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Abstract

On the basis of the Silagadze research[1], we investigate the question of the
definitions of the discrete symmetry operators both on the classical level, and
in the secondary-quantization scheme [2,3]. We studied the physical content
within several bases: light-front form formulation [4], helicity basis, angular
momentum basis, and so on, on several practical examples. The conclusion is
that we have ambiguities in the definitions of the corresponding operators P,
C; T, which lead to different physical consequences [5, 6].

1 Introduction.

In his paper of 1992 Z. Silagadze claimed: “It is shown that the usual situation
when boson and its antiparticle have the same internal parity, while, fermion and
its antiparticle have opposite particles, assumes a kind of locality of the theory. In
general, when a quantum-mechanical parity operator is defined by means of the group
extension technique, the reversed situation is also possible”, Ref. [1].

Then, Ahluwalia et al proposed [5] the so-called “Bargmann-Wightman-Wigner-
type” quantum field theory, where, as they claimed, boson and antiboson have oposite
intrinsic parities (see also [6]). Actually, this type of theories has been first proposed
by Gelfand and Tsetlin [7]. In fact, it is based on the two-dimensional representation
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México, December 1-5, 2014.
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of the inversion group. They indicated applicability of this theory to the description
of the set of K-mesons and possible relations to the Lee-Yang paper. The comutativ-
ity/anticommutativity of the discrete symmetry operations has also been investigated
by Foldy and Nigam [8]. The relations of the Gelfand-Tsetlin construct to the rep-
resentations of the anti-de Sitter SO(3, 2) group and the general relativity theory
(including continuous and discrete transformations) have also been discussed in sub-
sequent papers of Sokolik. E. Wigner [9] presented somewhat related results at the
Istanbul School on Theoretical Physics in 1962. Later, Fushchich et al discussed cor-
responding wave equations. Actually, the theory presented by Ahluwalia, Goldman
and Johnson is the Dirac-like generalization of the Weinberg 2(2J + 1)-theory for
the spin 1. The equations have already been presented in the Sankaranarayanan and
Good paper of 1965, Ref. [10]. In Ref. [11] the theory in the (1

2
, 0)⊕ (0, 1

2
) represen-

tation based on the chiral helicity 4-eigenspinors was proposed. The corresponding
equations have been obtained in [3] and in several less known articles. However, later
we found the papers by Ziino and Barut [12] and the Markov papers [13], which also
have connections with the subject under consideration.

However, the question of definitions of the discrete symmetries operators raised
by Silagadze, has not been clarified in detail. In the next sections several explicit
examples are presented. The paper has been adapted to the proceedings style.

2 Helicity Basis and Parity.

The 4-spinors have been studied well when the basis has been chosen in such a way
that they are eigenstates of the Ŝ3 operator:
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And, oppositely, the helicity basis case has not been studied almost at all (see, how-
ever, Refs. [14, 15]). Let me remind that the boosted 4-spinors in the ‘common-used’
basis are the parity eigenstates with the eigenvalues of ±1.

In the helicity spin basis the 2-eigenspinors of the helicity operator [16]

1
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(2)

can be defined as follows [16, 17]:
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for h = ±1/2 eigenvalues, respectively. We start from the Klein-Gordon equation,
generalized for describing the spin-1/2 particles (i. e., two degrees of freedom), c =
h̄ = 1:

(E + σ · p)(E − σ · p)φ = m2φ . (4)

It can be re-written in the form of the system of two first-order equations for 2-
spinors. At the same time, we observe that they may be chosen as the eigenstates of
the helicity operator:

(E − (σ · p))φ↑ = (E − p)φ↑ = mχ↑ , (5)

(E + (σ · p))χ↑ = (E + p)χ↑ = mφ↑ , (6)

(E − (σ · p))φ↓ = (E + p)φ↓ = mχ↓ , (7)

(E + (σ · p))χ↓ = (E − p)χ↓ = mφ↓ . (8)

If the φ spinors are defined by the equation (3) then we can construct the correspond-
ing u− and v− 4-spinors1
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where the normalization to the unit (±1) was used. One can prove that the matrix

P = γ0 =
(

0 I
I 0

)
can be used in the parity operator as in the original Dirac basis.

