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Abstract. In this paper, we assume that Hardy-Littlewood Conjecture,
we got a better upper bound of the exceptional real zero for a class of module.
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In this paper, we reveal the relationship between Hardy-Littlewood Con-
jecture and the exceptional real zero. Assume that Hardy-Littlewood Con-
jecture, we obtained a good results of the exceptional real zero.

In this paper, I generalize the results of my paper ”An Application of
Hardy-Littlewood Conjecture”. ¢ is the prime number and ¢ = 3 (mod4) is
improved to ¢ is odd square-free and ¢ = 3 (mod 4). we know that the module
q of the exceptional primitive real character are square-free when q is odd
positive integer.

First, we give Hardy-Littlewood Conjecture.

Hardy-Littlewood Conjecture. When N is even integer and N > 6, we
have
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where py, pe, p are the prime numbers, ¢(n) is Euler function.
Under the above conjecture, we have the following theorem

Theorem. Let ¢ is odd square-free and ¢ = 3 (mod4), it has exceptional
real character y, and its Dirichlet L(s, x) function has an exceptional real
zero (. If Hardy-Littlewood Conjecture is correct, then there is a positive
constant ¢ , we have
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Now, we do some preparation work.

Lemma 1 . Assuming that the Hardy-Littlewood Conjecture. Let n is
any positive integer, ¢ is odd integer and large sufficiently, then
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and pq, pe, p are the prime numbers.

Proof . By Hardy-Littlewood Conjecture, when N is large sufficiently, we
have
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We choose N = 2nq , This completes the proof of Lemma 1 .
Lemma 2. Let m is positive integer and n is integer, then
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where e(z) = €™, The lemma 2 is obvious

Lemma 3. Let ¢; be the positive constant. if (a,q) = 1, then
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when there is an exceptional character Y modulo ¢ and /3 is the concomi-

tant zero. Where Liz = [} 2 and exp(z) = €°
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The lemma 3 follows from the References [2], Corollary 11.20 of the page
381



It is easy to see that
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Lemma 4. if x is a primitive character modulo m, then
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where 7(x) = YL, x(k)e(£).
The lemma 4 follows from the References [1], the page 47.

Lemma 5. if m is odd square-free and x is a primitive real character
modulo m, then
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The lemma 5 follows from the References [1], the theorem 3.3 of the page
49.

Lemma 6. We give the value of two sums, they are used in the proof of
the Theorem.
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where y is the primitive character modulo ¢,
This completes the proof of Lemma 6 .
PROOF OF THEOREM.

The first part.

By Lemma 2, when x > ¢*, we have

S(2(9) x5

k=1 3<p1 <z 3<p2<z

< P1 +p2>>



Sl

SPIDIDIC S EVED SIRET) SED S
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by Lemma 1 , the above formula
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The second part.

When 1 < k < ¢, we have

by Lemma 3 and Lemma 4, the above formula
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where Y is the exceptional primitive real character modulo gq.

therefore
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By Lemma 5 and Lemma 6, we have
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We synthesize the first part and second part, we have
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we take logz = (é log ¢)?, then
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we take logq > /=7, then
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This completes the proof of Theorem.
Because 7(x4) = 2i and 7(xs) = 2v/2 , when ¢ is odd square-free, by

same method, for module 4¢ ,¢ = 1(mod4) and module 8¢ ,q = 3(mod4) , we
have the same conclusion.
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