= ,                                                            (6) 

with ϑ  as an arbitrary non-zero constant, there would be no heat flux; that is 

( )3
, 0i ij j ij iq k T k vϑ= − = − = .                                                (7) 

However, this physically contradicts the fact that there is a one to one relationship between the 

temperature gradient ,iT  and the heat flux iq  in (1).  Therefore, this contradiction requires that 

the conductivity tensor ijk  be non-singular, that is  

( )det det 0 = ≠ ijkk .                                                  (8) 

This shows that the conductivity tensor is invertible.   

 

Interestingly, we notice that ( )det 0=k  specifies an eight-dimensional hyper-surface in the 

abstract nine-dimensional space of the conductivity tensor.  This hyper-surface divides the nine-

dimensional space into two exclusive subspaces.  Since the domain of the conductivity tensor is 
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continuous in the abstract nine-dimensional space, the constraint (8) requires that this domain be 

in only one of these two subspaces.  The more fundamental meaning of this restriction will be 

elucidated shortly.    

 

In Appendix A, we demonstrate the well-known fact that all three-dimensional skew-symmetric 

tensors are singular.  As a result, the non-singular conductivity tensor ijk  cannot be skew-

symmetric.  For now, we concentrate on this important character and ignore the general non-

singularity character of the conductivity tensor ijk .   

 

For further investigation, we consider the decomposition  

( ) [ ]ij ij ijk k k= + .                                                         (9) 

 

Let us assume the skew-symmetric tensor [ ]ijk  part is non-zero.  Since, the conductivity tensor 

cannot become skew-symmetric, the symmetric part ( )ijk  is also non-zero.  However, the 

symmetric part ( )ijk can become as arbitrarily small as we wish.  This means that the tensor ijk  

can approach to the non-zero limit value [ ]ijk  in many arbitrary ways, but it cannot become equal 

to [ ]ijk .  Mathematically, this states that the conductivity tensor is not defined at [ ]ijk , although it 

is defined in its neighborhood.  However, we notice that this restriction is in contradiction with 

the continuity of the domain of definition of the conductivity tensor.  Therefore, this 

contradiction requires that the skew-symmetric part [ ]ijk  vanish, that is 

[ ] 0=ijk ,    ( )=ij ijk k .                                                   (10) 

This result states that the conductivity tensor is symmetric, that is 

=ij jik k .                                                            (11) 

Therefore, the general conductivity tensor is specified by six independent components. 

 

For more clarification, we demonstrate the above reasoning by using the symbolic three-

dimensional coordinate system in Fig. 1, where the horizontal plane including two coordinate 
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axis represents the six-dimensional space of ( )ijk , and the vertical axis represents the three-

dimensional space of [ ]ijk .  Notice that the origin corresponds to the zero of ( )ijk  and [ ]ijk  .  Since 

the conductivity tensor ijk cannot be skew-symmetric, it cannot be on the vertical line, although it 

can be at any point around it.  Therefore, the vertical line is the location of impossible values for 

the conductivity tensor.  However, this is inconsistent with the continuity of the conductivity 

tensor in its domain.  As a result, this contradiction requires that points representing the 

consistent conductivity tensor must lie in the horizontal plane that passes continuously through 

the point [ ] 0ijk = .  Only in this plane is the conductivity tensor continuous.  Since the skew- 

symmetric part is zero everywhere in this plane, the thermal conductivity tensor must be 

symmetric.   

 

 

 

 

 

 

Fig. 1  Symbolic representation of abstract nine-dimensional conductivity space 

 

Now we notice that the eigenvalues of the symmetric conductivity tensor ijk  are all real and their 

corresponding real eigenvectors are mutually orthogonal for distinct eigenvalues or can be taken 

mutually orthogonal for repeated eigenvalues.  Consequently, we can generally diagonalize the 

conductivity tensor by choosing the new coordinate system 321 xxx ′′′ , such that the coordinate axes 