Indeed, the 4-spinors (9,10) satisfy the Dirac equation in the spinorial representation
of the γ-matrices. Hence, the parity-transformed function Ψ′(t,−x) = PΨ(t,x) must
satisfy [iγµ∂ ′

µ − m]Ψ′(t,−x) = 0 with ∂ ′
µ = (∂/∂t,−∇i). This is possible when

P−1γ0P = γ0 and P−1γiP = −γi. The P-matrix above satisfies these requirements,
as in the textbook case [18].

Next, it is easy to prove that one can form the projection operators

P+ = +
∑
h

uh(p)ūh(p) =
pµγ

µ + m

2m
, P− = −

∑
h

vh(p)v̄h(p) =
m− pµγ

µ

2m
, (11)

with the properties P+ + P− = 1 and P 2
± = P±. This permits us to expand the 4-

spinors defined in the basis (1) in linear superpositions of the helicity basis 4-spinors

1One can also try to construct yet another theory differing from the ordinary Dirac theory. The 4-
spinors might be not the eigenspinors of the helicity operator of the (1/2, 0)⊕ (0, 1/2) representation
space, cf. [11]. They might be the eigenstates of the chiral helicity operator introduced in [11].
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and to find corresponding coefficients of the expansion:

uσ(p) = Aσhuh(p) + Bσhvh(p), vσ(p) = Cσhuh(p) + Dσhvh(p). (12)

Multiplying the above equations by ūh′ , v̄h′ and using the normalization conditions,
we obtain Aσh = Dσh = ūhuσ, Bσh = Cσh = −v̄huσ. Thus, the transformation matrix
from the common-used basis to the helicity basis is(

uσ

vσ

)
= U

(
uh

vh

)
, U =

(
A B
B A

)
(13)

Neither A nor B are unitary:

A = (a++ + a+−)(σµa
µ) + (−a−+ + a−−)(σµa

µ)σ3 , (14)

B = (−a++ + a+−)(σµa
µ) + (a−+ + a−−)(σµa

µ)σ3 , (15)

where

a0 = −i cos(θ/2) sin(φ/2) ∈ =m , a1 = sin(θ/2) cos(φ/2) ∈ <e, (16)

a2 = sin(θ/2) sin(φ/2) ∈ <e , a3 = cos(θ/2) cos(φ/2) ∈ <e, (17)

and

a++ =

√
(E + m)(E + p)

2
√

2m
, a+− =

√
(E + m)(E − p)

2
√

2m
, (18)

a−+ =

√
(E −m)(E + p)

2
√

2m
, a−− =

√
(E −m)(E − p)

2
√

2m
. (19)

However, A†A + B†B = I, so the matrix U is unitary. Please note that this matrix
acts on the spin indices (σ, h), and not on the spinorial indices; it is 4× 4 matrix.

We now investigate the properties of the helicity-basis 4-spinors with respect to
the discrete symmetry operations P, C and T . It is expected that h → −h under
parity, as Berestetskĭı, Lifshitz and Pitaevskĭı claimed [19]. Indeed, if x → −x, then
the vector p → −p, but the axial vector S → S, that implies the above statement.
The helicity 2-eigenspinors transform φ↑↓ ⇒ −iφ↓↑ with respect to p → −p, Ref. [17].
Hence,

Pu↑(−p) = −iu↓(p) , Pv↑(−p) = +iv↓(p) , (20)

Pu↓(−p) = −iu↑(p) , Pv↓(−p) = +iv↑(p) . (21)

Thus, on the level of classical fields, we observe that the helicity 4-spinors transform
to the 4-spinors of the opposite helicity.

Cu↑(p) = −v↓(p) , Cv↑(p) = +u↓(p) , (22)

Cu↓(p) = +v↑(p) , Cv↓(p) = −u↑(p) . (23)
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due to the properties of the Wigner operator Θφ∗
↑ = −φ↓ and Θφ∗

↓ = +φ↑. Similar
conclusions can be drawn in the Fock space. We define the field operator as follows:

Ψ(xµ) =
∑
h

∫ d3p

(2π)3

√
m

2E
[uh(p)ah(p)e−ipµxµ

+ vh(p)b†h(p)e+ipµxµ

] . (24)

The commutation relations are assumed to be the standard ones [21, 22, 18, 20]
(compare with Refs. [3, 11]). If one defines UP Ψ(xµ)U−1

P = γ0Ψ(xµ′
), UCΨ(xµ)U−1

C =
CΨ†(xµ) and the anti-unitary operator of time reversal (VT Ψ(xµ)V −1

T )† = TΨ†(xµ′′
),

then it is easy to obtain the corresponding transformations of the creation/annihilation
operators:

UP ah(p)U−1
P = −ia−h(−p), UP bh(p)U−1

P = −ib−h(−p), (25)

UCah(p)U−1
C = (−1)

1
2
+hb−h(p) , UCbh(p)U−1

C = (−1)
1
2
−ha−h(−p). (26)

As a consequence, we obtain (provided that UP |0 >= |0 >, UC |0 >= |0 >)

UP a†h(p)|0 >= UP a†hU
−1
P |0 >= ia†−h(−p)|0 >= i| − p,−h >+ , (27)

UP b†h(p)|0 >= UP b†hU
−1
P |0 >= ib†−h(−p)|0 >= i| − p,−h >− , (28)

and

UCa†h(p)|0 >= UCa†hU
−1
C |0 >= (−1)

1
2
+hb†−h(p)|0 >= (−1)

1
2
+h|p,−h >− ,

UCb†h(p)|0 >= UCb†hU
−1
C |0 >= (−1)

1
2
−ha†−h(p)|0 >= (−1)

1
2
−h|p,−h >+ .

Finally, for the CP operation one should obtain:

UP UCa†h(p)|0 >= −UCUP a†h(p)|0 >= (−1)
1
2
+hUP b†−h(p)|0 >=

= i(−1)
1
2
+hb†h(−p)|0 >= i(−1)

1
2
+h| − p, h >− , (29)

UP UCb†h(p)|0 >= −UCUP b†h(p) = (−1)
1
2
−hUP a†−h(p)|0 >=

= i(−1)
1
2
−ha†h(−p)|0 >= i(−1)

1
2
−h| − p,−h >+ . (30)

As in the classical case, the P and C operations anticommutes in the (1
2
, 0) ⊕ (0, 1

2
)

quantized case. This opposes to the theory based on 4-spinor eigenstates of chiral
helicity (cf. [3]), where other definition was used, cf. [8] and below.

Since the VT is an anti-unitary operator the problem must be solved after taking
into account that in this case the c-numbers should be put outside the hermitian
conjugation without complex conjugation:

[VT hAV −1
T ]† = [h∗VT AV −1

T ]† = h[VT A†V −1
T ] . (31)
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After applying this definition we obtain:2

VT a†h(p)V −1
T = +i(−1)

1
2
−ha†h(−p) , (32)

VT bh(p)−1
T = +i(−1)

1
2
−hbh(−p) . (33)

Furthermore, we observed that the question of whether a particle and an antiparti-
cle have the same or opposite parities depend on the phase factor in the following
definition:

UP Ψ(t,x)U−1
P = eiαγ0Ψ(t,−x) . (34)

Indeed,

UP ah(p)U−1
P = −ieiαa−h(−p) , (35)

UP b†h(p)U−1
P = +ieiαb†−h(−p) . (36)

From this, if α = π/2 we obtain opposite parity properties of creation/annihilation
operators for particles and anti-particles:

UP ah(p)U−1
P = +a−h(−p) , (37)

UP bh(p)U−1
P = −b−h(−p) . (38)

However, the difference with the Dirac case still preserves (h transforms to −h). We
find somewhat similar situation with the question of constructing the neutrino field
operator (cf. with the Goldhaber-Kayser creation phase factor).