1′x  , 2′x  and 3x′   are along the orthogonal eigenvectors ( )1v , ( )2v   and ( )3v .  As a result, the 

representation of the conductivity tensor in this new coordinate system becomes 

( )ijk  

[ ]ijk

ijk
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′ 
 ′ ′  =   

′  

ij

k

k k

k

,                                                 (12) 

where we have 

1 11kλ ′= ,   2 22kλ ′= ,   3 33kλ ′= .                                           (13) 

 

On the other hand, the non-singularity of the conductivity tensor also imposes more restrictions 

on this symmetric tensor.   In particular, if there is no restriction on the signs of eigenvalues 1λ , 

2λ  and 3λ , then they can also become zero.   However, this result is in contradiction to the non-

singularity of the conductivity tensor.  Therefore, the strictly non-singular conductivity tensor is 

symmetric and is either positive or negative definite.  Interestingly, we notice that this shows that 

the hyper-surface ( )det 0=k  divides the abstract space of the symmetric conductivity tensor 

space into positive and negative definite conductivity tensor subspaces.  Notice that to this stage, 

there has been no reference to the second law of thermodynamics. 

 

The combination of the first and second law of thermodynamics [5] results in the Clausius-

Duhem inequality  

, 0i iq T ≤ .                                                           (14) 

 

This inequality shows that the heat flux vector cannot have any positive component in the 

direction of temperature gradient. By using the relation (1) for heat flux, we can write the 

Clausius-Duhem inequality (14) as  

, , 0≥ij i jk T T .                                                         (15) 

Since the conductivity tensor is a non-singular symmetric tensor, the Clausius-Duhem inequality 

in the form of (15) shows that this tensor is positive definite.  This means that all of the 

eigenvalues (13) are positive. 

 

As mentioned before, the second law of thermodynamics and Clausius-Duhem inequality do not 

have any role here in establishing the symmetric character of the conductivity tensor.  The proof 

has been solely based on the tensorial character of quantities in Duhamel’s generalization of 
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Fourier’s heat conduction law (1). The Clausius-Duhem inequality (14) imposes only the 

positive definite restriction on the symmetric conductivity tensor ijk . 

 

4.  Conclusions 
 
By using arguments from tensor analysis, we have established the symmetric character of the 

conductivity tensor for linear anisotropic material.  Interestingly, the non-singular character of 

the conductivity tensor is fundamental in establishing this statement.  The proof here shows that 

classical continuum thermodynamics can provide the mathematical reason for the symmetric 

character of the conductivity tensor.  Remarkably, this method of proof also shows that the 

conductivity tensor is either positive or negative definite.  However, the Clausius-Duhem 

inequality requires this tensor to be positive definite. 

 

The method of proof used here shows the subtle character of tensors and their interrelationships 

in three-dimensional space, which has not been fully exploited in studying physical phenomena 

from this mathematical view.  By using the character of tensors, we may find important results, 

which could not have been imagined previously in classical physics.  As shown in this paper, the 

tensorial proof refutes the general belief that the symmetry condition for the conductivity tensor 

can be derived only based on additional physical assumptions, such as the requirement that the 

thermal work functional have a weak relative minimum at equilibrium. 

 

It should be emphasized that the singularity of all three-dimensional skew-symmetric tensors has 

played a vital role in establishing the symmetric character of the conductivity tensor.  However, 

we should remember that skew-symmetric tensors are only singular in odd dimensional spaces, 

such as the three-dimensional physical space considered here.  Skew-symmetric tensors in even 

dimensional spaces are not necessarily singular.  This means that if our physical space had been 

even dimensional, e.g., two-dimensional, the conductivity tensor would not have been 

symmetric, unless other physical arguments were imposed. 