Next, we find the explicit form of the parity operator UP and prove that it
commutes with the Hamiltonian operator. We prefer to use the method described
in [20, §10.2-10.3]. It is based on the anzatz that UP = exp[iαÂ] exp[iB̂] with
Â =

∑
s

∫
d3p[a†p,sa−ps + b†psb−ps] and B̂ =

∑
s

∫
d3p[βa†p,saps + γb†psbps]. On using

the known operator identity

eÂB̂e−Â = B̂ + [Â, B̂]− +
1

2!
[Â, [Â, B̂]] + . . . (39)

and [Â, B̂Ĉ]− = [Â, B̂]+Ĉ − B̂[Â, Ĉ]+ one can fix the parameters α, β, γ such that
one satisfies the physical requirements that a Dirac particle and its anti-particle have
opposite intrinsic parities.

In our case, we need to satisfy the requirement that the operator should invert
not only the sign of the momentum, but the sign of the helicity too. We may achieve
this goal by the analogous postulate UP = eiαÂ with

Â =
∑
h

∫ d3p

2E
[a†h(p)a−h(−p) + b†h(p)b−h(−p)] . (40)

2T should be chosen in such a way in order to fulfill T−1γT
0 T = γ0, T−1γT

i T = γi and TT = −T ,
as in Ref. [21].
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By direct verification, the requirement is satisfied provided that α = π/2. Cf. this
parity operator with that given in [18, 20] for Dirac fields:3

UP = exp

[
i
π

2

∫
d3p

∑
s

(
a(p, s)†a(p̃, s) + b(p, s)†b(p̃, s)−

−a(p, s)†a(p, s) + b(p, s)†b(p, s)
)]

, (10.69) of Ref. [20] . (41)

By direct verification one can also come to the conclusion that our new UP commutes
with the Hamiltonian:

H =
∫

d3xΘ00 =
∫

d3k
∑
h

[a†h(k)ah(k)− bh(k)b†h(k)] , (42)

i.e.
[UP ,H]− = 0 . (43)

Alternatively, we can try to choose another set of commutation relations [3, 11] for
the set of bi-orthonormal states. As it was said, in the cited papers and preprints I
presented a theory based on a set of 6-component Weinberg-like equations (I called
them the “Weinberg doubles”) in the (1, 0) ⊕ (0, 1) representation. The theory in
the (1

2
, 0) ⊕ (0, 1

2
) representation based on the chiral helicity 4-eigenspinors was also

proposed. The papers by Ziino and Barut [12] and the Markov papers [13] have also
connections with the subject under consideration.

3 The Chiral Helicity Construct and the Different

Definition of the Charge Conjugate Operator on

the Secondary Quantization Level.

In the chiral representation one can choose the spinorial basis (zero-momentum spinors)
in the following way:

λS
↑ (0) =

√
m

2


0
i
1
0

 , λS
↓ (0) =

√
m

2


−i
0
0
1

 , λA
↑ (0) =

√
m

2


0
−i
1
0

 , λA
↓ (0) =

√
m

2


i
0
0
1

 ,

3Greiner used the following commutation relations
[
a(p, s), a†(p′, s′)

]
+

=
[
b(p, s), b†(p′, s′)

]
+

=
δ3(p− p′)δss′ . One should also note that the Greiner form of the parity operator is not the unique
one. Itzykson and Zuber [18] proposed another one differing by the phase factors from (10.69) of [20].
In order to find relations between those two forms of the parity operator one should apply additional
rotation in the Fock space.

7



ρS
↑ (0) =

√
m

2


1
0
0
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√
m

2


0
1
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0
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√
m

2
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1
0
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i
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↓ (0) =

√
m

2
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0
1
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0

 .

The indices ↑↓ should be referred to the chiral helicity quantum number introduced
in Ref. [11]. Using the boost the reader would immediately find the 4-spinors of the
second kind λS,A

↑↓ (pµ) and ρS,A
↑↓ (pµ) in an arbitrary frame:

λS
↑ (pµ) =

1

2
√

E + m


ipl

i(p− + m)
p− + m
−pr

 , λS
↓ (pµ) =

1

2
√

E + m


−i(p+ + m)

−ipr

−pl

(p+ + m)

 , (44)

λA
↑ (pµ) =

1

2
√

E + m


−ipl

−i(p− + m)
(p− + m)
−pr

 , λA
↓ (pµ) =

1

2
√

E + m


i(p+ + m)

ipr

−pl

(p+ + m)

 , (45)

ρS
↑ (pµ) =

1

2
√

E + m


p+ + m

pr

ipl

−i(p+ + m)

 , ρS
↓ (pµ) =

1

2
√

E + m


pl

(p− + m)
i(p− + m)
−ipr

 , (46)

ρA
↑ (pµ) =

1

2
√

E + m


p+ + m

pr

−ipl

i(p+ + m)

 , ρA
↓ (pµ) =

1

2
√

E + m


pl

(p− + m)
−i(p− + m)

ipr

 .(47)

Some of the 4-spinors are connected each other. The normalization of the spinors
λS,A
↑↓ (pµ) and ρS,A

↑↓ (pµ) are the following ones:

λ
S

↑ (pµ)λS
↓ (pµ) = −im , λ

S

↓ (pµ)λS
↑ (pµ) = +im , (48)

λ
A

↑ (pµ)λA
↓ (pµ) = +im , λ

A

↓ (pµ)λA
↑ (pµ) = −im , (49)

ρS
↑ (pµ)ρS

↓ (pµ) = +im , ρS
↓ (pµ)ρS

↑ (pµ) = −im , (50)

ρA
↑ (pµ)ρA

↓ (pµ) = −im , ρA
↓ (pµ)ρA

↑ (pµ) = +im . (51)

All other conditions are equal to zero.
Implying that λS(pµ) (and ρA(pµ)) answer for positive-frequency solutions; λA(pµ)

(and ρS(pµ)), for negative-frequency solutions, one can deduce the dynamical coordinate-
space equations [3]:

iγµ∂µλ
S(x)−mρA(x) = 0 , (52)
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iγµ∂µρ
A(x)−mλS(x) = 0 , (53)

iγµ∂µλ
A(x) + mρS(x) = 0 , (54)

iγµ∂µρ
S(x) + mλA(x) = 0 . (55)

They can be written in the 8-component form. This is just another representation
of the Dirac-like equation in the appropriate Clifford Algebra. One can also re-write
the equations into the two-component form.

In the Fock space operators of the charge conjugation and space inversions can
be defined as above. We imply the bi-orthonormal system of the anticommutation
relations. As a result we have the following properties of creation (annihilation)
operators in the Fock space:

U s
[1/2]a↑(p)(U s

[1/2])
−1 = −ia↓(−p), U s

[1/2]a↓(p)(U s
[1/2])

−1 = +ia↑(−p),

U s
[1/2]b

†
↑(p)(U s

[1/2])
−1 = +ib†↓(−p), U s

[1/2]b
†
↓(p)(U s

[1/2])
−1 = −ib↑(−p),

that signifies that the states created by the operators a†(p) and b†(p) have very
different properties with respect to the space inversion operation, comparing with
Dirac states (the case also regarded in [12]):

U s
[1/2]|p, ↑>+ = +i| − p, ↓>+, U s

[1/2]|p, ↑>−= +i| − p, ↓>−, (56)

U s
[1/2]|p, ↓>+ = −i| − p, ↑>+, U s

[1/2]|p, ↓>−= −i| − p, ↑>− . (57)

For the charge conjugation operation in the Fock space we have two physically
different possibilities. The first one, e.g.,

U c
[1/2]a↑(p)(U c

[1/2])
−1 = +b↑(p), U c

[1/2]a↓(p)(U c
[1/2])