 

As one might expect, the symmetric character of the resistivity tensor in Ohm’s law for electric 

conduction and the diffusion coefficient tensor for Fick’s law in mass transfer and other diffusive 

systems can be established using analogous methods. 
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Appendix A.  Eigenvalue problem for second order tensors 
 
Consider the general second order tensor C  in three-dimensional space.  The eigenvalue 

problem for this tensor is defined as 

λ=ij j iC v v ,                                                         (A1) 

where the parameter λ  is the eigenvalue or principal value and the vector v  is the eigenvector or 

principal direction.  The eigenvalue problem (A1) can be written as 

( ) 0λδ− =ij ij jC v .                                                    (A2) 

The condition for (A2) to possess a non-trivial solution for iv  is 

( )det 0λδ− =ij ijC ,                                                   (A3) 

which in terms of elements can be written as 

11 12 13

21 22 23

31 32 33

det 0

λ
λ

λ

− 
 − = 
 − 

C C C

C C C

C C C

.                                     (A4) 

 

This gives the cubic characteristic equation for λ  as  

3 2
1 2 3 0I I Iλ λ λ− + − = ,                                               (A5) 

where the real coefficients 1I , 2I  and 3I  are the invariants of the tensor C  expressed as 

( )1 trace iiI C= =C ,                                                    (A6) 

( ) ( ) ( )2 22
2

1 1
trace trace 

2 2 ii ij jiI C C C   = − = −
   

C C ,                       (A7) 

( )3
1

det
6 ijk pqr ip jq krI C C Cε ε= =C .                                       (A8) 

 

The symbol ε ijk  in (A8) is the alternating or Levi-Civita symbol.   

 

It should be noticed that since the vector v  is normalized, we have 

 1=i iv v ,                                                               (A9) 

where iv  is the complex conjugate of iv .   
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Let us call the eigenvalues 1λ , 2λ  and 3λ .  The cubic equation (A5) with real coefficients has at 

least one real root.  Therefore, in any case, one eigenvalue and its corresponding eigenvector are 

real, which we denote as the third eigensolution 3λ  and ( )3v .  We notice that the other two 

eigenvalues 1λ  and 2λ , and their corresponding eigenvectors ( )1v  and ( )2v are either real or 

complex conjugate of each other.  However, for the real eigenvalue 3λ  with the corresponding 

real normalized eigenvector ( )3v , we have 

( ) ( )3 3 1=i iv v .                                                       (A10) 

 

Interestingly, we notice that the invariants of the tensor C  can be expressed in terms of 

eigenvalues, where  

1 1 2 3I λ λ λ= + + ,                                                   (A11) 

2 1 2 2 3 3 1I λ λ λ λ λ λ= + + ,                                              (A12) 

3 1 2 3I λ λ λ= .                                                       (A13) 

 

If a tensor is singular, the relation (A13) shows that at least one of the eigenvalues vanishes.   

 

A second order tensor P  is symmetric, if  

t =P P ,       ji ijP P= .                                               (A14) 

 
It is seen that a general symmetric second order tensor in three-dimensional space is specified by 

six independent values.  The eigenvalues of the symmetric tensor ijP  are all real and their 

corresponding real eigenvectors are mutually orthogonal for distinct eigenvalues or can be taken 

mutually orthogonal for repeated eigenvalues.  This means there is a primed orthogonal 

coordinate system 1 2 3x x x′ ′ ′ , where the representation of ′ijP  is diagonal, that is 

11

22

33

0 0

0 0

0 0

′ 
 ′ ′  =   

′  

ij

P

P P

P

.                                              (A15) 

 
A second order tensor Q  is skew-symmetric, if  
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t = −Q Q ,       ji ijQ Q= − .                                            (A16) 

 

As a result, a general skew-symmetric tensor in three-dimensional space is specified by three 

independent values.  For the determinant of this tensor, we have 

( ) ( )det det= −Q Q .                                                (A17) 

 
Since the tensor Q  is three-dimensional, we have 

( ) ( ) ( )
( )

3
det 1 det

             det

− = −

= −

Q Q

Q
.                                           (A18) 

Therefore, (A17) becomes 

( ) ( )det det= −Q Q .                                                (A19) 

 

This shows that the determinant of the tensor Q  vanishes; that is 

( )det 0=Q .                                                      (A20) 

 

This in turn shows that one of the eigenvalues of the skew-symmetric tensor ijQ  is zero.  

Therefore, all three-dimensional skew-symmetric tensors are singular and have one zero 

eigenvalue.  Interestingly, the other two eigenvalues of any skew-symmetric tensor ijQ  form a 

purely imaginary conjugate pair. 
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