−1 = +b↓(p), (58)

U c
[1/2]b

†
↑(p)(U c

[1/2])
−1 = −a†↑(p), U c

[1/2]b
†
↓(p)(U c

[1/2])
−1 = −a†↓(p), (59)

in fact, has some similarities with the Dirac construct. The action of this operator
on the physical states are

U c
[1/2]|p, ↑>+ = + |p, ↑>− , U c

[1/2]|p, ↓>+= + |p, ↓>− , (60)

U c
[1/2]|p, ↑>− = − |p, ↑>+ , U c

[1/2]|p, ↓>−= − |p, ↓>+ . (61)

But, one can also construct the charge conjugation operator in the Fock space which
acts, e.g., in the following manner:

Ũ c
[1/2]a↑(p)(Ũ c

[1/2])
−1 = −b↓(p), Ũ c

[1/2]a↓(p)(Ũ c
[1/2])

−1 = −b↑(p), (62)

Ũ c
[1/2]b

†
↑(p)(Ũ c

[1/2])
−1 = +a†↓(p), Ũ c

[1/2]b
†
↓(p)(Ũ c

[1/2])
−1 = +a†↑(p), (63)

9



and, therefore,

Ũ c
[1/2]|p, ↑>+ = − |p, ↓>− , Ũ c

[1/2]|p, ↓>+= − |p, ↑>− , (64)

Ũ c
[1/2]|p, ↑>− = + |p, ↓>+ , Ũ c

[1/2]|p, ↓>−= + |p, ↑>+ . (65)

Next, by straightforward verification one can convince ourselves about correctness
of the assertions made in [11b] (see also [8]) that it is possible a situation when the
operators of the space inversion and charge conjugation commute each other in the
Fock space. For instance,

U c
[1/2]U

s
[1/2]|p, ↑>+ = +iU c

[1/2]| − p, ↓>+= +i| − p, ↓>−, (66)

U s
[1/2]U

c
[1/2]|p, ↑>+ = U s

[1/2]|p, ↑>−= +i| − p, ↓>− . (67)

The second choice of the charge conjugation operator answers for the case when the
Ũ c

[1/2] and U s
[1/2] operations anticommute:

Ũ c
[1/2]U

s
[1/2]|p, ↑>+ = +iŨ c

[1/2]| − p, ↓>+= −i | − p, ↑>−, (68)

U s
[1/2]Ũ

c
[1/2]|p, ↑>+ = −U s

[1/2]|p, ↓>−= +i | − p, ↑>− . (69)

Finally, the time reversal anti-unitary operator in the Fock space should be defined
in such a way the formalism to be compatible with the CPT theorem. If we wish the
Dirac states to transform as V (T )|p,±1/2 >= ± | − p,∓1/2 > we have to choose
(within a phase factor), Ref. [18]:

S(T ) =
(

Θ[1/2] 0
0 Θ[1/2]

)
. (70)

Thus, in the first relevant case we obtain for the Ψ(xµ) field, composed of λS,A or ρA,S

4-spinors

V
T

a†↑(p)(V
T

)−1 = a†↓(−p), V
T

a†↓(p)(V
T

)−1 = −a†↑(−p), (71)

V
T

b↑(p)(V
T

)−1 = b↓(−p), V
T

b↓(p)(V
T

)−1 = −b↑(−p) , (72)

that is not surprising.

4 The Conclusions.

Thus, we proceeded as in the textbooks and defined the parity matrix as P = γ0,
because the helicity 4-spinors satisfy the Dirac equation, and the 2nd-type λ-spinors
satisfy the coupled Dirac equations. Nevertheless, the properties of the corresponding
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spinors appear to be different with respect to the parity both on the first and the
second quantization level. The result is compatible with the statement made by
Berestetskii, Lifshitz and Pitaevskii. We also defined another charge conjugation
operator in the Fock space, which also transforms the positive-energy 4-spinors to the
negative-energy ones.
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